WO2000073840A1 - Cellule de commutation optomecanique micro-usinee avec actionneur a plaque parallele et controle d'energie sur puce - Google Patents
Cellule de commutation optomecanique micro-usinee avec actionneur a plaque parallele et controle d'energie sur puce Download PDFInfo
- Publication number
- WO2000073840A1 WO2000073840A1 PCT/US2000/014682 US0014682W WO0073840A1 WO 2000073840 A1 WO2000073840 A1 WO 2000073840A1 US 0014682 W US0014682 W US 0014682W WO 0073840 A1 WO0073840 A1 WO 0073840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optomechanical
- substrate
- matrix switch
- switch
- optical
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 71
- 230000003287 optical effect Effects 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 description 44
- 239000000835 fiber Substances 0.000 description 40
- 235000012431 wafers Nutrition 0.000 description 32
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000008901 benefit Effects 0.000 description 12
- 238000013459 approach Methods 0.000 description 11
- 238000007789 sealing Methods 0.000 description 10
- 230000010354 integration Effects 0.000 description 8
- 238000005459 micromachining Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 238000004806 packaging method and process Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 238000001338 self-assembly Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000000708 deep reactive-ion etching Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/351—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
- G02B6/3512—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
- G02B6/3514—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/085—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/351—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
- G02B6/3512—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
- G02B6/352—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/3544—2D constellations, i.e. with switching elements and switched beams located in a plane
- G02B6/3546—NxM switch, i.e. a regular array of switches elements of matrix type constellation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3564—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
- G02B6/3568—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
- G02B6/357—Electrostatic force
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3564—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
- G02B6/3568—Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
- G02B6/3576—Temperature or heat actuation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3586—Control or adjustment details, e.g. calibrating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0026—Construction using free space propagation (e.g. lenses, mirrors)
- H04Q2011/003—Construction using free space propagation (e.g. lenses, mirrors) using switches based on microelectro-mechanical systems [MEMS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0049—Crosstalk reduction; Noise; Power budget
Definitions
- the invention relates generally to the field of optical switching. More particularly, the invention relates to the design, fabrication, assembly and packaging of micro electro mechanical systems (MEMS) technology optomechanical switching cells, and NxM matrix switches composed thereof.
- MEMS micro electro mechanical systems
- optical switches There are many different types of optical switches. In terms of the switching mechanism, optical switches can be divided into two general categories.
- the first general category of optical switches employs a change of refractive index to perform optical switching.
- This first general category can be termed "electro- optic switches.”
- the refractive index change can be induced by electro-optic, thermal-optic, acousto-optic, or free-carrier effects.
- free carriers are generated by an electric charge introduced into a device, thereby causing a change in the material's dipoles, which in turn changes the material's index of refraction.
- the general category of electro-optic switches was generally employed in the case of coupled optical waveguides.
- the second general category of optical switches employs physical motion of one, or more, optical elements to perform optical switching. In this way, a spatial displacement of a reflected beam is affected. This second general category can be termed "optomechanical switches.” Optomechanical switches offer many advantages over electro-optic switches.
- Optomechanical switches have both lower insertion loss and lower crosstalk compared to electro-optic switches. Further, optomechanical switches have a high isolation between their ON and OFF states. Furthermore, optomechanical switches are bidirectional, and are independent of optical wavelength, polarization, and data modulation format.
- An optomechanical switch can be implemented either in a free- space approach or in a waveguide (e.g., optical fiber) approach. The free-space approach is more scalable, and offers lower coupling loss compared to the waveguide approach.
- Macro-scale optomechanical switches employing external actuators are currently available.
- conventional optomechanical switches are available from JDS, DiCon, AMP, and Hewlett Packard.
- macro-scale optomechanical switches are bulky.
- macro-scale optomechanical switches require extensive manual assembly.
- the switching speed of macro-scale optomechanical switches is slow. For instance, the switching times for the currently commercially available optomechanical switches range from 10 milliseconds to several hundred milliseconds. An even more serious problem is that their switching times often depends on their specific switching path (i.e., how far is the distance from the next output port from the current output port).
- Micro electro mechanical systems (MEMS) technology is a micromachining technique that uses a batch processing technique. Micro electro mechanical systems technology is similar to semiconductor electronics fabrication except that the resulting devices possess mechanical functionality, as well as electronic and/or optical functionality.
- Micro electro mechanical systems technology is currently used to fabricate movable microstructures and microactuators.
- the use of micro electro mechanical systems technology to fabricate optomechanical switches can significantly reduce the size, weight, and cost of the resulting optomechanical switches.
- Micro electro mechanical systems technology includes bulk-micromachining and surface-micromachining techniques. Both bulk-micromachining and surface- micromachining have been applied to fabricate fiber optic switches.
- Many optomechanical switches employ movable micromirrors.
- vertical micromirrors i.e., the mirror surface is perpendicular to the substrate
- a simple matrix switch with a regular two-dimensional array of switching cells can be realized.
- the input and output fibers can be arranged in the same plane as the matrix substrate. Further, packaging is greatly simplified in this configuration.
- the first method is anisotropic chemical etching of (110) silicon wafer (using, e.g., KOH solution).
- the second method is deep reactive ion etching (DRIE).
- the third method is electroplating or the LIGA process.
- the fourth method is flip-up micromirrors with surface-micromachined microhinges.
- the fifth method is torsion mirrors.
- anisotropic etching of ( 1 10) silicon substrate can produce an atomically smooth micromirror surface.
- a problem with the anisotropic etching method is that monolithic integration of the micromirrors with the microactuators is difficult. In an attempt to address this problem, external bulk actuators have been used. In another approach to addressing this problem, the micromirror substrate is simply glued to a micro flap actuator. However, this is not a manufacturable process. Therefore, what is also needed is a solution that facilitates integration of the micromirrors with the microactuators while simultaneously yielding a manufacturable process.
- direct reactive ion etching can produce vertical micromirrors with straight sidewalls (with an aspect ratio of approximately 50:1).
- a problem with the direct reactive ion etching method is that the surface of the etched sidewalls tend to be rough.
- the Bosch DRIE process produces a periodic corrugation on the sidewalls due to alternating etching/coating process.
- the actuators of DRIE mirrors are usually limited to comb drive actuators, which have a limited travel distance. Therefore, what is also needed is a solution that provides a smooth mirror surface while simultaneously providing a large travel distance.
- a problem with electroplated micromirrors is that they often may not have straight or vertical sidewalls.
- the LIGA process can produce high quality micromirrors, however, it requires expensive X-ray lithography. Further, integration with the actuators is a difficult issue for LIGA micromirrors. Therefore, what is also needed is a solution that provides an economical straight mirror surface while simultaneously facilitating the integration of the micromirrors with the microactuators.
- the microhinged mirrors and torsion micromirrors are usually made of polysilicon plates.
- CMP chemical- mechanical polishing
- control of the mirror angle to within 0.5° as required by large matrix switches is difficult to achieve with microhinged mirrors and torsion micromirrors. Therefore, what is also needed is a solution that provides manufacturing efficiency while simultaneously providing the required control of the mirror angle.
- a primary object of the invention is to provide an approach to integrating optomechanical switching cell micromirrors and microactuators that can be implemented on an optomechanical switching matrix scale, or even on a wafer scale. Another primary object of the invention is to provide an approach to self-assembling optomechanical switching cell micromirrors and/or microactuators. Another primary object of the invention is to provide an approach to making optimechanical switching cell micromirrors tilt-insensitive. Another primary object of the invention is to provide a microactuated optomechanical switching cell. Another primary object of the invention is to provide an optomechanical matrix switch architecture for uniform fiber coupling loss. Another primary object of the invention is to provide input/output power monitoring for an optomechanical matrix switch.
- a first aspect of the invention is implemented in an embodiment that is based on a method of making an optomechanical matrix switch, comprising: joining a plurality of mirrors on a carrier to said plurality of actuators on a substrate; and removing said carrier from said plurality of mirrors so as to form a plurality of optomechanical switching cells on said substrate.
- a second aspect of the invention is implemented in an embodiment that is based on a method of making an optomechanical matrix switch, comprising: positioning a plurality of mirrors adjacent a plurality of actuators on a substrate; joining said plurality of mirrors to said plurality of actuators so as to form a plurality of optomechanical switching cells.
- a third aspect of the invention is implemented in an embodiment that is based on an optomechanical switching cell, comprising a tilt-insensitive mirror.
- a fourth aspect of the invention is implemented in an embodiment that is based on an optomechanical switching cell, comprising: an actuator positioned on a substrate; and a mirror coupled to said actuator.
- a fifth aspect of the invention is implemented in an embodiment that is based on an optomechanical matrix switch, comprising: a substrate; a plurality of optomechanical switching cells coupled to said substrate, each of said plurality of optomechanical switching cells coupled to said substrate, each of such plurality of optomechanical switching cells including a mirror and an actuator; and a switch architecture for uniform fiber coupling loss.
- a sixth aspect of the invention is implemented in an embodiment that is based on an optomechanical matrix switch, comprising: a substrate; a plurality of optomechanical switching cells coupled to said substrate, each of said plurality of optomechanical switching cells including a mirror and an actuator; and a means for input/output power monitoring.
- a seventh aspect of the invention is implemented in an embodiment that is based on an optomechanical matrix switch, comprising: a substrate; a plurality of optomechanical switching cells coupled to said substrate, each of said plurality of optomechanical switching cells including a mirror and an actuator; and a plurality of integrated microlenses coupled to said substrate.
- An eighth aspect of the invention is implemented in an embodiment that is based on an optomechanical matrix switch, comprising: a substrate; a plurality of optomechanical switching cells connected to said substrate, each of said plurality of optomechanical switching cells including a mirror and an actuator; and a plurality of integrated wavelength division devices coupled to said substrate.
- a ninth aspect of the invention is implemented in an embodiment that is based on an optomechanical matrix switch, comprising: a substrate; a plurality of optomechanical switching cells coupled to said substrate, each of said optomechanical switching cells including a mirror and an actuator; and a hermetic seal coupled to said substrate, said hermetic seal providing a substantially gas tight isolation of said plurality of optomechanical switching cells.
- a tenth aspect of the invention is implemented in an embodiment that is based on a method of aligning an optomechanical matrix switch with an optical waveguide, comprising: providing an optomechanical matrix switch on a positioning stage; providing an optical waveguide on a substrate; and positioning said optomechanical matrix switch by moving said positioning stage relative to said substrate.
- FIGS. 1 A- IB illustrate schematic perspective views of a wafer scale assembly method, representing an embodiment of the invention.
- FIGS. 2A-2B illustrate schematic perspective views of a mirror fabrication method, representing an embodiment of the invention.
- FIGS. 3A-3B illustrate schematic perspective views of two different types of mirrors, representing embodiments of the invention.
- FIG. 4 illustrates a schematic perspective view of a wafer scale assembly method, representing an embodiment of the invention.
- FIGS. 5A-5C illustrate schematic views of a matrix of flat mirrors, representing an embodiment of the invention.
- FIGS. 6A-6C illustrate schematic views of a matrix of two-dimensional (2D) retro-reflectors, representing an embodiment of the invention.
- FIG. 7 illustrates a schematic side view of a thermal actuator based switch, representing an embodiment of the invention.
- FIG. 8 illustrates a schematic side view of a parallel plate based switch, representing an embodiment of the invention.
- FIGS. 9A-9B illustrate schematic views of a matrix architecture with uniform optical coupling loss, representing an embodiment of the invention.
- FIGS. 10A-10C illustrate schematic views of two types of power monitoring capable matrixes, representing two embodiments of the invention.
- FIGS. 11A-11C illustrate schematic views of a matrix having switches with integrated microlenses, representing two embodiments of the invention.
- FIG. 12 illustrates a schematic top view of a matrix having switches and microlenses, representing an embodiment of the invention.
- FIG. 13 illustrates a schematic top view of a matrix having switches with wave division multiplexing functionality, representing an embodiment of the invention.
- FIG. 14 illustrates a schematic perspective view of a matrix with on-chip hermetic sealing, representing an embodiment of the invention.
- FIG. 15 illustrates a schematic top view of a matrix with switches mounted on a positioning stage, representing an embodiment of the invention.
- FIG. 16 illustrates a schematic side view of a matrix with switches mounted on a positioning stage.
- the context of the invention is communication systems, and or computing systems, and/or any other systems where optical switching can be implemented.
- the invention can also utilize data processing methods that transform the optical signals so as to actuate interconnected discrete hardware elements, such as, for example, one or more of the optomechanical switching cells and/or one or more of the optomechanical matrix switches and/or one or more of the positioning stages.
- FIGS. 1A through 16 The most critical parameters for the micro electro mechanical systems optomechanical switching cells and matrix switches are the smoothness and reflectivity of the micromirrors; the angular variation of the micromirrors when they direct the input beams to the output ports (e.g., fibers); and the actuation mechanism.
- the quality and angular variation of the micromirror depends on the fabrication technique for the micromirror and how it is integrated with the actuator.
- the invention includes a wafer-scale, batch processing technique for fabricating high-quality mirrors for micro electro mechanical systems optical switches.
- This aspect of the invention is based on fabricating the micromirrors and the actuators separately on two different wafers, and then bonding the two wafers together with each individual micromirror bonded to an individual microactuator.
- a micromirror wafer 110 includes a plurality of micromirrors 120 positioned on a substrate 125.
- An actuator wafer 130 includes a plurality of actuators 140 positioned on a carrier 145.
- the actuator wafer 130 and the plurality of actuators can be fabricated using MEMS technology.
- the micromirror wafer 110 is depicted being lowered toward the actuator wafer 130 in FIG. 1 A, but the two wafers can be brought together in any orientation.
- the plurality of micromirrors 120 are joined to the plurality of actuators 140.
- the substrate of the micromirror wafer 110 (which can be termed a carrier) is then removed from the micromirrors. This leaves a plurality of optomechanical switching cells 150 arranged on the substrate.
- the micromirrors and the actuators are independently optimized. High quality micromirrors and efficient actuators are thereby achieved simultaneously in a single matrix switch.
- the variation in the angle of the micromirrors is determined by the ratio of the thickness variation of the bonding layer to the maximum dimension of the wafer normal to the micromirror. For example, with bonded mirrors, the variation of the bonding layer (glue) thickness across the mirror (or wafer for batch process) will cause the mirrors to tilt to various degrees. In the batch process, the mirrors are put on all at once.
- the tolerance of alignment is determined by the size of the mirrors.
- the tolerance is determined by the wafer size and not the micro-mirror.
- the baseline is extended to the entire wafer.
- the angular variation is reduced to 0.003° when micromirrors on 4-inch wafers are bonded directly, assuming the bonding layer thickness variation is 10 um. This is to be compared to the angular variation of 3° when a single mirror with 100-um-wide base is bonded to the actuator.
- the micromirrors can be fabricated by anisotropic etching of (110) silicon wafer using KOH, or by other wet or dry etching techniques.
- the micromirrors can also be fabricated on non-silicon wafers such as quartz. In more detail, the micromirrors can be dry-etched on quartz wafer.
- micro electro mechanical systems chips will need to be handled with extreme care, particularly at the dicing stage.
- the micro electro mechanical systems devices cannot be released before dicing, thus releasing cannot be done as a wafer-scale processing step.
- the actuators and moveable structures are held rigid by the dielectric materials deposited in between the structural layers (polysilicon).
- the dielectric layers are selectively removed (this process is called releasing). Then the structures are free to move or be assembled into 3D structures.
- the actuator can take the form of electrostatic torsion plates.
- examples of other actuators include thermal actuators, bimorph actuators, electromagnetic actuators, torsion plate actuators with permalloy, and actuators based on stress-induced bending and/or electrostatic force.
- a biomorph actuator can be a beam composed of a sandwich of two dissimilar materials.
- the two beams have different thermal expansion coefficient for a thermal biomorph.
- the beams may consist of piezoelectric materials with opposite orientation so that one beam contracts while the other extends when a voltage is applied.
- a thermal actuator is similar to a thermal bimorph, but instead of two layers being attached to each other, two beams are attached to each other. Again, a different thermal expansion coefficient will cause the beams to buckle.
- the heat can be provided by passing a current through beams that are conductive and generate heat as resistive heaters.
- any microactuator having a displacement greater than the outgoing beam diameter can be used.
- the optical beam is usually expanded and collimated, and the beam diameters are typically on the order of approximately 100 um to approximately 1000 um.
- the micromirror wafer and the actuator wafer can be bonded together by known bonding techniques: including fusion bonding, eutectic bonding, anodic bonding, and epoxy bonding.
- Anodic bonding is carried out between glass and doped silicon materials at elevated temperature with high voltage.
- Fusion bonding is a thermo- compression bonding process, where the treated mating surfaces are brought in contact at elevated temperature and pressure.
- Eutectic bonding is bonding formed between two mating surface in presence of an eutectic interface material.. The interface material is heated to a temperature above eutectic melting point of that interface material. For example, AuSn on one surface and Au on the other surface will be used for eutectic bonding at 370 degrees C.
- Epoxy bonding Epoxy is essentially like a glue. Ultraviolet (UV) sensitive epoxy can be used and can be cured by exposing the epoxy to UV light. Different types of bonding processes have different reaction temperatures and different requirements on the interface (Si , glass, or metal coated). B. Self- Assembled Micromirror Blocks
- the invention includes a optomechanical matrix switch based on self-assembled mirror blocks.
- a low-cost method for fabricating high quality micromirrors is depicted.
- the micromirrors can be obtained by dicing a section of square quartz rod 210.
- the section of square quartz rod 210 can be fabricated at very low cost. It is separated into a plurality of individual mirror blocks 220 by dicing or cleaving the quartz rod.
- the section of square quartz rod can be coated with gold before dicing to increase mirror reflectivity.
- the shape and length of sections 310 and 320 that are diced from the rod can be made assymetric so that only a gold-coated side 315 and 320 will face the optical beams.
- the mirror blocks 410 can be dropped into a fixture 420 with arrays of alignment grooves (not shown) and holes 430.
- the fixture 420 is aligned with an actuator wafer 440.
- the mirror blocks for the entire NxM switch array can then be bonded to actuator wafer simultaneously.
- a weight 450 can be applied to exert a force to assist in the bonding.
- the attachment of micromirror blocks can also extended to fluidic self-assembly, voltage assisted self-assembly, DNA-assisted self assembly, magnetic assisted self-assembly, etc.
- a significant advantage of this self-assembly process is that no individual mirror placement or alignment is needed.
- a further advantage of this approach is that very high quality mirrors can be obtained by low-cost fabrication processes.
- the invention includes optomechanical matrix switches based on tilt-insensitive mirrors. Because of the long optical path between the micromirrors and the output fibers in large NxM (e.g., NxN) matrix switches, one of the most critical parameters for the micromirrors is tilt angle.
- NxM e.g., NxN
- FIG. 5 A an optomechanical matrix switch 510 is depicted.
- the switch 510 includes a plurality of optomechanical switching cells 520.
- FIGS. 5B-5C illustrate sections taken along line AA in FIG. 5A.
- the cells 520 do not exhibit mirror tilting.
- FIG. 5C when a tilt is present, it results in walk-off of the output optical beams reflected from different micromirrors. This will result in large variation of the output coupling efficiency (insertion loss).
- the invention can include the use of orthogonally arranged mirror facets that will significantly reduce the tilt sensitivity. Instead of using flat micromirrors as shown in FIGS. 5A-5C, a two-dimensional (2D) retroreflector can be used to direct input beams to the output fibers.
- 2D two-dimensional
- FIGS. 6A-6C an embodiment of the tilt-insensitive mirror invention is illustrated.
- a micro retroreflector 610 composes part of an optomechanical switching cell 620.
- the principle of the operation of the retroreflector 610 is shown in FIGS. 6A-6C.
- the retroreflectors can be termed corner cubes.
- the essential elements of a corner cube is two orthogonal mirrors.
- D. Microactuated Optomechanical Switching Cells Using the wafer scale mirror attachment and self assembly fabrication methods described above, many different types of switching cells can be realized. Some specific examples of optomechanical switching cells suitable for NxM micro electro mechanical systems (MEMS) switches follow.
- MEMS micro electro mechanical systems
- CMOS complementary metal-oxide-semiconductor
- CMOS complementary metal-oxide-semiconductor
- CMOS complementary metal-oxide-semiconductor
- CMOS complementary metal-oxide-semiconductor
- CMOS complementary metal-oxide-semiconductor
- CMOS complementary metal-oxide-semiconductor
- CMOS complementary metal-oxide-semiconductor
- micro electro mechanical systems actuators can be made using the CMOS technology.
- the main issue for fabricating optical matrix switches using CMOS is the difficulty of integrating high quality vertical micromirrors with the microactuators. Wafer-scale micromirror bonding techniques are particularly well suited to making CMOS-based micro electro mechanical systems optomechanical matrix switches.
- Two specific subexamples directed to specific types of CMOS microactuators include a thermal actuator and a parallel plate actuator.
- a CMOS thermal actuator includes a cantilever beam 710 with materials of very different thermal expansion coefficients.
- a first material 720 of higher thermal expansion coefficient will shrink when the temperature is reduced, and deflect the cantilever beam 710 upward, if the left edge of a second material 730 (of lower expansion coefficient) is prevented from sliding to the left by a structure (not shown).
- a parallel plate actuator can be realized by undercutting a
- CMOS multilayer structure 810 with selective etching.
- Parallel plate actuators are electrostatic force between two parallel plates to move one moveable plate towards the other fixed plate.
- a suspended CMOS plate 850 can be attracted downward.
- An alternative CMOS embodiment is two plates that form a wedge rather than a parallel structure (e.g., a > shape). In this embodiment, assuming the lower plate is fixed, displacing the radially supported actuator (upper plate) toward, or away from, the lower plate will open and close the wedge.
- the main advantages of the CMOS actuators include low cost, broad availability of CMOS process, and monolithic integration with CMOS drive electronics.
- Example (2) Another example includes stress-induced electrostatic gap-closing actuators with bonded vertical micromirror.
- a stress can be used to generate an electric field using a piezoelectric structure.
- Example (3) Another example includes a torsion plate with bonded vertical micromirror.
- the torsion plate includes a micromachined plate that is mechanically hinged about a pivot axis to a substrate.
- Example (4)
- Another example includes a torsion plate with a permalloy layer and bonded vertical micromirrors.
- Permalloy is a brand name for any of a class of alloys of high magnetic permeability containing from approximately 30 to approximately 90 percent, by weight, of nickel.
- the torsion plate can be displaced with a magnetic field.
- Another example includes a vertical mirrors on torsion plate configured to move with a push-pull electrostatic force.
- the torsion plate can be displaced with an electric field.
- E. Matrix Switch Architecture for Uniform Fiber Coupling Loss Most of the volume of an optomechanical matrix switch is composed of an array of free-space optical switches, an input fiber array, and an output fiber array. Such arrangement, however, has non-uniform optical insertion losses. In more detail, assuming the ends of the fiber are coplanar, the optical path length is different when each switching cell is activated (e.g., the optical path length of input #1 to output #1 is less than that of input #1 to output #8).
- the invention includes an optomechanical matrix switch architecture that will have uniform optical coupling loss, independent of which switch is activated.
- a series of input fibers 910 are coupled to a substrate 920.
- An array of optomechanical switching cells 930 is arranged on the substrate 920.
- a series of output fibers 940 are also connected to the substrate 920.
- an input fiber 950 can be provided with a lens 960.
- an output fiber 970 can be provided with a lens 980.
- the micro electro mechanical systems optomechanical switch of the invention offers unique advantages for integrating the photodetector arrays on the switch chip for power monitoring. The cost of adding this function to the switch is much lower for the monolithic micro electro mechanical systems switches than for macro scale optomechanical switches.
- FIGS. 10A-10B illustrate two architectures of the micro electro mechanical systems optical switch with input/output power monitoring capabilities.
- a plurality of vertical beamsplitters 1040 can be employed to deflect part of the optical beams to an input photodetector array 1010 and an output photodetector array 1020.
- the deflection in this embodiment is coplanar with a substrate 1050.
- a plurality of 45° beamsplitters 1060 can be employed to reflect part of the optical beams out of the switch plane to the photodetector arrays 1070 above the micro electro mechanical systems optical switch chip 1080.
- the deflection in this embodiment is perpendicular to a substrate 1090.
- the beamsplitters should be almost transparent (e.g., 1% reflection) to reduce the optical insertion loss.
- the beamsplitters 1040 in FIG. 10(a) could be monolithically fabricated with the micro electro mechanical systems chip using the surface-micromachining microhinge technique. It is also possible to mount high quality external beamsplitters on the chip.
- 10C could be fabricated monolithically, or attached to the packages of the photodetector arrays so that the beamsphtter/photodetectors could be simply dropped onto the micro electro mechanical systems switch chip.
- a photodetector array 1005 at the opposite end of the input fibers to monitor possible failure micro electro mechanical systems micromirrors.
- at least one of the micromirrors in each column will be turned on. Therefore, no photocurrent will be registered in the photodetector array 1005.
- a suitable photo-detector device can be provided by a p-n junction, for example, In Ga As, or Silicon or GaAs.
- the size of the micro electro mechanical systems optical switch is limited by the maximum coupling distance between the input and the output fibers.
- fiber collimators are employed for both input and output fibers.
- the maximum coupling distance between the input and output collimators determines the maximum size of the switch. For example, if the maximum coupling distance is 2 cm, and the switch cell area is 1 mm x 1 mm, then the largest switch that can be realized is 10 x 10. To increase the dimension of the switch, it is therefore desirable to be able to extend the coupling distance without sacrificing the coupling efficiency.
- the invention includes integrating microlenses on the micro electro mechanical systems optomechanical switching cells 1110. This will extend the coupling distance without sacrificing the coupling efficiency. Referring to
- FIGS. 11B-11C the microlenses can be directly formed on the surface of the micromirror 1120.
- FIG. 11C illustrates a schematic drawings of the micromirror 1 120 with an integrated diffractive microlens 1 130.
- FIG. 1 IB illustrates a schematic drawing of the micromirror 1120 with an integrated refractive microlens 1140.
- the microlenses function as relay lenses to extend the coupling distance while maintaining the same optical insertion loss. It is noted that the microlens for each micromirror should be different for uniform coupling efficiency.
- the diffractive and refractive microlenses 1130 and 1140 can be integrated with surface-micromachined micro electro mechanical systems structures.
- a refractive lens can be integrated on a micro electro mechanical systems flip up structure.
- the integrated microlens acts as a relay lens. As the beam is loosing collimation, these integrated microlenses bring the beam back into collimation (parallel beams once again).
- Refractive lenses can be made with grinding glass, or moulding glass, or putting a gradient index in a cylinder of glass (GRIN).
- Diffractive lenses can be made by moulding or etching indentations in a piece of glass or other material according to a computer generated set of masks.
- a plurality of microlenses 1210 can also be integrated in between two of a plurality of micro electro mechanical systems micromirrors 1220 to extend the coupling distance. This is equivalent to stitching smaller micro electro mechanical systems optical switches together to form a larger dimension switch while maintaining almost the same optical insertion loss.
- the collimated beam will diverge again after a certain distance. This is known as throw distance.
- the beam it is highly desirable for the beam to stay collimated (otherwise it will become bigger than the switch and clipping loss will occur). Having another lens to "help" it stay collimated is the main purpose of integrating the lens onto the mirror itself.
- the invention includes providing an optomechanical matrix switch 1310 with one or more wavelength division devices 1320.
- the wavelength division devices 1320 can include wavelength division multiplexers and or wavelength division demultiplexers.
- the wavelength-division-multiplexing (WDM) components can be integrated with the micro electro mechanical systems optical switch to form more functional WDM micro electro mechanical systems switches.
- WDM wavelength-division-multiplexing
- WDM micromirror 1330 reflects wavelength ⁇ l only when the mirror is turned on;
- second WDM micromirror 1340 reflects ⁇ 2 only when the WDM mirror is turned on; etc.
- Such a device can perform selective WDM add-drop multiplexing as well as optical switching. It is more powerful than combining discrete optical switches and external WDM multiplexers and/or demultiplexers. This means that the switch can be combined with WDM multiplexers/demultiplexers to form wavelength-selective add/drop filters that are programmable. It is better than combining a separate switch and a separate WDM filter because the coupling loss is reduced (there is no need to couple into fiber and then expand the beam from the fiber again).
- Hermetic sealing is very important for the operation of micro electro mechanical systems actuators and to reduce in-use stiction.
- Conventional hermetic sealing is applied at the package level.
- the invention includes on-chip hermetic sealing.
- On-chip hermetic sealing is very attractive for optical micro electro mechanical systems devices. Since the micro electro mechanical systems optomechanical devices are accessed by optical beams, the micro electro mechanical systems optomechanical devices can actually be sealed before dicing the chip.
- FIG. 14 an optomechanical matrix switch 1410 with on-chip hermetic sealing feature is depicted.
- a sealing structure 1420 e.g., a transparent cap
- a sealing structure 1420 e.g., a transparent cap
- the micro electro mechanical systems optomechanical matrix switches can be fabricated by connecting the mirrors to the actuators at a wafer scale. Then the constraining structure that holds the actuators can be released. Then the devices can be hermetically sealed with the transparent cap. After sealing, the wafer can be treated as integrated circuit (IC) wafers, and be diced.
- IC integrated circuit
- the input and output fibers can be integrated monolithically with the micro electro mechanical systems optical switching chip by etching V-grooves for aligning the fibers. This will totally eliminate the optical alignment step in packaging. However, some optical alignment may be necessary because of the non-perfect angle of the micromirrors.
- the invention includes a micro electro mechanical systems optomechanical matrix switch combined with fiber ribbons. By employing fiber ribbons for the input and output fibers, the optical alignment is greatly simplified. Instead of aligning 2N individual fibers, there is only a need to align 2 fiber ribbons. Moreover, referring to FIG.
- the invention also includes combining a micro electro mechanical systems optomechanical matrix switch 1510 with output fibers 1520 and input fibers 1530 located in V-grooves provided on a fiber-package chip 1540.
- a micro electro mechanical systems optomechanical matrix switch 1510 With output fibers 1520 and input fibers 1530 located in V-grooves provided on a fiber-package chip 1540.
- a fiber package chip 1610 includes a plurality of optical fibers 1620 and a cylindrical lens 1630.
- a micro electro mechanical systems matrix switch chip 1640 includes a plurality of micro mirrors 1650. Even with perfect design, the mirror angle might still deviate slightly from 90°. With two degrees of freedom in rotation, this non-ideal mirror angle can be corrected during the packaging step.
- the tilt control restores the mirror to perfect 90° angle, while the rotation and linear translations accurately position the micro electro mechanical systems chip. Perfect alignment is represented in FIG. 16 by arrowheads pointing in opposite directions on a single ray.
- the invention can be applied to network restoration, reconfiguration, and dynamic bandwidth allocation.
- the invention can be embodied in an optical crossbar switch (NxM matrix switch) which is a general purpose switch that is very useful for reconfiguring large telecommunication fiber optic networks, restoration of services and dynamic allocation of bandwidth.
- NxM matrix switch optical crossbar switch
- An optomechanical switch made with micro electro mechanical systems technology offers significant advantages over conventional optomechanical switches for realizing optical crossbar switches. Since the surface area (footprint) of a micro electro mechanical systems fabricated switching cell is very small (e.g., from a few hundred micrometers to a few millimeters), an entire NxM switching matrix can be monolithically integrated on a single substrate (e.g., a single silicon integrated circuit chip). This significantly reduces the packaging cost of the switch. It also enables the entire switch to be hermetically packaged, which is a very important factor for the switch to satisfy the temperature and humidity requirements such as those in the Bellcore standard. The switching time can also be reduced because of their higher resonant frequency.
- the resonant frequency is proportional to the square root of the ratio of spring constant and mass.
- Switch cells fabricated in accordance with the invention can be much smaller (e.g., 10-100 smaller) physically than bulk mechanical switches. Consequently, switch cells fabricated in accordance with the invention can have smaller mass and, therefore, a higher resonant frequency.
- the higher resonant frequency is directly proportional to the speed of switching of the device.
- an optomechanical switch made with micro electro mechanical systems technology can be more rugged than the macro-scale switches because the inertial forces are much smaller in the micro-scale switches. All the disclosed embodiments of the invention described herein can be realized and practiced without undue experimentation. Although the best mode of carrying out the invention contemplated by the inventors is disclosed above, practice of the invention is not limited thereto. Accordingly, it will be appreciated by those skilled in the art that the invention may be practiced otherwise than as specifically described herein.
- the individual components need not be formed in the disclosed shapes, or assembled in the disclosed configuration, but could be provided in virtually any shape, and assembled in virtually any configuration. Further, the individual components need not be fabricated from the disclosed materials, but could be fabricated from virtually any suitable materials. Further, although the NxM matrices are described herein as physically separate modules, it is understood that the matrices may be integrated into the apparatus with which they are associated. Furthermore, all the disclosed elements and feature of each disclosed embodiment can be combined with, or substituted for, the disclosed elements and features of every other disclosed embodiment except where such elements or features are mutually exclusive.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU52995/00A AU5299500A (en) | 1999-05-28 | 2000-05-26 | Micromachines optomechanical switching cell with parallel plate actuator and on-chip power monitoring |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13643899P | 1999-05-28 | 1999-05-28 | |
US60/136,438 | 1999-05-28 | ||
US09/483,276 | 2000-01-13 | ||
US09/483,276 US6453083B1 (en) | 1999-05-28 | 2000-01-13 | Micromachined optomechanical switching cell with parallel plate actuator and on-chip power monitoring |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000073840A1 true WO2000073840A1 (fr) | 2000-12-07 |
Family
ID=26834300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/014682 WO2000073840A1 (fr) | 1999-05-28 | 2000-05-26 | Cellule de commutation optomecanique micro-usinee avec actionneur a plaque parallele et controle d'energie sur puce |
Country Status (3)
Country | Link |
---|---|
US (2) | US6453083B1 (fr) |
AU (1) | AU5299500A (fr) |
WO (1) | WO2000073840A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027682A3 (fr) * | 1999-10-08 | 2001-11-29 | Optical Switch Corp | Commutateur a reflexion interne totale contrariee par utilisation d'une reflexion en double passe, et procede de fonctionnement |
EP1273942A1 (fr) * | 2001-06-27 | 2003-01-08 | Agilent Technologies, Inc. (a Delaware corporation) | Méthode et dispositif de surveillance du signal d'un brasseur optique |
WO2002085062A3 (fr) * | 2001-04-17 | 2003-05-22 | Creo Srl | Procede et appareil de repartition de signaux optiques a grande vitesse |
WO2003005065A3 (fr) * | 2001-07-05 | 2003-11-20 | Inst Mikrotechnik Mainz Gmbh | Element support pour un module optique et module optique |
WO2003040764A3 (fr) * | 2001-11-09 | 2003-12-18 | Zeiss Carl | Circuit optique et objectif |
US7183633B2 (en) | 2001-03-01 | 2007-02-27 | Analog Devices Inc. | Optical cross-connect system |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501869B1 (en) * | 2000-03-20 | 2002-12-31 | George Mason University | Optical switching system |
JP4460042B2 (ja) * | 2000-07-07 | 2010-05-12 | 古河電気工業株式会社 | 光スイッチモジュール |
US6845187B1 (en) * | 2000-09-08 | 2005-01-18 | Pts Corporation | Linear optical beam translator for optical routing |
US6539138B2 (en) * | 2000-11-17 | 2003-03-25 | General Nutronics, Inc. | System and method for switching optical signals through free space |
US6873755B2 (en) | 2000-12-20 | 2005-03-29 | Pts Corporation | Wavelength router with staggered input/output fibers |
US6785038B2 (en) * | 2001-01-17 | 2004-08-31 | Optical Coating Laboratory, Inc. | Optical cross-connect with magnetic micro-electro-mechanical actuator cells |
US6587610B2 (en) * | 2001-01-26 | 2003-07-01 | Jds Uniphase Inc. | Segmented optical switch |
US20020131683A1 (en) * | 2001-03-15 | 2002-09-19 | Doerr Christopher Richard | Planar lightwave wavelength blocker devices using micromachines |
EP1378084A1 (fr) * | 2001-04-11 | 2004-01-07 | Lumentis AB | Noeud ajout/retrait de multiplexage par repartition en longueur d'onde (mrl) a faible perte |
US6771846B2 (en) * | 2001-04-17 | 2004-08-03 | Lucent Technologies Inc. | Optical interconnect for mezzanine circuit boards |
JP2002323663A (ja) * | 2001-04-25 | 2002-11-08 | Nec Corp | クロスコネクト光スイッチ |
US6718084B1 (en) * | 2001-05-10 | 2004-04-06 | Axsun Technologies, Inc. | Integrated optical line card protection module |
US7785098B1 (en) | 2001-06-05 | 2010-08-31 | Mikro Systems, Inc. | Systems for large area micro mechanical systems |
US7141812B2 (en) * | 2002-06-05 | 2006-11-28 | Mikro Systems, Inc. | Devices, methods, and systems involving castings |
CA2702143C (fr) | 2001-06-05 | 2014-02-18 | Mikro Systems, Inc. | Procedes de fabrication de dispositifs tridimensionnels, et dispositifs crees par ces procedes |
JP2003107372A (ja) * | 2001-09-28 | 2003-04-09 | Nec Corp | 光スイッチャ |
EP1486814A4 (fr) * | 2001-12-26 | 2005-11-16 | Nikon Corp | Appareil de commutation/reglage d'un faisceau lumineux, et procede de fabrication de celui-ci |
FR2834828B1 (fr) * | 2002-01-17 | 2005-04-29 | Alstom | Convertisseur matriciel pour la transformation d'energie electrique |
US6775436B1 (en) * | 2002-02-26 | 2004-08-10 | General Dynamics Advanced Technology Systems, Inc. | Optical fiber U-turn apparatus and method |
JP2003262804A (ja) * | 2002-03-11 | 2003-09-19 | Teijin Seiki Co Ltd | 光路切換装置 |
US6791162B2 (en) * | 2002-03-16 | 2004-09-14 | Memx, Inc. | Unit cell architecture for electrical interconnects |
US6706619B2 (en) | 2002-03-16 | 2004-03-16 | Memx, Inc. | Method for tiling unit cells |
JP2004077854A (ja) * | 2002-08-20 | 2004-03-11 | Fujitsu Ltd | 光スイッチ及びその使用方法 |
US7653272B2 (en) * | 2002-09-19 | 2010-01-26 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Highly parallel optical communication system with intracard and intercard communications |
KR100499273B1 (ko) * | 2002-10-21 | 2005-07-01 | 한국전자통신연구원 | 광 스위치 소자의 패키징을 위한 실리콘 광학 벤치 및이를 이용한 광 스위치 패키지와 그 제조 방법 |
JP3897688B2 (ja) * | 2002-12-11 | 2007-03-28 | キヤノン株式会社 | 光電融合配線基板 |
CN1762177A (zh) * | 2003-07-28 | 2006-04-19 | 奥林巴斯株式会社 | 光开关和控制光开关的方法 |
FR2864258B1 (fr) * | 2003-12-23 | 2006-02-17 | Commissariat Energie Atomique | Commutateur optique simplifie |
US20060045425A1 (en) * | 2004-09-02 | 2006-03-02 | Tomohiko Kanie | Wavelength-selectable device and optical communication system including the same |
US20060203195A1 (en) * | 2005-03-10 | 2006-09-14 | Squire Bret C | Integrated ocular examination device |
US7295727B1 (en) * | 2005-05-02 | 2007-11-13 | Lockheed Martin Corporation | Mounted MEMs optical diagnostic switch |
US7470622B2 (en) * | 2005-06-17 | 2008-12-30 | Hymite A/S | Fabrication and use of polished silicon micro-mirrors |
US7626754B2 (en) * | 2007-08-13 | 2009-12-01 | Jds Uniphase Corporation | Light steering using an array of tunable phase delay elements |
EP2559534B1 (fr) | 2008-09-26 | 2023-10-25 | Raytheon Technologies Corporation | Composition et procédés de fabrication par coulage |
US9456508B2 (en) * | 2010-05-28 | 2016-09-27 | Apple Inc. | Methods for assembling electronic devices by internally curing light-sensitive adhesive |
US9008510B1 (en) * | 2011-05-12 | 2015-04-14 | Google Inc. | Implementation of a large-scale multi-stage non-blocking optical circuit switch |
US9794016B2 (en) * | 2011-10-05 | 2017-10-17 | University Of Central Florida Research Foundation, Inc. | Systems and methods for processing space-multiplexed optical signals |
US8813824B2 (en) | 2011-12-06 | 2014-08-26 | Mikro Systems, Inc. | Systems, devices, and/or methods for producing holes |
US10291332B2 (en) * | 2017-04-11 | 2019-05-14 | Innovatice Micro Technology | Self-aligned silicon fiber optic connector |
US11199665B2 (en) * | 2020-01-28 | 2021-12-14 | Hewlett Packard Enterprise Development Lp | Optical device for redirecting optical signals |
CN113495325A (zh) * | 2020-03-18 | 2021-10-12 | 福州高意通讯有限公司 | 一种阵列光纤准直器 |
US11662527B2 (en) | 2020-03-19 | 2023-05-30 | Google Llc | Secondary grid plates for optical switching applications |
EP4302432A1 (fr) * | 2021-03-02 | 2024-01-10 | Sew-Eurodrive GmbH & Co. KG | Module de communication pour un système de transfert de données au moyen de faisceaux lumineux et système de transfert de données au moyen de faisceaux lumineux |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580873A (en) * | 1983-12-30 | 1986-04-08 | At&T Bell Laboratories | Optical matrix switch |
US4989941A (en) * | 1988-03-18 | 1991-02-05 | The United States Of America As Represented By The Secretary Of The Air Force | Normal incidence optical switches using ferroelectric liquid crystals |
US5037173A (en) * | 1989-11-22 | 1991-08-06 | Texas Instruments Incorporated | Optical interconnection network |
US5255332A (en) * | 1992-07-16 | 1993-10-19 | Sdl, Inc. | NxN Optical crossbar switch matrix |
US5428218A (en) * | 1993-09-30 | 1995-06-27 | The United States Of America As Represented By The Secretary Of The Air Force | Variable time-delay system for broadband phased array and other transversal filtering applications |
WO1998009289A1 (fr) * | 1996-08-27 | 1998-03-05 | Quinta Corporation | Tete optique utilisant des elements micro-usines |
Family Cites Families (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3430057A (en) | 1965-06-22 | 1969-02-25 | Schneider Co Optische Werke | Episcopic scanning head having smaller optical fibers interleaved in interstices formed by contiguous larger fibers |
US3622792A (en) | 1969-12-29 | 1971-11-23 | Bell Telephone Labor Inc | Optical switching system |
US3990780A (en) | 1975-08-22 | 1976-11-09 | Gte Laboratories Incorporated | Optical switch |
US4208094A (en) | 1978-10-02 | 1980-06-17 | Bell Telephone Laboratories, Incorporated | Optical switch |
US4303302A (en) | 1979-10-30 | 1981-12-01 | Gte Laboratories Incorporated | Piezoelectric optical switch |
US4317611A (en) | 1980-05-19 | 1982-03-02 | International Business Machines Corporation | Optical ray deflection apparatus |
US4740050A (en) | 1982-07-06 | 1988-04-26 | Honeywell Inc. | Optical fail safe device |
EP0109971A1 (fr) | 1982-11-29 | 1984-06-13 | Kunz KG | Méthode pour fabriquer une carte d'autorisation avec une couche magnétisable |
US4630883A (en) | 1983-03-21 | 1986-12-23 | The United States Of America As Represented By The Secretary Of The Navy | Optical waveguide apparatus and method for manufacturing |
US4626066A (en) | 1983-12-30 | 1986-12-02 | At&T Bell Laboratories | Optical coupling device utilizing a mirror and cantilevered arm |
DE3644309A1 (de) | 1985-12-24 | 1987-06-25 | Herzl Laor | Integrierter optischer schalter |
US4762382A (en) | 1987-06-29 | 1988-08-09 | Honeywell Inc. | Optical interconnect circuit for GaAs optoelectronics and Si VLSI/VHSIC |
US4850697A (en) | 1988-03-16 | 1989-07-25 | Dynatech Electro-Optics Corporation | Resonant piezoelectric chopper for infrared radiation |
JPH01238605A (ja) | 1988-03-18 | 1989-09-22 | Matsushita Electric Ind Co Ltd | 光スイッチ |
US5052777A (en) | 1988-04-27 | 1991-10-01 | Sportsoft Systems, Inc. | Graphics display using bimorphs |
US5097229A (en) | 1989-01-12 | 1992-03-17 | Uniphase Corporation | Modulator - demodulator transformer coupled d.c. to one mhz information channel |
US4932745A (en) | 1989-07-25 | 1990-06-12 | At&T Bell Laboratories | Radiation switching arrangement with moving deflecting element |
US5522796A (en) | 1990-01-26 | 1996-06-04 | C.R. Bard, Inc. | Metering gauge trumpet valve |
US5042889A (en) | 1990-04-09 | 1991-08-27 | At&T Bell Laboratories | Magnetic activation mechanism for an optical switch |
US5226099A (en) | 1991-04-26 | 1993-07-06 | Texas Instruments Incorporated | Digital micromirror shutter device |
US5199088A (en) | 1991-12-31 | 1993-03-30 | Texas Instruments Incorporated | Fiber optic switch with spatial light modulator device |
US5179499A (en) | 1992-04-14 | 1993-01-12 | Cornell Research Foundation, Inc. | Multi-dimensional precision micro-actuator |
US5208880A (en) | 1992-04-30 | 1993-05-04 | General Electric Company | Microdynamical fiber-optic switch and method of switching using same |
US5311410A (en) | 1992-10-29 | 1994-05-10 | Hughes Aircraft Company | Distributed lighting system with fiber optic controls |
US5278515A (en) | 1992-12-24 | 1994-01-11 | Uniphase Corporation | High bandwidth information channel with optocoupling isolation |
US5317659A (en) | 1993-02-09 | 1994-05-31 | Dicon Fiberoptics | Conical fiberoptic switch |
US5436986A (en) | 1993-03-09 | 1995-07-25 | Tsai; Jian-Hung | Apparatus for switching optical signals among optical fibers and method |
US5420946A (en) | 1993-03-09 | 1995-05-30 | Tsai; Jian-Hung | Multiple channel optical coupling switch |
US5351330A (en) | 1993-04-08 | 1994-09-27 | Uniphase Corporation | Laser diode-lens alignment |
US5410371A (en) | 1993-06-07 | 1995-04-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Display system employing acoustro-optic tunable filter |
CA2130738A1 (fr) | 1993-11-01 | 1995-05-02 | Keith Wayne Goossen | Methode et dispositif de fabrication de miroirs a inclinaison quelconque dans les substrats pour les systemes optiques hybrides |
US5444801A (en) | 1994-05-27 | 1995-08-22 | Laughlin; Richard H. | Apparatus for switching optical signals and method of operation |
US5572014A (en) | 1994-07-14 | 1996-11-05 | The Regents Of The University Of California | Highly efficient, ultrafast optical-to-electrical converter and method of operating the same |
US5581643A (en) | 1994-12-08 | 1996-12-03 | Northern Telecom Limited | Optical waveguide cross-point switch |
DE19500214A1 (de) | 1995-01-05 | 1996-07-11 | Lightway Technology Gmbh I Gr | Verfahren und Vorrichtung zum Umschalten von optischen Signalleitungen |
US5524153A (en) | 1995-02-10 | 1996-06-04 | Astarte Fiber Networks, Inc. | Optical fiber switching system and method using same |
GB2300964B (en) | 1995-05-13 | 1999-11-10 | I E Optomech Limited | Monolithic laser |
US5555327A (en) | 1995-06-07 | 1996-09-10 | Laughlin; Richard H. | Frustrated total internal reflection device |
US5646928A (en) | 1995-06-22 | 1997-07-08 | The Regents Of The University Of California | Free-space integrated micro-pickup head for optical data storage and a micro-optical bench |
US5621829A (en) | 1996-04-02 | 1997-04-15 | Lucent Technologies Inc. | Fiber optic switching device and method using free space scanning |
US5945898A (en) | 1996-05-31 | 1999-08-31 | The Regents Of The University Of California | Magnetic microactuator |
US5872880A (en) | 1996-08-12 | 1999-02-16 | Ronald S. Maynard | Hybrid-optical multi-axis beam steering apparatus |
US5835212A (en) | 1996-10-18 | 1998-11-10 | Uniphase Telecommunications Products, Inc. | Variable chirp optical modulator using single modulation source |
US5774604A (en) | 1996-10-23 | 1998-06-30 | Texas Instruments Incorporated | Using an asymmetric element to create a 1XN optical switch |
DE19644918C2 (de) | 1996-10-29 | 1999-10-21 | Cms Mikrosysteme Gmbh Chemnitz | Mikromechanische optische Schalteinheit |
US5841917A (en) | 1997-01-31 | 1998-11-24 | Hewlett-Packard Company | Optical cross-connect switch using a pin grid actuator |
US5867297A (en) | 1997-02-07 | 1999-02-02 | The Regents Of The University Of California | Apparatus and method for optical scanning with an oscillatory microelectromechanical system |
JPH10227986A (ja) | 1997-02-17 | 1998-08-25 | Hitachi Ltd | 光スイッチとその製造方法及び光スイッチを用いた光通信機器 |
US5878177A (en) | 1997-03-31 | 1999-03-02 | At&T Corp. | Layered switch architectures for high-capacity optical transport networks |
US5903687A (en) | 1997-05-02 | 1999-05-11 | Neos Technologies, Inc. | M input port by N output port optical switching system |
US5923798A (en) | 1997-05-15 | 1999-07-13 | Lucent Technologies, Inc. | Micro machined optical switch |
US5943454A (en) | 1997-08-15 | 1999-08-24 | Lucent Technologies, Inc. | Freespace optical bypass-exchange switch |
US5933269A (en) | 1997-08-22 | 1999-08-03 | Lucent Technologies Inc. | Common-lens reflective magneto-optical switch |
US5960132A (en) * | 1997-09-09 | 1999-09-28 | At&T Corp. | Fiber-optic free-space micromachined matrix switches |
US6075239A (en) | 1997-09-10 | 2000-06-13 | Lucent Technologies, Inc. | Article comprising a light-actuated micromechanical photonic switch |
US6002818A (en) | 1997-12-05 | 1999-12-14 | Lucent Technologies Inc | Free-space optical signal switch arrangement |
US6392221B1 (en) | 1997-12-22 | 2002-05-21 | Agere Systems Guardian Corp. | Micro-electro-mechanical optical device |
US6144781A (en) | 1997-12-31 | 2000-11-07 | At&T Corp. | Symmetrical optical matrix crossconnect apparatus and method therefor |
US6195478B1 (en) | 1998-02-04 | 2001-02-27 | Agilent Technologies, Inc. | Planar lightwave circuit-based optical switches using micromirrors in trenches |
US6125218A (en) | 1998-03-19 | 2000-09-26 | Humphrey; Ashley C. | Fiber optic pressure sensitive optical switch and apparatus incorporating same |
US6031946A (en) | 1998-04-16 | 2000-02-29 | Lucent Technologies Inc. | Moving mirror switch |
US5995688A (en) | 1998-06-01 | 1999-11-30 | Lucent Technologies, Inc. | Micro-opto-electromechanical devices and method therefor |
US6137105A (en) | 1998-06-02 | 2000-10-24 | Science Applications International Corporation | Multiple parallel source scanning device |
US6031947A (en) | 1998-06-05 | 2000-02-29 | Laor; Herzel | 1×N optical switch |
US6137103A (en) | 1998-07-31 | 2000-10-24 | Lucent Technologies | Opto-mechanical components |
US6108466A (en) | 1998-09-17 | 2000-08-22 | Lucent Technologies | Micro-machined optical switch with tapered ends |
US6157026A (en) | 1998-11-19 | 2000-12-05 | Maxtec International Corporation | Optical switch of the multiple push button type for producing a plurality of control signals |
US6173105B1 (en) | 1998-11-20 | 2001-01-09 | Lucent Technologies | Optical attenuator |
US6205267B1 (en) | 1998-11-20 | 2001-03-20 | Lucent Technologies | Optical switch |
US6154586A (en) | 1998-12-24 | 2000-11-28 | Jds Fitel Inc. | Optical switch mechanism |
CA2299832C (fr) | 1999-03-04 | 2002-11-12 | Japan Aviation Electronics Industry Limited | Commutateur optique et methode de fabrication connexe |
US6215222B1 (en) | 1999-03-30 | 2001-04-10 | Agilent Technologies, Inc. | Optical cross-connect switch using electrostatic surface actuators |
US6160928A (en) | 1999-04-16 | 2000-12-12 | Agilent Technologies, Inc. | Fault tolerant optical switch |
US6218762B1 (en) | 1999-05-03 | 2001-04-17 | Mcnc | Multi-dimensional scalable displacement enabled microelectromechanical actuator structures and arrays |
US6236491B1 (en) | 1999-05-27 | 2001-05-22 | Mcnc | Micromachined electrostatic actuator with air gap |
US6243507B1 (en) | 1999-06-07 | 2001-06-05 | At&T Corp. | Connection-verification in optical MEMS crossconnects via mirror-dither |
US6215919B1 (en) | 1999-06-15 | 2001-04-10 | Oplink Communications, Inc. | Mechanical optical switching device |
US6154585A (en) | 1999-06-17 | 2000-11-28 | Jds Fitel Inc. | 11/2×2 optical switch |
US6246504B1 (en) | 1999-06-30 | 2001-06-12 | The Regents Of The University Of Caifornia | Apparatus and method for optical raster-scanning in a micromechanical system |
US6188815B1 (en) | 1999-07-07 | 2001-02-13 | Agilent Technologies, Inc. | Optical switching device and method utilizing fluid pressure control to improve switching characteristics |
US6320995B1 (en) | 1999-08-11 | 2001-11-20 | Agilent Technologies, Inc | Loss equalization by means of port interconnectivity in a multistage optical switch |
US6229640B1 (en) | 1999-08-11 | 2001-05-08 | Adc Telecommunications, Inc. | Microelectromechanical optical switch and method of manufacture thereof |
US6169827B1 (en) | 1999-09-03 | 2001-01-02 | Honeywell International Inc. | Micro-optic switch with lithographically fabricated polymer alignment features for the positioning of switch components and optical fibers |
US6366414B1 (en) | 1999-09-03 | 2002-04-02 | Agere Systems Guardian Corp. | Micro-electro-mechanical optical device |
US6208777B1 (en) | 1999-10-12 | 2001-03-27 | Primawave Photonics, Inc. | Actuator assembly for optical switches |
KR20010051511A (ko) | 1999-11-09 | 2001-06-25 | 윌리엄 비. 켐플러 | 마이크로미러 광 스위치 |
EP1102104A2 (fr) | 1999-11-17 | 2001-05-23 | Lucent Technologies Inc. | Interrupteur optique |
-
2000
- 2000-01-13 US US09/483,276 patent/US6453083B1/en not_active Expired - Fee Related
- 2000-05-26 AU AU52995/00A patent/AU5299500A/en not_active Abandoned
- 2000-05-26 WO PCT/US2000/014682 patent/WO2000073840A1/fr active Application Filing
-
2002
- 2002-04-08 US US10/118,688 patent/US20020181852A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580873A (en) * | 1983-12-30 | 1986-04-08 | At&T Bell Laboratories | Optical matrix switch |
US4989941A (en) * | 1988-03-18 | 1991-02-05 | The United States Of America As Represented By The Secretary Of The Air Force | Normal incidence optical switches using ferroelectric liquid crystals |
US5037173A (en) * | 1989-11-22 | 1991-08-06 | Texas Instruments Incorporated | Optical interconnection network |
US5255332A (en) * | 1992-07-16 | 1993-10-19 | Sdl, Inc. | NxN Optical crossbar switch matrix |
US5428218A (en) * | 1993-09-30 | 1995-06-27 | The United States Of America As Represented By The Secretary Of The Air Force | Variable time-delay system for broadband phased array and other transversal filtering applications |
WO1998009289A1 (fr) * | 1996-08-27 | 1998-03-05 | Quinta Corporation | Tete optique utilisant des elements micro-usines |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027682A3 (fr) * | 1999-10-08 | 2001-11-29 | Optical Switch Corp | Commutateur a reflexion interne totale contrariee par utilisation d'une reflexion en double passe, et procede de fonctionnement |
US6438283B1 (en) | 1999-10-08 | 2002-08-20 | Optical Switch Corporation | Frustrated total internal reflection switch using double pass reflection and method of operation |
US7183633B2 (en) | 2001-03-01 | 2007-02-27 | Analog Devices Inc. | Optical cross-connect system |
WO2002085062A3 (fr) * | 2001-04-17 | 2003-05-22 | Creo Srl | Procede et appareil de repartition de signaux optiques a grande vitesse |
EP1273942A1 (fr) * | 2001-06-27 | 2003-01-08 | Agilent Technologies, Inc. (a Delaware corporation) | Méthode et dispositif de surveillance du signal d'un brasseur optique |
WO2003005065A3 (fr) * | 2001-07-05 | 2003-11-20 | Inst Mikrotechnik Mainz Gmbh | Element support pour un module optique et module optique |
WO2003040764A3 (fr) * | 2001-11-09 | 2003-12-18 | Zeiss Carl | Circuit optique et objectif |
Also Published As
Publication number | Publication date |
---|---|
US20020181852A1 (en) | 2002-12-05 |
US6453083B1 (en) | 2002-09-17 |
AU5299500A (en) | 2000-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6453083B1 (en) | Micromachined optomechanical switching cell with parallel plate actuator and on-chip power monitoring | |
US6445841B1 (en) | Optomechanical matrix switches including collimator arrays | |
US6449406B1 (en) | Micromachined optomechanical switching devices | |
US6445840B1 (en) | Micromachined optical switching devices | |
US6701038B2 (en) | Micro-electromechanical optical switch assembly for optical data networks | |
Chu et al. | MEMS: The path to large optical crossconnects | |
Lee et al. | Free-space fiber-optic switches based on MEMS vertical torsion mirrors | |
US6577793B2 (en) | Optical switch | |
US6820988B2 (en) | Bulk silicon mirrors with hinges underneath | |
US6801679B2 (en) | Multifunctional intelligent optical modules based on planar lightwave circuits | |
US6439728B1 (en) | Multimirror stack for vertical integration of MEMS devices in two-position retroreflectors | |
WO2003029871A1 (fr) | Appareil de commutation optique et d'orientation de faisceau | |
US20040212864A1 (en) | Apparatus comprising a rotatable optical element | |
Patterson et al. | Scanning micromirrors: An overview | |
WO2001090798A2 (fr) | Modulateur/demodulateur micro-opto-electro-mecaniques bases sur la reflexion totale interne frustree | |
US20020150319A1 (en) | Method to construct optical infrastructure on a wafer | |
Biswas et al. | MEMS‐based Optical Switches | |
Robinson | MEMS technology-micromachines enabling the" all optical network" | |
Chu et al. | MOEMS: enabling technologies for large optical cross-connects | |
Pardo et al. | Optical MEMS devices for telecom systems | |
Moore et al. | Silicon technology for optical MEMS | |
Wu et al. | Free-space optical MEMS | |
Patterson et al. | Recent advances in optical MEMS devices and systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |