WO2001008193A1 - Dispositif a effet de champ a vide et procede de fabrication - Google Patents
Dispositif a effet de champ a vide et procede de fabrication Download PDFInfo
- Publication number
- WO2001008193A1 WO2001008193A1 PCT/US2000/020230 US0020230W WO0108193A1 WO 2001008193 A1 WO2001008193 A1 WO 2001008193A1 US 0020230 W US0020230 W US 0020230W WO 0108193 A1 WO0108193 A1 WO 0108193A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum
- source
- oxide
- insulating
- gate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000008569 process Effects 0.000 title claims abstract description 69
- 230000005669 field effect Effects 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 41
- 238000007789 sealing Methods 0.000 claims abstract description 14
- 239000010410 layer Substances 0.000 claims description 103
- 239000000758 substrate Substances 0.000 claims description 67
- 238000000151 deposition Methods 0.000 claims description 43
- 229910052723 transition metal Inorganic materials 0.000 claims description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- -1 polyethylene terephthalate Polymers 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- 150000003624 transition metals Chemical class 0.000 claims description 18
- 239000004020 conductor Substances 0.000 claims description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 16
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000011810 insulating material Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 239000010432 diamond Substances 0.000 claims description 12
- 229910003460 diamond Inorganic materials 0.000 claims description 12
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 12
- 239000004642 Polyimide Substances 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 10
- 239000002241 glass-ceramic Substances 0.000 claims description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 10
- 229920001721 polyimide Polymers 0.000 claims description 10
- 239000010453 quartz Substances 0.000 claims description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 10
- 239000010980 sapphire Substances 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- 229910052580 B4C Inorganic materials 0.000 claims description 9
- 229910052582 BN Inorganic materials 0.000 claims description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 9
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- 206010010144 Completed suicide Diseases 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 9
- 229910052797 bismuth Inorganic materials 0.000 claims description 9
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 9
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910003472 fullerene Inorganic materials 0.000 claims description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 229910052735 hafnium Inorganic materials 0.000 claims description 9
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- 239000002071 nanotube Substances 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 239000010955 niobium Substances 0.000 claims description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- QNGHKVHDQLMMRP-UHFFFAOYSA-N [O-2].[Ta+5].[Ba+2] Chemical compound [O-2].[Ta+5].[Ba+2] QNGHKVHDQLMMRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052454 barium strontium titanate Inorganic materials 0.000 claims description 7
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 claims description 7
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 7
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 7
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 7
- 229910001954 samarium oxide Inorganic materials 0.000 claims description 7
- 229940075630 samarium oxide Drugs 0.000 claims description 7
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims description 7
- 229910052712 strontium Inorganic materials 0.000 claims description 7
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 7
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 7
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- 238000002161 passivation Methods 0.000 claims description 5
- 238000001020 plasma etching Methods 0.000 claims description 5
- 238000005272 metallurgy Methods 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229920002120 photoresistant polymer Polymers 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000003631 wet chemical etching Methods 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims 11
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 6
- 239000010409 thin film Substances 0.000 claims 4
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 150000002500 ions Chemical class 0.000 claims 2
- 230000001939 inductive effect Effects 0.000 claims 1
- 238000001039 wet etching Methods 0.000 claims 1
- 238000004377 microelectronic Methods 0.000 abstract description 10
- 239000012212 insulator Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000025594 tube development Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J21/00—Vacuum tubes
- H01J21/02—Tubes with a single discharge path
- H01J21/06—Tubes with a single discharge path having electrostatic control means only
- H01J21/10—Tubes with a single discharge path having electrostatic control means only with one or more immovable internal control electrodes, e.g. triode, pentode, octode
- H01J21/105—Tubes with a single discharge path having electrostatic control means only with one or more immovable internal control electrodes, e.g. triode, pentode, octode with microengineered cathode and control electrodes, e.g. Spindt-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- This invention relates to microelectronic devices and more particularly to a vacuum-channel field-effect microelectronic device having a lateral field-emission source and preferably having insulated gate(s).
- lateral emitter or “lateral field-emission source” are used interchangeably to refer to a field- emission source disposed parallel to a substrate.
- horizontal and vertical are used herein to mean parallel and perpendicular to a substrate respectively, without implying any preferred orientation in space or any preferred orientation with respect to the earth's surface or with respect to the direction of a gravitational force.
- insulating as in “insulating substrate” or “insulating layer,” is used in its common meaning and particularly for substances characterized by a resistivity greater than 10 s ⁇ - cm.
- conductive refers to substances characterized by a resistivity less than or equal to 10 8 ⁇ - cm., i.e., including the resistivity range of both conductive and semiconductive substances.
- An ultra-high-frequency vacuum-channel field-effect microelectronic device has a lateral field-emission source, a drain, and one or more insulated gates.
- the insulated gate(s) is preferably disposed to extend in overlapping alignment with the emitting edge of the lateral field-emission source and with a portion of the vacuum channel region. If the gate(s) is omitted, the device performs as an ultra-high-speed diode.
- a preferred fabrication process for the device uses a sacrificial material temporarily deposited in a trench for the vacuum channel region, which is covered with an insulating layer cover. An access hole in the cover allows removal of the sacrificial material.
- the drain preferably acts also as a sealing plug, plugging the access hole and sealing the vacuum-channel region after the vacuum-channel region is evacuated.
- FIG. 1 is a partially cut-away perspective view of an insulated-gate vacuum field-effect device made in accordance with the invention.
- FIGS. 2a - 2 j are side-elevation cross-sectional views of the device in various stages of a preferred fabrication process.
- FIG. 3 is a flowchart illustrating the steps of a preferred fabrication process performed in accordance with the invention.
- VFED ultra-high-switching-speed vacuum field-effect device
- the charge carrier source for the VFED is an electron emitter source operable via Fowler-Nordheim emission.
- the channel region is a vacuum. Since there is no material in the channel region to scatter the electrons and the channel length is short, the electron transit time is very short. There is no vacuum path between the source and gate or between the drain and gate. Therefore, a relatively high drain potential can be maintained without causing electron emission from the gate.
- the high drain potential together with the short vacuum channel leads to an electron transit time on the order of sub-picoseconds.
- the electric permittivity preferably has a value greater than two.
- the gain parameter, ( ⁇ I SVd/dVg
- @ Id constant), can be large due to the strong influence of the gate on the channel current with a vacuum channel length in the range of about equal to or greater than 0.5 micrometer.
- FIG. 1 (not to scale) is a partially cut-away perspective view of an insulated- gate vacuum-channel field-effect device 10 made in accordance with the invention.
- Device 10 is made on an insulating substrate 20.
- Source layer 60 (a lateral field- emission cold cathode with emitting tip 85) is parallel to substrate 20.
- FIG. 1 and the cross-section drawings 2f — 2 j show emitting tip 85 schematically as having a rectangular shape, the actual shape of the emitting tip 85 can be a very sharp edge , i.e., an extremely small radius, as is known in the art of field-emission cathodes.
- a drain 150 collects electrons emitted from emitting tip 85 of source 60 when a suitable bias voltage is applied to source 60 and drain 150.
- Drain 150 is spaced apart laterally from emitting tip 85 of the source 60 by a spacing preferably between about one nanometer and about one millimeter.
- Gates preferably bottom gate 40 and top gate 160, are disposed in at least partial alignment with emitting edge 85 of source 60 and extend to overlap a portion of a vacuum-channel region 120.
- a conductive bottom- gate contact 155 extends down and makes ohmic electrical contact with bottom gate 40.
- Contact 155 is also connected to top gate 160 in the embodiment shown in FIG. 1.
- the use of a recess in substrate 20 for bottom gate 40 allows for planarization of gate 40 and therefore provides for precise control and uniformity of the thickness of insulating layer 50 deposited over gate 40 in a preferred fabrication process, described in detail below.
- gate 40 may be disposed on the top surface of substrate 20, without a recess.
- each gate and the vacuum channel region prevents any electrons emitted by the source from reaching either gate, each gate being completely separated from the vacuum channel region by its respective insulating layer (50 or combination of 70 with 100).
- Each of these insulating layers also prevents any vacuum path between its corresponding gate and the drain 150, so there is no possibility of electron current flowing through the vacuum between either gate and the drain (for example, secondary electron current). It will be understood that this is also true for an IGVFED having only one gate instead of the two-gate preferred embodiment described and illustrated herein.
- the conductive contact 155 that interconnects them is also fully insulated from vacuum-channel region 120 by the insulators 50, 70, and 100.
- the dimensions of vacuum-channel region 120 are designed to prevent vacuum- channel region 120 from extending back to the region of conductive contact 155.
- a conventional passivation layer (not shown) may be deposited over device 10 to protect the device and to prevent surface leakage currents.
- Conventional via- openings may be formed and conventional terminal metallurgy (not shown) may be deposited to contact the conductive elements shown in FIG. 1.
- one aspect of the invention is a vacuum field-effect device 10 having a source 60 comprising a lateral field-emitter with an emitting tip 85 for emitting electrons, having a conductive drain 150 spaced apart laterally from the emitting tip, having a vacuum channel region 120 extending at least between the emitting tip 85 of the source and the drain 150, having at least one gate 40 or 160, completely separated from the vacuum channel region by an insulating layer 50, 70, or 100 disposed between the gate and the vacuum channel region 120 to prevent any electrons emitted by the source from reaching the gate, and having terminals (e.g., 140) for applying a bias voltage between the drain and source and for applying a control signal to the gate.
- terminals e.g. 140
- the terminals may be integral with their respective electrodes, such as 150 and 160 in FIG. 1.
- the device preferably has two electrically common gates 40 and 160, which may be connected by an integrated conductive gate contact 155.
- the device is constructed on an insulating substrate 20, which may consist of an insulating film on a conductive or semiconductive substrate.
- the new terahertz vacuum field-effect device is much simpler to fabricate than compound semiconductor or heteroj unction semiconductor devices. No semiconductor materials are used in the preferred embodiment.
- the structure fabrication is, however, compatible with standard IC metallization, passivation, and interconnecting processing. Furthermore, the new device can be integrated with either variations of the preferred embodiment fabrication process or with other integrated- circuit fabrication processes.
- An overall process for fabricating the vacuum field-effect device includes the steps of providing a suitably flat insulating substrate, forming a source by disposing a lateral field emitter parallel to the substrate, forming an emitting tip on the lateral field emitter of the source, providing a conductive drain spaced apart laterally from the emitting tip for receiving electrons, forming a first opening for a vacuum channel region at least between the emitting tip and the drain, disposing at least one gate in at least partial alignment with respect to the emitting tip and in at least partially overlapping alignment with the first opening, substantially covering the first opening to form a closed vacuum channel chamber, removing any gases from the first opening to provide a vacuum, and sealing the vacuum channel chamber.
- the overall process may also include the step of disposing an insulating layer between the gate and the vacuum channel region to prevent any of the electrons emitted by the source from reaching the gate, the gate being completely separated from the vacuum channel region by the insulating layer. Terminals are added for applying a bias voltage between the source and drain and for applying a control signal to the gate.
- the step of providing an insulating substrate may be accomplished by first providing a base substrate, where the base substrate may have any degree of conductivity or semiconductivity, and then depositing an insulating surface layer on the base substrate.
- the base substrate may be a conductor, a semiconductor, or any substance characterized by a resistivity of less than about 10 8 ⁇ -cm., or an insulator differing in composition from the insulating layer deposited on it.
- the base substrate may be a metal, silicon, germanium, III-V compounds (GaAs, AlGaAs, InP, GaN, etc.), conducting oxides (e.g., indium tin oxide, indium oxide, tin oxide, copper oxide, or zinc oxide), transition metal nitrides, or transition metal carbides.
- FIGS. 2a - 2 j and 3 gives details of a particularly preferred fabrication process.
- FIGS. 2a - 2 j are not drawn to scale. This description includes steps for providing two gates, but it will be recognized that a VFED device may be made with one or more gates and that the gates may be omitted to make a high-speed diode.
- FIGS. 2a - 2j show a series of side-elevation cross-sectional views showing the results of specific steps of the preferred process.
- FIG. 3 shows a flow chart representing the preferred fabrication process, in which steps are designated by reference numerals SI, ..., S21. For each of these steps, the act performed is listed in Table I (following page). 51 Provide substrate
- a suitably flat insulating substrate 20 is provided.
- Insulating substrate 20 may comprise any suitable insulating material such as glass, ceramic, glass ceramic, diamond, quartz, aluminum oxide, sapphire, silicon oxide, silicon nitride, aluminum nitride, nickel oxide, plastic, polymer, polyimide, parylene, polyethylene terephthalate, and mixtures and combinations thereof.
- the flat insulating substrate 20 provided in step SI may be made by first providing a conductive base substrate, such as a silicon semiconductor wafer, and depositing a surface layer of a suitable insulating material on the conductive base substrate to form an insulating surface.
- the insulating layer may be any of the insulating materials listed above, for example.
- step S2 a trench 30 is formed in the surface of the insulating substrate (FIG. 2a).
- step S3 trench 30 is filled with a conducting layer 40 and planarized (FIG. 2b) to form a first gate.
- the planarization may be done by chemical-mechanical polishing (CMP).
- conducting layer 40 Some suitable materials for conducting layer 40 are aluminum, copper, silver, gold, platinum, palladium, bismuth, conducting oxides, conducting nitrides, the refractory transition metals (titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum, and tungsten), the refractory transition metal carbides, the refractory transition metal nitrides, boron carbide, doped boron nitride, transition metal suicides, carbon in any of its conductive forms (e.g., doped diamond, graphite, amorphous carbon, fullerenes, nanotubes, or nanocoralline), silicon (N - type or P - type, polycrystalline, amorphous, or single-crystal), germanium, and mixtures, alloys, and combinations thereof.
- the refractory transition metals titanium, vanadium, chromium, zirconium, niobi
- Step S4 consists of depositing a first insulating layer 50 over the planarized surface (FIG. 2c).
- First insulating layer 50 may comprise any suitable insulator, such as glass, glass ceramic, quartz, aluminum oxide, sapphire, silicon oxide, silicon nitride, barium strontium titanate, titanium oxide, samarium oxide, yttrium oxide, tantalum oxide, barium titanium oxide, barium tantalum oxide, lead titanium oxide, strontium titanium oxide, strontium (zirconium, titanium) oxide, aluminum nitride, polyimide, parylene, or mixtures and combinations thereof.
- the electric permittivity ⁇ of first insulating layer 50 preferably has a value greater than two.
- Second insulating layer 70 may comprise any suitable insulator, such as any of the materials used for first insulating layer 50 (glass, glass ceramic, quartz, aluminum oxide, sapphire, silicon oxide, silicon nitride, barium strontium titanate, titanium oxide, samarium oxide, yttrium oxide, tantalum oxide, barium titanium oxide, barium tantalum oxide, lead titanium oxide, strontium titanium oxide, strontium (zirconium, titanium) oxide, aluminum nitride, polyimide, parylene, or mixtures and combinations thereof).
- insulating layers 50 and 70 consist of the same insulating material.
- the electric permittivity ⁇ of second insulating layer 70 preferably has a value greater than two.
- a second trench 80 for a vacuum channel region is formed (step S7, FIG. 2f) by etching at least through second insulating layer 70 and source layer 60, but not down as far as first gate layer 40.
- Trench 80 may be formed by directional reactive ion etching. Forming this trench also etches source layer 60 to form emitting tip 85. If necessary, further etching, such as an isotropic wet etch or plasma etch may be used to further etch emitting tip 85. As is known in the art of field-emission cathodes, it is desirable to form emitting edge 85 with an extremely small radius, to have a very sharp knife-edge shape.
- Suitable conductive materials for source layer 60 are aluminum, copper, silver, gold, platinum, palladium, bismuth, conducting oxides, conducting nitrides, the refractory transition metals (titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum, and tungsten), the refractory transition metal carbides, the refractory transition metal nitrides, boron carbide, doped boron nitride, transition metal suicides, carbon in any of its conductive forms (e.g., doped diamond, graphite, amorphous carbon, fullerenes, nanotubes, or nanocoralline), silicon (N - type or P - type, polycrystalhne, amorphous, or single-crystal), germanium, and mixtures, alloys
- second trench 80 is filled with a sacrificial material 90 and planarized (FIG. 2g).
- Sacrificial material 90 may be an inorganic material or an organic material such as parylene.
- a third insulating layer 100 is deposited (step S9, FIG. 2h).
- Third insulating layer 100 may comprise any suitable insulator, such as any of the materials used for first insulating layer 50 and second insulating layer 70.
- Insulating layer 100 preferably consists of the same insulating material as insulating layers 50 and 70 and preferably has an electric permittivity ⁇ of greater than two.
- an access hole 110 is opened through third insulating layer 100 down at least into sacrificial material 90 (FIG. 2i).
- Access hole 110 is preferably made at or near the edge of trench 80 that is spaced farthest from emitting tip 85.
- step Sll source via-opening 130 and a via-opening (not shown) for bottom gate 40 are formed.
- the bottom gate contact 155 (shown in FIG. 1) uses this bottom gate via- opening, which is out of the plane of the cross-sections of FIGS. 2a - 2j.
- steps S10 and Sll may be combined and performed simultaneously, as indicated in FIG. 3 by a bracket joining these two steps.
- sacrificial material 90 is removed through access hole 110, e.g., by dissolving sacrificial material 90 with a suitable solvent and removing the solution through access hole 110.
- the solvent may be acetone.
- the sacrificial material 90 is silicon dioxide, it may be removed by wet chemical etching, e.g., with HF. For many sacrificial materials, the removal process may be done by oxygen plasma etching. Removing the sacrificial material leaves an empty vacuum channel region 120. The next few steps may be performed in a vacuum environment, with a vacuum pressure preferably less than or equal to about one torr, provided in step S13.
- step S14 a conductive source contact 140 is deposited and patterned.
- step S15 a conductive top gate 160 is deposited and patterned.
- step S16 a conductive bottom gate contact 155 (shown in FIG. 1) is deposited and patterned.
- step SI 7 a conductive drain 150 is deposited and patterned.
- Suitable conductive materials for conductive top gate 160, conductive bottom gate contact 155, and conductive drain 150 are aluminum, copper, silver, gold, platinum, palladium, bismuth, conducting oxides, conducting nitrides, the refractory transition metals (titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum, and tungsten), the refractory transition metal carbides, the refractory transition metal nitrides, boron carbide, doped boron nitride, transition metal suicides, carbon in any of its conductive forms (e.g., doped diamond, graphite, amorphous carbon, fullerenes, nanotubes, or nanocoralline), silicon (N - type or P - type, polycrystalhne, amorphous, or single-crystal), germanium, and mixtures, alloys, and combinations thereof.
- the refractory transition metals titanium,
- step S18 access hole 110 is filled to seal the vacuum channel region 120.
- This step SI 8 is preferably performed at a vacuum pressure of less than or equal to about one torr. When the vacuum channel region 120 is sealed, the channel region will be at vacuum.
- Steps S14 - S18 are preferably all performed together simultaneously as a step SI 9, as indicated in Fig. 3 by a bracket.
- access hole 110 also defines the pattern for the lower part of drain 150 (inside vacuum chamber channel region 120). The resultant device after performing steps S14 - S18 or the combined step S19 is shown in the cross-sectional view of FIG. 2j and in the partially cut-away perspective view of FIG. 1.
- forming conductive drain 150 and sealing vacuum channel region 120 may be accomplished by the methods of U.S. Pat. No. 5,700,176 to Potter, the entire disclosure of which is incorporated herein by reference.
- a passivation layer may be deposited (step S20) and via-openings formed and terminal metallurgy deposited (step S21).
- the vacuum field-effect device of this invention may be made with very wide ranges of dimensions and of material characteristics such as electric permittivity of insulators.
- the vacuum channel length may be made between about one nanometer and about one millimeter.
- electric permittivities ⁇ , drain voltage values, tradeoffs with coupling capacitance, and enhancement vs. retardation mode of operation are wide ranges of electric permittivities ⁇ , drain voltage values, tradeoffs with coupling capacitance, and enhancement vs. retardation mode of operation.
- the thicknesses of the insulating layers 50 and combination of 70 and 100 is preferably chosen to be between about one nanometer and about 1000 nanometers when the electric permittivity of the insulating layer is less than or equal to 20, and the spacing is preferably chosen to be between about 10 nanometers and about 5000 nanometers when the electric permittivity of the insulating layer is greater than 20.
- the device disclosed herein is particularly useful for high bandwidth communication requirements. Such uses of the device include transmitting and receiving data at the chip level, and thus, the device is suitable for short-range intra- LAN communication, wired or wireless.
- the device also inherently has high thermal tolerance and radiation resistance. It is therefore desirable for applications in harsh environments. These applications include sensor applications for fission or fusion reactors, borehole sensors, accelerator sensors and instrumentation, applications in satellites, deep space and extrate ⁇ estrial exploration vehicles, and many other similar applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Cold Cathode And The Manufacture (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020017003711A KR20010075312A (ko) | 1999-07-26 | 2000-07-25 | 진공 전계 효과 소자 및 그 제작 공정 |
EP00948950A EP1116256A1 (fr) | 1999-07-26 | 2000-07-25 | Dispositif a effet de champ a vide et procede de fabrication |
JP2001512614A JP2003505844A (ja) | 1999-07-26 | 2000-07-25 | 真空電界効果デバイスおよびその製造方法 |
CA002345629A CA2345629A1 (fr) | 1999-07-26 | 2000-07-25 | Dispositif a effet de champ a vide et procede de fabrication |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14557099P | 1999-07-26 | 1999-07-26 | |
US60/145,570 | 1999-07-26 | ||
US47778899A | 1999-12-31 | 1999-12-31 | |
US47698499A | 1999-12-31 | 1999-12-31 | |
US09/476,984 | 1999-12-31 | ||
US09/477,788 | 1999-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001008193A1 true WO2001008193A1 (fr) | 2001-02-01 |
Family
ID=27386281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/020230 WO2001008193A1 (fr) | 1999-07-26 | 2000-07-25 | Dispositif a effet de champ a vide et procede de fabrication |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1116256A1 (fr) |
JP (1) | JP2003505844A (fr) |
KR (1) | KR20010075312A (fr) |
CN (1) | CN1327610A (fr) |
CA (1) | CA2345629A1 (fr) |
WO (1) | WO2001008193A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003088301A1 (fr) * | 2002-04-17 | 2003-10-23 | Kabushiki Kaisha Toshiba | Ecran d'affichage d'images et procede de fabrication |
US6911767B2 (en) | 2001-06-14 | 2005-06-28 | Hyperion Catalysis International, Inc. | Field emission devices using ion bombarded carbon nanotubes |
US7341498B2 (en) | 2001-06-14 | 2008-03-11 | Hyperion Catalysis International, Inc. | Method of irradiating field emission cathode having nanotubes |
KR100880562B1 (ko) | 2007-07-09 | 2009-01-30 | (주)제이디에이테크놀로지 | 진공 채널 트랜지스터 및 전계 방출형 평판 표시 장치 |
US7960904B2 (en) | 2001-06-14 | 2011-06-14 | Hyperion Catalysis International, Inc. | Field emission devices using carbon nanotubes modified by energy, plasma, chemical or mechanical treatment |
WO2013024386A3 (fr) * | 2011-08-16 | 2013-07-04 | 0Ec Sa | Système pour commande sans contact d'un transistor à effet de champ |
US9136794B2 (en) | 2011-06-22 | 2015-09-15 | Research Triangle Institute, International | Bipolar microelectronic device |
RU2703292C1 (ru) * | 2019-03-26 | 2019-10-16 | Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") | Способ изготовления катодно-сеточного узла с углеродными автоэмиттерами |
US10882217B2 (en) | 2016-04-06 | 2021-01-05 | Amcor Rigid Packaging Usa, Llc | Multi-layer preform and container |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101086940B (zh) * | 2006-06-09 | 2011-06-22 | 清华大学 | 场发射阴极装置的制造方法 |
CN104143513B (zh) * | 2013-05-09 | 2016-12-28 | 中芯国际集成电路制造(上海)有限公司 | 纳米真空场效应电子管及其形成方法 |
ITMI20130897A1 (it) | 2013-05-31 | 2014-12-01 | St Microelectronics Srl | Dispositivo microelettronico a vuoto integrato e relativo metodo di fabbricazione. |
CN105097390B (zh) | 2014-03-31 | 2017-07-28 | 意法半导体股份有限公司 | 集成真空微电子结构及其制造方法 |
JP6341551B2 (ja) * | 2015-05-14 | 2018-06-13 | 国立大学法人山口大学 | 真空チャネルトランジスタおよびその製造方法 |
CN106571367A (zh) * | 2015-10-12 | 2017-04-19 | 上海新昇半导体科技有限公司 | 真空管闪存结构及其制造方法 |
CN107346720B (zh) * | 2016-05-04 | 2020-09-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | 场发射器件及其制作方法 |
CN108242466B (zh) * | 2016-12-26 | 2020-09-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | 场发射器件及其制作方法 |
WO2017190511A1 (fr) * | 2016-05-04 | 2017-11-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | Dispositif à émission de champ et son procédé de fabrication |
CN110246889B (zh) * | 2019-05-10 | 2021-05-28 | 西安交通大学 | 一种双栅型真空场发射三极管结构及其制作方法 |
CN110767519B (zh) * | 2019-10-21 | 2022-03-04 | 中国电子科技集团公司第十二研究所 | 一种场发射电子源结构及其形成方法、电子源、微波管 |
CN111613662B (zh) * | 2020-05-27 | 2021-06-11 | 东北大学 | 偏压诱导共线反铁磁材料产生自旋极化电流的调控方法 |
JP6818931B1 (ja) | 2020-09-10 | 2021-01-27 | 善文 安藤 | 真空チャネル電界効果トランジスタ、その製造方法及び半導体装置 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2635913A1 (fr) * | 1988-08-31 | 1990-03-02 | Saint Louis Inst | Diode a emission de champ |
EP0406886A2 (fr) * | 1989-07-07 | 1991-01-09 | Matsushita Electric Industrial Co., Ltd. | Dispositif de commutation utilisant l'émission par effet de champ et son procédé de fabrication |
EP0444670A2 (fr) * | 1990-03-01 | 1991-09-04 | Matsushita Electric Industrial Co., Ltd. | Cathode froide de type planaire comportant une extrémité en pointe et son procédé de fabrication |
DE4010909A1 (de) * | 1990-04-04 | 1991-10-10 | Siemens Ag | Diode |
US5289086A (en) * | 1992-05-04 | 1994-02-22 | Motorola, Inc. | Electron device employing a diamond film electron source |
WO1995017762A1 (fr) * | 1993-12-22 | 1995-06-29 | Microelectronics And Computer Technology Corporation | Dispositif emetteur de champ lateral et procede de fabrication dudit dispositif |
EP0668603A1 (fr) * | 1994-02-22 | 1995-08-23 | Motorola, Inc. | Dispositif microélectronique à émission de champ avec électrode de grille isolée, empêchant le claquage et procédé de réalisation |
WO1996036061A1 (fr) * | 1995-05-08 | 1996-11-14 | Advanced Vision Technologies, Inc. | Structure cellulaire d'affichage a emission de champ et procede de fabrication |
WO1996042113A1 (fr) * | 1995-06-13 | 1996-12-27 | Advanced Vision Technologies, Inc. | Cathode stratifiee composite a emission de champ laterale et son procede de fabrication |
WO1997002586A1 (fr) * | 1995-07-05 | 1997-01-23 | Advanced Vision Technologies, Inc. | Afficheur a emission de champ et injection directe d'electrons et son procede de fabrication |
US5604399A (en) * | 1995-06-06 | 1997-02-18 | International Business Machines Corporation | Optimal gate control design and fabrication method for lateral field emission devices |
WO1997009733A1 (fr) * | 1995-09-06 | 1997-03-13 | Advanced Vision Technologies, Inc. | Dispositif a emission de champ hf et procede de fabrication |
US5629580A (en) * | 1994-10-28 | 1997-05-13 | International Business Machines Corporation | Lateral field emission devices for display elements and methods of fabrication |
US5663608A (en) * | 1993-03-11 | 1997-09-02 | Fed Corporation | Field emission display devices, and field emisssion electron beam source and isolation structure components therefor |
US5920148A (en) * | 1995-05-08 | 1999-07-06 | Advanced Vision Technologies, Inc. | Field emission display cell structure |
WO1999040604A1 (fr) * | 1998-02-09 | 1999-08-12 | Advanced Vision Technologies, Inc. | Dispositif a emission de champ d'electrons confines et son procede de fabrication |
WO1999049520A1 (fr) * | 1998-03-25 | 1999-09-30 | Korea Advanced Institute Of Science & Technology | Transistor a effet de champ |
WO1999049492A1 (fr) * | 1998-03-21 | 1999-09-30 | Korea Advanced Institute Of Science & Technology | Afficheur ligne a emission de champ |
-
2000
- 2000-07-25 KR KR1020017003711A patent/KR20010075312A/ko not_active Ceased
- 2000-07-25 EP EP00948950A patent/EP1116256A1/fr not_active Withdrawn
- 2000-07-25 WO PCT/US2000/020230 patent/WO2001008193A1/fr not_active Application Discontinuation
- 2000-07-25 CA CA002345629A patent/CA2345629A1/fr not_active Abandoned
- 2000-07-25 JP JP2001512614A patent/JP2003505844A/ja active Pending
- 2000-07-25 CN CN00801522A patent/CN1327610A/zh active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2635913A1 (fr) * | 1988-08-31 | 1990-03-02 | Saint Louis Inst | Diode a emission de champ |
EP0406886A2 (fr) * | 1989-07-07 | 1991-01-09 | Matsushita Electric Industrial Co., Ltd. | Dispositif de commutation utilisant l'émission par effet de champ et son procédé de fabrication |
EP0444670A2 (fr) * | 1990-03-01 | 1991-09-04 | Matsushita Electric Industrial Co., Ltd. | Cathode froide de type planaire comportant une extrémité en pointe et son procédé de fabrication |
DE4010909A1 (de) * | 1990-04-04 | 1991-10-10 | Siemens Ag | Diode |
US5289086A (en) * | 1992-05-04 | 1994-02-22 | Motorola, Inc. | Electron device employing a diamond film electron source |
US5663608A (en) * | 1993-03-11 | 1997-09-02 | Fed Corporation | Field emission display devices, and field emisssion electron beam source and isolation structure components therefor |
WO1995017762A1 (fr) * | 1993-12-22 | 1995-06-29 | Microelectronics And Computer Technology Corporation | Dispositif emetteur de champ lateral et procede de fabrication dudit dispositif |
EP0668603A1 (fr) * | 1994-02-22 | 1995-08-23 | Motorola, Inc. | Dispositif microélectronique à émission de champ avec électrode de grille isolée, empêchant le claquage et procédé de réalisation |
US5629580A (en) * | 1994-10-28 | 1997-05-13 | International Business Machines Corporation | Lateral field emission devices for display elements and methods of fabrication |
US5736810A (en) * | 1994-10-28 | 1998-04-07 | International Business Machines Corporation | Non-evacuated lateral fed employing emitter-anode spacing less than mean free path distance of an electron in air |
WO1996036061A1 (fr) * | 1995-05-08 | 1996-11-14 | Advanced Vision Technologies, Inc. | Structure cellulaire d'affichage a emission de champ et procede de fabrication |
US5920148A (en) * | 1995-05-08 | 1999-07-06 | Advanced Vision Technologies, Inc. | Field emission display cell structure |
US5604399A (en) * | 1995-06-06 | 1997-02-18 | International Business Machines Corporation | Optimal gate control design and fabrication method for lateral field emission devices |
WO1996042113A1 (fr) * | 1995-06-13 | 1996-12-27 | Advanced Vision Technologies, Inc. | Cathode stratifiee composite a emission de champ laterale et son procede de fabrication |
WO1997002586A1 (fr) * | 1995-07-05 | 1997-01-23 | Advanced Vision Technologies, Inc. | Afficheur a emission de champ et injection directe d'electrons et son procede de fabrication |
WO1997009733A1 (fr) * | 1995-09-06 | 1997-03-13 | Advanced Vision Technologies, Inc. | Dispositif a emission de champ hf et procede de fabrication |
WO1999040604A1 (fr) * | 1998-02-09 | 1999-08-12 | Advanced Vision Technologies, Inc. | Dispositif a emission de champ d'electrons confines et son procede de fabrication |
WO1999049492A1 (fr) * | 1998-03-21 | 1999-09-30 | Korea Advanced Institute Of Science & Technology | Afficheur ligne a emission de champ |
WO1999049520A1 (fr) * | 1998-03-25 | 1999-09-30 | Korea Advanced Institute Of Science & Technology | Transistor a effet de champ |
Non-Patent Citations (2)
Title |
---|
LEGG J D ET AL: "IMPROVED MONOLITHIC VACUUM FIELD EMISSION DIODES", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, VOL. 12, NR. 2, PAGE(S) 666-671, 00-03-1994, ISSN: 0734-211X, XP000442751 * |
PARK C -M ET AL: "A NOVEL LATERAL FIELD EMITTER TRIODE WITH INSITU VACUUM ENCAPSULATION", INTERNATIONAL ELECTRON DEVICES MEETING (IEDM),US,NEW YORK, IEEE, PAGE(S) 305-308, 08-12-1996, ISBN: 0-7803-3394-2, XP000753768 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6911767B2 (en) | 2001-06-14 | 2005-06-28 | Hyperion Catalysis International, Inc. | Field emission devices using ion bombarded carbon nanotubes |
US7341498B2 (en) | 2001-06-14 | 2008-03-11 | Hyperion Catalysis International, Inc. | Method of irradiating field emission cathode having nanotubes |
US7585199B2 (en) | 2001-06-14 | 2009-09-08 | Hyperion Catalysis International, Inc. | Field emission devices using ion bombarded carbon nanotubes |
US7880376B2 (en) | 2001-06-14 | 2011-02-01 | Hyperion Catalysis International, Inc. | Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks |
US7960904B2 (en) | 2001-06-14 | 2011-06-14 | Hyperion Catalysis International, Inc. | Field emission devices using carbon nanotubes modified by energy, plasma, chemical or mechanical treatment |
WO2003088301A1 (fr) * | 2002-04-17 | 2003-10-23 | Kabushiki Kaisha Toshiba | Ecran d'affichage d'images et procede de fabrication |
US7071610B2 (en) | 2002-04-17 | 2006-07-04 | Kabushiki Kaisha Toshiba | Image display device and manufacturing method for image display device |
KR100880562B1 (ko) | 2007-07-09 | 2009-01-30 | (주)제이디에이테크놀로지 | 진공 채널 트랜지스터 및 전계 방출형 평판 표시 장치 |
US9136794B2 (en) | 2011-06-22 | 2015-09-15 | Research Triangle Institute, International | Bipolar microelectronic device |
WO2013024386A3 (fr) * | 2011-08-16 | 2013-07-04 | 0Ec Sa | Système pour commande sans contact d'un transistor à effet de champ |
US10882217B2 (en) | 2016-04-06 | 2021-01-05 | Amcor Rigid Packaging Usa, Llc | Multi-layer preform and container |
RU2703292C1 (ru) * | 2019-03-26 | 2019-10-16 | Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") | Способ изготовления катодно-сеточного узла с углеродными автоэмиттерами |
Also Published As
Publication number | Publication date |
---|---|
KR20010075312A (ko) | 2001-08-09 |
CN1327610A (zh) | 2001-12-19 |
JP2003505844A (ja) | 2003-02-12 |
EP1116256A1 (fr) | 2001-07-18 |
CA2345629A1 (fr) | 2001-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001008193A1 (fr) | Dispositif a effet de champ a vide et procede de fabrication | |
US5666019A (en) | High-frequency field-emission device | |
US6568979B2 (en) | Method of manufacturing a low gate current field emitter cell and array with vertical thin-film-edge emitter | |
US8803130B2 (en) | Graphene transistors with self-aligned gates | |
US5312777A (en) | Fabrication methods for bidirectional field emission devices and storage structures | |
US6472802B1 (en) | Triode-type field emission device having field emitter composed of emitter tips with diameter of nanometers and method for fabricating the same | |
US7851784B2 (en) | Nanotube array electronic devices | |
US6590322B2 (en) | Low gate current field emitter cell and array with vertical thin-film-edge emitter | |
EP1328002A1 (fr) | Dispositif émetteur d'électrons pour applications dans le stockage de données | |
US5757344A (en) | Cold cathode emitter element | |
US7102157B2 (en) | Nanotube-based vacuum devices | |
US20030146689A1 (en) | Solid state vacuum devices and method for making the same | |
US7176478B2 (en) | Nanotube-based vacuum devices | |
US5628663A (en) | Fabrication process for high-frequency field-emission device | |
EP2223325B1 (fr) | Dispositif d'émission de champ de type triode et son procédé de fabrication | |
US12080506B2 (en) | Silicon-based vacuum transistors and integrated circuits | |
Gray et al. | A silicon field emitter array planar vacuum FET fabricated with microfabrication techniques | |
JPH08339757A (ja) | 側面電界放出素子のための最適ゲート制御設計及び製作方法 | |
Pennisi et al. | Dovetail tip: a new approach for low-threshold vacuum nanoelectronics | |
US11355301B2 (en) | On-chip micro electron source and manufacturing method thereof | |
US20160307722A1 (en) | Nano vacuum gap device with a gate-all-around cathode | |
JPWO2004079910A1 (ja) | 電界放射型微小電子エミッタを用いた論理演算素子および論理演算回路 | |
WO1997009733A1 (fr) | Dispositif a emission de champ hf et procede de fabrication | |
US10431675B1 (en) | Single walled carbon nanotube triode | |
JPH0567426A (ja) | 電界放出型電子源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00801522.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP KR SG |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017003711 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2345629 Country of ref document: CA Ref document number: 2345629 Country of ref document: CA Kind code of ref document: A Ref document number: 2001 512614 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000948950 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000948950 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000948950 Country of ref document: EP |