WO2002002591A2 - Peptides a utiliser dans des milieux de culture - Google Patents
Peptides a utiliser dans des milieux de culture Download PDFInfo
- Publication number
- WO2002002591A2 WO2002002591A2 PCT/US2001/017943 US0117943W WO0202591A2 WO 2002002591 A2 WO2002002591 A2 WO 2002002591A2 US 0117943 W US0117943 W US 0117943W WO 0202591 A2 WO0202591 A2 WO 0202591A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- peptide
- peptides
- library
- amino acid
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 151
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 88
- 239000001963 growth medium Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000010261 cell growth Effects 0.000 claims abstract description 14
- 108091028732 Concatemer Proteins 0.000 claims abstract description 12
- 230000001413 cellular effect Effects 0.000 claims abstract description 5
- 150000001413 amino acids Chemical class 0.000 claims description 34
- 210000004027 cell Anatomy 0.000 claims description 33
- 230000012010 growth Effects 0.000 claims description 32
- 239000002609 medium Substances 0.000 claims description 26
- 238000003776 cleavage reaction Methods 0.000 claims description 13
- 230000007017 scission Effects 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 108010067902 Peptide Library Proteins 0.000 claims description 12
- 101710124951 Phospholipase C Proteins 0.000 claims description 10
- 241000193468 Clostridium perfringens Species 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 230000004071 biological effect Effects 0.000 claims description 8
- 230000002255 enzymatic effect Effects 0.000 claims description 8
- 108090000284 Pepsin A Proteins 0.000 claims description 6
- 102000057297 Pepsin A Human genes 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 150000007523 nucleic acids Chemical group 0.000 claims description 6
- 229940111202 pepsin Drugs 0.000 claims description 6
- 125000001433 C-terminal amino-acid group Chemical group 0.000 claims description 5
- 108010051815 Glutamyl endopeptidase Proteins 0.000 claims description 4
- 108090000631 Trypsin Proteins 0.000 claims description 4
- 102000004142 Trypsin Human genes 0.000 claims description 4
- 239000006143 cell culture medium Substances 0.000 claims description 4
- 230000014616 translation Effects 0.000 claims description 4
- 239000012588 trypsin Substances 0.000 claims description 4
- 108090000317 Chymotrypsin Proteins 0.000 claims description 3
- 108090000526 Papain Proteins 0.000 claims description 3
- 108010030544 Peptidyl-Lys metalloendopeptidase Proteins 0.000 claims description 3
- 239000004365 Protease Substances 0.000 claims description 3
- 229960002376 chymotrypsin Drugs 0.000 claims description 3
- 108010003914 endoproteinase Asp-N Proteins 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 235000019834 papain Nutrition 0.000 claims description 3
- 229940055729 papain Drugs 0.000 claims description 3
- LKDMKWNDBAVNQZ-UHFFFAOYSA-N 4-[[1-[[1-[2-[[1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)NC(C)C(=O)NC(C)C(=O)N1CCCC1C(=O)NC(C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-UHFFFAOYSA-N 0.000 claims description 2
- 108090000617 Cathepsin G Proteins 0.000 claims description 2
- 102000004173 Cathepsin G Human genes 0.000 claims description 2
- 108010067770 Endopeptidase K Proteins 0.000 claims description 2
- 108700015930 Prolyl Oligopeptidases Proteins 0.000 claims description 2
- 102000056251 Prolyl Oligopeptidases Human genes 0.000 claims description 2
- 108090001109 Thermolysin Proteins 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 claims 3
- -1 spacer amino acid Chemical class 0.000 claims 2
- 239000003104 tissue culture media Substances 0.000 claims 2
- 239000012679 serum free medium Substances 0.000 claims 1
- 229960001322 trypsin Drugs 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 19
- 230000000694 effects Effects 0.000 abstract description 14
- 102000004169 proteins and genes Human genes 0.000 abstract description 8
- 108090000623 proteins and genes Proteins 0.000 abstract description 8
- 210000004748 cultured cell Anatomy 0.000 abstract description 2
- 238000003259 recombinant expression Methods 0.000 abstract 1
- 238000010188 recombinant method Methods 0.000 abstract 1
- 239000003053 toxin Substances 0.000 description 29
- 231100000765 toxin Toxicity 0.000 description 29
- 235000001014 amino acid Nutrition 0.000 description 19
- 238000012216 screening Methods 0.000 description 16
- 238000013459 approach Methods 0.000 description 12
- 239000000413 hydrolysate Substances 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 238000010647 peptide synthesis reaction Methods 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000003556 assay Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 108010076119 Caseins Proteins 0.000 description 3
- 102000011632 Caseins Human genes 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- 238000002898 library design Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 108010009004 proteose-peptone Proteins 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003118 sandwich ELISA Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- OGRXKBUCZFFSTL-UHFFFAOYSA-N 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol Chemical compound O=NN(C)CCCC(O)C1=CC=CN=C1 OGRXKBUCZFFSTL-UHFFFAOYSA-N 0.000 description 1
- 102000030431 Asparaginyl endopeptidase Human genes 0.000 description 1
- 208000010061 Autosomal Dominant Polycystic Kidney Diseases 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 241000186000 Bifidobacterium Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100031007 Cytosolic non-specific dipeptidase Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 101000947120 Homo sapiens Beta-casein Proteins 0.000 description 1
- 101000919690 Homo sapiens Cytosolic non-specific dipeptidase Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 102000002704 Leucyl aminopeptidase Human genes 0.000 description 1
- 108010004098 Leucyl aminopeptidase Proteins 0.000 description 1
- 241000973043 Macrococcus caseolyticus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 101000606724 Penicillium janthinellum Penicillopepsin-1 Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000194020 Streptococcus thermophilus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 108010055066 asparaginylendopeptidase Proteins 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000022185 autosomal dominant polycystic kidney disease Diseases 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000010954 commercial manufacturing process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000000459 effect on growth Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108010043524 protease E Proteins 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 108010059339 submandibular proteinase A Proteins 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000021246 κ-casein Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
- C07K1/047—Simultaneous synthesis of different peptide species; Peptide libraries
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/1008—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/101—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/1013—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing O or S as heteroatoms, e.g. Cys, Ser
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1019—Tetrapeptides with the first amino acid being basic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1021—Tetrapeptides with the first amino acid being acidic
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B30/00—Methods of screening libraries
- C40B30/06—Methods of screening libraries by measuring effects on living organisms, tissues or cells
Definitions
- the invention relates to peptides which affect cells in culture and to methods for discovery and manufacture of such peptides.
- the invention relates to peptides which affect growth of cells in culture and peptides which affect cellular protein production.
- Tissue and protein hydrolysates have been routinely used as a source of peptides in cell culture media since the late 1800's. They are the most common undefined culture media component in present use in bacteriology and often replace serum in mammalian culture (S. Saha and A. Sen. 1989. Ada Virol. 33:338-343). Hydrolysates and serum are not optimal sources of peptides for culture media, however, because their compositions are undefined and variable, and serum may harbor pathogens such as BSE. It has been recognized that peptides are generally preferred nutrients as compared to their constituent amino acids.
- casein hydrolyzed by the neutral protease of Micrococcus caseolyticus M. J. Desmazeaud and J. H. Hermier. 1972. Eur. J. Biochem. 28:190- 198
- a papain digest of glucagon M. J. Desmazeaud and J. H. Hermier. 1973. Biochimie 55:679- 684
- trypsin digested ⁇ -casein enhances the growth of the genus Bifidobacterium (M. Poch and A. Bezkorovainy. 1991. J.
- FR:013 discloses relatively simple mixtures of tetrapeptides in which the N- and C-terminal residues are fixed and any one of three residues occur at each position in between.
- Fodor, et al. (1991. Science 251:767-773) teach solid phase peptide synthesis on slides, using predetermined amino acids coupled to defined areas of the slide using photomasks. In this way an array of 1024 different peptides with defined C-termini was synthesized. All of these techniques attempt to circumvent the individual screening of millions of peptides and to increase the amount of a given sequence in the library to simplify screening and identification of biologically active peptides.
- the present invention employs a peptide library approach to select and identify peptides which meet these needs, in particular a process that links discovery and manufacturing of peptides which affect cell growth (either positively or negatively) or which enhance or inhibit cellular protein production.
- the present invention provides peptide libraries which are useful for rapid identification of biologically active compounds which affect the properties of cells in culture.
- the present invention further provides peptides identified in these libraries, which include cell growth enhancing peptides, cell growth inhibiting peptides and peptides which enhance or inhibit production of cellular proteins, particularly production of ⁇ -toxin by Clostridium perfringens.
- Once the sequence of a peptide having the desired biological activity is identified it may be produced in large quantity (e.g., by chemical synthesis or expression of recombinant DNA) and formulated in a culture medium to produce the desired effect on cultured cells.
- the libraries of the invention and the peptides identified in them are particularly useful in certain large-scale, economical recombinant production methods. DETAILED DESCRIPTION OF THE INVENTION
- a limited diversity peptide library was constructed using conventional techniques for peptide synthesis and was subsequently screened for biologically active peptides exhibiting certain desired characteristics.
- the initial goal was to identify peptides which could be included in culture media to increase the amount of ⁇ -toxin produced by C. perfringens, either by increasing cell growth (i.e., cell number) or by increasing the amount of toxin produced per cell.
- the library of initial candidates was based on several design criteria. First, it is known that proteose peptone is a preferred hydrolysate for culturing C. perfringens.
- Proteose peptone is manufactured using pepsin, so leucine would be one of the more common C-termini in the peptides of the hydrolysate. Accordingly, a tetrapeptide library was constructed with leucine as the C-terminus (the fourth position of the peptide) and alanine (a simple amino acid) in the third position as a spacer.
- the ten Selected Amino Acid Group Representatives shown below, each representing a group of related amino acids, were selected for insertion at the remaining first two positions of the peptides. Selection of the group representative amino acid is typically based on ease of peptide synthesis using that amino acid.
- XXAL library This library is referred to as the XXAL library, with "X” indicating an amino acid selected to represent a cluster group.
- Peptides for the peptide library may be synthesized by any suitable method known in the art, such as FMOC chemistry of Atherton and Sheppard (1989) in solid phase peptide synthesis (Merrifield, 1965). Boc chemistry may also be used as well as synthesis on a variety of different solid supports, "tea-bag” synthesis (Houghten), and split and divide combinatorial methods. Solution phase methods for peptide synthesis may also be used.
- the library peptides may include modifications to the C- terminus (e.g., amides and esters), the N-terminus (e.g., acetyl) and non-naturally occurring amino acids (e.g., norleucine) to assess the effect of such modifications on peptide activity.
- modifications to the C- terminus e.g., amides and esters
- the N-terminus e.g., acetyl
- non-naturally occurring amino acids e.g., norleucine
- the library is screened in a growth assay.
- the selected cells are first grown in appropriate culture media without peptide supplement, then subcultured in media supplemented with each of the library peptides.
- the screening medium may be a complex medium for the selected cell type, but is preferably a defined medium to allow evaluation of peptide effects without interference from undefined materials present in the medium. It is also preferable to optimize the base medium for cell growth prior to peptide screening, although unoptimized media may also be used.
- growth of C. perfringens in the presence and absence of the peptides was evaluated in a basal medium rich in amino acids and containing the necessary vitamins, metals, and simple carbon source.
- the library is screened in an assay appropriate for detection of that cell product.
- the selected cells are first grown in appropriate culture media without peptide supplement, then subcultured in media supplemented with each of the library peptides.
- the screening medium may be a complex medium for the selected cell type, but is preferably a defined medium to allow evaluation of peptide effects without interference from undefined materials present in the medium. It is also preferable to optimize the base medium for protein expression prior to peptide screening, although unoptimized media may also be used.
- a particular goal of the present work was to identify peptides which affect ⁇ -toxin production by Clostridium perfringens.
- ⁇ -toxin secreted from the cell was quantitated in a sandwich ELISA assay using two mouse anti- ⁇ - toxin monoclonal antibodies followed by a goat anti-mouse IgG2A conjugated to horse radish peroxidase (HRP).
- HRP horse radish peroxidase
- Toxin was quantitated by serial dilution of the cultures and compared to toxin produced by cultures which did not contain added peptide (base media cultures). Absorbance was read at 492 nm and the B 50 values (the dilutions at which the A492 signal is 50% of the maximum signal) were calculated and averaged for replicate cultures. To obtain the total toxin production value the reciprocal of the B 50 value was multiplied by the OD 6 oo.
- Toxin per cell was expressed as toxin/OD.
- ELISA assay formats are easily adapted for detection of other cell products for which monoclonal antibodies or other specific binders or ligands are available or can be generated.
- other immunoassay formats may be employed to quantify ⁇ - toxin or other products of interest. These include radioimmunoassay (RIA), direct ELISA, ELISA's using other indicating enzymes, ELISA's using fluorescent reporter molecules and flow-through assays such as those which employ surface plasmon resonance detection.
- RIA radioimmunoassay
- direct ELISA direct ELISA
- ELISA's using other indicating enzymes ELISA's using fluorescent reporter molecules
- flow-through assays such as those which employ surface plasmon resonance detection.
- the ELISA results for ⁇ -toxin were confirmed in a bioassay.
- GEAL SEQ ID NO:l
- KLAL SEQ ID NO:2
- SEQ ID NO:3 was so inhibitory to growth that the stage II culture did not reach 1 OD, the minimum requirement for proceeding to testing in stage III.
- the constituent amino acids of SEQ ID NO:l and SEQ ID NO:2 produced no significant difference in growth as compared to the base medium alone.
- EKAL SEQ ID NO:3 also substantially enhanced growth in both crude form (2X improvement in growth) and purified form (3.5X improvement in growth).
- ESAL (SEQ ID NO:4) was also found to enhance growth in both crude and purified form. The fact that similar results were observed with both crude and purified peptides indicates that the peptide itself, and not a minor chemical involved in peptide processing, is responsible for the effect.
- Toxin production in response to the peptides in the XXAL library was evaluated using 15 hr. growth and two-point ELISA values. Toxin data was collected on 75 of the 100 peptides in this library and the number of replicates per tetramer ranged from 1-14. Total toxin ratio was calculated as the quotient of the total toxin derived for media containing test peptide divided by the base media total toxin value. It was found that VNAL (SEQ ID NO:8), SNAL (SEQ ID NO:7), DKAL (SEQ ID NO: 14), and NDAL (SEQ ID NO:5) increased the total toxin ratio. LSAL (SEQ ID NO: 15) did not have an effect on growth, however, it significantly inhibited toxin production.
- the XXAL limited diversity library was rationally designed based on the predominant C-termini found on peptides in the best-performing hydrolysate for growth of the selected cell type. This concept can be extended to design of other libraries to be screened for peptides affecting a variety of cells.
- the following table illustrates the C- and/or N-termini of peptides preferred for construction of libraries to be screened for compounds which affect the growth of cells which prefer culture in the presence of hydrolysates prepared with the indicated enzyme or chemical reagent.
- V8 protease D or E endoproteinase Asp-N D enzyme (cleaves on the N- terminal side of D)
- all amino acids in a particular group may be placed in positions 1 and 2, or in all non-C-terminal positions of the tetrapeptide.
- the letter Z is used to represent any one of the possible amino acid residues such libraries would be described as, for example, ZZAL and ZZZL.
- the C-terminal amino acid may be any of the residues associated with known enzymatic or chemical cleavage of proteins.
- peptide KKAL As the library evolved from XXAL to ZZAL the following peptides were found to significantly enhance cell growth: NDAL (SEQ ID NO:5), NNAL (SEQ ID NO:6), SNAL (SEQ ID NO:7) and VNAL (SEQ ID NO:8). In contrast, peptide KKAL (SEQ ID NO:9) inhibited cell growth.
- EKAL SEQ ID NO:3
- DKAL DKAL
- FEFVG (SEQ ID NO: 16) had the second highest mean of the peptides tested for total toxin production (8.79) and its effect was found to be highly reproducible over multiple experimental repetitions. Further statistical analysis of SEQ ID NO: 16 demonstrated that its mean for total toxin production was statistically significantly higher than the means below 7.
- optimized base medium a defined synthetic medium which does not contain hydrolysate
- SEQ ID NO: 16 enhanced growth by about 40% as compared to the optimized base medium alone, while addition of its constituent amino acids to the medium (F, E, V, G) increased growth only about 15%.
- SEQ ID NO: 16 increased total toxin in the two-point ELISA by about 2.2x over total toxin production in the optimized base medium alone, while addition of the constituent amino acids resulted in total toxin production approximately equivalent to the base medium alone. It was also found that in commercial media containing 3.5% hydrolysate blend, SEQ ID NO: 16 doubled the amount of toxin produced per cell but did not increase growth. This accounted for a near doubling of total toxin produced by the culture with little or no increase in cell number. This is a particularly desirable outcome for pharmaceutical companies, as the increase in toxin is obtained without the need to process additional cell mass.
- the ten pentamers with the highest mean total toxin production were FSLLE (SEQ ID NO: 17, 8.855), FEFVG (SEQ ID NO:16, 8.786611), FSFVE (SEQ ID NO:18, 8.727), NEYLY (SEQ ID NO:19, 8.665) , FDIST (SEQ ID NO:20, 8.395), NLTEL (SEQ ID NO:21, 8.321), SQLEL (SEQ ID NO:22, 8.28375), ETLNL (SEQ ID NO:23, 8.28), NQLEV (SEQ ID NO:24, 7.81) and IKLAS (SEQ ID NO:25, 7.7475).
- HTVEL (SEQ ID NO:26), QNDVY (SEQ ID NO:27), LPDLF (SEQ ID NO:28), DTHHI (SEQ ID NO:29), FVPEK (SEQ ID NO:30), GYPEV (SEQ ID NO:31), HAPAY (SEQ ID NO:32), SNGIY (SEQ ID NO:33), KFIEK (SEQ ID NO:34), MHAPP (SEQ ID NO:35), MPNNF (SEQ ID NO:36), PELME (SEQ ID NO:37), FMSTA (SEQ ID NO:38), VNVQA (SEQ ID NO:39), KFIFE (SEQ ID NO:40), PLFEQ (SEQ ID NO:41), MMELE (SEQ ID NO:42), ALFHE (SEQ ID NO:43), YEQQN (SEQ ID NO:44), GGMPG (SEQ ID NO:45), SYIME (SEQ ID NO:46) and YEYIY (SEQ ID NO:47) also
- VHVYQ (SEQ ID NO:67) and NNNNN (SEQ ID NO:68) resulted in toxin production above the mean obtained in 0.5% hydrolysate media.
- YEYIG (SEQ ID NO:69) in 0.5% hydrolysate media produced a total toxin mean value greater than twice that obtained using 3.5% hydrolysate alone.
- Peptides identified in the XXXX library space were also found to inhibit growth of C. perfringens 1 .
- SKKA SEQ ID NO:10
- KGLK SEQ ID NO:ll
- VKKG SEQ ID NO:12
- GLKK SEQ ID NO: 13
- the pentamer FEFVG (SEQ ID NO:16) was modified to form the hexamers EFEFVG (SEQ ID NO:74), NFEFVG (SEQ ID NO:75), FEFVGG (SEQ ID NO:76), FEFVGE (SEQ ID NO:77) and FEFVGY (SEQ ID NO:78), which produced total toxin values ranging from 6 to 9.7 as compared to the base media alone which had a mean total toxin of 3.82. Cell growth in chemically defined media is typically slower than in hydrolysate based media.
- peptides were found to enhance growth in chemically defined base media sufficiently to equal growth in traditional hydrolysate based media. These peptides include VFTDK (SEQ ID NO:79), LTKVD (SEQ ID NO:80), LLPKT (SEQ ID NO:81), PLTGG (SEQ ID NO:82), GGTPV (SEQ ID NO:83), PKGTV (SEQ ID NO:84), DDDDD (SEQ ID NO:85), KLGVK (SEQ ID NO:86), TPKTL (SEQ ID NO:87), GDVTK (SEQ ID NO:88), HPAFE (SEQ ID NO:89), FFPTD (SEQ ID NO:90), VNYQA (SEQ ID NO:91) and IILEA (SEQ ID NO:92) which all produced mean growth values of 4 at 4 hours.
- the chemically defined screening media alone had a mean of 3.2 OD for growth at 4 hours.
- ESALD SEQ ID NO:93
- ESALD also enhanced growth over the base media.
- Peptides identified as having the desired properties may be produced by a variety of methods in quantities sufficient for commercial or research use.
- the peptides may be chemically or enzymatically synthesized as is known in the art, however, more preferably the peptides are produced using methods for expression of recombinant nucleic acids encoding the peptides.
- the selected peptide sequence is first converted to a corresponding nucleic acid sequence which encodes the amino acid sequence of the peptide. This may be an RNA sequence which is subsequently translated to produce the peptide, or it may be a DNA sequence which is then cloned into an expression vector under the control of a promoter which enables the transcription of the DNA sequence with subsequent translation of the mRNA.
- peptides may be purified, if necessary, also using standard methods for physical, chemical and affinity separation which are well-known to the practitioner.
- the peptides of the invention comprise C-termini or N-termini corresponding to the C-termini and N-termini produced by enzymatic or chemical cleavage of proteins in traditional culture media hydrolysates.
- This facilitates recombinant production of the peptides, typically in bacteria or yeast, using concatemer constructs as are known in the art.
- Concatemers may contain hundreds of copies of the coding sequence.
- Concatemer nucleic acid constructs encoding peptides of the invention with C-termini or N-termini which are subject to enzymatic or chemical cleavage produce polypeptides comprising repeating subunits of the peptide amino acid sequence separated by convenient cleavage sites.
- Cleavage using the appropriate enzymatic or chemical means releases the peptide monomer.
- This approach to manufacture increases the yield of the desired peptide and decreases manufacturing costs.
- Post-expression processing is simplified due to the cleavage site which is automatically produced by cloning of the concatamer structure.
- the peptide NDAL (SEQ ID NO:5) was quickly discovered using the XXAL library approach and can be efficiently manufactured using the concatamer strategy with subsequent cleavage using pepsin or the endopeptidase N-ASN.
- the growth inhibitor KKAL (SEQ ID NO:9) could also be manufactured using the concatamer strategy and cleavage with pepsin.
- FSFVE FSFVE (SEQ ID NO: 18) could be expressed as a concatamer and cleaved into monomers following expression using the V8 protease.
- HTVEL SEQ ID NO:26
- QNDVY SEQ ID NO:27
- These peptides could be expressed from the same concatamer minigene, cleaved by pepsin into peptides and used without further separation since both exhibit the same attribute.
- Such a combination minigene may also be useful when one peptide is needed to balance another. For example, alternating a basic sequence with an acidic sequence may make the total minigene product compatible with the host cell.
- Combination minigenes may also be useful production vehicles when multiple peptides exhibiting different attributes are desired for formulation into the same medium. In this case, all the necessary peptides may be expressed, processed and formulated in a single production process without the need to separate the individual peptides.
- FEFVG SEQ ID NO:16
- FEFVG can be cloned as a concatamer with a nonsense sequence spacer between each peptide coding sequence to permit liberation from the concatamer.
- the coding sequence for the nonsense peptide DEEP could flank the sequence coding for the media enhancer peptide, and the concatamer could be cleaved with the endoproteinase Asp-N (which cuts before aspartic acid) and proline endopeptidase (which cuts after proline).
- This approach requires multiple reagents and the spacer may need to be separated from the desired peptide if it is not compatible with the cell culture.
- Nonsense spacers may also be used between peptide coding sequences in the concatemer to generate cleavable sites and facilitate processing in otherwise non-cleavable peptide sequences.
- the preferred use of the peptides of the invention is in cell culture media (including media for culture of cells and tissues derived from prokaryotes and eukaryotes, vertebrates and invertebrates) to produce a desired effect on the cells. Such effects may include increased or decreased growth rate, increased or decreased production of a cell product, or increased or decreased response to a substance in the environment (e.g., a hormone).
- the base culture medium to which the peptide is added may be a chemically defined medium or a complex medium containing undefined components such as fetal calf serum (FCS) or yeast hydrolysate. Chemically defined or semi-defined media are preferred, as the peptides of the invention are most advantageously used as a means for reducing or eliminating performance variability due to undefined media components and for reducing or eliminating animal-derived components in media used to produce pharmaceutical products.
- a selected peptide is typically added to the culture medium at a concentration from about 0.1-25 mM more preferably from about 1.0 and 12 mM. However, it is within the ordinary skill in the art to determine an appropriate concentration of an inventive peptide in a selected culture medium. Multiple peptides may be added to the culture medium to produce a synergistic effect (if both have the same effect on the cells) or to produce multiple effects (if each peptide has a different effect on the cells).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
L'invention concerne des bibliothèques de peptides qui servent à identifier rapidement des composés biologiquement actifs. L'invention concerne en outre des peptides qui comportent des peptides affectant la croissance cellulaire, et des peptides qui renforcent ou inhibent la production de protéines cellulaires. Nombre de ces peptides peuvent être produits en grande quantité par des techniques de recombinaison et formulés dans un milieu de culture afin de produire l'effet voulu sur des cellules et tissus cultivés. Selon l'invention, certaines de ces bibliothèques et les peptides qui y ont été identifiés sont particulièrement utiles dans des procédés d'expression de recombinaison à base concatémère.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01941853A EP1317475A2 (fr) | 2000-06-30 | 2001-06-04 | Peptides a utiliser dans des milieux de culture |
JP2002507843A JP2004519417A (ja) | 2000-06-30 | 2001-06-04 | 培地用ペプチド |
AU2001275173A AU2001275173A1 (en) | 2000-06-30 | 2001-06-04 | Peptides for use in culture media |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/608,892 | 2000-06-30 | ||
US09/608,892 US6759510B1 (en) | 2000-06-30 | 2000-06-30 | Peptides for use in culture media |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002002591A2 true WO2002002591A2 (fr) | 2002-01-10 |
WO2002002591A3 WO2002002591A3 (fr) | 2003-03-20 |
Family
ID=24438499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/017943 WO2002002591A2 (fr) | 2000-06-30 | 2001-06-04 | Peptides a utiliser dans des milieux de culture |
Country Status (5)
Country | Link |
---|---|
US (6) | US6759510B1 (fr) |
EP (1) | EP1317475A2 (fr) |
JP (1) | JP2004519417A (fr) |
AU (1) | AU2001275173A1 (fr) |
WO (1) | WO2002002591A2 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044045A3 (fr) * | 2001-11-19 | 2004-08-05 | Becton Dickinson Co | Peptides promouvant l'adherence, la croissance et la secretion des cellules |
US7074615B2 (en) | 2003-08-15 | 2006-07-11 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and cell growth |
US7157275B2 (en) | 2003-08-15 | 2007-01-02 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
EP2351833A4 (fr) * | 2008-10-28 | 2013-05-01 | Chugai Pharmaceutical Co Ltd | Milieu de culture contenant un peptide pour la culture d'une cellule animale |
EP2561065B1 (fr) | 2010-04-23 | 2016-11-09 | Life Technologies Corporation | Milieu de culture cellulaire comprenant des petits peptides |
CN107266554A (zh) * | 2012-03-19 | 2017-10-20 | 麦德林制药私人有限公司 | 制备重组血管扩张肽的方法、表达构建体、宿主细胞及重组融合多肽 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759510B1 (en) * | 2000-06-30 | 2004-07-06 | Becton, Dickinson And Company | Peptides for use in culture media |
US20080020979A1 (en) * | 2006-06-09 | 2008-01-24 | Rapraeger Alan C | Peptides of Syndecan-1 For Inhibiting Angiogenesis |
US7547760B2 (en) * | 2006-07-03 | 2009-06-16 | West Virginia University | Peptides and chemical compound for inhibition of SHP2 function |
DE102007011912A1 (de) * | 2007-03-13 | 2008-09-18 | Sanofi-Aventis | Verfahren für das Erzeugen von Peptidbibliotheken und deren Verwendung |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3586772T2 (de) | 1984-07-24 | 1993-03-04 | Coselco Mimotopes Pty Ltd | Verfahren zur bestimmung von mimotopen. |
US5747334A (en) * | 1990-02-15 | 1998-05-05 | The University Of North Carolina At Chapel Hill | Random peptide library |
US5650489A (en) * | 1990-07-02 | 1997-07-22 | The Arizona Board Of Regents | Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof |
JPH0474197A (ja) * | 1990-07-12 | 1992-03-09 | Naoyoshi Suzuki | 新規な免疫調整生理活性ペプチド |
AU668347B2 (en) | 1990-11-21 | 1996-05-02 | Torrey Pines Institute For Molecular Studies | Synthesis of equimolar multiple oligomer mixtures, especially of oligopeptide mixtures |
ES2097925T3 (es) * | 1991-09-18 | 1997-04-16 | Affymax Tech Nv | Metodo para sintetizar diversas colecciones de oligomeros. |
ES2170105T3 (es) | 1993-10-04 | 2002-08-01 | Pasteur Institut | Compuestos que modifican la transmision serotoninergica; aplicaciones diagnosticas y terapeuticas. |
US5962634A (en) | 1994-07-08 | 1999-10-05 | Thomas Jefferson University | IgE antagonists |
US5695980A (en) * | 1995-06-06 | 1997-12-09 | Human Genome Sciences | Polynucleotides, vectors, cells and an expression method for human MutT2 |
US5972406A (en) * | 1995-04-14 | 1999-10-26 | Bioelastics Research Ltd. | Bioelastomers suitable as food product additives |
US6498138B1 (en) * | 1998-03-11 | 2002-12-24 | University Of Southern California | Method of promoting production of living tissue equivalents |
US6248874B1 (en) * | 1998-11-24 | 2001-06-19 | Wisconsin Alumni Research Foundation | DNA molecules encoding bacterial lysine 2,3-aminomutase |
US7742877B1 (en) * | 1999-07-22 | 2010-06-22 | Becton, Dickinson & Company | Methods, apparatus and computer program products for formulating culture media |
US6759510B1 (en) | 2000-06-30 | 2004-07-06 | Becton, Dickinson And Company | Peptides for use in culture media |
-
2000
- 2000-06-30 US US09/608,892 patent/US6759510B1/en not_active Expired - Lifetime
-
2001
- 2001-06-04 JP JP2002507843A patent/JP2004519417A/ja active Pending
- 2001-06-04 EP EP01941853A patent/EP1317475A2/fr not_active Withdrawn
- 2001-06-04 WO PCT/US2001/017943 patent/WO2002002591A2/fr active Application Filing
- 2001-06-04 AU AU2001275173A patent/AU2001275173A1/en not_active Abandoned
-
2004
- 2004-05-07 US US10/841,049 patent/US20050186634A1/en not_active Abandoned
- 2004-05-07 US US10/841,121 patent/US7179635B2/en not_active Expired - Lifetime
- 2004-05-07 US US10/841,056 patent/US7267983B2/en not_active Expired - Fee Related
-
2005
- 2005-12-09 US US11/298,344 patent/US20060088889A1/en not_active Abandoned
-
2007
- 2007-08-08 US US11/835,975 patent/US20090124008A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044045A3 (fr) * | 2001-11-19 | 2004-08-05 | Becton Dickinson Co | Peptides promouvant l'adherence, la croissance et la secretion des cellules |
US7041506B2 (en) | 2001-11-19 | 2006-05-09 | Becton Dickinson And Company | Peptides promoting cell adherence, growth and secretion |
US7344884B2 (en) | 2001-11-19 | 2008-03-18 | Becton, Dickinson And Company | Peptides promoting cell adherence, growth and secretion |
US7074615B2 (en) | 2003-08-15 | 2006-07-11 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and cell growth |
US7157275B2 (en) | 2003-08-15 | 2007-01-02 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
US7399630B2 (en) | 2003-08-15 | 2008-07-15 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
EP2351833A4 (fr) * | 2008-10-28 | 2013-05-01 | Chugai Pharmaceutical Co Ltd | Milieu de culture contenant un peptide pour la culture d'une cellule animale |
EP2561065B1 (fr) | 2010-04-23 | 2016-11-09 | Life Technologies Corporation | Milieu de culture cellulaire comprenant des petits peptides |
US10793827B2 (en) | 2010-04-23 | 2020-10-06 | Life Technologies Corporation | Cell culture medium comprising small peptides |
US11365389B2 (en) | 2010-04-23 | 2022-06-21 | Life Technologies Corporation | Cell culture medium comprising small peptides |
EP3165600B1 (fr) | 2010-04-23 | 2022-11-02 | Life Technologies Corporation | Milieu de culture cellulaire comprenant des petits peptides |
CN107266554A (zh) * | 2012-03-19 | 2017-10-20 | 麦德林制药私人有限公司 | 制备重组血管扩张肽的方法、表达构建体、宿主细胞及重组融合多肽 |
Also Published As
Publication number | Publication date |
---|---|
US7179635B2 (en) | 2007-02-20 |
US20040265911A1 (en) | 2004-12-30 |
US7267983B2 (en) | 2007-09-11 |
AU2001275173A1 (en) | 2002-01-14 |
US20090124008A1 (en) | 2009-05-14 |
US20050186634A1 (en) | 2005-08-25 |
JP2004519417A (ja) | 2004-07-02 |
WO2002002591A3 (fr) | 2003-03-20 |
US20040265910A1 (en) | 2004-12-30 |
EP1317475A2 (fr) | 2003-06-11 |
US6759510B1 (en) | 2004-07-06 |
US20060088889A1 (en) | 2006-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090124008A1 (en) | Peptides for use in culture media | |
Gallop et al. | Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries | |
Margoliash | Primary structure and evolution of cytochrome c | |
Goll et al. | Role of the calpain system in muscle growth | |
Beck et al. | Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development | |
Jackson et al. | Enzymic cyclization of linear peptide esters using subtiligase | |
Nachman et al. | Leads for insect neuropeptide mimetic development | |
Higuchi et al. | Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom | |
Dolle | Discovery of enzyme inhibitors through combinatorial chemistry | |
ZHANG et al. | A novel angiotensin I converting enzyme inhibitory peptide from the milk casein: Virtual screening and docking studies | |
JPH05508321A (ja) | ペプチドライブラリィ及びスクリーニングシステム | |
KR100237126B1 (ko) | 펩티드 유사체의 신속한 합성 및 검색방법 | |
Atlas | The active site of porcine elastase | |
Eichler et al. | Novel α-glucosidase inhibitors identified using multiple cyclic peptide combinatorial libraries | |
CN107849737B (zh) | 肽文库构建方法及相关载体 | |
Nagasawa et al. | Structure and activity of Bombyx PBAN | |
Richter et al. | Biosynthesis of peptides in the skin of Xenopus laevis: isolation of novel peptides predicted from the sequence of cloned cDNAs | |
AU2006224318B2 (en) | Peptide stabilizer compounds and screening method | |
Kobayakawa et al. | Design, synthesis and evaluation of bioactivity of peptidomimetics based on chloroalkene dipeptide isosteres | |
WO2003106615A3 (fr) | Deprotection du soufre apres scission pour synthese convergente de proteine par ligation chimique | |
Dziuba et al. | Chicken meat proteins as potential precursors of bioactive peptides | |
JPH06510281A (ja) | ペプチドアミドの製造 | |
Creutz et al. | Pattern of repeating aromatic residues in synexin. Similarity to the cytoplasmic domain of synaptophysin | |
JPH0616568A (ja) | アンジオテンシン変換酵素阻害剤 | |
WO1996018104A1 (fr) | Polypeptides apparentes a la melittine, leurs ensembles de melanges et banques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU BR CA CN ES IL JP KR MX NZ RU SG |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001941853 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001941853 Country of ref document: EP |