[go: up one dir, main page]

WO2000077863A1 - DIODE ELECTROLUMINESCENTE A SEMI-CONDUCTEUR A BASE DE COMPOSES P Ga(In, Al) DOTEE D'UNE COUCHE FENETRE ZnO - Google Patents

DIODE ELECTROLUMINESCENTE A SEMI-CONDUCTEUR A BASE DE COMPOSES P Ga(In, Al) DOTEE D'UNE COUCHE FENETRE ZnO Download PDF

Info

Publication number
WO2000077863A1
WO2000077863A1 PCT/DE2000/001937 DE0001937W WO0077863A1 WO 2000077863 A1 WO2000077863 A1 WO 2000077863A1 DE 0001937 W DE0001937 W DE 0001937W WO 0077863 A1 WO0077863 A1 WO 0077863A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
semiconductor diode
led structure
layer
light emission
Prior art date
Application number
PCT/DE2000/001937
Other languages
German (de)
English (en)
Inventor
Peter Stauss
Berthold Hahn
Konrad Sporrer
Volker HÄRLE
Original Assignee
Osram Opto Semiconductors Gmbh & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh & Co. Ohg filed Critical Osram Opto Semiconductors Gmbh & Co. Ohg
Publication of WO2000077863A1 publication Critical patent/WO2000077863A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/018Bonding of wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/817Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors

Definitions

  • Light emission semiconductor diode based on Ga (In, A1) P compounds with ZnO window layer
  • the invention relates to a light-emitting semiconductor diode based on Ga (In, Al) P compounds according to the preamble of claim 1.
  • the present invention relates to such a light-emitting semiconductor diode that has a light emission layer made of zinc oxide (ZnO). having.
  • the decoupling of light from light-emitting semiconductor diodes depends to a particular extent on the optically transparent and electrically conductive cover layer used.
  • the important physical parameters for this are the energy gap, the optical refractive index and the electrical conductivity.
  • a 10-20 ⁇ m thick highly doped GaP layer is usually applied to the light output side of the pn junction.
  • such a layer has an electrical conductivity sufficient for electrical contacting and an optical transparency sufficient for coupling out light.
  • the GaP layer cannot easily be made thinner, since this has a disadvantageous effect on the electrical contacting properties of the layer.
  • the present invention is therefore based on the object of specifying a light-emitting semiconductor diode based on Ga (In, AI) P compounds, with which the light yield can be increased.
  • This object is achieved by a light emission semiconductor diode with the features of claim 1.
  • a preferred method for producing the light-emitting semiconductor diode is the subject of claim 9.
  • Advantageous refinements and developments are the subject of claims 2 to 8 and 10 to 13, respectively.
  • a transparent, electrically conductive contact layer made of doped zinc oxide (ZnO) is applied to at least one side of an LED structure of the diode having a pn junction .
  • a light-emitting semiconductor diode according to the invention can be composed of binary, ternary or quaternary III-V compounds which are composed of the elements indium and / or gallium and / or aluminum from III. Main group and the element phosphorus are formed from the fifth main group.
  • ZnO layers can optionally be applied on one side of the pn junction or on both sides. This at least one layer can be applied by MOVPE (metal organic vapor deposition), MBE (molecular beam epitaxy) or by a sputtering process.
  • MOVPE metal organic vapor deposition
  • MBE molecular beam epitaxy
  • the ZnO layer is advantageously produced by the same crystal growth process by which the laser diode was also produced.
  • the layer thickness, the transparency and the doping of the ZnO layer can be adapted in a wide range for optimal light decoupling and electrical contacting of the LEDs on both the n and p sides.
  • Fig.l is a schematic representation of a vertical section through a light emission semiconductor diode according to a first embodiment of the present invention
  • FIG. 2 shows a schematic illustration of a vertical section through a light emission semiconductor diode according to a second exemplary embodiment of the present invention.
  • an n- or p-doped GaAs substrate 1 is provided, onto which an InGaAlP LED structure 2 with a pn junction 2A is matched in a lattice-matched manner by a suitable crystal growth method such as MOVPE (organometallic gas phase epitaxy) or MBE (molecular beam epitaxy). It can start with an n-doped GaAs substrate 1 and end with a p-doped InGaAlP layer, and vice versa.
  • a single or multiple quantum well structure made of layers with alternating small and large bandgaps can also be provided.
  • an n- or p-doped zinc oxide (ZnO) cover layer or window layer 3 is deposited directly on the LED structure 2. Due to the band gap of 3.35 eV of ZnO at room temperature, this window layer 3 is transparent for the wavelength of the InGaAlP laser diode and for other wavelengths of laser diodes of the Ga (In, Al) P material system.
  • the window layer 3 also serves as an electrical contacting layer for the laser diode. It is particularly advantageous for production if the ZnO layer can be grown using the same crystal growth method as the laser diode, that is to say within one and the same crystal growth apparatus. However, the ZnO layer can also be grown using another growth method, such as a sputtering process.
  • the ZnO layer is applied only on one side. On the opposite side, contact is made through the doped GaAs substrate.
  • ZnO layers 31 and 32 are applied on both sides of the pn junction 2A.
  • the manufacture of such a laser diode can be produced in that a laser diode according to FIG. 1 with the grown ZnO layer 31 is glued to any carrier substrate 5, such as a glass substrate, with a preferably transparent adhesive 4.
  • the GaAs substrate is then preferably removed by etching, whereupon a second ZnO layer 32 of a corresponding doping is applied instead of the removed GaAs substrate.
  • a second ZnO layer 32 of a corresponding doping is applied instead of the removed GaAs substrate.
  • the embodiment according to FIG. 2 can be implemented by a transparent adhesive 4 and a transparent carrier substrate 5 in such a way that the light emitted by the LED is emitted on all sides.
  • a reflective layer can be arranged in the vicinity of the interface of the first ZnO layer 31 with the carrier substrate 5, through which the light emitted by the active layer of the LED in the direction of the carrier substrate 5 in the direction of the front side, ie the second ZnO layer 32 is reflected.
  • the reflective layer could, for example, be formed by the adhesive 4 or additionally applied to the ZnO layer.
  • both the adhesive 4 and the carrier substrate 5 can be made non-transparent, also optimally utilizes the light emitted from the rear for the desired front-side emission.
  • the light decoupling of the LED can be further improved by a granular polycrystalline surface structure of the at least one ZnO layer with unchanged electrical and optical properties.

Landscapes

  • Led Devices (AREA)

Abstract

L'invention concerne une diode électroluminescente à semi-conducteur à base de composés P Ga(In, Al). Une couche de contact (3) électroconductrice et transparente en oxyde de zinc dopé (ZnO) est appliquée sur au moins une face d'une structure DEL (2) de la diode, présentant une transition pn (2A). Cette couche permet une bonne transparence optique pour le rayonnement optique en raison de son important écart énergétique ainsi qu'un bon contact électrique de la structure DEL (2).
PCT/DE2000/001937 1999-06-14 2000-06-14 DIODE ELECTROLUMINESCENTE A SEMI-CONDUCTEUR A BASE DE COMPOSES P Ga(In, Al) DOTEE D'UNE COUCHE FENETRE ZnO WO2000077863A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19926958A DE19926958B4 (de) 1999-06-14 1999-06-14 Lichtemissions-Halbleiterdiode auf der Basis von Ga (In, AL) P-Verbindungen mit ZnO-Fensterschicht
DE19926958.0 1999-06-14

Publications (1)

Publication Number Publication Date
WO2000077863A1 true WO2000077863A1 (fr) 2000-12-21

Family

ID=7911106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001937 WO2000077863A1 (fr) 1999-06-14 2000-06-14 DIODE ELECTROLUMINESCENTE A SEMI-CONDUCTEUR A BASE DE COMPOSES P Ga(In, Al) DOTEE D'UNE COUCHE FENETRE ZnO

Country Status (2)

Country Link
DE (1) DE19926958B4 (fr)
WO (1) WO2000077863A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118447A1 (de) * 2000-11-07 2002-05-16 United Epitaxy Co Ltd Leuchtdiode und Verfahren zum Herstellen derselben
DE10118448A1 (de) * 2001-02-06 2002-08-22 United Epitaxy Co Leuchtdiode und Verfahren zum Herstellen derselben
GB2413008A (en) * 2004-04-08 2005-10-12 Supernova Optoelectronics Corp GaN-based light-emitting diode
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047168A1 (de) * 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078803A (en) * 1989-09-22 1992-01-07 Siemens Solar Industries L.P. Solar cells incorporating transparent electrodes comprising hazy zinc oxide
EP0475618A2 (fr) * 1990-09-13 1992-03-18 Mitsubishi Denki Kabushiki Kaisha Méthode pour la fabrication d'un laser à semi-conducteur
US5717226A (en) * 1996-09-18 1998-02-10 Industrial Technology Research Institute Light-emitting diodes and method of manufacturing the same
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545306B2 (ja) * 1991-03-11 1996-10-16 誠 小長井 ZnO透明導電膜の製造方法
US5300791A (en) * 1992-09-29 1994-04-05 Industrial Technology Research Institute Light emitting diode
JPH0738150A (ja) * 1993-07-22 1995-02-07 Toshiba Corp 半導体発光装置
US6057562A (en) * 1997-04-18 2000-05-02 Epistar Corp. High efficiency light emitting diode with distributed Bragg reflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078803A (en) * 1989-09-22 1992-01-07 Siemens Solar Industries L.P. Solar cells incorporating transparent electrodes comprising hazy zinc oxide
EP0475618A2 (fr) * 1990-09-13 1992-03-18 Mitsubishi Denki Kabushiki Kaisha Méthode pour la fabrication d'un laser à semi-conducteur
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device
US5717226A (en) * 1996-09-18 1998-02-10 Industrial Technology Research Institute Light-emitting diodes and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118447A1 (de) * 2000-11-07 2002-05-16 United Epitaxy Co Ltd Leuchtdiode und Verfahren zum Herstellen derselben
DE10118447C2 (de) * 2000-11-07 2003-03-13 United Epitaxy Co Leuchtdiode mit transparentem Substrat und Verfahren zum Herstellen einer solchen
DE10118448A1 (de) * 2001-02-06 2002-08-22 United Epitaxy Co Leuchtdiode und Verfahren zum Herstellen derselben
GB2413008A (en) * 2004-04-08 2005-10-12 Supernova Optoelectronics Corp GaN-based light-emitting diode
GB2413008B (en) * 2004-04-08 2006-06-28 Supernova Optoelectronics Corp GaN-based light-emitting diode structure
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter

Also Published As

Publication number Publication date
DE19926958A1 (de) 2001-01-11
DE19926958B4 (de) 2008-07-31

Similar Documents

Publication Publication Date Title
DE69416012T2 (de) Verfahren zum Herstellen einer lichtemittierenden Diode mit transparentem Substrat
EP2289113B1 (fr) Composant optoélectronique et son procédé de production
DE69510129T2 (de) Oberflächenemittierende lumineszente Halbleitervorrichtung
EP2559076B1 (fr) Puce de diode électroluminescente pourvue d'une couche de propagation du courant
DE102007029370A1 (de) Halbleiterchip und Verfahren zur Herstellung eines Halbleiterchips
EP1060541B1 (fr) Composant pourvu d'une diode laser et d'un recepteur de lumiere
WO2001082384A1 (fr) Composant semi-conducteur emetteur de rayonnement et son procede de fabrication
DE10008583A1 (de) Verfahren zum Herstellen eines optisch transparenten Substrates und Verfahren zum Herstellen eines lichtemittierenden Halbleiterchips
DE112017003307T5 (de) Verfahren zur Herstellung einer optischen Halbleitervorrichtung und optische Halbleitervorrichtung
EP2057696B1 (fr) Puce de semiconducteur optoélectronique et procédé de sa fabrication
WO2006131087A1 (fr) Corps semi-conducteur a couche mince
EP2191520B1 (fr) Diode électroluminescente à couches minces dotée d'une couche miroir et son procédé de fabrication
EP1630915A2 (fr) Dispositif électrooptique à émission de lumière à structure à puits quantiques et méthode de fabrication
DE102010032497A1 (de) Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips
EP1929551B1 (fr) Puce a semi-conducteur optoelectronique
WO2000077863A1 (fr) DIODE ELECTROLUMINESCENTE A SEMI-CONDUCTEUR A BASE DE COMPOSES P Ga(In, Al) DOTEE D'UNE COUCHE FENETRE ZnO
DE10203809A1 (de) Strahlungsemittierendes Halbleiterbauelement
WO2010048918A1 (fr) Puce de semiconducteur optoélectronique et procédé de fabrication d'une puce de semiconducteur optoélectronique
DE102011014845B4 (de) Licht emittierendes Halbleiterbauteil und Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauteils
WO2023078912A1 (fr) Laser à semi-conducteur à émission de surface et procédé de production d'un laser à semi-conducteur à émission de surface
WO2021244851A1 (fr) Composant émetteur de rayonnement et procédé de fabrication d'un composant émetteur de rayonnement
WO2019224154A1 (fr) Puce de semi-conducteur optoélectronique et procédé de fabrication d'une puce de semi-conducteur optoélectronique
WO2023104457A1 (fr) Composant de diode laser et procédé de fabrication d'au moins un composant de diode laser
EP1929550A1 (fr) Puce a semi-conducteur opto-electronique
WO2020109530A1 (fr) Composant semi-conducteur optoélectronique comprenant une couche de répartition de courant et procédé de fabrication de ce composant semi-conducteur optoélectronique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP