WO2000070460A1 - Redundant synchronous clock distribution for computer systems - Google Patents
Redundant synchronous clock distribution for computer systems Download PDFInfo
- Publication number
- WO2000070460A1 WO2000070460A1 PCT/US2000/013442 US0013442W WO0070460A1 WO 2000070460 A1 WO2000070460 A1 WO 2000070460A1 US 0013442 W US0013442 W US 0013442W WO 0070460 A1 WO0070460 A1 WO 0070460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clock signal
- clock
- signal
- failure
- computer system
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1604—Error detection or correction of the data by redundancy in hardware where the fault affects the clock signals of a processing unit and the redundancy is at or within the level of clock signal generation hardware
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/07—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
Definitions
- This invention relates to timing in electronic systems, and, more particularly, to systems employing redundant, synchronous clock distribution.
- phase synchronization This implies either that local signal is typically either in phase with the external reference signal or is offset from the reference signal by some phase constant.
- Phase-locked loops are feedback control loops, whose controlled parameter is the phase of a locally generated replica of an incoming reference signal.
- Phase-locked loops have three basic components: a phase detector, a loop filter, and a voltage-controlled oscillator.
- CMOS complementary metal-oxide-semiconductor
- the master clocking signal may be fed into a PLL to produce many identical clock signals (e.g. fanout) that are used to synchronize the components of the computer system.
- the master clock signal is a critical component of the computer system.
- the failure of the master clock signal may disable the entire system.
- some systems incorporate two master clock signals, one of which is redundant.
- the system is shut down and may be reinitialized using the second master clock signal.
- switching logic is coupled to receive a first clock signal and a second clock signal.
- the switching logic is configured to select either the first clock signal or the second clock signal as a local clock signal.
- the switching logic is further configured to monitor the first clock signal for a failure. If a failure of the first clock signal is monitored, the switching logic is further configured to accept the second clock signal as the local clock signal in place of the first clock signal.
- the system also includes one or more clock local loads that operate according to the local clock signal.
- the switching logic controls the input to a phase lock loop that provides the local clock signal to the local clock loads. This configuration may advantageously allow a redundant, synchronous slave clock to replace a master clock upon failure of the master clock.
- the first clock source is incorporated on a first clock board
- the second clock source is incorporated on a second clock board.
- the system further includes, in this embodiment, a system board, and a system controller.
- the system board is coupled to receive both the first clock signal and the second c oc s gna .
- e system oar s con igure to se ect ve y use e t er t e rst c oc s gna or t e secon c oc signal as a local clock signal.
- the system controller is coupled to the first clock board, the second clock board, and the system board.
- the system controller is configured to monitor both the first clock signal and the second clock signal for a failure.
- the first clock board may be removed from the system, such as upon a failure, and a third clock board placed in the system in place of the first clock board.
- the second clock board is switched from being the slave clock source to the master clock source.
- the third clock board is configured to operate as the slave clock source upon being placed in the system.
- the removable clock board may advantageously result in higher uptime for the system as a failed clock board may be replaced while the system is in use.
- a method is likewise contemplated for providing redundant, synchronous clock signals.
- the method comprises, in one embodiment, a first clock source providing a first clock signal as a master clock signal to a phase locked loop (PLL).
- a second clock source provides a second clock signal as a slave clock signal to the PLL, where the slave clock signal is synchronized with the master clock signal.
- the PLL synchronizes an output clock signal with the master clock signal.
- the output clock signal is used by at least one local clock load for timing.
- the switching logic monitors the master clock signal and the slave clock signal for a failure. Upon a failure of either the master clock signal or the slave clock signal, the switching logic notifies a system controller of the failure.
- the switching logic switches the second clock signal in place of the first clock signal as the master clock signal for the PLL.
- the system controller causes the second clock signal to fail-over and to take over as the master clock source to the PLL.
- the system controller Upon receiving notice of the failure of the first clock signal, the system controller further causes the second clock source to provide a reference control signal to the second clock source.
- the method may advantageously maintain continuous operation of the computer system while switching between clock sources.
- clock switching from a failed master clock to a redundant slave clock is automatic and does not interrupt or interfere with the operations of the computer system. No halt and restart are necessary.
- the clock change is transparent to the local clock loads using the local clock signal.
- FIG. 1 is a block diagram of an embodiment of a generalized computer system including two clock boards and a system board;
- Fig. 2 is a block diagram of an embodiment of the clock boards of Fig. 1 ;
- Fig. 3 is a block diagram of an embodiment of the system board of Fig. 1 ;
- Fig. 4 is a block diagram of an embodiment of the select phase locked loop of Fig. 3;
- Figs. 5 A and 5B are block diagrams of embodiments of the phase detector of Fig. 4, which incorporates a supplemental correction pulse generator and a pulse limiting circuit; and
- Fig. 6 is a timing diagram illustrating an embodiment of advanced operations of the select phase locked loop of Fig. 4, including switchover to a backup clock source, limited width phase error signal pulses, and a supplemental error correction pulse. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail.
- FIG. 1 a block diagram of an embodiment of a generalized computer system 100 is shown.
- a first clock source shown as clock board-0 105 A, provides a first clock signal 106A to clock board 1 105B and to system board 120.
- Clock board- 1 105B is illustrated as a second clock source, which provides a second clock signal 106B to clock board-0 105 A and to the system board 120.
- a system controller 1 10 is coupled to the two clock boards 105A and 105B as well as to the system board 120.
- the system board 120 receives both the first clock signal 106A and the second clock signal 106B.
- the first clock signal 106A and the second clock signal 106B are preferably in phase on a rising edge, phase and frequency locked, although the frequencies of each clock signal 106A and 106B may differ by an integer multiple.
- the system controller 110 switches in the other clock signal, 106A, 106B, previously serving as the slave clock signal, as the new master clock signal.
- the slave clock signal takes over as the master clock signal, such as when clock board-0 105 A fails to provide the expected master clock signal 106A.
- system controller 110 or parts thereof may be incorporated on any of clock board-0 105 A, clock board-1 105B, system board 120, or any other board or component of computer system 100, as desired. In the embodiments illustrated in Figs. 2-5, a portion of the system controller 110 may be comprised on each board shown, even when not expressly illustrated. A portion of system controller 1 10 may be included in each select PLL 300, as described below with respect to Fig. 3. Fig. 2 - Clock Boards and Clock Signals
- Clock board-0 105 A includes a voltage controlled crystal oscillator (VCXO) 220A coupled to receive a control signal 205A.
- VXO voltage controlled crystal oscillator
- the source of the control signal 205A is determined by a switch 218A.
- the switch 218A is in the master position (off, in this case), making clock board-0 105A the master clock source, the source of the control signal 205A is preferably a fixed reference voltage.
- the fixed reference voltage generated is a voltage within the operating voltage range of the VCXO 220A, wherein the control voltage causes the VCXO 220A to generate a reference output frequency, such as, for example, 75 MHz.
- the operating voltage range is from 0-3.30 V, and the fixed reference voltage is 1.65 V.
- the frequency output of the VCXO 220A is preferably one of several clock inputs that may be multiplexed into the circuit.
- the selected output of the multiplexer is provided to a fanout buffer 208A.
- Fanout buffer 208 A outputs a plurality of clock signals 106A for various destinations, such as for clocking on clock board-0 105A, clock board-1 105B, system board 120, or other boards, components, etc. of computer system 100.
- other clock sources may also be provided to the multiplexer. Examples of other clock sources include VCXOs with differing operating frequency ranges, fixed frequency sources, other VCOs, etc.
- Clock board-0 105 A may also include a phase detector 210A coupled to receive one of the clock signals 106A from the fanout buffer 208 A. The phase detector 210A is also coupled to receive another clock signal, such as clock signal 106B, as shown.
- the phase detector 210A outputs a phase error signal in response to receiving the two clock signals 106A and 106B.
- the phase error signal is output as an UP signal and/or a DOWN signal, reflecting the phase of the first input clock signal being behind or ahead of the second input clock signal.
- the phase error signal is filtered by an active filter 215A formed collectively in the illustrated embodiment by a network of resistances R1-R5, capacitances C1-C3, and an operational amplifier 216A.
- the filter 215A preferably acts as a low pass filter and integrator of the UP and DOWN pulses from the phase detector 210A.
- the output of the filter 215 A may be presented to the switch 218A.
- the feedback dependent signal from the phase detector 210A and the filter 215 A are not provided to the VCXO 220A. Instead, a constant voltage, such as established by a voltage divider formed by resistors R6 and R7, is provided to control the VCXO 220A.
- the switch 218A When the switch 218A is in the slave, or closed, position, the output of the filter 215 A is presented to the switch 218A. It is noted that the drive associated with the filter 215A, when the switch 218A is closed, is sufficient to overdrive the constant control voltage established by the resistors R6 and R7.
- the switch 218A is a passgate, implemented using a pair of field effect transistors. Other embodiments of the switch 218A are contemplated where the signal from the filter 215 A selectively controls the VCXO 220A, along with an alternative source for the control signal 205A. For example, one embodiment of switch 218A selects between the output of the filter 215 A and a power supply voltage as the control voltage 205A.
- the switch 218A is controlled by the reference select signals, REF_SEL and REF_SEL_L, a pair of complementary control signals.
- the controller 110 generates the reference select signals.
- clock board-1 105B and clock board-0 105 A are duplicates of each other and interchangeable, capable of operating in a similar manner.
- clock board-1 105B acts as a slave clock source.
- the master clock 106 A is fed into phase detector 210B as the reference clock, with the output of clock board-1 105B also input into phase detector 210B as the feedback clock.
- switch 218B With switch 218B in the slave position, the circuit shown on clock board-1 105B functions as a PLL.
- Clock signal 106B is continually phase aligned with clock signal 106A.
- each board e.g. clock boards 105 A and 105B, system board 120, etc.
- each board may include one or more select PLLs 300 coupled to receive both the master clock signal 106A and the slave clock signal 106B.
- Each select PLL 300 is further configured to output clock signals for local use by local clock loads at frequencies that are fractions or multiples of the master clock frequency, including a multiplier of one.
- the system controller 110 determines and/or is notified of the failure.
- the system controller 1 10 then switches the slave clock source over to function as the new master clock source.
- the system controller 1 10 may also notify the computer system 100, e.g. the computer user via a display, that the master clock source has failed.
- the failed clock source e.g. a clock board, may be replaced without interrupting or interfering with the operations of the computer system 100. Clock switching thus occurs automatically and "on the fly".
- the change in the clock source is transparent to the synchronous logic relying on the clock source.
- the system controller 1 10 preferably switches the replacement clock board into slave mode, to provide a new phase-aligned redundant clock source.
- failure of a clock signal may be due to many causes, such as clock source failure, wiring or connection failure, etc.
- the cause of the clock signal failure is less important than the knowledge that the clock signal is not correctly propagating through the system.
- the VCXO 220 may be any type of VCO 220.
- the relatively small operating frequency range of a VCXO may provide for advantageous operation.
- the output of the VCXO 220B will only fall in frequency by a relatively small amount, such as 200 PPM.
- the VCXO 220B input will be a step function increase or decrease in frequency due to switching in the constant control voltage described above.
- the VCXO 220B preferably limits the rate of change of the frequency to within the operating response range of the select PLLs 300 and other downstream local clock loads 350, both discussed in Fig. 3 below.
- Fig. 3 illustrates an embodiment of a system board 120.
- Clock signals 106A and 106B are provided to the system board 120 to a select PLL 300.
- the select PLL 300 is also coupled to receive status and control signals over control bus 330.
- Control bus 330 may be implemented as, for example, an I2C bus.
- the control bus 330 provides a communications pathway between the system controller 1 10 and the local control mechanisms of the select PLL 300.
- the select PLL 300 produces a clock signal synchronized with the appropriate input clock signal 106.
- the select PLL 300 may output multiple clock signals at different frequencies.
- the output clock signals are provided to one or more fanout buffers, such as fanout buffers 208C and 208D, as shown.
- the fanout buffers 208C and 208D provide multiple local clock signals to the local clock loads 350.
- fanout buffer 208C provides a first clock frequency, such as 75 MHz, to selected ones of the local clock loads 350
- fanout buffer 208D provides a second clock frequency, such as 150 MHz, to other selected ones of the local clock loads 350.
- the local clock loads may include any device on the system board 120 that uses a local clock signal for synchronization or timing, including but not limited to synchronous logic, memory, and/or other electronic elements.
- the system board 120 may be representative of any board or component in the computer system, such as an input/output board, memory sub-system, clock board, etc.
- the system board is incorporated in a personal computer, a network computer, or a server computer, although other computer systems are also contemplated. Additional details of the operation of the select PLL 300 is shown below with respect to Figs. 4-6.
- select PLL 300 includes a first multiplexer coupled to receive a first input clock signal 106A from the first clock source and the second input clock signal 106B from the second clock source.
- the multiplexer is controlled by a signal from an OR block coupled to receive a select clock input SEL_CLK an t e output o sw tc ng og c 430.
- T e se ect c oc nput sets t e ent ty o t e pr mary c oc input.
- Switching logic 430 receives control inputs 432 and input clocks 106 and outputs status outputs 431.
- the output of the input multiplexer is the input clock signal provided to the phase detector 414 and to an output multiplexer.
- the phase detector 414 receives the input clock signal 106 from the input multiplexer and a feedback signal 421 from a feedback multiplexer.
- the phase detector is configured to produce a phase error signal 415 indicative of the difference between the input clock signal 106 and the feedback signal 421.
- the phase error signal 415 comprises an UP pulse and a DOWN pulse, each preferably being digital signals.
- the UP pulse is indicative of a phase difference between the feedback signal 421 and the input clock signal 106 when an edge of the feedback signal 421 occurs after a corresponding edge of the input clock signal 106.
- the DOWN pulse is indicative of a phase difference between the feedback signal 421 and the input clock signal 106 when an edge of the feedback signal 421 occurs before a corresponding edge of the input clock signal 106.
- a loop filter 416 is coupled to receive the phase error signal and to output an error correction signal to a voltage controller oscillator (VCO) 418.
- VCO voltage controller oscillator
- the loop filter comprises an active low-pass filter configured as an integrator.
- the VCO 418 is coupled to receive the error correction signal from the loop filter 416 and to produce oscillations indicative of the error correction signal.
- the oscillating signal is presented as a second input to the output multiplexer.
- a PLL enable signal PLL_EN is provided to provide either the output of the VCO 418 or the input clock signal 106A, 106B to output 420.
- the output of the output multiplexer is multiplied or divided in a multiplier/divider circuit 419, such as by 1, 2, or 4, to produce one or more PLL output signals 420 A/B.
- the feedback signals 421 A and 42 IB are shown coupled to the output signals of the PLL 420A/B.
- Exemplary control signals 432 which may be input to the switching logic 430, include a reset signal and/or a manual override signal.
- Exemplary status signals 431 that may be output by the switching logic 430 include an indication signal of which input clock signal is selected and/or an indication signal if either or both input clock signals have failed.
- the select PLL 300 may be configured to use the second input clock 106B upon the failure of the first input clock 106 A until the reset signal is received.
- the manual override signal would disable the switching logic 430 to enable manual selection of the input clock signal 106A or 106B to use as the local clock reference signal.
- the switching logic 430 determines that the input clock 106A has failed and automatically switches over to the redundant backup clock 106B.
- the failover should take only a small number of clock cycles, ideally three or fewer.
- the system controller 110 may switch all other select PLLs 300 to the redundant backup clock 106B and also set the slave clock source 105B to master mode, if the master clock source 105 A has failed.
- Clock switching is preferably automatic and does not interrupt or interfere with operation of the computer system. No halt and restart are necessary.
- the clock change is preferably transparent to the local clock loads using the local clock signal.
- the switching logic 430 may also be configured to monitor the phase error signal 415 or other signals, as desired, in order to detect a failure of the input clock signal 106A, 106B or the feedback signal 421.
- additional control signals 432 and status signals 431 are also contemplated.
- status signals 431 may include a clock select signal indicating which input clock signal is currently the local master clock signal and input clock invalid signals indicating the failure of a particular input clock signal.
- the clock selected could be input clock signal 106A and no input clock invalid signals are indicated.
- the clock select signal would indicate input clock signal 106B and the input clock invalid signal for input clock signal 106A would be indicated.
- phase detector 414 an embodiment of the phase detector 414 is illustrated.
- the input clock signal 106 and the feedback signal 421 are provided to phase comparison logic 520 of phase detector 414.
- the phase comparison logic 520 provides a signal indicative of the phase difference between the input clock signal 106 and the feedback signal 421 to output logic 530.
- the output logic 530 further receives the one or more status signals 431 and one or more control signals 432.
- the output logic 530 includes a supplemental correction pulse generator 535 and a pulse width limiting circuit 537.
- the output logic 530 provides the phase error signal 415 to the loop filter 416. It is noted that in the embodiment illustrated in Fig. 5, the phase error signal 415 comprises a digital UP signal and a digital DOWN signal.
- phase detector 414 Operation of one embodiment of the phase detector 414 is as follows.
- the input clock signal 106 and the feedback signal 421 are provided to the clock inputs of the phase comparison logic 520.
- the phase error signal includes one or more digital pulses, UP and/or DOWN, generated based on the phase difference between the input clock signal 106 and the feedback signal 421.
- a minimum UP and a minimum DOWN pulse may be generated upon a zero phase difference.
- the maximum pulse width for the UP and/or DOWN pulse is limited to a predetermined amount by the pulse width limiting circuit 537.
- the supplemental correction pulse generator 535 Upon the failure of the input clock signal 106, the supplemental correction pulse generator 535 is configured to output a maximum pulse, either UP or DOWN as appropriate, upon receiving notification of a failure of the input clock signal 106 from the present clock source.
- the notification may come from the switching logic 430, the system controller 110, and/or the phase detector 414 itself.
- the supplemental correction pulse generator 535 includes a resettable one-shot. Other circuits capable of providing a pulse are also contemplated.
- phase detector 414 In Fig. 5B, one specific embodiment of phase detector 414 is shown as phase detector 414B. It is noted that a variety of circuits and components may be substituted for those shown, as suggested in Fig. 5 A.
- the input clock signal 106 and the feedback signal 421 are provided to the clock inputs of a pair of flip-flops 524A and 524B, respectively, which have their data input lines held HIGH.
- the flip-flops 524A and 524B Upon the receipt of a respective clock edge, the flip-flops 524A and 524B each output a logical "1". The output is maintained at logical "1" until both output lines are high.
- the output lines of the flip-flops 524A and 524B are combined by a logical AND, with the result provided to the RESET inputs of both flip-flops 524A and 524B.
- the flip-flops 524A and 524B reset when both flip-flops 524A and 524B output a logical "1".
- the outputs of the flip-flops 524 A and 524B are provided to logical ANDs on the output of the phase detector 414B, both directly and through delay elements 512A and 512B, respectively.
- the supplemental correction pulse generator 535 coupled in series on the UP side of the phase detector 414B is configured to output a maximum UP pulse upon receiving notification of a failure of the input clock signal 106 from the present clock source, either 106A or 106B.
- the supplemental correction pulse generator 535 also receives a manual override MAN OVERRIDE signal 404 and the clock source failure notification signal(s) INP#_BAD 406 as control signals 432.
- control signal INP#_BAD 406 may represent a plurality of signals, such as INP0 BAD, INP1 BAD, etc.
- the supplemental correction pulse generator 535 includes a resettable one-shot. Other circuits capable of providing a pulse are also contemplated.
- a digital UP pulse and a digital DOWN pulse results from the clock edge of the input clock signal 106 being provided to the phase detector 414B ahead of the corresponding clock edge of the feedback signal 421.
- flip-flop 524A outputs a logical "1" before flip-flop 524B outputs a logical "1".
- the length of the UP pulse is limited by the pulse limitation of the delay 512A.
- the minimum and maximum pulse width of the UP pulse may be predetermined by the length of time of the delay provided by delay element 512A and by the reset time of the flip-flop 524 A, relative to the clock period of the input clock signal 106.
- the DOWN pulse results from the clock edge of the input clock signal 106 being provided to the phase detector 414B after the corresponding clock edge of the feedback signal 421.
- flip-flop 524B outputs a logical "1" before flip-flop 524A outputs a logical "1".
- the length of the DOWN pulse is limited by the pulse limitation of the delay 512B.
- the minimum and maximum pulse width of the DOWN pulse may be predetermined by the length of time of the delay provided by delay element 512B and by the reset time of the flip-flop 524B, relative to the clock period of the input clock signal 106.
- phase detector 414B at least a minimum UP pulse and a minimum DOWN pulse are generated for each rising edge of the input clock signal 106.
- the supplemental correction pulse generator 535 may also be located in series with the DOWN pulse or in series with both the UP pulse and the DOWN pulse. For example, in an embodiment with the supplemental correction pulse generator 535 in series with the DOWN pulse, a runaway input clock signal 106 is determined to have failed. The supplemental correction pulse generator 535 is notified of the failure and generates a maximum pulse width DOWN pulse.
- PLL 300 Examples of several advanced operations of the PLL 300 are illustrated in the timing diagram of Fig. 6. Switchover to a backup clock source, limited width phase error signal pulses, and a supplemental error correction pulse are illustrated. It is contemplated that a variety of embodiments of PLL circuits may be designed to operate as disclosed herein.
- the first reference clock signal REF1 is shown as input clock signal 106A from the first clock source.
- the second reference clock signal REF2 is shown as input clock signal 106B from the second clock source.
- the feedback signal 421 and the input clock signal 106A are compared to produce the phase error signal.
- An UP pulse 415A and a DOWN pulse 415B are shown as comprising the response of the phase detector to the phase error signal.
- time period 620 the first input clock signal 106A and the feedback signal 421 are in phase.
- a minimum width UP pulse 415A and a minimum width DOWN pulse 415B are shown.
- the first input clock signal 106A fails 680 during time period 620.
- the first input clock signal 106A is monitored for a failure. However, as shown, the failure may not be recognized until time period 621, when three clock edges are missed 681. It is also contemplated that the failure may be recognized earlier or later and the design of the phase detector 414 modified for those situations.
- the feedback signal 421 shows a longer period in response to the lack of an UP pulse 415A and the extremely wide DOWN pulse 415B.
- the pulse width of the DOWN pulse 415B is limited to a predetermined maximum width 690. The unlimited pulse width is shown as 691.
- the input clock source failure is recognized and t e nput c oc s sw tc e over to a secon nput c oc source n response.
- the supplemental error correction pulse 692 is injected as a maximum length UP pulse.
- the backup input clock signal 106B is now the reference clock signal.
- the supplemental error correction pulse 692 results in the feedback signal 421 having a shorter period than in clock period 621 , closer to the correct phase alignment with the reference clock signal that would occur without the supplemental error correction pulse 692. Note that the missing UP pulse 415A from clock period 621 may occur in clock period 622. It is not seen in clock period 622 due to the supplemental error correction pulse 692.
- the supplemental error correction pulse 692 is in addition to the UP pulse 415A. In another embodiment, the supplemental error correction pulse 692 replaces the UP pulse 415 A.
- the PLL circuit aligns the reference clock signal 106B and the feedback signal 421. Note that in clock period 625, the input clock signal 106B and the feedback signal 421 are in phase. It is noted that a failure of a clock source may be defined as the loss of as few as one clock edge, either rising or falling.
- clocking signals are assumed to be low voltage pseudo-ECL signals (LVPECL). Other types of clocking signals may be used as desired. With the clocking signals being
- LVPECL with a CLK line and a CLK line, if one of the wires breaks, termination causes the broken line to be pulled high. Thus, there is never a crossing of the CLK and CLK lines, so no clock signal is output, e.g. a stuck clock signal.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Hardware Redundancy (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
Description
Claims
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT00932487T ATE237155T1 (en) | 1999-05-19 | 2000-05-16 | REDUNDANT, SYNCHRONOUS CLOCK DISTRIBUTION FOR COMPUTER SYSTEMS |
| AU50205/00A AU5020500A (en) | 1999-05-19 | 2000-05-16 | Redundant synchronous clock distribution for computer systems |
| JP2000618836A JP2002544623A (en) | 1999-05-19 | 2000-05-16 | Distribution of redundant synchronous clocks for computer systems |
| EP00932487A EP1185933B1 (en) | 1999-05-19 | 2000-05-16 | Redundant synchronous clock distribution for computer systems |
| DE60002068T DE60002068T2 (en) | 1999-05-19 | 2000-05-16 | REDUNDANT, SYNCHRONOUS CLOCK DISTRIBUTION FOR COMPUTER SYSTEMS |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/314,812 US6194969B1 (en) | 1999-05-19 | 1999-05-19 | System and method for providing master and slave phase-aligned clocks |
| US09/314,812 | 1999-05-19 | ||
| US09/320,794 | 1999-05-27 | ||
| US09/320,794 US6516422B1 (en) | 1999-05-19 | 1999-05-27 | Computer system including multiple clock sources and failover switching |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000070460A1 true WO2000070460A1 (en) | 2000-11-23 |
Family
ID=26979562
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/013442 WO2000070460A1 (en) | 1999-05-19 | 2000-05-16 | Redundant synchronous clock distribution for computer systems |
| PCT/US2000/013440 WO2000070801A1 (en) | 1999-05-19 | 2000-05-16 | System and method for providing master and slave phase-aligned clocks |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/013440 WO2000070801A1 (en) | 1999-05-19 | 2000-05-16 | System and method for providing master and slave phase-aligned clocks |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US6194969B1 (en) |
| EP (2) | EP1179236B1 (en) |
| JP (1) | JP2002544623A (en) |
| AT (2) | ATE237155T1 (en) |
| AU (2) | AU5020500A (en) |
| DE (2) | DE60026698D1 (en) |
| WO (2) | WO2000070460A1 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003021786A1 (en) * | 2001-08-28 | 2003-03-13 | Rambus Inc. | Clock data recovery with selectable phase control |
| WO2003069451A1 (en) * | 2002-02-14 | 2003-08-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Seamless clock |
| GB2397145A (en) * | 2002-11-06 | 2004-07-14 | Sun Microsystems Inc | Master computer clock inhibits itself if its feedback goes too far out of phase then a backup clock enables itself. |
| EP1614229A4 (en) * | 2003-03-25 | 2006-08-09 | Utstarcom Korea Ltd | Method for duplexing a clock board |
| CN101901176A (en) * | 2010-07-22 | 2010-12-01 | 北京交通大学 | Redundant clock system |
| CN102244573A (en) * | 2011-07-18 | 2011-11-16 | 中兴通讯股份有限公司 | Clock reporting method and device |
| US9071407B2 (en) | 2012-05-02 | 2015-06-30 | Ramnus Inc. | Receiver clock test circuitry and related methods and apparatuses |
| US9577816B2 (en) | 2012-03-13 | 2017-02-21 | Rambus Inc. | Clock and data recovery having shared clock generator |
| CN110740029A (en) * | 2018-07-02 | 2020-01-31 | 恩智浦美国有限公司 | Communication unit, integrated circuit and method for clock and data synchronization |
Families Citing this family (72)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6194969B1 (en) | 1999-05-19 | 2001-02-27 | Sun Microsystems, Inc. | System and method for providing master and slave phase-aligned clocks |
| US6757350B1 (en) * | 1999-06-12 | 2004-06-29 | Cisco Technology, Inc. | Redundant clock generation and distribution |
| DE19947662A1 (en) * | 1999-10-04 | 2001-04-12 | Bayerische Motoren Werke Ag | Operating method for a data bus |
| US6675307B1 (en) * | 2000-03-28 | 2004-01-06 | Juniper Networks, Inc. | Clock controller for controlling the switching to redundant clock signal without producing glitches by delaying the redundant clock signal to match a phase of primary clock signal |
| US6658580B1 (en) * | 2000-05-20 | 2003-12-02 | Equipe Communications Corporation | Redundant, synchronous central timing systems with constant master voltage controls and variable slave voltage controls |
| US6658579B1 (en) * | 2000-05-20 | 2003-12-02 | Equipe Communications Corporation | Network device with local timing systems for automatic selection between redundant, synchronous central timing systems |
| KR100374353B1 (en) | 2000-07-06 | 2003-03-04 | 삼성전자주식회사 | Unit double board connection circuit |
| US7571359B2 (en) * | 2000-07-31 | 2009-08-04 | Massachusetts Institute Of Technology | Clock distribution circuits and methods of operating same that use multiple clock circuits connected by phase detector circuits to generate and synchronize local clock signals |
| US7463626B2 (en) * | 2000-11-21 | 2008-12-09 | Roy Subhash C | Phase and frequency drift and jitter compensation in a distributed telecommunications switch |
| FR2830700A1 (en) * | 2001-10-09 | 2003-04-11 | Koninkl Philips Electronics Nv | Clock signal generating device for smart card reader, has signal generating oscillator functioning in both presence and absence of clock signal from processor of card reader |
| US6959396B2 (en) * | 2001-11-09 | 2005-10-25 | Silicon Integrated Systems Corp. | Method and apparatus for reducing clock skew in an integrated circuit |
| US20030115503A1 (en) * | 2001-12-14 | 2003-06-19 | Koninklijke Philips Electronics N.V. | System for enhancing fault tolerance and security of a computing system |
| WO2003073572A2 (en) * | 2002-02-25 | 2003-09-04 | General Electric Company | Method and apparatus for optimized centralized critical control architecture for switchgear and power equipment |
| CN1172450C (en) * | 2002-05-22 | 2004-10-20 | 华为技术有限公司 | Method and device for providing clock in network equipment |
| US7051235B2 (en) * | 2002-08-27 | 2006-05-23 | Sun Microsystems, Inc. | Clock distribution architecture having clock and power failure protection |
| US6838919B1 (en) * | 2002-11-19 | 2005-01-04 | Xilinx, Inc. | DCVSL pulse width controller and system |
| US20040107375A1 (en) * | 2002-12-02 | 2004-06-03 | Edward Anglada | System and method for switching clock sources |
| US7256628B2 (en) * | 2003-01-29 | 2007-08-14 | Sun Microsystems, Inc. | Speed-matching control method and circuit |
| US7089442B2 (en) * | 2003-02-07 | 2006-08-08 | Rambus Inc. | Fault-tolerant clock generator |
| US6970045B1 (en) | 2003-06-25 | 2005-11-29 | Nel Frequency Controls, Inc. | Redundant clock module |
| US7499684B2 (en) * | 2003-09-19 | 2009-03-03 | Ipr Licensing, Inc. | Master-slave local oscillator porting between radio integrated circuits |
| US7089444B1 (en) * | 2003-09-24 | 2006-08-08 | Altera Corporation | Clock and data recovery circuits |
| EP1553478A1 (en) * | 2004-01-06 | 2005-07-13 | Alcatel | A redundant synchronous clock distribution method, a related clock module and a related clock slave device |
| US7230468B2 (en) * | 2004-03-10 | 2007-06-12 | Hewlett-Packard Development Company, L.P. | Systems and methods for providing distributed control signal redundancy among electronic circuits |
| US7981404B2 (en) * | 2004-04-08 | 2011-07-19 | L'oreal S.A. | Composition for application to the skin, to the lips, to the nails, and/or to hair |
| US20060063494A1 (en) | 2004-10-04 | 2006-03-23 | Xiangdon Zhang | Remote front-end for a multi-antenna station |
| EP1835616B1 (en) * | 2004-12-17 | 2014-12-10 | Mitsubishi Denki Kabushiki Kaisha | Clock signal generation device, and wireless base station |
| US7173495B1 (en) | 2005-04-05 | 2007-02-06 | Pericom Semiconductor Corp | Redundant back-up PLL oscillator phase-locked to primary oscillator with fail-over to back-up oscillator without a third oscillator |
| US8411695B1 (en) * | 2005-05-23 | 2013-04-02 | Juniper Networks, Inc. | Multi-interface compatible bus over a common physical connection |
| JP4208864B2 (en) * | 2005-06-30 | 2009-01-14 | 日本テキサス・インスツルメンツ株式会社 | Tuner semiconductor device and diversity receiver |
| US7555085B1 (en) | 2005-08-23 | 2009-06-30 | Sun Microsystems, Inc. | CDR algorithms for improved high speed IO performance |
| US7477575B2 (en) * | 2005-09-23 | 2009-01-13 | Verisign, Inc. | Redundant timer system and method |
| US7664213B2 (en) * | 2005-11-22 | 2010-02-16 | Sun Microsystems, Inc. | Clock alignment detection from single reference |
| US7412617B2 (en) * | 2006-04-06 | 2008-08-12 | Mediatek Inc. | Phase frequency detector with limited output pulse width and method thereof |
| US7721133B2 (en) * | 2006-04-27 | 2010-05-18 | Hewlett-Packard Development Company, L.P. | Systems and methods of synchronizing reference frequencies |
| US7562247B2 (en) * | 2006-05-16 | 2009-07-14 | International Business Machines Corporation | Providing independent clock failover for scalable blade servers |
| DE102006024470B4 (en) | 2006-05-24 | 2015-07-09 | Xignal Technologies Ag | Switchable phase-locked loop and method for operating a switchable phase-locked loop |
| DE102006024471A1 (en) | 2006-05-24 | 2007-12-06 | Xignal Technologies Ag | Switchable phase-locked loop and method for operating a switchable phase-locked loop |
| DE102006024469B3 (en) | 2006-05-24 | 2007-07-12 | Xignal Technologies Ag | Phase locked loop for communication system, has phase detector with phase interpolator and sampler to generate preset version of loop`s output signal and to determine phase difference between clock signal and version, respectively |
| US7636408B2 (en) * | 2006-06-01 | 2009-12-22 | Sun Microsystems, Inc. | Reliable startup and steady-state of estimation based CDR and DFE |
| US7809025B2 (en) * | 2006-09-29 | 2010-10-05 | Hewlett-Packard Development Company, L.P. | System and method for distributing clock signals |
| JP4838110B2 (en) * | 2006-12-18 | 2011-12-14 | 富士通株式会社 | System clock supply apparatus and reference oscillator frequency deviation determination method |
| US7673084B2 (en) * | 2007-02-20 | 2010-03-02 | Infineon Technologies Ag | Bus system and methods of operation using a combined data and synchronization line to communicate between bus master and slaves |
| JP5194564B2 (en) * | 2007-05-29 | 2013-05-08 | ソニー株式会社 | Image processing apparatus and method, program, and recording medium |
| US8332680B2 (en) * | 2007-08-13 | 2012-12-11 | Rambus Inc. | Methods and systems for operating memory in two modes |
| US7831315B2 (en) * | 2007-08-21 | 2010-11-09 | Asm Japan K.K. | Method for controlling semiconductor-processing apparatus |
| US8161311B2 (en) * | 2007-08-23 | 2012-04-17 | Stratus Technologies Bermuda Ltd | Apparatus and method for redundant and spread spectrum clocking |
| US7945345B2 (en) * | 2008-08-06 | 2011-05-17 | Asm Japan K.K. | Semiconductor manufacturing apparatus |
| JP5199392B2 (en) * | 2008-12-08 | 2013-05-15 | パナソニック株式会社 | System clock monitoring device and motor control system |
| US8218702B2 (en) * | 2009-02-18 | 2012-07-10 | Oracle America, Inc. | System and method of adapting precursor tap coefficient |
| US8229020B2 (en) * | 2009-03-23 | 2012-07-24 | Oracle America, Inc. | Integrated equalization and CDR adaptation engine with single error monitor circuit |
| CN101599807A (en) * | 2009-06-19 | 2009-12-09 | 中兴通讯股份有限公司 | A kind of method and apparatus that makes the main clock phase alignment |
| US8775856B1 (en) * | 2010-03-10 | 2014-07-08 | Smsc Holdings S.A.R.L. | System and method for generating clock signal for a plurality of communication ports by selectively dividing a reference clock signal with a plurality of ratios |
| US20110248755A1 (en) * | 2010-04-08 | 2011-10-13 | Hasenplaugh William C | Cross-feedback phase-locked loop for distributed clocking systems |
| TW201225540A (en) * | 2010-12-14 | 2012-06-16 | Askey Computer Corp | Multiple-output clock source signal generator |
| EP2658162A1 (en) * | 2010-12-21 | 2013-10-30 | Fujitsu Limited | Data reception circuit, information processing device, data reception program and data reception method |
| JP5774344B2 (en) * | 2011-03-30 | 2015-09-09 | ラピスセミコンダクタ株式会社 | Clock signal generation circuit |
| WO2012131445A1 (en) * | 2011-03-30 | 2012-10-04 | Tejas Networks Limited | A method for zero traffic hit synchronization switchover in telecommunication network |
| US9686762B2 (en) * | 2011-03-30 | 2017-06-20 | Tejas Networks Ltd | Method and system for multiplexing low frequency clocks to reduce interface count |
| CN103001789B (en) * | 2011-09-19 | 2017-09-29 | 中兴通讯股份有限公司 | Clock switch method and device |
| CN103226208B (en) * | 2012-01-25 | 2018-02-02 | 英洛瓦(天津)物探装备有限责任公司 | It is synchronous by the clock of optical fiber |
| WO2014108736A1 (en) * | 2013-01-08 | 2014-07-17 | Freescale Semiconductor, Inc. | Clock source, method for distributing a clock signal and integrated circuit |
| US9225344B2 (en) | 2013-01-16 | 2015-12-29 | Altera Corporation | Methods and apparatus for aligning clock signals on an integrated circuit |
| US9973601B2 (en) * | 2013-03-15 | 2018-05-15 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Fault tolerant clock network |
| WO2015010250A1 (en) * | 2013-07-23 | 2015-01-29 | Telefonaktiebolaget L M Ericsson (Publ) | Clock recovery in a packet based network |
| CN106856489B (en) | 2015-12-08 | 2020-09-08 | 阿里巴巴集团控股有限公司 | Service node switching method and device of distributed storage system |
| EP3457572B1 (en) | 2016-05-31 | 2020-03-25 | Huawei Technologies Co., Ltd. | Clock generator circuit and clock signal generation method |
| IT201900002967A1 (en) * | 2019-02-28 | 2020-08-28 | St Microelectronics Srl | PROCESSING SYSTEM, CORRESPONDING APPARATUS AND CORRESPONDING PROCEDURE |
| CN113396553B (en) * | 2020-01-06 | 2023-12-08 | 华为技术有限公司 | Clock switching method, device and storage medium |
| US10965295B1 (en) | 2020-05-07 | 2021-03-30 | Shenzhen GOODIX Technology Co., Ltd. | Integer boundary spur mitigation for fractional PLL frequency synthesizers |
| US10963002B1 (en) * | 2020-06-02 | 2021-03-30 | Qualcomm Incorporated | Clock generation architecture using a poly-phase filter with self-correction capability |
| CN117241362A (en) * | 2022-06-06 | 2023-12-15 | 中兴通讯股份有限公司 | Clock anomaly detection device, method and base station |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5416443A (en) * | 1993-12-22 | 1995-05-16 | International Business Machines Corporation | Reliable clock source having a plurality of redundant oscillators |
| US5422915A (en) * | 1993-12-23 | 1995-06-06 | Unisys Corporation | Fault tolerant clock distribution system |
| US5515403A (en) * | 1994-06-21 | 1996-05-07 | Dsc Communications Corporation | Apparatus and method for clock alignment and switching |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4025874A (en) * | 1976-04-30 | 1977-05-24 | Rockwell International Corporation | Master/slave clock arrangement for providing reliable clock signal |
| US4282493A (en) * | 1979-07-02 | 1981-08-04 | Motorola, Inc. | Redundant clock signal generating circuitry |
| US4511859A (en) | 1982-08-30 | 1985-04-16 | At&T Bell Laboratories | Apparatus for generating a common output signal as a function of any of a plurality of diverse input signals |
| JPH075949A (en) | 1993-06-18 | 1995-01-10 | Nec Corp | Method and device for duplex clock switching |
| JPH0784667A (en) * | 1993-09-14 | 1995-03-31 | Fujitsu Ltd | Clock driver abnormality monitoring method and apparatus |
| GB2293062B (en) * | 1994-09-09 | 1996-12-04 | Toshiba Kk | Master-slave multiplex communication system and PLL circuit applied to the system |
| US5852728A (en) * | 1995-01-12 | 1998-12-22 | Hitachi, Ltd. | Uninterruptible clock supply apparatus for fault tolerant computer system |
| JP2859179B2 (en) | 1995-09-26 | 1999-02-17 | 宮城日本電気株式会社 | System clock supply method in the device |
| US5774705A (en) * | 1995-09-28 | 1998-06-30 | Emc Corporation | Dual oscillator clock pulse generator |
| JPH10124167A (en) * | 1996-10-17 | 1998-05-15 | Miyagi Oki Denki Kk | System clock switching device |
| US6194969B1 (en) | 1999-05-19 | 2001-02-27 | Sun Microsystems, Inc. | System and method for providing master and slave phase-aligned clocks |
-
1999
- 1999-05-19 US US09/314,812 patent/US6194969B1/en not_active Expired - Lifetime
- 1999-05-27 US US09/320,794 patent/US6516422B1/en not_active Expired - Lifetime
-
2000
- 2000-05-16 DE DE60026698T patent/DE60026698D1/en not_active Expired - Lifetime
- 2000-05-16 AT AT00932487T patent/ATE237155T1/en not_active IP Right Cessation
- 2000-05-16 JP JP2000618836A patent/JP2002544623A/en active Pending
- 2000-05-16 EP EP00930771A patent/EP1179236B1/en not_active Expired - Lifetime
- 2000-05-16 AU AU50205/00A patent/AU5020500A/en not_active Abandoned
- 2000-05-16 EP EP00932487A patent/EP1185933B1/en not_active Expired - Lifetime
- 2000-05-16 AU AU48531/00A patent/AU4853100A/en not_active Abandoned
- 2000-05-16 WO PCT/US2000/013442 patent/WO2000070460A1/en active IP Right Grant
- 2000-05-16 AT AT00930771T patent/ATE320680T1/en not_active IP Right Cessation
- 2000-05-16 WO PCT/US2000/013440 patent/WO2000070801A1/en active IP Right Grant
- 2000-05-16 DE DE60002068T patent/DE60002068T2/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5416443A (en) * | 1993-12-22 | 1995-05-16 | International Business Machines Corporation | Reliable clock source having a plurality of redundant oscillators |
| US5422915A (en) * | 1993-12-23 | 1995-06-06 | Unisys Corporation | Fault tolerant clock distribution system |
| US5515403A (en) * | 1994-06-21 | 1996-05-07 | Dsc Communications Corporation | Apparatus and method for clock alignment and switching |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7099424B1 (en) | 2001-08-28 | 2006-08-29 | Rambus Inc. | Clock data recovery with selectable phase control |
| WO2003021786A1 (en) * | 2001-08-28 | 2003-03-13 | Rambus Inc. | Clock data recovery with selectable phase control |
| EP1962426A1 (en) * | 2001-08-28 | 2008-08-27 | Rambus, Inc. | Clock data recovery with selectable phase control |
| WO2003069451A1 (en) * | 2002-02-14 | 2003-08-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Seamless clock |
| GB2397145B (en) * | 2002-11-06 | 2005-06-01 | Sun Microsystems Inc | Computer system with first and second clock synthesizers |
| US7043655B2 (en) | 2002-11-06 | 2006-05-09 | Sun Microsystems, Inc. | Redundant clock synthesizer |
| GB2397145A (en) * | 2002-11-06 | 2004-07-14 | Sun Microsystems Inc | Master computer clock inhibits itself if its feedback goes too far out of phase then a backup clock enables itself. |
| EP1614229A4 (en) * | 2003-03-25 | 2006-08-09 | Utstarcom Korea Ltd | Method for duplexing a clock board |
| CN101901176A (en) * | 2010-07-22 | 2010-12-01 | 北京交通大学 | Redundant clock system |
| CN102244573A (en) * | 2011-07-18 | 2011-11-16 | 中兴通讯股份有限公司 | Clock reporting method and device |
| US9768947B2 (en) | 2012-03-13 | 2017-09-19 | Rambus Inc. | Clock and data recovery having shared clock generator |
| US10263761B2 (en) | 2012-03-13 | 2019-04-16 | Rambus Inc. | Clock and data recovery having shared clock generator |
| US10050771B2 (en) | 2012-03-13 | 2018-08-14 | Rambus Inc. | Clock and data recovery having shared clock generator |
| US9577816B2 (en) | 2012-03-13 | 2017-02-21 | Rambus Inc. | Clock and data recovery having shared clock generator |
| US9071407B2 (en) | 2012-05-02 | 2015-06-30 | Ramnus Inc. | Receiver clock test circuitry and related methods and apparatuses |
| US9906335B2 (en) | 2012-05-02 | 2018-02-27 | Rambus Inc. | Receiver clock test circuitry and related methods and apparatuses |
| US9537617B2 (en) | 2012-05-02 | 2017-01-03 | Rambus Inc. | Receiver clock test circuitry and related methods and apparatuses |
| US9294262B2 (en) | 2012-05-02 | 2016-03-22 | Rambus Inc. | Receiver clock test circuitry and related methods and apparatuses |
| US10320534B2 (en) | 2012-05-02 | 2019-06-11 | Rambus Inc. | Receiver clock test circuitry and related methods and apparatuses |
| CN110740029A (en) * | 2018-07-02 | 2020-01-31 | 恩智浦美国有限公司 | Communication unit, integrated circuit and method for clock and data synchronization |
| CN110740029B (en) * | 2018-07-02 | 2023-12-22 | 恩智浦美国有限公司 | Communication unit, integrated circuit and method for clock and data synchronization |
| US12228670B2 (en) | 2018-07-02 | 2025-02-18 | Nxp Usa, Inc. | Communication unit, integrated circuits and method for clock and data synchronization |
Also Published As
| Publication number | Publication date |
|---|---|
| US6516422B1 (en) | 2003-02-04 |
| JP2002544623A (en) | 2002-12-24 |
| US6194969B1 (en) | 2001-02-27 |
| AU4853100A (en) | 2000-12-05 |
| EP1179236A1 (en) | 2002-02-13 |
| ATE320680T1 (en) | 2006-04-15 |
| DE60002068D1 (en) | 2003-05-15 |
| EP1185933A1 (en) | 2002-03-13 |
| DE60002068T2 (en) | 2004-05-19 |
| DE60026698D1 (en) | 2006-05-11 |
| EP1185933B1 (en) | 2003-04-09 |
| EP1179236B1 (en) | 2006-03-15 |
| AU5020500A (en) | 2000-12-05 |
| WO2000070801A1 (en) | 2000-11-23 |
| ATE237155T1 (en) | 2003-04-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6516422B1 (en) | Computer system including multiple clock sources and failover switching | |
| US6239626B1 (en) | Glitch-free clock selector | |
| US6359945B1 (en) | Phase locked loop and method that provide fail-over redundant clocking | |
| JP3255418B2 (en) | Digitally controlled crystal oscillator | |
| US7467320B2 (en) | Fault-tolerant clock generator | |
| EP2404379B1 (en) | Crystal-based oscillator for use in synchronized system | |
| US5949262A (en) | Method and apparatus for coupled phase locked loops | |
| US6675307B1 (en) | Clock controller for controlling the switching to redundant clock signal without producing glitches by delaying the redundant clock signal to match a phase of primary clock signal | |
| JP3619466B2 (en) | Semiconductor device | |
| US5483180A (en) | Data and clock recovery circuit | |
| KR100882391B1 (en) | Seamless clock | |
| US7308592B2 (en) | Redundant oscillator distribution in a multi-processor server system | |
| US7809025B2 (en) | System and method for distributing clock signals | |
| US6931087B1 (en) | Feedforward clock switching circuit | |
| KR100222406B1 (en) | Clock Synchronizer with Redundancy Structure and Redundancy Implementation Method | |
| KR100343929B1 (en) | Apparatus for monitoring reference clock | |
| KR100386811B1 (en) | Apparatus for suppling network timing reference/TCM-ISDN timing reference clock in DSLAM system | |
| JPH06232739A (en) | Clock redundancy method | |
| KR100564242B1 (en) | Synchronization clock stabilization device and method thereof in synchronization system | |
| JP2000124884A (en) | Clock system switching circuit | |
| JPH06177754A (en) | Phase locked loop oscillation circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 618836 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2000932487 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000932487 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2000932487 Country of ref document: EP |