[go: up one dir, main page]

WO2002015251A1 - Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique - Google Patents

Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique Download PDF

Info

Publication number
WO2002015251A1
WO2002015251A1 PCT/US2000/022454 US0022454W WO0215251A1 WO 2002015251 A1 WO2002015251 A1 WO 2002015251A1 US 0022454 W US0022454 W US 0022454W WO 0215251 A1 WO0215251 A1 WO 0215251A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
carbon dioxide
supercritical
supercritical carbon
photoresist
Prior art date
Application number
PCT/US2000/022454
Other languages
English (en)
Inventor
William H. Mullee
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020037002209A priority Critical patent/KR100559017B1/ko
Priority to AU2000266442A priority patent/AU2000266442A1/en
Priority to EP00954102A priority patent/EP1309990A1/fr
Priority to CNB008198179A priority patent/CN1246888C/zh
Priority to JP2002520287A priority patent/JP2004507087A/ja
Priority to PCT/US2000/022454 priority patent/WO2002015251A1/fr
Publication of WO2002015251A1 publication Critical patent/WO2002015251A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means

Definitions

  • the present invention relates to the field of removal of photoresist and photoresist residue from semiconductor wafers. More particularly, the present invention relates to the field of removal of photoresist and photoresist residue from semiconductor wafers using supercritical carbon dioxide.
  • Manufacture of semiconductor devices requires application and subsequent removal of a photoresist chemical from a surface of a semiconductor wafer.
  • the removal of the photoresist chemical commonly known as stripping, may be immediately preceded by a plasma ashing, etching, or other semiconductor manufacturing step. These steps can degrade or carbonize the photoresist chemical and leave a photoresist residue that is difficult to remove by current stripping methods.
  • the current stripping methods require that the wafers be dipped into baths of commercially available chemical mixtures known as strippers.
  • the baths may employ heat or ultrasonic augmentation.
  • the baths employ immersion times of twenty to thirty minutes to achieve complete removal of photoresist or photoresist residue from the wafer surface.
  • the present invention is a method of removing a photoresist or a photoresist residue from a semiconductor substrate.
  • the semiconductor substrate with the photoresist or the photoresist residue on a surface of the semiconductor substrate is placed within a pressure chamber.
  • the pressure chamber is then pressurized.
  • Supercritical carbon dioxide and a stripper chemical are introduced into the pressure chamber.
  • the supercritical carbon dioxide and the stripper chemical are maintained in contact with the photoresist or the photoresist residue until the photoresist or the photoresist residue is removed from the semiconductor substrate.
  • the pressure chamber is then flushed and vented.
  • supercritical CO 2 carries organic or inorganic chemicals or a combination of the organic and inorganic chemicals into the pressure chamber, which is heated and pressurized.
  • the organic or inorganic chemicals or a combination of the organic and inorganic chemicals interacts with resist, resist residues, and organic contaminants on the wafer surface and carries these materials and remaining chemicals out of the chamber.
  • FIG. 1 is a flow chart illustrating the steps of a method of the present invention.
  • Fig. 2 is a fragmentary cross-sectional view of a pre-processed semiconductor wafer supporting several material layers.
  • Fig. 3 is a schematic diagram showing chambers, pipes, and valves of a simplified resist removal system in accordance with the present invention.
  • Fig. 4 is a flow diagram showing a simplified sequence of process steps of a resist removal system in accordance with the present invention.
  • FIG. 5 in a fragmentary cross-sectional view of the wafer of Fig. 2 subsequent to a resist removal step in accordance with the present invention.
  • Fig. 6 presents a table showing a few examples of tests performed to remove photoresist from a wafer.
  • the preferred embodiment of the present invention utilizes the high solvency and cleaning characteristics of supercritical carbon dioxide to assist in the stripping process of photoresist or photoresist residue. Only a small fraction of a stripper chemical is required to affect the stripping process compared to the prior art.
  • the supercritical carbon dioxide carries the stripper chemical onto the wafer to be cleaned and is then recycled back to a carbon dioxide compressor for reuse.
  • the stripper chemical is typical of chemicals found in commercially available stripper products.
  • the high degree of solvency and solubilizing ability provided by the supercritical carbon dioxide enhances the removal of the photoresist or the photoresist residue.
  • the high solubilizing ability provided by the supercritical carbon dioxide is well known to science and has been exploited in numerous other applications, for example in cleaning of metal parts.
  • the supercritical carbon dioxide effectively carries a small amount of the stripper chemical onto sub-micron surface features of modern semiconductor devices because diffusivity and viscosity of the supercritical carbon dioxide is similar to a gas phase and because density of the supercritical carbon dioxide is nearly equal to a liquid phase.
  • the supercritical carbon dioxide also carries away the photoresist, or the photoresist residue, and remaining stripper chemical from the surface of the wafer. Thus, it is possible to use the small amount of the stripper chemical to perform the stripping process and to also carry away remaining chemicals and residue.
  • FIG. 1 A wafer with the photoresist or the photoresist residue is placed in a pressure chamber in a first process step 220.
  • the pressure chamber is sealed and pressurized with carbon dioxide in a second process step 222.
  • the carbon dioxide becomes liquid and then reaches supercritical temperature and supercritical pressure.
  • Typical process conditions range from 20 to 70 °C and from 1,050 to 6,000 psig.
  • the small amount of the stripper chemical is introduced into a supercritical carbon dioxide stream and thus added into the pressure chamber in a third process step 224.
  • a volume ratio of the stripper chemical to the supercritical carbon dioxide is preferably 0.1 to 15.0 v/v %.
  • the stripper chemical is preferably selected from the group consisting N-methyl pyrrolidone, monoethanol amine, di- isopropyl amine, tri-isopropyl amine, diglycol amine, hydroxyl amine, catechol, and a mixture thereof. Monoethanol amine, hydroxyl amine, and catechol have only marginal utility.
  • Processing continues with recirculation of the supercritical carbon dioxide and with mixing of the supercritical carbon dioxide and the stripper chemical within the pressure chamber in a fourth process step 226.
  • the fourth process step 226 continues until the photoresist or the photoresist residue is removed from the wafer, typically from 3 to 15 minutes.
  • the pressure chamber is then flushed with pure supercritical carbon dioxide or liquid carbon dioxide to remove traces of the remaining chemicals in a fifth process step 228.
  • the pressure chamber is vented to atmosphere and the wafer is removed in a sixth process step 230.
  • An optional final process step rinses the wafer with deionized or ultra-pure water.
  • the supercritical carbon dioxide in combination with the small amount of the stripper chemical greatly enhances the removal of the photoresist, or the photoresist residue, from surfaces of semiconductor devices.
  • the amount of the stripper chemical required to effectively remove the photoresist or the photoresist residue from the wafer is reduced significantly by using supercritical carbon dioxide compared to the prior art wet chemical stripping methods.
  • An amount of hazardous chemical waste generated as a result of using the supercritical carbon dioxide and the stripper chemical is significantly less than the prior art wet chemical stripping methods.
  • the supercritical carbon dioxide and the stripper chemical eliminates a need for the prior art wet chemical stripping methods along with using large amounts of chemicals and expensive wet baths. Also, the supercritical carbon dioxide and the stripper chemical remove traces of organic contamination from the wafer.
  • a small amount of an organic solvent is added to the supercritical carbon dioxide and the stripper chemical.
  • the organic solvent is preferably selected from the group consisting of alcohols, ethers, and glycols. The organic solvent enhances removal of the traces of the organic contamination from the wafer.
  • Fig. 2 is a fragmentary cross-sectional view of a pre-processed semiconductor wafer 10 supporting a variety of layers.
  • semiconductor wafer 10 typically comprimises a silicon or ceramic substrate 12 that supports one or more metallic layers 14 that may be protected by one or more alternating passivation or other layers 16.
  • Layers 14 and 16 form an elevationally varied surface 18 that is typically covered with a resist layer 20 and subjected to a photolithographic process to create featurs 22 (not shown to scale).
  • Conventional features 22, such as vias, line widths, or ptiches may be as small as 0.25 ⁇ m and smaller with aspect ratios of of depth 24 to width 26 that are greater than 5:1 or greater than or equal to 10:1.
  • resist layer 20 may be a remnant from a prior lithographic or other circuit fabrication process and may have subsequently undergone etching, plasma ashing, or semiconductor manufacturing steps.
  • the resist may, therefore, include sidewall polymer residue or carbonaceous residue left after any of these techniques.
  • resist layer 20 may be newly applied to protect layers 14 and 16 during a processing operation on the back side of wafer 10, such as during marking, etching, or grinding or as a blanket protection during ion implantation.
  • wafer 10 may be partly or completely covered with a resist material, resist residue, or a contaminant from a subsequent process.
  • the resist material is typically a positive or negative photoresist used for a photolithographic process.
  • Photoresist materials include, but are not limited to Novolak (M-Cresol formaldehyde) or etch-resistant poly coatings such as plu isoprene, poly-(methyl isopropenyl) or etch-resistant poly coatings such as poly isoprene, poly-(methyl isopropenyl ketone) (PMIPK), or polymethyl methacrylayte (PMMA).
  • the resist material need not be a photoresist and may compromise any form of resist material with or without photosenthisizers.
  • Fig. 3 is a schematic diagram of a simplified resist removal system 30 of the present invention
  • Fig. 4 is a flow diagram of a simplified resist removal process 32 according to the present invention. With the reference to Figs.
  • removal process 32 is preferably initiated by activating heat exchanger 34 to reduce the temperature of coolant flowing through cold trap 36.
  • system pre-heating step 38 brings pressure vessel 40, including wafer chamber 42, and solvent chambers 44 and 46 to a preferred operating temperature of 45 to 65 °C prior to the arrival of wafer 10.
  • the pressure vessel 40 may alternatively be maintained at a preferred processing temerature to facilitate throughput, or the temperature may be gradually increased to from ambient temperature after wafer 10 enters pressure vessel 40 to reduce stress on wafer 10 or semiconductor devices or features 22 fabricated on wafer 10.
  • electrical resistance heaters are preferably built into the walls of vessel 40 and chamber 44 and 46 to perform heating step 38, skilled persons will appreciate that other conventionally available heating techniques could be employed.
  • electrical resistance tape may be wrapped around all or some of the connecting lines, such as line 43 between pump 92 and vessel 40 and lines 45 and 47 between respective chambers 44 and 46 and line 43, to maintain the temperature of parts of system 30 at or near the temperature of vessel 40 and chambers 44 and 46.
  • Wafer placement step 48 employs manual or automatic conventional wafer handling techniques to place one or more wafers 10 into wafer chamber 42 in pressure vessel 40.
  • Wafer(s) may be oriented horizontally or vertically and supported by clips, electrostatic or vacum chucks, or other methods well known to skilled practitioners.
  • Pressure vessel 40 may include one or more wafer airlocks, may comprise of a gasket-mated two-piece vessel with a stationary portion and hydraullically raised and lowered portion, or may be sealed by other mechanisms.
  • Purging step 50 that purges solvent chambers 44 and 46 and pressure vessel 40 with fluid CO 2 , preferably gaseous CO 2 , preferably begins with all valves 60, 61, 62, 64, 66, 67, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, and 88 in a closed position.
  • CO 2 tank valve 60 is opened to allow fluid CO 2i preferably liquid CO 2 , to flow from CO 2 tank 90 to pressure regulating valve 61 that ensures that the pressure is preferably greater than 750 pounds per square inch gauge pressure above ambient atmospheric pressure (psig).
  • Vent valve 62 and pump valve 64 are preferably sequentially opened to allow CO 2 into into pump 92 and through vent 94.
  • Valve 66 allows compressed air from compressed air source 96 to reach pressure regulating valve 67 that is set to ensure a pressure of between 50 to 90 psig, and preferably 60 to 80 psig.
  • CO 2 is allowed to flow out vent 94 by cycling pump 92 for preferably at least five seconds, prior to preferably sequentially opening valves 68, 70, 72, and 74 to purge solvent chamber 44; sequentially opening valves 76, 78, 80, and 82 to purge solvent chamber 46; and sequentially opening valves 84, 86, 88 and 87 to purge pressure vessel 40 through vent 98, cold trap 36 or exhaust 100.
  • valves 88, 84, 78, 82, 74, and 70 are preferentially sequentially closed.
  • the system pressure is then preferably adjusted between 1,000 and 2,000 psig, and preferably between 1,000 and 1,500 psig by controlling the pumping rate at pressure regulating valve 61 and by adjusting the back pressure regulator 112.
  • Back pressure regulator 112 is positioned between pressure vessel 40 and exhaust 100 and allows line 113 to be depressurized to ambient atmospheric pressure.
  • the CO 2 system flow is also preferably set to between 0.5 and 20 liters per minute (LPM), and more preferably between 3 to 6 LPM.
  • step 114 can be performed any time after step 50 and before step 122 with the proper sequence of valve control.
  • Pressurizing system step 120 involves increasing the pressure of CO 2 in the system to between 2,000 and 6,000 psig, more preferably between 2,500 and 4,500 psig, and most preferably between 3,000 and 3,500 psig by adjusting back pressure valve 112.
  • Other generally preferred conditions for the resist removal process of the present invention range from 10 to 80°C and 750 to 6000 psig, and preferably from 40 to 70°C and 1050 to 4500 psig.
  • valve 70 is opened and valve 68 is closed in solvent introduction step 122 to force the CO 2 stream to flow through solvent loop 116 and solvent chamber 44 to introduce a small amount of one or more chemicals into the supercritical CO 2 stream and into pressure vessel 40.
  • the CO 2 flow rate may be reduced to 0.5 LPM, for example, to increase the chemical residence time in pressure vessel 40.
  • the preferred types of chemicals include: N- Methyl Pyrrolidone (NMP), diglycol amine, hydroxyl amine, tertiary amines, catechol, ammonium fluoride, ammonium bifluoride, methylacetoacetamide, ozone, propylene glycol monoethyl ether acetate, acetylacetone, dibasic esters, ethyl lactate, CHF 3 , BF 3 , other fluorine containing chemicals, or a mixture of any of the above chemicals.
  • NMP N- Methyl Pyrrolidone
  • diglycol amine diglycol amine
  • hydroxyl amine hydroxyl amine
  • tertiary amines catechol
  • ammonium fluoride ammonium bifluoride
  • methylacetoacetamide ozone
  • propylene glycol monoethyl ether acetate acetylacetone
  • dibasic esters ethyl
  • the organic solvent may include, for example, and alcohol, ether, and/or glycol, such as acetone, diacetone alcohol, dimethyl sulfoxide (DMSO), ethylene glycol, methanol, ethanol, propanol, or isopropanol (IP A).
  • DMSO dimethyl sulfoxide
  • IP A isopropanol
  • Resist removal step 130 allows the supercritical CO 2 to carry the solvents into pressure vessel 49 and into contact with the resist, residue, or other contaminants on wafer 10.
  • the supercritical CO 2 can be recirculated through recirculation loop 133 to pressure vessel 49 until resist layer 20 is removed.
  • Cold trap 36 removes chemicals from the depressurized CO 2 gas in line 113, and heat exchanger 34 along loop 133 cools the CO 2 to a liquid before it reaches pump 92.
  • Resist removal step 130 is accomplished in preferably ten seconds to 15 minutes, and more preferably from 30 seconds to ten minutes, and most preferably from 30 seconds to three minutes.
  • Valves 70 and 74 are closed and valve 68 is opened to bypass solvent chamber 44 for closing solvent chamber step 132.
  • a second set of solvent introduction, resist removal, and closing solvent chamber steps 122, 130, and 132 are performed in connection with solvent chamber 46.
  • Valve 78 in opened and valve 76 is closed to force the CO 2 stream to flow through loop 118 and chamber 46 to introduce a second chemical or group of chemicals into the CO 2 stream and into pressure vessel 40.
  • the second resist removal step 130 may employ the same or different chemical(s) employed in the first removal step 130 and and may be conducted for a same or different time period. Then valves 82 and 78 and closed and valve 76 is opened to bypass solvent chamber 46.
  • valve 136 is closed and valve 87 is open, and each set of steps 122, 130 and 132 is performed in ten seconds to one minute without solvent recirculation.
  • a 2.5 ⁇ m-thick resist layer 20 can be removed from the surface of an 6", 8" or 300 mm diameter wafer 10 with two removal steps 130 of less than 30 seconds each.
  • each wafer 10 or group of wafers 10 can be processed in less than one minute.
  • Pressure vessel 40 is then flushed for five to thirty seconds, with supercritical CO 2 and/or liquid CO 2 to remove all traces of remaining chemicals. Finally, presure vessel 40 is depressurized in step 134 by closing valves 66 and 60 and opeing valves 62, 74, 82, 84 and 87 to vent the system atmosphere.
  • system 30 preferably includes one directional check values 142, 144, 146, 148, 150, and 151 to ensure the direction of flow indicated in the flow lines of Fig. 3. Skilled persons will also appreciate that system 30 preferably includes pressure gauges 152, 154, 156, 158, 160, 162, and 164 that may be monitored so that pump 92 or back pressure regulating values may be adjusted manually or by computer as needed.
  • Fig. 5 is a fragmentary cross section view showing wafer 140 following step 134 without resist layer 20.
  • wafer(s) 140 are then preferably removed and rinsed with deionized (DI) or ultra pure water to finish the cleaning process.
  • DI deionized
  • Fig. 6 presents a table showing a few examples of tests performed to remove photoresist from a wafer 10. Electron micrographs of wafers 10 subjected to these trials exhibited surface of resulting stripped wafers 140 that were substantially free of photoresist or its residue.
  • the method of the present invention eliminates the requirement for a carbonizing or ashing process prior to resist removal, substantially reducing the cost, equipment, and process time conventionally needed for resist removal.
  • the method of the present invention outperforms conventional resist removal processes to the extent that it eliminates the need for a conventional post-stripping cleaning step such as a "piranha" bath employing hazardous chemicals. Furthermore, the relatively small amount of chemicals utilized by the method of the present invention offers tremendous cost savings over conventional techniques and chemical baths. Finally, the method of the present invention facilitates increased wafer throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

L'invention concerne un procédé d'élimination d'une photorésine et d'un reste de photorésine d'un substrat semi-conducteur. On place celui-ci présentant, sur une surface, la photorésine ou le reste de photorésine, dans une chambre de pression. On met ensuite celle-ci sous pression. On introduit le dioxyde de carbone supercritique et un agent chimique d'élimination de photorésine dans la chambre de pression. On maintient le dioxyde de carbone supercritique et ledit agent chimique en contact jusqu'au moment où la photorésine ou le reste de photorésine est éliminé du substrat semi-conducteur. On balaie et met à l'air libre la chambre de pression. Dans un autre mode de réalisation, le CO2 supercritique comprend des agents chimiques organiques et inorganiques ou une combinaison de ceux-ci dans la chambre de pression. Ces agents ou une combinaison de ceux-ci interagissent avec une résine, des restes de résine et des contaminants organiques sur la surface de la plaquette et transportent ces matériaux et des agents chimiques restants en dehors de la chambre.
PCT/US2000/022454 2000-08-14 2000-08-14 Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique WO2002015251A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020037002209A KR100559017B1 (ko) 2000-08-14 2000-08-14 초임계 이산화탄소를 이용하는 반도체로부터의포토레지스트 및 포토레지스트 잔사의 제거법
AU2000266442A AU2000266442A1 (en) 2000-08-14 2000-08-14 Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
EP00954102A EP1309990A1 (fr) 2000-08-14 2000-08-14 Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique
CNB008198179A CN1246888C (zh) 2000-08-14 2000-08-14 用超临界二氧化碳工艺从半导体上去除光致抗蚀剂和光致抗蚀残留物
JP2002520287A JP2004507087A (ja) 2000-08-14 2000-08-14 超臨界二酸化炭素法を用いる半導体からのフォトレジストおよびフォトレジスト残留物の除去
PCT/US2000/022454 WO2002015251A1 (fr) 2000-08-14 2000-08-14 Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/022454 WO2002015251A1 (fr) 2000-08-14 2000-08-14 Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique

Publications (1)

Publication Number Publication Date
WO2002015251A1 true WO2002015251A1 (fr) 2002-02-21

Family

ID=21741687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/022454 WO2002015251A1 (fr) 2000-08-14 2000-08-14 Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique

Country Status (6)

Country Link
EP (1) EP1309990A1 (fr)
JP (1) JP2004507087A (fr)
KR (1) KR100559017B1 (fr)
CN (1) CN1246888C (fr)
AU (1) AU2000266442A1 (fr)
WO (1) WO2002015251A1 (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065434A1 (fr) 2002-01-30 2003-08-07 Sony Corporation Procede de traitement de surface, dispositif a semi-conducteurs, procede de production du dispositif a semi-conducteurs et appareil de traitement
EP1365441A1 (fr) * 2002-05-23 2003-11-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Procédé et composition pour l'enlèvement des résidus de la microstructure d'un objet
US6669785B2 (en) 2002-05-15 2003-12-30 Micell Technologies, Inc. Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide
US6683008B1 (en) 2002-11-19 2004-01-27 International Business Machines Corporation Process of removing ion-implanted photoresist from a workpiece
WO2004008249A3 (fr) * 2002-07-17 2004-05-06 Scp Global Technologies Inc Compositions et procede d'elimination de photoresine et/ou de residu de resine a des pressions comprises entre ambiantes et supercritiques
EP1459812A1 (fr) * 2003-03-21 2004-09-22 Linde Aktiengesellschaft Nettoyage de pièces
EP1457550A3 (fr) * 2001-02-09 2004-11-03 Air Products And Chemicals, Inc. Composition pour l'enlèvement des résidus de la microstructure d'un objet
JP2005020011A (ja) * 2003-06-26 2005-01-20 Samsung Electronics Co Ltd 基板からフォトレジストを除去するための装置及び方法
US6846380B2 (en) 2002-06-13 2005-01-25 The Boc Group, Inc. Substrate processing apparatus and related systems and methods
US6953654B2 (en) 2002-03-14 2005-10-11 Tokyo Electron Limited Process and apparatus for removing a contaminant from a substrate
WO2005117084A1 (fr) * 2004-05-21 2005-12-08 Battelle Memorial Institute Systeme de fluides reactifs permettant d'eliminer des materiaux de depot et procede d'utilisation de ce systeme
WO2006007005A1 (fr) * 2004-06-30 2006-01-19 Tokyo Electron Limited Systéme et méthode de traitement d'un substrat en utilisant un anhydride carbonique surcritique
JP2006528845A (ja) * 2003-05-20 2006-12-21 東京エレクトロン株式会社 超臨界ウエハー処理装置の汚染除去
US7195676B2 (en) 2004-07-13 2007-03-27 Air Products And Chemicals, Inc. Method for removal of flux and other residue in dense fluid systems
US7211553B2 (en) 2003-08-05 2007-05-01 Air Products And Chemicals, Inc. Processing of substrates with dense fluids comprising acetylenic diols and/or alcohols
JP2007524228A (ja) * 2003-06-18 2007-08-23 イーケーシー テクノロジー,インコーポレイティド 自動化された高密度相流体洗浄システム
US7267727B2 (en) 2002-09-24 2007-09-11 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids and ultrasonic energy
CN100338153C (zh) * 2003-03-26 2007-09-19 Tdk株式会社 剥离薄膜的制造方法
US7291565B2 (en) 2005-02-15 2007-11-06 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid
US7307019B2 (en) 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US7387868B2 (en) 2002-03-04 2008-06-17 Tokyo Electron Limited Treatment of a dielectric layer using supercritical CO2
US7399708B2 (en) 2005-03-30 2008-07-15 Tokyo Electron Limited Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
US7442636B2 (en) 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US7491036B2 (en) 2004-11-12 2009-02-17 Tokyo Electron Limited Method and system for cooling a pump
US7507297B2 (en) 2002-05-20 2009-03-24 Panasonic Corporation Cleaning method and cleaning apparatus
US7550075B2 (en) 2005-03-23 2009-06-23 Tokyo Electron Ltd. Removal of contaminants from a fluid
US7789971B2 (en) 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
CN102532574A (zh) * 2004-06-24 2012-07-04 普莱克斯技术有限公司 聚合物材料预处理方法与装置
JP2015515147A (ja) * 2012-04-17 2015-05-21 プラクスエア・テクノロジー・インコーポレイテッド 二酸化炭素の精製された多相のプロセスツールへのデリバリーシステム
WO2019147321A1 (fr) * 2018-01-25 2019-08-01 Applied Materials, Inc. Appareil et procédé de nettoyage d'équipement

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557073B2 (en) * 2001-12-31 2009-07-07 Advanced Technology Materials, Inc. Non-fluoride containing supercritical fluid composition for removal of ion-implant photoresist
US7262422B2 (en) * 2005-07-01 2007-08-28 Spansion Llc Use of supercritical fluid to dry wafer and clean lens in immersion lithography
KR100744145B1 (ko) * 2006-08-07 2007-08-01 삼성전자주식회사 초임계 유체를 이용하는 웨이퍼 처리 장치 및 웨이퍼 처리방법
CN102298276B (zh) * 2010-06-25 2013-03-06 中国科学院微电子研究所 硅片去胶装置
JP5685918B2 (ja) * 2010-12-10 2015-03-18 富士通株式会社 半導体装置の製造方法
CN102280372B (zh) * 2011-09-05 2016-04-06 上海集成电路研发中心有限公司 一种半导体硅片的清洗方法
CN105517343A (zh) * 2016-01-25 2016-04-20 东莞联桥电子有限公司 一种微波印制电路板上电阻集成方法
US10837902B2 (en) * 2017-08-21 2020-11-17 Tokyo Electron Limited Optical sensor for phase determination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304515A (en) * 1988-07-26 1994-04-19 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on substrate
EP0836895A2 (fr) * 1996-10-16 1998-04-22 International Business Machines Corporation Elimination des résidus par fluides supercritiques
US5866005A (en) * 1995-11-03 1999-02-02 The University Of North Carolina At Chapel Hill Cleaning process using carbon dioxide as a solvent and employing molecularly engineered surfactants
WO1999049998A1 (fr) * 1998-03-30 1999-10-07 The Regents Of The University Of California Composition et procede pour eliminer les materiaux de photoreserve recouvrant des composants electroniques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304515A (en) * 1988-07-26 1994-04-19 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on substrate
US5866005A (en) * 1995-11-03 1999-02-02 The University Of North Carolina At Chapel Hill Cleaning process using carbon dioxide as a solvent and employing molecularly engineered surfactants
EP0836895A2 (fr) * 1996-10-16 1998-04-22 International Business Machines Corporation Elimination des résidus par fluides supercritiques
WO1999049998A1 (fr) * 1998-03-30 1999-10-07 The Regents Of The University Of California Composition et procede pour eliminer les materiaux de photoreserve recouvrant des composants electroniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUBIN J B ET AL: "COMPARISON OF CHILLED DI WATER/OZONE AND CO2-BASED SUPERCRITICAL FLUIDS AS REPLACEMENTS FOR PHOTORESIST-STRIPPING SOLVENTS", IEEE/CPMT INTERNATIONAL ELECTRONICS MANUFACTURING TECHNOLOGY SYMPOSIUM,US,NEW YORK, NY: IEEE, 19 October 1998 (1998-10-19), pages 308 - 314, XP000849790, ISBN: 0-7803-4524-X *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457550A3 (fr) * 2001-02-09 2004-11-03 Air Products And Chemicals, Inc. Composition pour l'enlèvement des résidus de la microstructure d'un objet
EP1358670A4 (fr) * 2001-02-09 2004-11-17 Kobe Steel Ltd Proc d et appareil destin s liminer des r sidus de la microstructure d'un objet
EP1480263A4 (fr) * 2002-01-30 2006-06-07 Sony Corp Procede de traitement de surface, dispositif a semi-conducteurs, procede de production du dispositif a semi-conducteurs et appareil de traitement
WO2003065434A1 (fr) 2002-01-30 2003-08-07 Sony Corporation Procede de traitement de surface, dispositif a semi-conducteurs, procede de production du dispositif a semi-conducteurs et appareil de traitement
US7387868B2 (en) 2002-03-04 2008-06-17 Tokyo Electron Limited Treatment of a dielectric layer using supercritical CO2
US6953654B2 (en) 2002-03-14 2005-10-11 Tokyo Electron Limited Process and apparatus for removing a contaminant from a substrate
US6669785B2 (en) 2002-05-15 2003-12-30 Micell Technologies, Inc. Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide
US7507297B2 (en) 2002-05-20 2009-03-24 Panasonic Corporation Cleaning method and cleaning apparatus
EP1453080A1 (fr) * 2002-05-23 2004-09-01 Kabushiki Kaisha Kobe Seiko Sho Procédé et composition pour l'enlèvement des résidus de la microstructure d'un objet
EP1365441A1 (fr) * 2002-05-23 2003-11-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Procédé et composition pour l'enlèvement des résidus de la microstructure d'un objet
US7220714B2 (en) 2002-05-23 2007-05-22 Air Products And Chemicals, Inc. Process and composition for removing residues from the microstructure of an object
US6846380B2 (en) 2002-06-13 2005-01-25 The Boc Group, Inc. Substrate processing apparatus and related systems and methods
WO2004008249A3 (fr) * 2002-07-17 2004-05-06 Scp Global Technologies Inc Compositions et procede d'elimination de photoresine et/ou de residu de resine a des pressions comprises entre ambiantes et supercritiques
US7267727B2 (en) 2002-09-24 2007-09-11 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids and ultrasonic energy
US6683008B1 (en) 2002-11-19 2004-01-27 International Business Machines Corporation Process of removing ion-implanted photoresist from a workpiece
EP1459812A1 (fr) * 2003-03-21 2004-09-22 Linde Aktiengesellschaft Nettoyage de pièces
CN100338153C (zh) * 2003-03-26 2007-09-19 Tdk株式会社 剥离薄膜的制造方法
JP2006528845A (ja) * 2003-05-20 2006-12-21 東京エレクトロン株式会社 超臨界ウエハー処理装置の汚染除去
JP2007524228A (ja) * 2003-06-18 2007-08-23 イーケーシー テクノロジー,インコーポレイティド 自動化された高密度相流体洗浄システム
JP2005020011A (ja) * 2003-06-26 2005-01-20 Samsung Electronics Co Ltd 基板からフォトレジストを除去するための装置及び方法
US7211553B2 (en) 2003-08-05 2007-05-01 Air Products And Chemicals, Inc. Processing of substrates with dense fluids comprising acetylenic diols and/or alcohols
WO2005117084A1 (fr) * 2004-05-21 2005-12-08 Battelle Memorial Institute Systeme de fluides reactifs permettant d'eliminer des materiaux de depot et procede d'utilisation de ce systeme
CN102532574A (zh) * 2004-06-24 2012-07-04 普莱克斯技术有限公司 聚合物材料预处理方法与装置
US7250374B2 (en) 2004-06-30 2007-07-31 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing
WO2006007005A1 (fr) * 2004-06-30 2006-01-19 Tokyo Electron Limited Systéme et méthode de traitement d'un substrat en utilisant un anhydride carbonique surcritique
US7195676B2 (en) 2004-07-13 2007-03-27 Air Products And Chemicals, Inc. Method for removal of flux and other residue in dense fluid systems
US7307019B2 (en) 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US7491036B2 (en) 2004-11-12 2009-02-17 Tokyo Electron Limited Method and system for cooling a pump
US7291565B2 (en) 2005-02-15 2007-11-06 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid
US7550075B2 (en) 2005-03-23 2009-06-23 Tokyo Electron Ltd. Removal of contaminants from a fluid
US7442636B2 (en) 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US7399708B2 (en) 2005-03-30 2008-07-15 Tokyo Electron Limited Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
US7789971B2 (en) 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
JP2015515147A (ja) * 2012-04-17 2015-05-21 プラクスエア・テクノロジー・インコーポレイテッド 二酸化炭素の精製された多相のプロセスツールへのデリバリーシステム
EP3667705A1 (fr) * 2012-04-17 2020-06-17 Praxair Technology, Inc. Procédé et système de distribution de multiples phases purifiées de dioxyde de carbone à une chambre de traitement
WO2019147321A1 (fr) * 2018-01-25 2019-08-01 Applied Materials, Inc. Appareil et procédé de nettoyage d'équipement
US10695804B2 (en) 2018-01-25 2020-06-30 Applied Materials, Inc. Equipment cleaning apparatus and method

Also Published As

Publication number Publication date
EP1309990A1 (fr) 2003-05-14
CN1246888C (zh) 2006-03-22
KR100559017B1 (ko) 2006-03-10
KR20030024873A (ko) 2003-03-26
JP2004507087A (ja) 2004-03-04
CN1454392A (zh) 2003-11-05
AU2000266442A1 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US6306564B1 (en) Removal of resist or residue from semiconductors using supercritical carbon dioxide
WO2002015251A1 (fr) Elimination de photoresine et de restes de photoresine d'un semi-conducteur au moyen de dioxyde de carbone supercritique
US6871656B2 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US7585777B1 (en) Photoresist strip method for low-k dielectrics
US7276447B1 (en) Plasma dielectric etch process including ex-situ backside polymer removal for low-dielectric constant material
JP4621400B2 (ja) 半導体基板処理装置
US8716143B1 (en) Plasma based photoresist removal system for cleaning post ash residue
JP4825911B2 (ja) 介在チャンバでの脱フッ素化及びウェハ脱フッ素化ステップによるプラズマエッチング及びフォトレジストストリッププロセス
US20090065032A1 (en) Apparatus and method for removing photoresist from a substrate
JP4031440B2 (ja) 超臨界処理を用いる汚染物の除去
US6162733A (en) Method for removing contaminants from integrated circuits
JPH0427113A (ja) レジスト処理装置、レジスト処理方法及びレジストパターン
US6218084B1 (en) Method for removing photoresist layer
US20070089761A1 (en) Non-plasma method of removing photoresist from a substrate
US20060135047A1 (en) Method and apparatus for clamping a substrate in a high pressure processing system
US7524383B2 (en) Method and system for passivating a processing chamber
US6652666B2 (en) Wet dip method for photoresist and polymer stripping without buffer treatment step
US20030224583A1 (en) Method for plasma etching a wafer after backside grinding
WO2006039317A1 (fr) Systeme de traitement d'un fluide supercritique comprenant un revetement sur des elements internes et son procede d'utilisation
Kamal et al. Photoresist removal using low molecular weight alcohols
WO2007005197A2 (fr) Elimination de residus pour materiaux a faible constante dielectrique dans le traitement de plaquettes
TW500985B (en) Removal of photoresist and residue from substrate using supercritical carbon dioxide process
JP2004134627A (ja) 有機物層の除去方法
JP2737613B2 (ja) 微細パターンの形成方法
JP2004134626A (ja) 有機物層の除去方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000954102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008198179

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037002209

Country of ref document: KR

Ref document number: 2002520287

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020037002209

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000954102

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020037002209

Country of ref document: KR