WO2000067812A1 - Biostabilite de structures polymeres - Google Patents
Biostabilite de structures polymeres Download PDFInfo
- Publication number
- WO2000067812A1 WO2000067812A1 PCT/IE1999/000038 IE9900038W WO0067812A1 WO 2000067812 A1 WO2000067812 A1 WO 2000067812A1 IE 9900038 W IE9900038 W IE 9900038W WO 0067812 A1 WO0067812 A1 WO 0067812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biostable
- polyether polyurethane
- diisocyanate
- polyurethane article
- article
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000000638 solvent extraction Methods 0.000 claims abstract description 15
- 239000007943 implant Substances 0.000 claims abstract description 12
- 230000010261 cell growth Effects 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 230000008467 tissue growth Effects 0.000 claims abstract 2
- 239000004814 polyurethane Substances 0.000 claims description 66
- 229920002635 polyurethane Polymers 0.000 claims description 66
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 61
- 229920000570 polyether Polymers 0.000 claims description 61
- 239000004970 Chain extender Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 229920005862 polyol Polymers 0.000 claims description 21
- 150000003077 polyols Chemical class 0.000 claims description 21
- 239000012948 isocyanate Substances 0.000 claims description 20
- 150000002513 isocyanates Chemical class 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 239000006260 foam Substances 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 13
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 12
- 210000001519 tissue Anatomy 0.000 claims description 11
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 10
- 239000000560 biocompatible material Substances 0.000 claims description 10
- 239000004202 carbamide Substances 0.000 claims description 10
- 150000002009 diols Chemical class 0.000 claims description 10
- -1 polydimethylsiloxane urethane urea Polymers 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 150000004985 diamines Chemical class 0.000 claims description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 9
- 125000005442 diisocyanate group Chemical group 0.000 claims description 9
- 150000001412 amines Chemical class 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 6
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 6
- 239000004604 Blowing Agent Substances 0.000 claims description 5
- 239000012620 biological material Substances 0.000 claims description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 5
- 229920001692 polycarbonate urethane Polymers 0.000 claims description 5
- 239000013557 residual solvent Substances 0.000 claims description 5
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 4
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 claims description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 claims description 4
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 claims description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 229960004063 propylene glycol Drugs 0.000 claims description 3
- 235000013772 propylene glycol Nutrition 0.000 claims description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 claims description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 2
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 claims description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 2
- 229940035437 1,3-propanediol Drugs 0.000 claims description 2
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical group O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 claims description 2
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 claims description 2
- 229940043375 1,5-pentanediol Drugs 0.000 claims description 2
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 claims description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 claims description 2
- 239000005700 Putrescine Substances 0.000 claims description 2
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004067 bulking agent Substances 0.000 claims description 2
- 230000007547 defect Effects 0.000 claims description 2
- 238000012377 drug delivery Methods 0.000 claims description 2
- 230000003073 embolic effect Effects 0.000 claims description 2
- OYQYHJRSHHYEIG-UHFFFAOYSA-N ethyl carbamate;urea Chemical compound NC(N)=O.CCOC(N)=O OYQYHJRSHHYEIG-UHFFFAOYSA-N 0.000 claims description 2
- 208000025339 heart septal defect Diseases 0.000 claims description 2
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 claims description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 210000003205 muscle Anatomy 0.000 claims description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 2
- 230000017423 tissue regeneration Effects 0.000 claims description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims 3
- 229920000909 polytetrahydrofuran Polymers 0.000 claims 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 239000002202 Polyethylene glycol Substances 0.000 claims 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical group OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 claims 1
- 125000003916 ethylene diamine group Chemical group 0.000 claims 1
- 150000002430 hydrocarbons Chemical group 0.000 claims 1
- 229920001281 polyalkylene Polymers 0.000 claims 1
- 229920001610 polycaprolactone Polymers 0.000 claims 1
- 239000004632 polycaprolactone Substances 0.000 claims 1
- 229920001223 polyethylene glycol Polymers 0.000 claims 1
- 229920001451 polypropylene glycol Polymers 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 239000012633 leachable Substances 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000005056 polyisocyanate Substances 0.000 description 3
- 229920001228 polyisocyanate Polymers 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012707 chemical precursor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical class [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical class [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical class [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- IINDYZNVEYQZNO-UHFFFAOYSA-N O.N=C=O.N=C=O Chemical compound O.N=C=O.N=C=O IINDYZNVEYQZNO-UHFFFAOYSA-N 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical class [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical class [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical class [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical class [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical class [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Chemical class 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical class [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- 230000007402 cytotoxic response Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000013627 low molecular weight specie Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Chemical class 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical class [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical class [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Chemical class 0.000 description 1
- 229910052726 zirconium Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
Definitions
- This invention relates to biostable biocompatible polymeric structures suitable for long term implantation within a living human body and as a suitable substratum for cell growth technologies.
- Flexible polyurethane foams have been manufactured for more than thirty years from polyisocyanates and polymeric polyols. They have been used in the production of elastomers, flexible and rigid foams, coatings, adhesives and many other products in the industrial sector.
- the most commonly used polyisocyanate has been TDI (Toluene Diisocyanate) but in recent years this has been replaced with MDI (Diphenylmethane Diisocyanates).
- TDI Toluene Diisocyanate
- MDI Diphenylmethane Diisocyanates
- foamed materials based on polyurethane and other polymer systems derived from organic polysiloxanes in industrial applications is also well established.
- the formulation and processing conditions used during manufacture affects the properties of the foam product. They can vary in texture from soft flexible foams used in cushioning applications to hard rigid materials used as insulating or structural materials.
- the density and strength of the material can also be affected by the formulation.
- a method for manufacturing a biostable biocompatible polymeric material comprising the step of forming a three dimensional cross linked structure of the polymeric material and treating the structure to remove impurities.
- the structure is treated by solvent extraction.
- the solubility parameter of the solvent extraction system is selected for compatibility with the solubility parameter of the polymeric material or its phases.
- the solubility parameter of the solvent extraction system is within ⁇ 8
- the method includes the step of removing residual solvent from the structure, after solvent extraction.
- residual solvent is removed by treatment with water.
- the biostable biocompatible material may for example be a polyether polyurethane or a polycarbonate urethane or polycarbonate urethane urea or a polydimethylsiloxane urethane urea.
- the material is in the form of a medical implant.
- the implant may be a septal defect occluder, a vessel occluder, a vessel defect occluder, a mammary prosthesis, a muscle bulking agent, a gynecological implant or an embolic filter.
- the material may be in the form of a substratum for tissue and/ or cell growth.
- the material forms a cell matrix for cell growth technologies, tissue repair and in drug delivery applications.
- the article may be formed from an organic diisocyanate, a polyether polyol, a chain extender and a blowing agent.
- the blowing agent is preferably water.
- the density of the article is preferably less than 1200kg/m 3 , ideally less than 200kg/m 3 .
- the ratios of the reaction components are selected to promote the formation of a three dimensional porous molecular structure of polyether urethane biomaterial.
- the article may be processed by a metering and mixing process, wherein the chemical components are aggressively mixed and dispensed into a vessel and chain extension and blowing reactions occur substantially simultaneously.
- the article is processed by a reactive moulding process, wherein the chemical components are mixed and dispensed into a vessel wherein chain extension occurs.
- the article may be processed in two stages, a first stage involving a reaction process in which the number of isocyanate linkages in the reaction vessel is approximately equal to the number of active hydrogens in the vessel.
- the article may also be processed by a reactive blowing process, in which the chemical components are aggressively mixed and dispensed substantially continuously and expand and chain extend substantially simultaneously to form a continuous block of foam which is subsequently cut or machined into a desired geometry.
- the density of the article is preferably controlled by controlling the pressure in the reaction vessel.
- the biostable polyether polyurethane article has a pore size of from 10 microns to 900 microns.
- the biostable polyether polyurethane article according to claim 25 having a pore size of between 35 microns to 200 microns.
- the invention provides a biostable polyether polyurethane wherein the urea linkages are derived from a water isocyanate reaction present in the hard segment phase.
- the percentage of urea linkages in the hard segment phase is greater than 0.5%.
- the invention provides a biostable polyether polyurethane wherein biuret linkages exist in the hard segment phase.
- the invention provides a biostable polyether polyurethane wherein aliphatic linkages exist in the hard segment phase.
- the biostable polyurethane devices of this invention are derived from organic diisocyanates and polyether polyols, polyether copolymer polyols or combinations thereof and are chain extended with either diamine, diol, water or mixtures of the above chain extenders.
- the reaction step converts the chemical precursors into a 3 dimensional molecular cross-linked structure, simultaneously forming a low density porous material.
- a 3 dimensional network of this kind is insoluble and intractable. Manufacturing the article by this method produces a material with minimal internal stress, enhancing biostability.
- the polyether biomaterial is a three dimensional structure at a molecular level allows it to be processed aggressively to remove residual chemicals from the process.
- Low molecular weight chemicals have the potential to leach from the article and result in toxic reactions in living cells.
- the downstream processing of the article expands the biomaterials volume at a molecular level. This expansion aids in the removal of leachables such as catalyts, oligomers and free monomers.
- the solvent extraction process also reduces any internal stresses within the material.
- the solvent expands the material when it penetrates between the molecular chains.
- the 3-dimensional cross links provides the materials with molecular memory and prevents the molecular structure being soluble in the solvent. However, the molecular chains in this state can orient themselves into a preferred relaxed conformation, thereby relieving the material of any internal stresses.
- This process enhances the material biocompatible for use as an implantable medical device or as a 3 dimensional matrix for use as a cell scaffold in tissue engineering applications. Altering the chemical precursors and the processing conditions of the material may alter the pore size and the density of the material, as required, to meet the requirements of the application.
- the biostable polyurethanes of this invention are useful for the manufacture of catheters, vascular grafts, septal occluders, vessel occluders, embolisation devices, mammary prosthesis, pacemaker leads and other such implant, blood contacting devices and as cell scaffolds to support cell growth.
- biostable polyurethanes of this invention are based on organic diisocyanates, polyether copolymer polyols, polyether homopolymers and diol, diamine or water chain extenders and combinations thereof.
- the product of this invention has applications in the medical device and tissue engineering sectors, however the material can also be used as a cell scaffold to support cell growth.
- This material is suitable for these applications since it was designed such that an aggressive solvent extraction process can be applied to remove potential leachables from the material. Typically it is these leachables that are responsible for cytotoxic responses to polyurethane materials.
- the solvent extraction system detailed in this invention allows the use of solvents with a solubility parameter similar to that of the polymer, allowing the polymer to swell and the leachables to be removed by the solvent from the material.
- organic diisocyanates are of the general formula: R-(NCO) n
- R is an aliphatic, aromatic, cycloaliphatic, or an aliphatic-aromatic hydrocarbon entity containing between 4 and 24 carbon atoms and "n" varies between 1.85 and 3. More preferably, R contains between 4 and 13 carbon atoms. Where n is 2, a polymer with a linear molecular structure may be produced. A three dimensional molecular network may be produced where n varies from 1.85 to 3. Ideally n should be between 1.9 and 2.2.
- Suitable isocyanates include: p-phenylene diisocyanate, tetramethylene diisocyanate, cyclohexane 1, 2-diisocyanate, m-tetramethylxylene diisocyanate, hexamethylene diisocyanate, 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 2,4 toluene diisocyanate, 2, 6 toluene diisocyanate, cyclohexane 1,4 diisocyanate, isophorone diisocyanate, 4,4 - dicyclohexylmethane diisocyanate, 4,4 -dicyclohexylmethane diisocyanate, and mixtures of the above.
- isocyanates can be used to manufacture suitable materials; 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 2,4 toluene diisocyanate, 2, 6 toluene diisocyanate, cyclohexane 1,4 diisocyanate, isophorone diisocyanate, 4,4 -dicyclohexylmethane diisocyanate, and mixtures of the above.
- diisocyanates can be used to manufacture suitable polyurethanes: 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 4,4 -dicyclohexylmethane diisocyanate.
- Polyether polyols that may be used include products obtained by the polymerisation of cyclic oxide, for example, ethylene oxide, propylene oxide, butylene oxide, or tetrahydrofuran in the presence of polyfunctional initiators.
- Suitable initiator compounds contain plurality of active hydrogen atoms including water and polyols, e.g., ethylene glycol, propylene glycol, diethylene glycol, resorcinol, bisphenol A, cyclohexane dimethanol, gylcerol, trimethylolpropane,
- Useful polyether polyols include polytetramethylene glycols obtained by the polymerisation of tetrahydrofuran.
- the polytetramethylene glycols used in this invention having varying molecular weights of between 600 and 3000. Polyols of differing molecular weights can be used together in a single formulation.
- the polyether polyurethanes of this invention are based on diol, diamine, alkanolamine, water chain extenders or mixtures of these.
- Diol chain extenders react with isocyanate to generate urethane linkages.
- Diamine and water generate urea linkages and alkanol amines can generate both urethane and urea linkages.
- the use of water as a chain extender in low density, three dimensional biomedical polyurethanes is unusual as with most conventional biomedical polyurethanes water is viewed as an impurity.
- the water chain extension reactions generate urea linkages in the hard segment and carbon dioxide is given off as a by-product.
- the carbon dioxide generated from the water isocyanate reaction series can be used to influence the density of the material by generating a cellular structure.
- Polyurethanes with a high concentration of urea linkages in the hard phase tend to be strong elastomers with good flex lives.
- the carbon dioxide generated as a by-product of the isocyanate-water-isocyanate reaction series can be employed to generate a cell structure in the material.
- a surfactant With the use of a surfactant, the size and porosity of this cell structure can be controlled.
- the manufacturing control over the pore size of the material has important implications in the application of the article. In cell growth technology the pore sizes can be modified to accommodate cells and modify the cell to surface ratio.
- the level of water used in the reaction determines the amount of carbon dioxide generated and the hard segment content of the polymer.
- the amount of carbon dioxide generated plays an important role in the density of the polyurethane.
- the density can be controlled independently of the hard segment content by controlling the pressure of the reaction/forming chamber.
- biostable polyurethanes of this invention can be manufactured with densities ranging from 15kg/m 3 to 1200kg/m 3 virtually independent of the hard segment content.
- Low density articles used in medical applications are desirable since the wrapping profile of the article is reduced and the delivery device profile is minimised, giving rise to a wider range of applications.
- biostable polyurethanes of this invention involves the reaction of -OH groups from the polyol with -NCO groups from the diisocyanate to form urethane linkages. These chemical groups are reacted in approximately equivalent ratios for the generation of linear polymers and with slight excess for a crosslinked (three-dimensional) molecular structure.
- Secondary chain extenders may be employed to alter the hard segment content or to alter specific properties. Manufacturing foams of the lowest densities per this invention is carried out by a combination of a water blown reaction, in a depressurised reactive/forming vessel and the incorporation of a physical blowing agent into the formulation. Secondary chain extenders can be either diamine, diol or alkanol amine based and should have a functionality of two or greater. Diol chain extenders are preferred.
- chain extenders include, ethylene glycol, 1,4 butanediol, diethylene glycol, triethylene glycol, 1,2 propane diol, 1,3 propane diol, 1,5 pentane diol, ethylene diamine, 1,4 diaminobutane, 1,6 diaminohexane, 1,7 diaminoheptane, 1,8 diaminooctane, and 1,5 diaminopentane.
- catalysts may be preferred or not.
- polyols as isocyanate reactive compounds, it is preferred to use catalysts for urethane formation.
- Catalysts for polyurethane formation that may be used are compounds, which promote the reaction between isocyanate and hydroxyl groups.
- Such catalysts are widely available in the marketplace and include organic and inorganic salts of bismuth, lead, tin, iron, antimony, cadmium, cobalt, aluminum, mercury, zinc, cerium, molybdenum, vanadium, copper, manganese and zirconium, as well as phosphines and tertiary amines.
- Tertiary amines are an important class of catalyst in which the nitrogen atom is not directly attached to an aromatic ring.
- tertiary amines are: triethylamine, N,N,N',N'-tetramemylenediamine, N-N,N',N'-tetramethyl-l,3- butanediamine, bis-2-dimethylaminoethyl ether, N,N-dimethylcyclohexylamine, N,N-dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, 1,4- diazabicyclo-[2.2.2] octane and the like.
- Biostable articles of this invention can be chemically prepared via the following methods: The one shot process in which the diisocyanate, the polyol and the chain extender are mixed and reacted in one step.
- the prepolymer method wherein an isocyanate-terminated prepolymer is first prepared and then the system is chain extended.
- the quasiprepolymer system wherein some of the polyol is reacted with the isocyanate to generate an isocyanate terminated prepolymer in an excess of isocyanate.
- the remaining polyol and chain extenders are subsequently added to facilitate chain extension.
- Biostable articles of this invention may be processed by any of the following techniques: • Reactive blow moulding process, wherein the chemical ingredients for this invention are fed though two or three lines to a mixing head where it is aggressively mixed and dispensed into a mould and chain extension and blowing reactions occur simultaneously.
- This process is suitable for the manufacture of a three dimensional molecular structure and is suited to the manufacture of low density porous and non-porous articles.
- the shot size used in this invention is 0.5g to lOg producing a three dimensional low density porous foam.
- Reactive blowing process wherein the chemical ingredients are aggressively mixed and dispensed in a continuous fashion and expand and chain extend simultaneously to form a continuous block of foam which is subsequently cut or machined into useful shapes. This process is suitable for the manufacture of a three dimensional molecular structure and is suited to the manufacture of low density porous and non-porous articles.
- the biostable polyurethane of this invention is solvent extracted to enhance the biocompatibility of the polyurethane article. This process can be applied to all polyurethane materials.
- the material of this invention has a structure that is three dimensional and crosslinked at a molecular level. This allows for use of more aggressive solvents with similar solubility parameters without destroying the integrity of the material. The process allows any internal stresses to be relieved, enhancing bio stability.
- Biocompatibility of a material in contact with bodily fluids is a primary function of two variables :
- Leachables with the implant the severity of the inflammation of the surrounding tissue is strongly dependant on the type and quantity of products which can migrate from the implant to the surrounding tissue. Leachables can be removed from the foam via solvent extraction.
- the solubility and hydrogen bonding parameters of the solvent will affect the suitability of the solvent.
- the solubility of polyurethane foams is typically in the region of 17 -28 MPa I/2 .
- the solvent system used for the extract system should have a solubility parameter close to in the same range as the foam.
- Solvent that may be used are : methylethyl ketone, tetrahydrofuran, dimethylformamide, 1,2 - dichloroethane, n-heptane, diethylether, acetonitrile, propan-2-ol, methanol and combinations of the above.
- the leachables from the polymer are drawn into the solvent if the leachables are soluble in the solvent system.
- solubility parameter of the solvent system is close to that of the volume of the polymer will extend and allow extraction of low molecular weight species. It is important to maintain the integrity of the foam during this process.
- the residual solvent is removed from the structure using a water extraction step.
- the molecular memory allows it to return to its original configuration.
- the article may be used as a cell scaffold to provide a substratum to promote the growth of adherent cell lines.
- Cells may be seeded onto the material, attach to the cell scaffold and replicate in a physiologically suitable environment.
- the nature of the article provides a large surface: area ratio, to enable cells infiltrate the material.
- the nature of the 3 dimensional material also allows the diffusion of nutrients and oxygen into the media and the diffusion of waste metabolites and carbon dioxide gas to leach from the three dimensional structure of the article.
- the cells can also secrete proteins as determined by the genetic make up of the cell. As a result of the open cell structure of the material, cell - cell interactions can take place forming the basis of tissue formation.
- This article has a number of applications in the field of cell growth/tissue engineering not limited to
- the treatment of polymeric structures to remove impurities may be applied to any suitable polymeric material.
- the invention may be applied to the polycarbonate urethane material described in or co-pending PCT application No IE 98/00091, filed November 9, 1998, the entire contents of which are incorporated herein by reference.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Polyurethanes Or Polyureas (AREA)
- Materials For Medical Uses (AREA)
Abstract
Priority Applications (21)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU38446/99A AU3844699A (en) | 1999-05-07 | 1999-05-07 | Biostability of polymeric structures |
| PCT/IE1999/000038 WO2000067812A1 (fr) | 1999-05-07 | 1999-05-07 | Biostabilite de structures polymeres |
| IE20000344A IE20000344A1 (en) | 1999-05-07 | 2000-05-08 | Biostable Implants |
| AU44266/00A AU4426600A (en) | 1999-05-07 | 2000-05-08 | Biostable polyurethane products |
| EP00927682A EP1176995A1 (fr) | 1999-05-07 | 2000-05-08 | Charpente pour genie tissulaire |
| DE60003178T DE60003178T2 (de) | 1999-05-07 | 2000-05-08 | Biostabile polyurethanprodukte |
| EP00925547A EP1176993B1 (fr) | 1999-05-07 | 2000-05-08 | Articles en polyurethanne stables du point de vue biologique |
| EP00927681A EP1176994A1 (fr) | 1999-05-07 | 2000-05-08 | Biostabilite de structures polymeriques |
| AU46066/00A AU4606600A (en) | 1999-05-07 | 2000-05-08 | Biostability of polymeric structures |
| IE20000347A IE20000347A1 (en) | 1999-05-07 | 2000-05-08 | Tissue Engineering |
| AT00925547T ATE242017T1 (de) | 1999-05-07 | 2000-05-08 | Biostabile polyurethanprodukte |
| PCT/IE2000/000059 WO2000067815A1 (fr) | 1999-05-07 | 2000-05-08 | Charpente pour genie tissulaire |
| AU46067/00A AU4606700A (en) | 1999-05-07 | 2000-05-08 | A tissue engineering scaffold |
| IE20000346A IE20000346A1 (en) | 1999-05-07 | 2000-05-08 | A polymeric structure |
| PCT/IE2000/000058 WO2000067814A1 (fr) | 1999-05-07 | 2000-05-08 | Biostabilite de structures polymeriques |
| PCT/IE2000/000056 WO2000067813A1 (fr) | 1999-05-07 | 2000-05-08 | Articles en polyurethanne stables du point de vue biologique |
| US09/985,821 US20020072584A1 (en) | 1999-05-07 | 2001-11-06 | Biostability of polymeric structures |
| US09/985,819 US20020072550A1 (en) | 1999-05-07 | 2001-11-06 | Biostable polyurethane products |
| US09/985,822 US20020142413A1 (en) | 1999-05-07 | 2001-11-06 | Tissue engineering scaffold |
| US11/152,780 US20070003594A1 (en) | 1999-05-07 | 2005-06-15 | Tissue engineering scaffold |
| US12/271,336 US8168431B2 (en) | 1999-05-07 | 2008-11-14 | Tissue engineering scaffold comprising polyurethane material having voids interconnected by pores |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/IE1999/000038 WO2000067812A1 (fr) | 1999-05-07 | 1999-05-07 | Biostabilite de structures polymeres |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000067812A1 true WO2000067812A1 (fr) | 2000-11-16 |
Family
ID=11042520
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IE1999/000038 WO2000067812A1 (fr) | 1999-05-07 | 1999-05-07 | Biostabilite de structures polymeres |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU3844699A (fr) |
| WO (1) | WO2000067812A1 (fr) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005030281A3 (fr) * | 2003-09-26 | 2005-07-07 | Hexabio 4 Al Du Doyen Brus Soc | Materiau polyurethane pour des protheses moulees implantables |
| WO2005089778A1 (fr) * | 2004-03-24 | 2005-09-29 | Commonwealth Scientific And Industrial Research Organisation | Polyurethanne et urees de polyurethanne biodegradables |
| ES2289918A1 (es) * | 2005-07-11 | 2008-02-01 | Natalya Andriiv Galatenko | Material de tunica endoprostetica. |
| AU2005223917B2 (en) * | 2004-03-24 | 2010-01-21 | Polynovo Biomaterials Pty Limited | Biodegradable polyurethane and polyurethane ureas |
| CN108610466A (zh) * | 2018-05-17 | 2018-10-02 | 山东大学 | 一种以聚硅氧烷完全替代聚醚的聚脲弹性体及其制备方法 |
| CN113621304A (zh) * | 2021-08-06 | 2021-11-09 | 浙江禾欣科技有限公司 | 一种自消光水性聚氨酯树脂及其制备方法 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0189178A2 (fr) * | 1985-01-25 | 1986-07-30 | Hydromer, Inc. | Mousse d'interpolymère de polyuréthane-poly(N-vinyllactame) hydrophile et flexible à cellules ouvertes et produits dentaires et biomédicaux fabriqués à partir de celle-ci |
| EP0335664A2 (fr) * | 1988-03-28 | 1989-10-04 | Becton, Dickinson and Company | Polyétheréthanes fluorés et les dispositifs médicaux à partir de ceux-ci |
| US5229431A (en) * | 1990-06-15 | 1993-07-20 | Corvita Corporation | Crack-resistant polycarbonate urethane polymer prostheses and the like |
| US5376117A (en) * | 1991-10-25 | 1994-12-27 | Corvita Corporation | Breast prostheses |
| US5436291A (en) * | 1992-07-09 | 1995-07-25 | University Of Michigan, The Board Of . . . | Calcification-resistant synthetic biomaterials |
| US5545708A (en) * | 1993-07-14 | 1996-08-13 | Becton, Dickinson And Company | Thermoplastic polyurethane method of making same and forming a medical article therefrom |
| EP0822208A1 (fr) * | 1996-07-31 | 1998-02-04 | Basf Aktiengesellschaft | Procédé de préparation des polyuréthanes ayant un durcissement amélioré |
| US5728762A (en) * | 1994-11-16 | 1998-03-17 | Tyndale Plains-Hunter, Ltd. | Polyether polyurethane polymers, gels, solutions and uses thereof |
| WO1998011854A1 (fr) * | 1996-09-20 | 1998-03-26 | Tyndale Plains-Hunter, Ltd. | Polyurethannes de polyether hydrophiles contenant de l'acide carboxylique |
-
1999
- 1999-05-07 AU AU38446/99A patent/AU3844699A/en not_active Withdrawn
- 1999-05-07 WO PCT/IE1999/000038 patent/WO2000067812A1/fr not_active Application Discontinuation
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0189178A2 (fr) * | 1985-01-25 | 1986-07-30 | Hydromer, Inc. | Mousse d'interpolymère de polyuréthane-poly(N-vinyllactame) hydrophile et flexible à cellules ouvertes et produits dentaires et biomédicaux fabriqués à partir de celle-ci |
| EP0335664A2 (fr) * | 1988-03-28 | 1989-10-04 | Becton, Dickinson and Company | Polyétheréthanes fluorés et les dispositifs médicaux à partir de ceux-ci |
| US5229431A (en) * | 1990-06-15 | 1993-07-20 | Corvita Corporation | Crack-resistant polycarbonate urethane polymer prostheses and the like |
| US5376117A (en) * | 1991-10-25 | 1994-12-27 | Corvita Corporation | Breast prostheses |
| US5436291A (en) * | 1992-07-09 | 1995-07-25 | University Of Michigan, The Board Of . . . | Calcification-resistant synthetic biomaterials |
| US5545708A (en) * | 1993-07-14 | 1996-08-13 | Becton, Dickinson And Company | Thermoplastic polyurethane method of making same and forming a medical article therefrom |
| US5728762A (en) * | 1994-11-16 | 1998-03-17 | Tyndale Plains-Hunter, Ltd. | Polyether polyurethane polymers, gels, solutions and uses thereof |
| EP0822208A1 (fr) * | 1996-07-31 | 1998-02-04 | Basf Aktiengesellschaft | Procédé de préparation des polyuréthanes ayant un durcissement amélioré |
| WO1998011854A1 (fr) * | 1996-09-20 | 1998-03-26 | Tyndale Plains-Hunter, Ltd. | Polyurethannes de polyether hydrophiles contenant de l'acide carboxylique |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005030281A3 (fr) * | 2003-09-26 | 2005-07-07 | Hexabio 4 Al Du Doyen Brus Soc | Materiau polyurethane pour des protheses moulees implantables |
| WO2005089778A1 (fr) * | 2004-03-24 | 2005-09-29 | Commonwealth Scientific And Industrial Research Organisation | Polyurethanne et urees de polyurethanne biodegradables |
| JP2007530101A (ja) * | 2004-03-24 | 2007-11-01 | コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション | 生分解性ポリウレタン及びポリウレタン尿素 |
| AU2005223917B2 (en) * | 2004-03-24 | 2010-01-21 | Polynovo Biomaterials Pty Limited | Biodegradable polyurethane and polyurethane ureas |
| CN1950098B (zh) * | 2004-03-24 | 2013-02-27 | 宝利诺沃生物材料有限公司 | 生物可降解聚氨酯和聚氨酯脲 |
| US9034378B2 (en) * | 2004-03-24 | 2015-05-19 | Polynovo Biomaterials Pty Ltd | Biodegradable polyurethane and polyurethane ureas |
| US9540478B2 (en) | 2004-03-24 | 2017-01-10 | Polynovo Biomaterials Pty. Limited | Biodegradable polyurethane and polyurethane ureas |
| ES2289918A1 (es) * | 2005-07-11 | 2008-02-01 | Natalya Andriiv Galatenko | Material de tunica endoprostetica. |
| ES2289918B2 (es) * | 2005-07-11 | 2009-04-01 | Nataliya Andrii Galatenko | Material de tunica endoprotesica. |
| CN108610466A (zh) * | 2018-05-17 | 2018-10-02 | 山东大学 | 一种以聚硅氧烷完全替代聚醚的聚脲弹性体及其制备方法 |
| CN108610466B (zh) * | 2018-05-17 | 2021-04-06 | 山东大学 | 一种以聚硅氧烷完全替代聚醚的聚脲弹性体及其制备方法 |
| CN113621304A (zh) * | 2021-08-06 | 2021-11-09 | 浙江禾欣科技有限公司 | 一种自消光水性聚氨酯树脂及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3844699A (en) | 2000-11-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6177522B1 (en) | Biostable polycarbonate urethane products | |
| US8168431B2 (en) | Tissue engineering scaffold comprising polyurethane material having voids interconnected by pores | |
| US5254662A (en) | Biostable polyurethane products | |
| US5374704A (en) | Pure, in particular catalyst-free polyurethanes | |
| CA1338678C (fr) | Polyurethanes hydrophiliques possedant une resistance amelioree | |
| US20110028661A1 (en) | Hybrid polyurethane block copolymers with thermoplastic processability and thermoset properties | |
| WO2000067811A1 (fr) | Produit de polyether-polyurethane biostable | |
| EP0335664A2 (fr) | Polyétheréthanes fluorés et les dispositifs médicaux à partir de ceux-ci | |
| JPH04226119A (ja) | 生体内で安定なポリウレタンおよびその製造方法 | |
| EP2001923A1 (fr) | Polyurethanes biologiquement stables | |
| CN114456346B (zh) | 具有生物稳定性和力学稳定性的聚氨酯及制备方法与应用 | |
| WO2000067812A1 (fr) | Biostabilite de structures polymeres | |
| AU664158B2 (en) | Biostable polyurethane products | |
| Caldera-Villalobos et al. | Hydrophilic polyurethanes: a brief review from the synthesis to biomedical applications | |
| IE980918A1 (en) | Biostable polycarbonate urethane products | |
| IE20000347A1 (en) | Tissue Engineering | |
| IE20000346A1 (en) | A polymeric structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DE DK DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WA | Withdrawal of international application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |