WO2001067660A1 - Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques - Google Patents
Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques Download PDFInfo
- Publication number
- WO2001067660A1 WO2001067660A1 PCT/US2000/035344 US0035344W WO0167660A1 WO 2001067660 A1 WO2001067660 A1 WO 2001067660A1 US 0035344 W US0035344 W US 0035344W WO 0167660 A1 WO0167660 A1 WO 0167660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- orthogonal code
- generating
- communication channel
- orthogonal
- data stream
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 12
- 238000004891 communication Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims abstract description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003370 grooming effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L23/00—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
- H04L23/02—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/005—Optical Code Multiplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/004—Orthogonal
Definitions
- the present invention relates generally to telecommunication networks, and more particularly, to a system and method for providing a high-speed data transmission over an optical network
- Optical networks are high-capacity telecommunications networks based on optical technologies and components that provide routing, grooming, and restoration at the wavelength level They provide higher capacity and reduced costs for new applications such as the Internet, video and multimedia interaction, and advanced digital services
- Wavelength division multiplexing (WDM) technology is widely used in optical networks to provide additional capacity on existing fibers
- WDM technology uses the WDM technology to combines many signals, or'Virtual" fibers, onto a single physical fiber by transmitting each signal at a different frequency
- WDM technology combines many signals, or'Virtual" fibers, onto a single physical fiber by transmitting each signal at a different frequency
- DWDM dense wavelength division multiplexing
- networks can now provide a variety of channels with different bit rates, e g , OC-48 or OC-192, over a single fiber
- the system employs a first incoming user data stream to select an n-bit orthogonal code from a predetermined code book, and similarly encodes a second incoming user data stream in a neighboring channel with a different orthogonal code book.
- the selected orthogonal codes are then used to modulate incoming light channels for each of the incoming user data stream, the ON/OFF pattern of the light channels being an exact representation of the selected orthogonal codes.
- both the orthogonally encoded first and second incoming user data streams are interference proof to each other because they are orthogonal to each other.
- the neighboring channel interference can be eliminated for narrowly spaced communication channels such as the OC-192 channels with a 50 GHz spacing.
- dispersions of the neighboring light channels are also tolerated.
- Fig. 1 is a schematic for one embodiment of a schematic for a Wave Division Multiplexing (WDM) communication system in accordance with the present invention.
- WDM Wave Division Multiplexing
- Fig. 2 is a schematic of one of the orthogonal code processors of the communication system of Fig. 1.
- Fig. 3 is a detailed schematic diagram for one example of the orthogonal code processor described in Fig. 2 using a Read Only Memory. Description of the Preferred Embodiment
- the reference numeral 10 designates a simplified WDM communication system for implementing one embodiment of the present invention.
- the system 10 employs narrowly spaced communication channels such as OC-192 channels.
- Two communication channels, ⁇ x and ⁇ 2 represents two neighboring light channels.
- a first user data stream x is to be carried on the light channel ⁇ and a second user data stream r 2 on the light channel ⁇ 2 .
- the user data streams ⁇ l and r 2 are first processed by orthogonal code processors 12 and 14, respectively.
- the light channels ⁇ 1 and ⁇ 2 are further modulated by modulators 16 and 18, respectively, using orthogonal codes generated from the orthogonal code processors 12 and 14, respectively.
- each light channel is in fact a beam of light at a certain frequency
- the channel is modulated by controlling the ON/OFF pattern of the light according to an orthogonal code CI or C2 generated by the orthogonal code processor 12 or 14. Consequently, the light channel can be modulated to be an exact representation of the generated orthogonal code by appropriately controlling its ON/OFF pattern. Since a predetermined code plan can assure that the orthogonal code selected by the orthogonal code processor 12 is different from that of the orthogonal code processor 14, two distinctive output data streams r x and r 2 , i.e., two modulated light channels, can thus successfully transmit data without neighboring channel interferences.
- the orthogonal code processor 12 is similar in configuration to the processor 14 and will be discussed in greater detail below, with differences between the two processors discussed where necessary.
- the incoming user data stream r is provided to the orthogonal code processor 12, it is first split into a plurality of sub streams of data 20 by a splitter 18.
- the sub streams of data 20 are then provided to an orthogonal code book 22.
- the orthogonal code book 22 selects, or "maps," a unique orthogonal code of n-bits in length as an output CI.
- the orthogonal code processor 14 provides an output C2.
- the splitter 18 can split the incoming user data stream r j into different numbers of sub streams depending on a predetermined code selection plan such as the selection of a Read Only Memory 24 of a specific size, the length of the orthogonal code, etc.
- a predetermined code selection plan such as the selection of a Read Only Memory 24 of a specific size, the length of the orthogonal code, etc.
- the orthogonal code processors 12 and 14 can be structurally identical except that each contains a different orthogonal code book according to the predetermined code plan so that the codes generated by one of the processors (CI or C2) will not interfere with those from the other.
- the orthogonal codes generated by the orthogonal code processors 12 and 14 can always be maintained "orthogonal" to each other Hence, using these two non-interfering codes to modulate the neighboring light channels ⁇ l and ⁇ 2, information transferred through these channels does not encroach on one another, even if the two channels become partially overlapped because of insufficient spacing. It is further understood that a receiving instrument can easily decode the orthogonal code carried in the light channel if the code plan is known to the receiving instrument.
- Fig. 3 it is a schematic diagram for one example of the orthogonal code processor described in Fig. 2.
- An incoming data stream is split into 4 parallel sub streams 30a, 30b, 30c, and 30d by the splitter 18.
- the splitter 18 divides the incoming data stream "R" into these sub streams, every four (4) sub streams are grouped and fed into a Read Only Memory (ROM) 32. Since the input to the ROM 32 is four (4) bits long as decided by the predetermined code plan, the ROM 32 has to be an n xl6 matrix whereas every four input bits select a unique output code "C" of a predetermined length of n bits. In this example, the length of each code or each row in the ROM is set at 64 bits.
- the ROM 30 is a 64x16 ROM. It is understood that the predetermined code plan can decide the length of the orthogonal code, the number of sub streams split from the incoming data stream, etc., with the consideration of various performance characteristics such as data transmission speed, error correction capability, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
L'invention concerne un système et un procédé permettant d'obtenir une communication de données à vitesse et capacité élevée sur des réseaux de multiplexage en réparation d'onde (WDM). Le système met en oeuvre un premier flux entrant de données utilisateur destiné à sélectionner des codes orthogonaux n-binaires dans un premier dictionnaire du chiffre selon un plan de code prédéterminé. Les codes orthogonaux sont ensuite utilisés afin de moduler un premier canal lumineux, un motif enclenché/déclenché de ce premier canal lumineux étant la représentation exacte des codes orthogonaux sélectionnés. Dans le même ordre d'idée, pour un second canal lumineux qui est adjacent au premier canal lumineux, un second flux entrant de données utilisateur est codé au moyen de codes orthogonaux issus d'un autre dictionnaire du chiffre orthogonal. Par conséquent, pendant la transmission de données, les premier et second flux de données ne doivent pas faire face au problème d'interférence des canaux voisins car les codes transmis sont orthogonaux.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001225998A AU2001225998A1 (en) | 2000-03-09 | 2000-12-21 | Orthogonal wavelength division multiplexing for optical networks |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52216100A | 2000-03-09 | 2000-03-09 | |
US09/522,161 | 2000-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001067660A1 true WO2001067660A1 (fr) | 2001-09-13 |
Family
ID=24079703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/035344 WO2001067660A1 (fr) | 2000-03-09 | 2000-12-21 | Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2001225998A1 (fr) |
WO (1) | WO2001067660A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0367452A2 (fr) * | 1988-10-31 | 1990-05-09 | AT&T Corp. | Architecture de commutateur photonique utilisant un multiplexage de code et de longueur d'onde |
WO1999007087A2 (fr) * | 1997-07-31 | 1999-02-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Communication par fibres optiques a l'aide de procedes d'etalement du spectre |
WO2000077962A1 (fr) * | 1999-06-11 | 2000-12-21 | Templex Technology, Inc. | Systeme et appareil de communication avec code orthogonal synchrone |
-
2000
- 2000-12-21 AU AU2001225998A patent/AU2001225998A1/en not_active Abandoned
- 2000-12-21 WO PCT/US2000/035344 patent/WO2001067660A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0367452A2 (fr) * | 1988-10-31 | 1990-05-09 | AT&T Corp. | Architecture de commutateur photonique utilisant un multiplexage de code et de longueur d'onde |
WO1999007087A2 (fr) * | 1997-07-31 | 1999-02-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Communication par fibres optiques a l'aide de procedes d'etalement du spectre |
WO2000077962A1 (fr) * | 1999-06-11 | 2000-12-21 | Templex Technology, Inc. | Systeme et appareil de communication avec code orthogonal synchrone |
Non-Patent Citations (2)
Title |
---|
TANCEVSKI L ET AL: "HYBRID WAVELENGTH HOPPING/TIME SPREADING CODE DIVISION MULTIPLE ACCESS SYSTEMS", IEE PROCEEDINGS: OPTOELECTRONICS,INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE,GB, VOL. 143, NR. 3, PAGE(S) 161-166, ISSN: 1350-2433, XP000620794 * |
YAQUB R P ET AL: "DIRECT SEQUENCE CODE DIVISION MULTIPLE ACCESS WITH OPTICAL MULTICARRIERS AND PARALLEL FEC CODES", IEICE TRANSACTIONS ON COMMUNICATIONS,JP,INSTITUTE OF ELECTRONICS INFORMATION AND COMM. ENG. TOKYO, vol. E81-B, no. 4, 1 April 1998 (1998-04-01), pages 785 - 797, XP000780474, ISSN: 0916-8516 * |
Also Published As
Publication number | Publication date |
---|---|
AU2001225998A1 (en) | 2001-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5557439A (en) | Expandable wavelength division multiplexed optical communications systems | |
US5938309A (en) | Bit-rate transparent WDM optical communication system with remodulators | |
US7542679B2 (en) | Optical transmission systems, devices, and method | |
EP0896448B1 (fr) | Système de noeud optique pour architecture en anneau et procédé correspondant | |
US5715076A (en) | Remodulating channel selectors for WDM optical communication systems | |
CA2270053A1 (fr) | Multiplexeur et demultiplexeur optique mrl dense | |
CN1399438A (zh) | 光通信系统中的波长选择分插装置 | |
JP2006074806A (ja) | 光クロスコネクトシステム | |
US7130540B2 (en) | Optical transmission systems, devices, and methods | |
US6243175B1 (en) | WDM optical communication system having reduced loss and cross-talk | |
EP1078487A1 (fr) | Multiplexeur optique dense par division de longueur d'onde (wdm) et demultiplexeur | |
JPH11313351A (ja) | 光ネットワ―クにおいて光信号を多重化する装置および記憶媒体。 | |
US7266302B2 (en) | Asymetric optical network traffic flow control | |
US6744984B1 (en) | Method and system for alternative transmission traffic routing in dense wavelength division multiplexing optical networks | |
EP1040607B1 (fr) | Procede et systeme pour le codage de signaux multiplexes par repartition en longueur d'onde | |
US6748171B1 (en) | Method and system for providing multiple classes of services in dense wavelength division multiplexing optical networks | |
US7412116B2 (en) | Optical device for simultaneously generating and processing optical codes | |
WO2001067660A1 (fr) | Multiplexage en repartition de longueur d'onde orthogonale destine a des reseaux optiques | |
US6456754B1 (en) | WDM transmitter and receiver | |
EP0837607B1 (fr) | Système serveur pour le transfert de signal et procédé de transfert de signal associé | |
CA2294954C (fr) | Procede pour la transmission optique d'informations de signalisation et de commande dans des reseaux optiques a multiplexage en longueur d'onde | |
EP1425866B1 (fr) | Génération d'un signal optique par modulation de sous-porteuse à partir de la conversion électro-optique d'un signal codé en code Manchester | |
US7146101B2 (en) | Optical media management channel | |
US20030180050A1 (en) | OCDM system | |
HK1097365B (en) | Optical device for simultaneously generating and processing optical codes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |