WO2002008129A1 - Procede de vitrification de matieres poreuses chargees de suies - Google Patents
Procede de vitrification de matieres poreuses chargees de suies Download PDFInfo
- Publication number
- WO2002008129A1 WO2002008129A1 PCT/EP2001/008436 EP0108436W WO0208129A1 WO 2002008129 A1 WO2002008129 A1 WO 2002008129A1 EP 0108436 W EP0108436 W EP 0108436W WO 0208129 A1 WO0208129 A1 WO 0208129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soot body
- soot
- heating zone
- glazing
- porous
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1453—Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1469—Means for changing or stabilising the shape or form of the shaped article or deposit
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01466—Means for changing or stabilising the diameter or form of tubes or rods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/47—Shaping the preform draw bulb before or during drawing
Definitions
- the invention relates to a method for vitrifying a porous soot body made of silicon dioxide, with a soot body which is held in a vertical orientation by means of a holding device and is continuously fed to a heating zone, the soot body being surrounded by a mold at least from the entry into the heating zone.
- the holder consists of a bracket formed from platinum wires, on which the hollow cylindrical soot body is suspended.
- the hollow cylinder wall has two horizontally extending through holes in its upper region, through which the platinum wires are guided.
- the soot body is continuously fed to a vertically oriented sintering furnace. The soot body softens in a softening zone.
- the softening zone begins at the lower end of the soot body. With the Lowering the soot body into the sintering furnace continuously moves the softening zone in the soot body upwards. The weight of the already sintered part of the soot body hanging from the softening zone increases continuously. Due to the low viscosity in the softening zone, the soot body lengthens when it is lowered under its own weight. The method is therefore particularly unsuitable for sintering large-volume and heavy soot bodies and it leads to relatively imprecise quartz glass bodies in terms of their dimensions, which have to be reworked, for example, by grinding.
- volume contraction of the soot body is determined on the basis of its sintering activity, but this does not lead to sufficiently exact dimensions or deformations (so-called banana shape). It is therefore also necessary with this method to rework the glazed quartz glass body by grinding.
- a method in which a rod-shaped soot body made of silicon dioxide is glazed within a mold is known from DE 3521 119 A1.
- the shape itself is also made of quartz glass and forms the cladding glass of a preform for optical fibers.
- the cladding glass shrinks inextricably onto the glazing soot body.
- This procedure is solely aimed at producing an optical fiber preform.
- the permanent connection between the cladding glass and the soot body to be glazed inside is useful for this application.
- a general shaping glazing of soot bodies made of silicon dioxide by means of quartz glass molds is disadvantageous, since after the glazing the outer area of the obtained
- Quartz glass body which corresponds to the original shape, for example, would have to be removed again by complex grinding. Furthermore, it cannot be ruled out that in the cross section of the quartz glass body obtained at the transition area between the original soot body and the quartz glass shape, undesirable jumps in the glass properties can be recorded.
- this object is achieved according to the invention in that the soot body within the
- Heating zone is heated to a temperature at which it softens to the extent that it takes on the lateral dimensions of the mold to form a glazed soot body, and that the glazed soot body is detached from the mold.
- the soot body to be sintered is essentially dimensionally stable at room temperature. This means that it can be set up or hung up vertically without plastically deforming under its own weight.
- the silicon dioxide soot softens in the heating zone. Its viscosity decreases, so that the soot body deforms under the forces acting on the softening zone. In addition to gravity, it also works Deformation forces due to a volume contraction on the soot body.
- the soot body has a density of only approx. 30% of the solid quartz glass. Since the sintering or vitrification takes place continuously, the softening zone moves from one end of the soot body to the opposite end.
- the soot body is continuously introduced into the heating zone of a sintering or glazing furnace and is thereby heated to a temperature at which the soot body softens to such an extent that it flows out into a shape surrounding it or fills the hollow dimensions of a shape surrounding it.
- the shape itself can either be carried with the soot body before the soot body is immersed in the heating zone or it is located within the sintering furnace and only takes up the soot body there.
- the shape is such that the softening soot body or the glazed quartz glass body does not adhere to it and can therefore be removed from it without destroying it.
- the shape can expediently consist of several parts that can be assembled.
- the method according to the invention enables soot bodies to be vitrified continuously with relatively precise predetermination of the final dimensions of the quartz glass body to be obtained. Distortion or deformation of the glazing soot body, as can be observed in the method according to the prior art, are excluded with the method according to the invention.
- the method according to the invention has proven particularly useful when a holding device acts at least on the upper end of the soot body to be glazed, a cylindrical graphite rod which is guided through the longitudinal bore of the hollow cylindrical soot body being advantageous as the holding device, and which helps stabilize the soot body.
- the holding device can also support the soot body at the base.
- the holding device is moved in the vertical direction with a controllable or controllable movement speed by means of a movement unit such that the soot body is fed to the heating zone in accordance with its length contraction.
- the holding device is connected to a movement unit.
- the vertical movement of the holding device with the soot body can be controlled or regulated in accordance with the contraction in length of the soot body during the glazing. This means that the feed rate into the heating zone can be varied and adapted to the volume and length contraction.
- the porous soot body is expediently produced by the flame hydrolysis process.
- the Si0 2 particles resulting from flame hydrolysis are collected on a support and form the porous soot body. If the carrier is, for example, a cylindrical rod which is removed again after the separation, a hollow cylindrical soot body is obtained.
- a hollow cylindrical soot body has the advantage that, as long as the cavity is deliberately maintained during glazing, a quartz glass rod can be inserted into the cavity if necessary, which forms the core for a preform from which optical fibers can be drawn.
- the Si0 2 -Mate ⁇ ' al from such a core rod and from the jacket surrounding the core rod can differ in terms of dopants.
- the temperature for the glazing is preferably carried out in two steps with a pre-sintering at approximately 1300 to 1350 ° C. and a final glazing at approximately 1700 to 1750 ° C.
- a material that is stable up to 1800 ° C. is expedient. Ceramic materials are suitable for such applications. Graphite or silicon carbide has proven particularly useful.
- the molding material can be gas-permeable in order to enable or improve the application of gas or also the removal of gas during or before the glazing. Different grades of graphite can be used, carbon-fiber-reinforced graphite (CFC) being particularly suitable.
- CFC carbon-fiber-reinforced graphite
- refractory metals preferably molybdenum or platinum, are also suitable.
- a halogen-containing gas is applied to expel water from the soot.
- Chlorine gas has proven itself as a halogen-containing gas.
- This treatment step is also called chlorination.
- the chlorination can take place as a separate process step before the soot body is vitrified, or if the soot body is already in the glazing furnace (inside or outside the mold), but before the soot sinters, i.e. in a temperature range between 800 ° C and about 1200 ° C.
- soot body is glazed under a vacuum or protective gas atmosphere, since this prevents or largely reduces oxidation of the graphite or molybdenum mold material, and also ensures high quality in terms of purity for the soot body to be glazed.
- a vacuum or protective gas atmosphere Argon, Helium or nitrogen proven.
- a helium atmosphere is particularly preferred because of the relatively good heat transfer.
- FIGS. 1 and 2 show a schematic illustration of simple glazing devices for the method according to the invention.
- the device according to FIG. 1 has an oven 1 with a vertical, cylindrical protective tube, which is surrounded on the outside by heating elements 2.
- the heating elements 2 generate a heating zone 2a in the furnace (indicated schematically in FIGS. 1 and 2 by horizontal, dashed boundary lines within the furnace protection tube).
- the hollow cylindrical soot body 3 to be glazed is now - after chlorination (chlorine gas flow 36 l / h) at 1000 ° C. - in the graphite mold 4, with a holding rod 5 being inserted into the longitudinal bore of the soot body 3 to stabilize the soot body 3.
- the holding rod 5 engages with a plate 6 at the upper end of the soot body 3 and is additionally supported on the bottom of the graphite mold 4.
- the graphite mold 4 is slowly fed into the furnace 1 from above by means of a movement unit 7, so that the lower part of the soot body 3 first reaches the heating zone 2a and is glazed there. To ensure complete glazing, the temperature in the hottest area of heating zone 2a is set to approximately 1700 ° C. A vacuum of 0.1 mbar prevails in the furnace 1. When the graphite mold 4 is lowered further with the soot body 3, the glazed area of the soot body 3 moves further upwards until a completely glazed quartz glass body has formed. Escaping residual gases can be discharged upwards through the porous part of the soot body 3.
- the slowly glazing soot body 3 assumes the hollow dimensions of the shape 4 surrounding it.
- Typical dimensions of the soot body 3 before glazing are in the range from 400 to 450 mm for the outer diameter and with a length of 2.5 to 3.0 meters.
- the diameter of the longitudinal bore or the holding rod 5 is approximately 50 to 80 mm.
- an average feed speed of the movement unit 7 of approximately 3 mm / min (downwards)
- a glazed quartz glass hollow cylinder with an outer diameter of 150 to 200 mm (diameter of the bore approximately 50 to 80 mm) and a length of 2 meters can be obtained.
- FIG. 2 shows a device for the method according to the invention, which comprises integrated chlorination and allows the end dimensions of the glazed quartz glass body to differ more than the geometry of the soot body 3.
- the soot body 3 to be glazed is located in an upper part of a gas-permeable graphite mold 4a, which is initially let into an upper but colder area of an oven 1 as explained with FIG. 1 and is charged with chlorine gas.
- the temperature during the chlorination is about 950 ° C at 10 vol% Cl 2 in helium (Cl 2 / He).
- the gas is fed into the furnace 1 from below.
- the gas flows through the soot body 3 and is led outwards again through the graphite form 4a which is gas-permeable at least in the upper region.
- the soot body 3, together with the mold 4a is slowly lowered further into higher temperature ranges, so that a pre-sintering phase at
- the graphite mold 4a is removed from the quartz glass body. It is not necessary to rework the quartz glass body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Selon un procédé connu de vitrification d'une matière poreuse chargée de suies à base de dioxyde de silicium, cette matière chargée de suies est retenue dans le sens vertical au moyen d'un dispositif de retenue et continuellement acheminée vers une zone de réchauffement. De plus, cette matière chargée de suies est entourée par un moule, au moins à son entrée dans la zone de réchauffement. La présente invention a pour objectif l'élaboration d'un procédé économique convenant à la vitrification de matières poreuses chargées de suies grand volume à base de dioxyde de silicium, selon lequel les étapes de traitement ultérieur destinées à optimiser les dimensions extérieures de la matière en verre de quartz obtenue peuvent être minimisées. A cet effet, cette matière chargée de suies (3) est chauffée au sein de la zone de réchauffement (2a) à une température à laquelle elle se ramollie jusqu'à ce que, sous la formation de la matière chargée de suies vitrifiée (3), cette matière prenne les dimensions latérales du moule (4; 4a) et que ladite matière vitrifiée (3) soit retirée du moule (4; 4a).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002513830A JP2004525842A (ja) | 2000-07-26 | 2001-07-20 | 多孔質スート体のガラス化方法 |
KR10-2003-7001032A KR20030051601A (ko) | 2000-07-26 | 2001-07-20 | 다공성 수트체의 유리화 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10036648 | 2000-07-26 | ||
DE10036648.1 | 2000-07-26 | ||
DE10041467.2 | 2000-08-23 | ||
DE10041467A DE10041467C1 (de) | 2000-07-26 | 2000-08-23 | Verfahren zum Verglasen von porösen Sootkörpern |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002008129A1 true WO2002008129A1 (fr) | 2002-01-31 |
Family
ID=26006530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/008436 WO2002008129A1 (fr) | 2000-07-26 | 2001-07-20 | Procede de vitrification de matieres poreuses chargees de suies |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2004525842A (fr) |
WO (1) | WO2002008129A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004067458A3 (fr) * | 2003-01-28 | 2005-02-24 | Heraeus Tenevo Ag | Procede pour realiser un cylindre creux en verre de silice synthetique au moyen d'un dispositif de retenue, et dispositif de retenue approprie a la mise en oeuvre du procede |
WO2005097693A1 (fr) * | 2004-04-07 | 2005-10-20 | Heraeus Tenevo Gmbh | Procede pour produire un cylindre creux en verre fondu synthetique comprenant l'utilisation d'un dispositif de maintien |
WO2006068136A1 (fr) * | 2004-12-21 | 2006-06-29 | Mitsubishi Materials Corporation | POUDRE MAGNETIQUE TENDRE METALLIQUE PLATE A BASE DE Fe-Ni-Mo, REVETUE D'UNE PELLICULE D'OXYDE ET AYANT UNE RUGOSITE DE SURFACE ELEVEE, ET PROCEDE POUR LA PRODUIRE |
WO2009090257A1 (fr) * | 2008-01-18 | 2009-07-23 | Heraeus Quartz Uk Limited | Fours de traitement thermique |
US8393179B2 (en) | 2006-05-24 | 2013-03-12 | Heraeus Quarzglas Gmbh & Co. Kg | Method for producing a semifinished product from synthetic quartz glass |
US9701561B2 (en) | 2010-07-09 | 2017-07-11 | Heraeus Quartz UK Ltd. | High purity synthetic silica and items such as semiconductor jigs manufactured therefrom |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1529385A (en) * | 1975-06-13 | 1978-10-18 | Heraeus Schott Quarzschmelze | Tubes of non-circular cross-section and the manufacture thereof |
JPH01224236A (ja) * | 1988-03-01 | 1989-09-07 | Furukawa Electric Co Ltd:The | 多孔質光ファイバ母材の透明ガラス化方法 |
JPH05170473A (ja) * | 1991-12-18 | 1993-07-09 | Shin Etsu Chem Co Ltd | 光ファイバ用母材の製造方法 |
JPH05339012A (ja) * | 1992-06-08 | 1993-12-21 | Fujikura Ltd | ガラス母材の加熱処理装置 |
JPH07330362A (ja) * | 1994-06-06 | 1995-12-19 | Fujikura Ltd | ガラスファイバ紡糸用母材先端の加工方法およびその装置 |
DE19736949C1 (de) * | 1997-08-25 | 1999-01-21 | Heraeus Quarzglas | Verfahren zur Herstellung eines Quarzglaskörpers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8403380A (nl) * | 1984-11-07 | 1986-06-02 | Philips Nv | Werkwijze en inrichting voor het verdichten van een voorgevormd poreus lichaam uit materiaal, waarvan het hoofdbestanddeel uit sio2 bestaat. |
JPS63147839A (ja) * | 1986-12-10 | 1988-06-20 | Furukawa Electric Co Ltd:The | 多孔質ガラス母材用のド−プ方法 |
JPH02149442A (ja) * | 1988-12-01 | 1990-06-08 | Sumitomo Electric Ind Ltd | 光ファイバ用母材の製造方法 |
-
2001
- 2001-07-20 JP JP2002513830A patent/JP2004525842A/ja active Pending
- 2001-07-20 WO PCT/EP2001/008436 patent/WO2002008129A1/fr active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1529385A (en) * | 1975-06-13 | 1978-10-18 | Heraeus Schott Quarzschmelze | Tubes of non-circular cross-section and the manufacture thereof |
JPH01224236A (ja) * | 1988-03-01 | 1989-09-07 | Furukawa Electric Co Ltd:The | 多孔質光ファイバ母材の透明ガラス化方法 |
JPH05170473A (ja) * | 1991-12-18 | 1993-07-09 | Shin Etsu Chem Co Ltd | 光ファイバ用母材の製造方法 |
JPH05339012A (ja) * | 1992-06-08 | 1993-12-21 | Fujikura Ltd | ガラス母材の加熱処理装置 |
JPH07330362A (ja) * | 1994-06-06 | 1995-12-19 | Fujikura Ltd | ガラスファイバ紡糸用母材先端の加工方法およびその装置 |
DE19736949C1 (de) * | 1997-08-25 | 1999-01-21 | Heraeus Quarzglas | Verfahren zur Herstellung eines Quarzglaskörpers |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 13, no. 546 6 December 1989 (1989-12-06) * |
PATENT ABSTRACTS OF JAPAN vol. 17, no. 577 20 October 1993 (1993-10-20) * |
PATENT ABSTRACTS OF JAPAN vol. 18, no. 176 25 March 1994 (1994-03-25) * |
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 4 30 April 1996 (1996-04-30) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004067458A3 (fr) * | 2003-01-28 | 2005-02-24 | Heraeus Tenevo Ag | Procede pour realiser un cylindre creux en verre de silice synthetique au moyen d'un dispositif de retenue, et dispositif de retenue approprie a la mise en oeuvre du procede |
CN100335430C (zh) * | 2003-01-28 | 2007-09-05 | 赫罗伊斯·坦尼沃有限责任公司 | 借助保持装置生产用合成石英玻璃制成的中空筒的方法和实施所述方法的保持装置 |
WO2005097693A1 (fr) * | 2004-04-07 | 2005-10-20 | Heraeus Tenevo Gmbh | Procede pour produire un cylindre creux en verre fondu synthetique comprenant l'utilisation d'un dispositif de maintien |
WO2006068136A1 (fr) * | 2004-12-21 | 2006-06-29 | Mitsubishi Materials Corporation | POUDRE MAGNETIQUE TENDRE METALLIQUE PLATE A BASE DE Fe-Ni-Mo, REVETUE D'UNE PELLICULE D'OXYDE ET AYANT UNE RUGOSITE DE SURFACE ELEVEE, ET PROCEDE POUR LA PRODUIRE |
US8393179B2 (en) | 2006-05-24 | 2013-03-12 | Heraeus Quarzglas Gmbh & Co. Kg | Method for producing a semifinished product from synthetic quartz glass |
WO2009090257A1 (fr) * | 2008-01-18 | 2009-07-23 | Heraeus Quartz Uk Limited | Fours de traitement thermique |
US9701561B2 (en) | 2010-07-09 | 2017-07-11 | Heraeus Quartz UK Ltd. | High purity synthetic silica and items such as semiconductor jigs manufactured therefrom |
Also Published As
Publication number | Publication date |
---|---|
JP2004525842A (ja) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0701975B1 (fr) | Procédé de frittage de barreaux creux en suie de silice et dispositif pour le frittage de tels barreaux creux | |
DE2852410C2 (de) | Verfahren und Vorrichtung zur Herstellung von Siliciumcarbid-Formkörpern | |
DE2922794C3 (de) | Verfahren zur Herstellung von optischen Wellenleitern durch Dotieren einer rohrförmigen, offenporigen Vorform mit Gasen | |
DE102006024831B4 (de) | Verfahren zur Herstellung eines Halbzeugs aus synthetischem Quarzglas | |
EP3299345B1 (fr) | Procede de fabrication d'une ebauche optique en verre de quartz synthetique | |
DE2313249B2 (de) | Verfahren zur herstellung optischer glasrohlinge | |
DE69601247T2 (de) | Verfahren zum Dehydratisieren und Sintern einer optischen Glasfaservorform | |
DE102008024842B3 (de) | Verfahren zur Herstellung eines Zylinders aus Quarzglas unter Einsatz einer Haltevorrichtung sowie Haltevorrichtung | |
DE2833051A1 (de) | Verfahren zur herstellung von glasteilen | |
EP2141131B1 (fr) | Procédé de fabrication d'un creuset de silice vitreuse | |
DE10019693A1 (de) | Verfahren zur Herstellung eines Bauteils aus opakem, synthet. Quarzglas, sowie nach dem Verfahren hergestelltes Quarzglasrohr | |
DE3217965A1 (de) | Verfahren zur herstellung von glasfaser-lichtwellenleitern | |
DE102004035086B4 (de) | Verfahren zur Herstellung eines Hohlzylinders aus Quarzglas mit kleinem Innendurchmesser sowie zur Durchführung des Verfahrens geeignete Vorrichtung | |
DE10152328B4 (de) | Verfahren zur Herstellung eines Rohres aus Quarzglas, rohrförmiges Halbzeug aus porösem Quarzglas u. Verwendung desselben | |
WO2002008129A1 (fr) | Procede de vitrification de matieres poreuses chargees de suies | |
DE10041467C1 (de) | Verfahren zum Verglasen von porösen Sootkörpern | |
WO2004067458A2 (fr) | Procede pour realiser un cylindre creux en verre de silice synthetique au moyen d'un dispositif de retenue, et dispositif de retenue approprie a la mise en oeuvre du procede | |
DE69008461T2 (de) | Ofen zum Erhitzen der Vorform einer optischen Faser und Verfahren zur Herstellung einer Glasvorform. | |
DE69809167T2 (de) | Verfahren zum Herstellen eines Körpers aus Silica durch Extrusion eines Sol-gels | |
DE102008056084B4 (de) | Zylinderförmiges Halbzeug zur Herstellung einer optischen Faser sowie Verfahren für die Herstellung der Faser oder einer Vorform dafür | |
DE2827303C2 (de) | Verfahren zur Herstellung eines Glasgegenstandes und dessen Anwendung | |
DE10218864C1 (de) | Verfahren zur Herstellung eines zylinderförmigen Quarzglaskörpers mit geringem OH-Gehalt | |
DE102007029506B4 (de) | Verfahren zur Herstellung eines Zylinders aus Quarzglas unter Einsatz einer Haltevorrichtung sowie geeignete Haltevorrichtung zur Durchführung des Verfahrens | |
EP3702333A1 (fr) | Procédé et dispositif de fabrication d'un composant de verre | |
DE102011113130B3 (de) | Solarstrahlungsempfänger mit einem Eintrittsfenster aus Quarzglas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CN JP KR RU SG US ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020037001032 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037001032 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |