[go: up one dir, main page]

WO2001067660A1 - Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques - Google Patents

Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques Download PDF

Info

Publication number
WO2001067660A1
WO2001067660A1 PCT/US2000/035344 US0035344W WO0167660A1 WO 2001067660 A1 WO2001067660 A1 WO 2001067660A1 US 0035344 W US0035344 W US 0035344W WO 0167660 A1 WO0167660 A1 WO 0167660A1
Authority
WO
WIPO (PCT)
Prior art keywords
orthogonal code
generating
communication channel
orthogonal
data stream
Prior art date
Application number
PCT/US2000/035344
Other languages
English (en)
Inventor
Saleh Faruque
Fred Homayoun
Original Assignee
Nortel Networks Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Networks Limited filed Critical Nortel Networks Limited
Priority to AU2001225998A priority Critical patent/AU2001225998A1/en
Publication of WO2001067660A1 publication Critical patent/WO2001067660A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • H04L23/02Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal

Definitions

  • the present invention relates generally to telecommunication networks, and more particularly, to a system and method for providing a high-speed data transmission over an optical network
  • Optical networks are high-capacity telecommunications networks based on optical technologies and components that provide routing, grooming, and restoration at the wavelength level They provide higher capacity and reduced costs for new applications such as the Internet, video and multimedia interaction, and advanced digital services
  • Wavelength division multiplexing (WDM) technology is widely used in optical networks to provide additional capacity on existing fibers
  • WDM technology uses the WDM technology to combines many signals, or'Virtual" fibers, onto a single physical fiber by transmitting each signal at a different frequency
  • WDM technology combines many signals, or'Virtual" fibers, onto a single physical fiber by transmitting each signal at a different frequency
  • DWDM dense wavelength division multiplexing
  • networks can now provide a variety of channels with different bit rates, e g , OC-48 or OC-192, over a single fiber
  • the system employs a first incoming user data stream to select an n-bit orthogonal code from a predetermined code book, and similarly encodes a second incoming user data stream in a neighboring channel with a different orthogonal code book.
  • the selected orthogonal codes are then used to modulate incoming light channels for each of the incoming user data stream, the ON/OFF pattern of the light channels being an exact representation of the selected orthogonal codes.
  • both the orthogonally encoded first and second incoming user data streams are interference proof to each other because they are orthogonal to each other.
  • the neighboring channel interference can be eliminated for narrowly spaced communication channels such as the OC-192 channels with a 50 GHz spacing.
  • dispersions of the neighboring light channels are also tolerated.
  • Fig. 1 is a schematic for one embodiment of a schematic for a Wave Division Multiplexing (WDM) communication system in accordance with the present invention.
  • WDM Wave Division Multiplexing
  • Fig. 2 is a schematic of one of the orthogonal code processors of the communication system of Fig. 1.
  • Fig. 3 is a detailed schematic diagram for one example of the orthogonal code processor described in Fig. 2 using a Read Only Memory. Description of the Preferred Embodiment
  • the reference numeral 10 designates a simplified WDM communication system for implementing one embodiment of the present invention.
  • the system 10 employs narrowly spaced communication channels such as OC-192 channels.
  • Two communication channels, ⁇ x and ⁇ 2 represents two neighboring light channels.
  • a first user data stream x is to be carried on the light channel ⁇ and a second user data stream r 2 on the light channel ⁇ 2 .
  • the user data streams ⁇ l and r 2 are first processed by orthogonal code processors 12 and 14, respectively.
  • the light channels ⁇ 1 and ⁇ 2 are further modulated by modulators 16 and 18, respectively, using orthogonal codes generated from the orthogonal code processors 12 and 14, respectively.
  • each light channel is in fact a beam of light at a certain frequency
  • the channel is modulated by controlling the ON/OFF pattern of the light according to an orthogonal code CI or C2 generated by the orthogonal code processor 12 or 14. Consequently, the light channel can be modulated to be an exact representation of the generated orthogonal code by appropriately controlling its ON/OFF pattern. Since a predetermined code plan can assure that the orthogonal code selected by the orthogonal code processor 12 is different from that of the orthogonal code processor 14, two distinctive output data streams r x and r 2 , i.e., two modulated light channels, can thus successfully transmit data without neighboring channel interferences.
  • the orthogonal code processor 12 is similar in configuration to the processor 14 and will be discussed in greater detail below, with differences between the two processors discussed where necessary.
  • the incoming user data stream r is provided to the orthogonal code processor 12, it is first split into a plurality of sub streams of data 20 by a splitter 18.
  • the sub streams of data 20 are then provided to an orthogonal code book 22.
  • the orthogonal code book 22 selects, or "maps," a unique orthogonal code of n-bits in length as an output CI.
  • the orthogonal code processor 14 provides an output C2.
  • the splitter 18 can split the incoming user data stream r j into different numbers of sub streams depending on a predetermined code selection plan such as the selection of a Read Only Memory 24 of a specific size, the length of the orthogonal code, etc.
  • a predetermined code selection plan such as the selection of a Read Only Memory 24 of a specific size, the length of the orthogonal code, etc.
  • the orthogonal code processors 12 and 14 can be structurally identical except that each contains a different orthogonal code book according to the predetermined code plan so that the codes generated by one of the processors (CI or C2) will not interfere with those from the other.
  • the orthogonal codes generated by the orthogonal code processors 12 and 14 can always be maintained "orthogonal" to each other Hence, using these two non-interfering codes to modulate the neighboring light channels ⁇ l and ⁇ 2, information transferred through these channels does not encroach on one another, even if the two channels become partially overlapped because of insufficient spacing. It is further understood that a receiving instrument can easily decode the orthogonal code carried in the light channel if the code plan is known to the receiving instrument.
  • Fig. 3 it is a schematic diagram for one example of the orthogonal code processor described in Fig. 2.
  • An incoming data stream is split into 4 parallel sub streams 30a, 30b, 30c, and 30d by the splitter 18.
  • the splitter 18 divides the incoming data stream "R" into these sub streams, every four (4) sub streams are grouped and fed into a Read Only Memory (ROM) 32. Since the input to the ROM 32 is four (4) bits long as decided by the predetermined code plan, the ROM 32 has to be an n xl6 matrix whereas every four input bits select a unique output code "C" of a predetermined length of n bits. In this example, the length of each code or each row in the ROM is set at 64 bits.
  • the ROM 30 is a 64x16 ROM. It is understood that the predetermined code plan can decide the length of the orthogonal code, the number of sub streams split from the incoming data stream, etc., with the consideration of various performance characteristics such as data transmission speed, error correction capability, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention concerne un système et un procédé permettant d'obtenir une communication de données à vitesse et capacité élevée sur des réseaux de multiplexage en réparation d'onde (WDM). Le système met en oeuvre un premier flux entrant de données utilisateur destiné à sélectionner des codes orthogonaux n-binaires dans un premier dictionnaire du chiffre selon un plan de code prédéterminé. Les codes orthogonaux sont ensuite utilisés afin de moduler un premier canal lumineux, un motif enclenché/déclenché de ce premier canal lumineux étant la représentation exacte des codes orthogonaux sélectionnés. Dans le même ordre d'idée, pour un second canal lumineux qui est adjacent au premier canal lumineux, un second flux entrant de données utilisateur est codé au moyen de codes orthogonaux issus d'un autre dictionnaire du chiffre orthogonal. Par conséquent, pendant la transmission de données, les premier et second flux de données ne doivent pas faire face au problème d'interférence des canaux voisins car les codes transmis sont orthogonaux.
PCT/US2000/035344 2000-03-09 2000-12-21 Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques WO2001067660A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001225998A AU2001225998A1 (en) 2000-03-09 2000-12-21 Orthogonal wavelength division multiplexing for optical networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52216100A 2000-03-09 2000-03-09
US09/522,161 2000-03-09

Publications (1)

Publication Number Publication Date
WO2001067660A1 true WO2001067660A1 (fr) 2001-09-13

Family

ID=24079703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/035344 WO2001067660A1 (fr) 2000-03-09 2000-12-21 Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques

Country Status (2)

Country Link
AU (1) AU2001225998A1 (fr)
WO (1) WO2001067660A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367452A2 (fr) * 1988-10-31 1990-05-09 AT&T Corp. Architecture de commutateur photonique utilisant un multiplexage de code et de longueur d'onde
WO1999007087A2 (fr) * 1997-07-31 1999-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Communication par fibres optiques a l'aide de procedes d'etalement du spectre
WO2000077962A1 (fr) * 1999-06-11 2000-12-21 Templex Technology, Inc. Systeme et appareil de communication avec code orthogonal synchrone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367452A2 (fr) * 1988-10-31 1990-05-09 AT&T Corp. Architecture de commutateur photonique utilisant un multiplexage de code et de longueur d'onde
WO1999007087A2 (fr) * 1997-07-31 1999-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Communication par fibres optiques a l'aide de procedes d'etalement du spectre
WO2000077962A1 (fr) * 1999-06-11 2000-12-21 Templex Technology, Inc. Systeme et appareil de communication avec code orthogonal synchrone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TANCEVSKI L ET AL: "HYBRID WAVELENGTH HOPPING/TIME SPREADING CODE DIVISION MULTIPLE ACCESS SYSTEMS", IEE PROCEEDINGS: OPTOELECTRONICS,INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE,GB, VOL. 143, NR. 3, PAGE(S) 161-166, ISSN: 1350-2433, XP000620794 *
YAQUB R P ET AL: "DIRECT SEQUENCE CODE DIVISION MULTIPLE ACCESS WITH OPTICAL MULTICARRIERS AND PARALLEL FEC CODES", IEICE TRANSACTIONS ON COMMUNICATIONS,JP,INSTITUTE OF ELECTRONICS INFORMATION AND COMM. ENG. TOKYO, vol. E81-B, no. 4, 1 April 1998 (1998-04-01), pages 785 - 797, XP000780474, ISSN: 0916-8516 *

Also Published As

Publication number Publication date
AU2001225998A1 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US5557439A (en) Expandable wavelength division multiplexed optical communications systems
US5938309A (en) Bit-rate transparent WDM optical communication system with remodulators
US7542679B2 (en) Optical transmission systems, devices, and method
EP0896448B1 (fr) Système de noeud optique pour architecture en anneau et procédé correspondant
US5715076A (en) Remodulating channel selectors for WDM optical communication systems
CA2270053A1 (fr) Multiplexeur et demultiplexeur optique mrl dense
CN1399438A (zh) 光通信系统中的波长选择分插装置
JP2006074806A (ja) 光クロスコネクトシステム
US7130540B2 (en) Optical transmission systems, devices, and methods
US6243175B1 (en) WDM optical communication system having reduced loss and cross-talk
EP1078487A1 (fr) Multiplexeur optique dense par division de longueur d'onde (wdm) et demultiplexeur
JPH11313351A (ja) 光ネットワ―クにおいて光信号を多重化する装置および記憶媒体。
US7266302B2 (en) Asymetric optical network traffic flow control
US6744984B1 (en) Method and system for alternative transmission traffic routing in dense wavelength division multiplexing optical networks
EP1040607B1 (fr) Procede et systeme pour le codage de signaux multiplexes par repartition en longueur d'onde
US6748171B1 (en) Method and system for providing multiple classes of services in dense wavelength division multiplexing optical networks
US7412116B2 (en) Optical device for simultaneously generating and processing optical codes
WO2001067660A1 (fr) Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques
US6456754B1 (en) WDM transmitter and receiver
EP0837607B1 (fr) Système serveur pour le transfert de signal et procédé de transfert de signal associé
CA2294954C (fr) Procede pour la transmission optique d'informations de signalisation et de commande dans des reseaux optiques a multiplexage en longueur d'onde
EP1425866B1 (fr) Génération d'un signal optique par modulation de sous-porteuse à partir de la conversion électro-optique d'un signal codé en code Manchester
US7146101B2 (en) Optical media management channel
US20030180050A1 (en) OCDM system
HK1097365B (en) Optical device for simultaneously generating and processing optical codes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP