[go: up one dir, main page]

WO2002018140A1 - Desoxydant multicouche et son procede de production - Google Patents

Desoxydant multicouche et son procede de production Download PDF

Info

Publication number
WO2002018140A1
WO2002018140A1 PCT/JP2001/007371 JP0107371W WO0218140A1 WO 2002018140 A1 WO2002018140 A1 WO 2002018140A1 JP 0107371 W JP0107371 W JP 0107371W WO 0218140 A1 WO0218140 A1 WO 0218140A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
resin
layer
thermoplastic resin
incompatible
Prior art date
Application number
PCT/JP2001/007371
Other languages
English (en)
French (fr)
Other versions
WO2002018140A9 (fr
Inventor
Takashi Kashiba
Masahiko Takashima
Takahiro Seki
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to EP20010958564 priority Critical patent/EP1314549A1/en
Publication of WO2002018140A1 publication Critical patent/WO2002018140A1/ja
Publication of WO2002018140A9 publication Critical patent/WO2002018140A9/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to a film or a sheet having a deoxidizing function. More specifically, deoxygenation is used to construct oxygen absorbers or oxygen absorbers with the purpose of preventing the oxidation of various products that are easily affected by oxygen, such as foods, pharmaceuticals and metal products. It relates to a multilayer body. Background art
  • An oxygen scavenger for removing oxygen has been used for the purpose of preventing the oxidation of various products, such as foods, pharmaceuticals and metal products, which are susceptible to deterioration due to oxygen.
  • a form that was initially developed and is still widely used as an oxygen absorber is a granular or powdered oxygen-absorbing composition packed in a sachet.
  • a film or sheet with a fixed oxygen-absorbing composition has been considered as a safe oxygen absorber that is easier to handle and has a wider range of application, and does not cause problems such as accidental eating. .
  • the oxygen-absorbing composition may cause contamination of the content due to the contact between the oxygen-absorbing body and the content, especially the liquid. is there.
  • An example of such a configuration is disclosed in Japanese Unexamined Patent Publication No. Hei 8-72041.
  • Such an oxygen-absorbing film or sheet has a problem in that the oxygen-absorbing composition is kneaded into the resin, so that the oxygen-absorbing rate is slower than that of a pouch-shaped oxygen absorber.
  • the oxygen scavenging layer is made porous during stretching and its upper surface is protected by a nonporous shielding layer, the oxygen permeation rate is high, and oxygen scavenging without exposure or elution of oxygen scavengers That a film or sheet having an insulative property can be produced.
  • JP-A-9-123441 and JP-A-10-264279 propose a porous layer between a shielding layer and a deoxidizing layer. Methods have been disclosed to prevent exposure of oxygen scavengers without compromising the rate of oxygen scavenging. Disclosure of the invention
  • the shielding layer In order to improve the oxygen permeability of the shielding layer, it is preferable to make the shielding layer as thin as possible. However, if the shielding layer is made thinner, the oxygen scavenging component in the oxygen scavenging layer may break through the shielding layer and be exposed on the surface of the multilayer body, and the interlayer strength between the porous layer and the oxygen scavenging layer may decrease. There is a problem.
  • An object of the present invention is to provide a deoxygenated multilayer having a high deoxidation rate while preventing the oxygen scavenger component from protruding to the surface of the multilayer.
  • the oxygen-permeable layer of the deoxygenated multilayer contains (A) a polyolefin-based resin, (B) incompatible thermoplastic resin particles dispersed therein and (C) an inorganic powder, and (A) The melting point of the polyolefin resin is (B) lower than the melting point of the incompatible thermoplastic resin by 50 ° C or more, and the deoxygenated composition is obtained by using a layer formed by stretching the resin composition of the combination.
  • the present inventors have found that the deoxygenation rate can be increased while preventing the metal from protruding to the surface, and completed the present invention.
  • the present invention provides a stretched film obtained by stretching a resin composition
  • a resin composition comprising (A) a polyolefin resin, (B) incompatible thermoplastic resin particles dispersed therein, and (C) an inorganic powder.
  • the combination of (A) the polyolefin resin and (B) the incompatible thermoplastic resin dispersed therein is the melting point of the incompatible thermoplastic resin in which the melting point of the base polyolefin resin is dispersed.
  • Oxygen permeability is improved by using a combination at least 50 ° C lower than that.
  • the average particle size of each particle is measured by measuring the particle diameter of the corresponding layer and determining the average value.
  • Packaging of the deoxidized multilayer body of the present invention When used as a vessel, one side of the deoxygenation layer is laminated with an oxygen permeable layer, and the other side is laminated with a gas barrier layer having low oxygen permeability. The layer is placed on the outer surface of the container. The oxygen-permeable layer is heat-sealed with the thermoplastic resin surface layer of another adjacent gas barrier material or the thermoplastic resin constituting the oxygen-permeable layer of the deoxidized multilayer body, and a heat-sealing layer for maintaining the tightness of the container. Becomes
  • the oxygen permeable layer of the present invention comprises (A) a resin composition containing a polyolefin resin as a base material.
  • a polyolefin resin it is preferable that the gas permeability is high, and it is preferable to use a polyolefin resin having an oxygen permeability of 100 cm 3 / m 2 to 24 hr-atm (25 ° C., RH 90%, 20 ⁇ ) or more.
  • polyolefin-based resins include polyolefins such as polyethylene, polypropylene, poly-1-butene, and poly-4-methyl-1-pentene.
  • an olefin copolymer such as an ethylene monoacetate biel copolymer or an ethylene butene copolymer may be used.
  • it is polyethylene, polypropylene, an ethylene-based copolymer or a propylene-based copolymer.
  • thermoplastic resin serving as the base material of the oxygen permeable layer may be not only a high molecule polymerized from a single monomer species but also a mixture of various copolymers and resins, and a non-polar or low-polar polymer is preferable. .
  • thermoplastic resin it is preferable to use the same type of thermoplastic resin as the matrix resin of the deoxygenation layer for the oxygen permeable layer.
  • a thermoplastic resin having solubility is preferred.
  • Examples of specific resins used for the oxygen permeable layer include homopolymers and copolymers of olefins such as ethylene, propylene, 1-butene, 4-methyl-11-pentene, ethylene monoacetate biel copolymer, polybutadiene, Examples include polyisoprene, styrene-butadiene copolymers and hydrogenated products thereof, various silicone resins, and the like, and modified products, grafts, and mixtures thereof.
  • an olefin resin particularly polypropylene, polyethylene, an ethylene copolymer or a propylene copolymer from the viewpoint of heat sealability.
  • the (B) incompatible thermoplastic resin used for the oxygen permeable layer of the present invention is a base material of the oxygen permeable layer. Is a thermoplastic resin that is substantially incompatible with the polyolefin resin to be dispersed and is dispersed in the base resin.
  • the incompatible thermoplastic resin itself is not necessarily limited to a resin type having good gas permeability, but the gas-permeable property can be increased as much as a whole in the breathable stretched film.
  • a resin type having good gas permeability is preferable.
  • resins include polyolefins such as polyethylene, polypropylene, polybutene, poly-1-methyl-11-pentene, polygens such as polybutadiene and polyisoprene and hydrogenated products thereof, and aromatics such as polystyrene.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, nylons such as 6 nylon, MXD 6 nylon, 66 nylon, polycarbonate, polyphenylene ethere 4 ⁇ , polyacetanol, Examples thereof include polyphenylene snolefide, liquid crystal polymer, polysnolefone, polyethenoresnolefone, polyether ethenoleketone, polyamide imide, and polyether imide.
  • a resin composition such as an ethylene monoacetate copolymer, an ethylene monobutene copolymer, a styrene-butadiene copolymer, or a resin composition in which two or more kinds are combined, such as ABS. May be used.
  • the incompatible resin In order to improve oxygen permeability by generating cracks, the incompatible resin itself does not necessarily have to have good oxygen permeability. It is preferable to use a thermoplastic resin having good properties. Further, when the incompatible resin to be added is made of a material having a higher hardness than the resin constituting the oxygen permeable layer, the effect of suppressing the protrusion of the deoxidized composition is great.
  • the average particle size of the incompatible resin is preferably from 0.1 to 100 ⁇ m, more preferably from 1 to 50 m.
  • the average particle size of the incompatible resin is 0.1 xm or less, cracks generated at the resin interface during stretching become finer, and the effect is low. If it is more than 100 / xm, cracks generated at the resin interface during stretching become sparse, and the strength of the oxygen-permeable layer decreases.
  • the addition amount of the incompatible resin is preferably 1 to 5 wt%, more preferably 3 to 3 wt%. If the added amount is small, the effect of cracking is small, and if it is large, an appropriate dispersed particle size is not formed, or the cracks become continuous and the components of the deoxidizing composition migrate to the contents through the oxygen permeable layer. It happens.
  • the melting point of the polyolefin resin is (B) the incompatible heat dispersion dispersed therein.
  • the combination must be at least 50 ° C lower than the melting point of the plastic resin.
  • thermoplastic resin is preferably a combination of polyethylene or polypropylene, and an incompatible resin is a combination of poly (4-methylpentene-11), polyester, nylon, polycarbonate or polyacetal, and a thermoplastic resin is preferable.
  • Low density polyethylene or polypropylene, incompatible resin is more preferably a combination of poly 4-methylpentene-11, and thermoplastic resin is low density polyethylene, linear low density polyethylene or metallocene catalyzed low density polyethylene, incompatible resin Most preferred is a combination of poly-4-methylpentene-11.
  • the polyolefin-based resin serving as the base material is polyethylene, polypropylene, ethylene copolymer or propylene copolymer, and the incompatible thermoplastic resin is POV-1-methylpentene-11, polyester, nylon, polycarbonate or polyacetal. Is more preferable; the polyolefin-based resin as the base material is more preferably polyethylene or polypropylene, and the incompatible thermoplastic resin is poly-4-methylpentene-11 or a copolymer thereof; and the polyolefin as the base material is more preferable.
  • the low-density polyethylene is a low-density polyethylene, a linear low-density polyethylene, a low-density polyethylene or a polypropylene
  • the incompatible thermoplastic resin is poly-4-methylpentene-11.
  • the average dispersed particle size of the incompatible thermoplastic resin particles dispersed in the base resin is from 0.1 to 100 ⁇ , preferably from 1 to 50 ⁇ , more preferably from 5 to 25 ⁇ m.
  • the stretching operation causes cracks at the resin interface between the base resin and the incompatible thermoplastic resin, and creates a void around the incompatible thermoplastic resin particles dispersed in the base resin to allow gas permeation. Improve the performance. If the average dispersed particle size of the incompatible resin particles is less than 0.1 l // m, the voids generated around the incompatible thermoplastic resin particles during stretching become small. The oxygen permeation effect is reduced. If the average dispersed particle size of the incompatible resin particles is 100 / m or more, the voids generated around the incompatible thermoplastic resin particles during stretching become sparse, and the oxygen permeation effect is lowered.
  • the average dispersed particle size of the incompatible thermoplastic resin particles in the breathable stretched film of the present invention is as follows. The cross section of the film is taken with an electron microscope at a magnification of 1000 to 50,000 times, a photograph is taken, and the particle size is measured. It was determined by taking an average value for 10 or more. If the particles were elliptical, their major diameter was taken as the particle size. .
  • the blending amount of the incompatible thermoplastic resin is preferably 1 to 50% by weight, more preferably 3 to 40% by weight based on the total amount of the thermoplastic resin components (A) and (B). . If the amount of the incompatible thermoplastic resin is less than this range, the effect of voids generated at the resin interface during stretching is small, and excellent oxygen permeability cannot be obtained. If the amount is too large, an appropriate dispersed particle size is not formed. Alternatively, the voids may be continuous and the liquid may penetrate from the contents containing the liquid to the deoxygenation layer.
  • an inorganic powder that is incompatible with the resin as the base material and with the thermoplastic resin incompatible with the resin is blended. Part of the blended inorganic powder intervenes at the interface between the base resin and the incompatible thermoplastic resin and reduces the frictional force between the base resin and the incompatible thermoplastic resin.
  • it when stretched, it has an effect of promoting effective generation of voids around the incompatible thermoplastic resin.
  • Addition of an inorganic powder having a smaller average particle size than the resin to be added as the third component of the oxygen permeable layer promotes the generation of cracks at the interface.
  • the inorganic powder used in the present invention a substance which is incompatible with the resin constituting the oxygen permeable layer and the resin added to the oxygen permeable layer is preferable.
  • a powdered inorganic substance having an average particle size of 0.01 to 10 ⁇ m is preferred.
  • the average particle size of the inorganic powder is preferably smaller than the particle size of the incompatible resin dispersed in the oxygen permeable layer.
  • Part of the added inorganic powder is distributed near the interface between the incompatible resin added to the oxygen permeable layer and the resin constituting the oxygen permeable layer, and is distributed to the base resin constituting the oxygen permeable layer and the oxygen permeable layer. Inhibits the affinity or adhesion to the added incompatible resin, and when the oxygen permeable layer is stretched, the thermoplastic resin that constitutes the oxygen permeable layer effectively cracks at the interface with the incompatible resin. Bringing effect.
  • the compounding amount of the inorganic powder is preferably 1 to 50% by weight, more preferably 3 to 30% by weight, based on the total amount of the resin components.
  • the weight ratio of the amount of the inorganic powder to the amount of the incompatible thermoplastic resin is usually 0.1 to 1, preferably 0.3 to 0.7.
  • the breathable stretched film in this range has a high oxygen permeability.
  • the average particle diameter of the inorganic powder is preferably from 0.001 to 10 ⁇ , more preferably from 0.01 to 10 / im, most preferably from 0.1 to 5 ⁇ m. It is preferable that the average particle size of the inorganic powder is smaller than the dispersion average particle size of the incompatible thermoplastic resin, since the generation of voids at the interface by stretching is further promoted.
  • the average particle size of the inorganic powder should be 1000 to 50,000 times the size of the fi / rem cross section with an electron microscope, take a picture, measure the particle size, and take the average value for 10 or more particles. Determined by If the particles were elliptical, the major diameter was used as the particle size.
  • an inorganic substance having no affinity for the thermoplastic resin and the incompatible resin constituting the oxygen permeable layer is preferable.
  • Inorganic powders include titanium oxide, calcium carbonate, magnesium carbonate, magnesium hydroxide, zinc oxide, calcium hydroxide, calcium oxide, gypsum, sulfated calcium sulfate, calcium phosphate, magnesium carbonate, magnesium sulfate, hydrated silicate, and anhydrous Caic acid, soda ash, sodium salt sodium salt, sodium sulfate, barium sulfate, calcium silicate, talc, mai, glass flakes, glass beads, zeolite, alumina, silica, silica gel, clay, various cements, volcanic ash, shirasu, There are iron oxide, carbon black, activated carbon, diatomaceous earth, and various clay minerals. Two or more of these can be used in combination. Among them, titanium oxide is most preferred because of its small particle size, safety and health, and low cost.
  • the oxygen permeable layer of the present invention as a resin component other than the polyolefin resin and the incompatible thermoplastic resin particles, polygens such as polybutadiene and polyisoprene or hydrogenated products thereof as long as their properties are not changed.
  • Aromatic resins such as polystyrene, various silicone resins and fluorine resins, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; nylons such as 6 nylon, MXD6 nylon, and 66 nylon; polycarbonates; Polyphenylene ether ⁇ ⁇ , Polyacetanol, Polyphenylene phenol, : Liquid crystal polymer, Polysnorefon, Polyether ⁇ / Snorrefon, Polyer Resins such as teretherketone, polyamideimide, polyetherimide, or copolymers or resin compositions such as styrene-butadiene copolymer and ABS resin may be added.
  • Aromatic resins such as polystyrene, various silicone resins and fluorine resins, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • nylons such as 6 nylon, MX
  • the incompatible resin and the inorganic powder which constitute the oxygen-permeable layer of the present invention, if necessary, a coloring agent, a plasticizer, an antistatic agent, and a heat seal.
  • a permeability improver, a flame retardant, a deodorant, and the like can be added within a range that does not impair the function of the breathable stretched film.
  • an adhesive layer made of polyolefin or the like or another layer may be provided between the deoxidizing layer and the oxygen permeable layer.
  • an incompatible resin or a powdered inorganic substance (and other components as the case may be) to be added to the oxygen permeable layer.
  • These may be kneaded to produce a master patch, or may be added to and mixed with a thermoplastic resin constituting the oxygen-permeable layer which is melted at the time of producing the oxygen-permeable layer.
  • the oxygen-permeable layer has a temperature in the range of from 30 ° C lower than the softening point of the polyolefin resin used as the base material to 10 ° C higher than the softening point of the polyolefin resin used as the base material.
  • a film is formed using a masterbatch obtained by kneading a polyolefin resin serving as a base material, an incompatible thermoplastic resin and inorganic powder, and then laminating a deoxygenation layer as desired. Then, a stretching method can be used. The kneading operation is preferably performed at a temperature higher than the melting point of the polyolefin resin as the base material and the melting point of the incompatible thermoplastic resin mixed therewith. After the film is formed, another film can be further laminated and stretched.
  • thermoplastic resin particles and inorganic powder are added to a heat-melted film made of a polyolefin-based resin serving as a base material, and another film is laminated and stretched if desired.
  • Incompatible thermoplastic resin particles (or inorganic powder) are added to a hot-melt film made of polyolefin resin as a base material.
  • a method may be used in which inorganic powder (or incompatible thermoplastic resin particles) is added to the obtained heat-melted film composed of a masterbatch, and if desired, another film is laminated and stretched.
  • the stretching ratio is preferably 1.2 to 20 times, more preferably 1.5 to 10 times, and more preferably 1.7 to 8 times as the area magnification (the film area after stretching with respect to the film area before stretching). It is most preferable that If the stretching ratio is lower than this range, the generation and growth of voids will be insufficient, and if the stretching ratio is higher than this range, the mechanical strength of the film will decrease.
  • the temperature of the oxygen permeable layer of the film during stretching is (A) in the range from 30 ° C lower than the softening point of the base polyolefin resin to 10 ° C higher than the softening point, and (B) The temperature is preferably equal to or lower than the softening point of the incompatible resin. Preferably, the temperature is in the range from a temperature 20 ° C. lower than the softening point to the softening point temperature and equal to or lower than the softening point of the incompatible resin to be dispersed.
  • the oxygen permeable layer of the present invention has voids with an average length of 1 to 200 ⁇ , preferably 10 to 100 ⁇ at the interface between the polyolefin resin and the particles of the thermoplastic resin incompatible therewith.
  • the average gap here is taken by taking a photograph by enlarging the cross section of the film by 1000 to 50,000 times with an electron microscope, measuring the length of the gap generated in the stretching direction, and taking the average value for 10 or more particles. I asked for it.
  • the voids reach adjacent thermoplastic resin particles that are incompatible, the distance between the particles can be used as the length of the voids.
  • the oxygen permeable layer of the present invention has a high oxygen permeability of 2000 Ocm 3 / tn 2 '24hr'atm (25 ° C, RH50%, 50 ⁇ ) or more measured according to the differential pressure method of JI SK7126. Has air permeability.
  • the thickness of the oxygen permeable layer is determined by the required performance of the object to be deoxygenated represented by oxygen permeability and the oxygen permeability coefficient of the resin, and is preferably 5 to 100, more preferably 10 to 80 ⁇ m, 20-60 / m is most preferred.
  • the thickness of the oxygen permeable layer of the present invention is preferably 5 to 200 ⁇ , more preferably 10 to 100 ⁇ , and most preferably 20 to 80 ⁇ .
  • the gas-permeable stretched film of the present invention can be heat-sealed with the gas-permeable stretched films or with a heat-sealing layer of another gas-permeable or non-gas-permeable material having a heat-sealing layer such as polyolefin.
  • the polyolefin resin of the present invention comprises (A) a polyolefin resin, (B) an incompatible thermoplastic resin particle dispersed therein, and (C) an inorganic powder.
  • a gas-permeable stretched film having voids at the interface with the thermoplastic resin particles and having excellent liquid resistance may be laminated with a gas-permeable film or reinforcing material on one or both sides of the stretched film and used as a laminated film.
  • a perforated plastic film, a microporous plastic film, a film having air permeability such as nonwoven fabric or paper, or a laminated film having air permeability formed by laminating two or more of these can be used.
  • a known deoxidizing composition can be used as the deoxidizing composition to be added to the deoxidizing layer.
  • a solid oxygen absorbing composition or a liquid oxygen absorbing composition in which a liquid oxygen absorbing composition is supported on a suitable granular substance can be used.
  • an inorganic filler that is hardly soluble or insoluble in water may be added to the deoxidizing layer as a porosification aid.
  • the oxygen-absorbing composition used for the oxygen-absorbing layer includes metal powders such as iron powder, aluminum powder, and calcium powder, inorganic salts such as ferrous salts, ascorbic acid and its salts, catechol, gallic acid, and glycerin.
  • metal powders such as iron powder, aluminum powder, and calcium powder
  • inorganic salts such as ferrous salts, ascorbic acid and its salts, catechol, gallic acid, and glycerin.
  • deoxygenating compositions mainly containing anolecol, phenolic compounds, unsaturated hydrocarbons such as butadiene and isobutylene, unsaturated fatty acids such as tall oil and soybean oil, and organic compounds having an unsaturated bond.
  • a composition comprising iron powder and metal halide salts is preferable.
  • the maximum particle size of the oxygen-absorbing composition it is preferable that the maximum particle size is less than the thickness of the oxygen-absorbing layer. In order to increase the oxidation rate and not to damage other layers (no penetration). Finer ones are desirable. Usually, the maximum particle size is selected from those having a maximum particle diameter of 200 / zm or less, more preferably 100 ⁇ m 1 ⁇ or less. In order to maintain the mechanical properties of the oxygen scavenging layer while increasing the oxidation rate, the amount of the oxygen scavenging composition in the oxygen scavenging layer is preferably 10 to 60 wt%, and 30 to 5 wt%. 5 wt% is more preferred.
  • the deoxygenation layer may be made porous by stretching.
  • the resin used for the deoxidizing layer is not particularly limited as long as it can easily mix and disperse a deoxidizing composition such as iron powder or a hardly water-soluble inorganic filler.
  • the layer is selected in consideration of the compatibility with the layer and the operating temperature range of the deoxidized multilayer film or sheet.
  • Examples of specific resins used for the deoxygenation layer include ethylene, propylene, 1
  • the resin used for the deoxygenation layer preferably has compatibility with the adjacent layer, and most preferably is directly laminated using the same type of resin as the oxygen transmission layer.
  • the thickness of the deoxygenation layer is preferably from 10 to 200 Aim, more preferably from 20 to 150, and most preferably from 30 to: L00 / im.
  • one aspect of the present invention is a deoxidized laminated film in which a gas barrier layer is laminated on the side of the deoxidized layer of the above deoxidized multilayer body opposite to the side on which the oxygen permeable layer is provided.
  • the gas barrier layer is made of a gas barrier material and functions to prevent oxygen from entering from outside the container.
  • the material constituting the gas barrier layer include polyesters such as polyethylene terephthalate, polyamides such as nylon 6 and nylon MXD6, chlorine-containing resins such as polyvinyl chloride and polyvinylidene chloride, and ethylene-vinyl alcohol.
  • polyesters such as polyethylene terephthalate, polyamides such as nylon 6 and nylon MXD6, chlorine-containing resins such as polyvinyl chloride and polyvinylidene chloride, and ethylene-vinyl alcohol.
  • resins having low oxygen permeability such as copolymers, coated products thereof, metal foils or metal-deposited resins such as aluminum-deposited resins, and inorganic compound-deposited resins such as silicon oxide.
  • an oxygen permeable layer is provided on the side in contact with the contents, and a gas barrier layer is provided on the surface in contact with the air outside the container.
  • the oxygen permeable layer can also serve as a heat seal layer.
  • a heat seal layer made of only a polyolefin resin can be further provided to increase the seal strength.
  • each layer can maintain the deoxidizing rate of the deoxidizing film and sheet and the prevention of dissolution of the deoxidizing composition, and if there is no problem such as new dissolution, various materials other than the above-mentioned materials can be used. It is possible to add substances.
  • this additive examples include pigments and dyes for coloring or hiding, stabilizing components for preventing oxidation and decomposition, antistatic components, moisture absorbing components, deodorizing components, plasticizing components, flame retarding components, and the like.
  • a layer such as a printing layer, an easy-opening layer, and an easy-peeling layer can be added as long as the performance as a deoxidizing film or sheet is not adversely affected. '
  • each layer constituting the present invention a known lamination method such as ordinary co-extrusion, extrusion coating, extrusion lamination and the like can be used.
  • any of uniaxial stretching, biaxial simultaneous stretching, and biaxial sequential stretching may be used, as is generally known.
  • the stretching ratio is preferably 2 to 20 times.
  • the oxygen-permeable layer may be stretched and then the oxygen-desorbed layer may be laminated by adhesion, fusion or vapor deposition, or the oxygen-permeable layer and the oxygen-desorbed layer may be separately stretched and then bonded together.
  • the layers may be laminated by fusion or vapor deposition. After stretching the two oxygen-permeable layers, they are laminated on both sides of the deoxygenation layer by adhesion, fusion, vapor deposition, or the like. Alternatively, after stretching the two oxygen-permeable layers, they are separately stretched. By laminating on both sides of the oxygen layer by adhesion, fusion or vapor deposition, etc., it is also possible to obtain a deoxidized multilayer body having both sides of the deoxidized layer having oxygen permeability.
  • the barrier layer When a resin is used for the barrier layer, it may be stretched after laminating the oxygen-permeable resin layer, the deoxygenation layer and the barrier layer. If a non-stretchable material such as metal foil or metallized film is used for the barrier layer, the barrier layer is bonded or fused by ordinary methods such as heat lamination, dry lamination, extrusion coating, etc. It can be a structure.
  • the oxygen-absorbing multilayer material of the present invention When the oxygen-absorbing multilayer material of the present invention has a gas barrier property on one side and can absorb oxygen on the other side, it can be used as an oxygen-absorbing packaging material according to its characteristics. It is used in various forms for parts and all. For example, it can be used for a towel seal film of a packaging container or a packaging bag. The contents can be not only solid but also liquid or a mixture of solid and liquid.
  • the oxygen-absorbing multilayer body having oxygen permeability on both sides can be used as an oxygen absorber, with or without packaging with a breathable packaging material.
  • the average particle size of each particle in the resin composition was as follows: The cross section of the resin and the composition was magnified 100 to 500 times with an electron microscope, and a photograph was taken. The size was determined by measuring the particle size of the image and taking the average value. When the particle image was elliptical, its major axis was regarded as the particle diameter.
  • a deoxygenation composition obtained by spraying and heating and drying an aqueous solution containing 2 parts by weight of calcium chloride with respect to 100 parts by weight of iron powder having a maximum particle size of about 50 m, quicklime and a metallocene catalyst Linear low-density polyethylene ( After dry blending with Mitsui Chemicals Co., Ltd., trade name: SP 204, Meltoff mouth rate 4.0g / 10min, melting point: 116 ° C), kneading with a 30rani diameter twin screw extruder, extrusion from a strand die, The pellet was cooled and cut with a pelletizer to obtain a pellet of a deoxidizing resin composition.
  • the composition of the oxygen-absorbing resin composition is as follows:
  • the intermediate laminate was stretched 5 times (area magnification: 4.5 times) with a uniaxial stretching machine to obtain a deoxygenated laminate.
  • the thickness of each layer of the laminated body after stretching was 40 ⁇ for the oxygen permeable layer and 50 m for the deoxidized layer.
  • an aluminum foil was used as a barrier layer for the oxygen-absorbing layer using a urethane-based adhesive (a 10-5 composition of a trade name A-5 15 and a curing agent A-50 manufactured by Takeda Pharmaceutical Co., Ltd.). And bonded by dry lamination to obtain a deoxidized laminated film.
  • the obtained iron powder in the oxygen-absorbing laminated film oxygen-absorbing layer was sufficiently concealed from the oxygen-permeable layer surface of the oxygen-absorbing laminated film, and no protrusion to the multilayer film surface was observed.
  • SEM scanning electron microscope
  • the average particle size of polymethylpentene dispersed in the oxygen-permeable layer was 10 / ⁇
  • the average particle size of titanium oxide. is 0. 25 ⁇ ⁇
  • the average length of the air gap at the interface between the linear low density polyethylene and one 4 Mechi Rupenten one first resin was 20 // m.
  • a 100 cm ⁇ 10 cm four-side sealed bag with a deoxygenated laminated film on both sides was filled with absorbent cotton and water at 200 CC for humidification, and heat-sealed on the oxygen permeable layer surface to seal.
  • the time-dependent change in the oxygen concentration in the four-side sealed bag at 25 ° C was tracked using a gas chromatograph 7 (GC-14B, Shimadzu Corporation).
  • the time required to reach an oxygen concentration of 0.1vol% (hereinafter referred to as "deoxidation time") was determined, and the deoxidation rate was evaluated.
  • the deoxidation time was 20 hours.
  • a multilayer film and a deoxidized laminated film were produced.
  • the iron powder in the deoxidized layer of the obtained deoxidized layered film was sufficiently concealed from the film surface, and no protrusion to the film surface was observed.
  • the cross section of the deoxidized multilayer film was observed with a scanning electron microscope, the average particle size of polymethylpentene dispersed in the oxygen-permeable layer was 10 ⁇ m, and the average particle size of titanium oxide was 0.25 ⁇ m.
  • the average length of the voids at the interface between the linear low-density polyethylene and the poly-1-methylpentene-1 resin was 20 ⁇ m.
  • the deoxidizing time of the deoxidized laminated film was 20 hours.
  • Powdered calcium carbonate (trade name: P-30, average particle size: 4.3 // m) manufactured by Shiraishi Kogyo Co., Ltd. is used instead of titanium oxide as the powdered inorganic substance, and the composition of the oxygen-permeable layer is linear.
  • Low-density polyethylene: polymethylpentene: calcium carbonate 70:20:10 (weight ratio), except that the deoxidized multilayer film and deoxygenated laminated film stretched in the same manner as in Example 1 was prepared.
  • the iron powder in the oxygen-absorbing layer of the obtained oxygen-absorbing laminated film was sufficiently concealed from the film surface, and no protrusion to the film surface was observed.
  • the average length of the voids at the interface with the resin was 40 ⁇ m.
  • Deoxygenation area The deoxygenation time was 50 hours.
  • the iron powder in the oxygen-absorbing layer of the oxygen-absorbing laminated film was sufficiently concealed from the film surface, and no protrusion to the film surface was observed.
  • the cross section of the deoxidized laminated film was observed with a scanning electron microscope, the average particle size of the X-nips dispersed in the oxygen permeable layer was ⁇ m, and the average particle size of the titanium oxide was 0.25 m.
  • the average length of the voids at the interface between linear low-density polyethylene and MX nylon was 10 ⁇ m.
  • the deoxidizing time of the deoxidized laminated film was 45 hours.
  • a deoxidizing composition obtained by spraying and heating and drying an aqueous solution containing 2 parts by weight of sodium chloride with respect to 100 parts by weight of iron powder having a maximum particle size of about 50 ⁇ , quicklime, activated carbon, the linear low-density polyethylene, After dry-blending a metallocene-catalyzed linear low-density polyethylene (manufactured by Nippon Polychem Co., Ltd., trade name KC570S, melt flow rate ll. Pellets of the oxygen-containing resin composition were obtained.
  • the composition of the oxygen absorbing composition is 40% by weight of the oxygen absorbing composition, 2% by weight of quicklime, 3% by weight of activated carbon, 35% by weight of linear low density polyethylene, and 20% by weight of metallocene catalyzed linear low density polyethylene.
  • the incompatible resin to be added to the oxygen permeable layer is an equal mixture of polymethylpentene and MX nylon.
  • Linear low-density polyethylene: polymethylpentene: MX nylon: titanium oxide 55: 15: 20: 10 (Weight ratio).
  • a deoxidized multilayer film and a deoxygenated laminated film stretched in the same manner as in Example 4 were produced.
  • the iron powder in the oxygen-absorbing layer of the obtained oxygen-absorbing laminated film was sufficiently concealed from the film surface, and no protrusion to the film surface was observed.
  • the average particle size of the polymethylpentene dispersed in the oxygen-permeable layer was 10 ⁇
  • the average particle size of the nylon was 10 ⁇ .
  • the average particle size of titanium oxide was 0.25 ⁇ m
  • the average length of voids at the interface between linear low-density polyethylene and poly-4-methylpentene-11 resin or MX nylon was 20 ⁇ m.
  • the deoxidation time of the deoxidized laminated film was 50 hours.
  • Example 2 After extruding the resin of the oxygen permeable layer used in Example 1 into a 150 ⁇ monolayer film, stretching the film by uniaxial stretching 6 times (5 times the area magnification) to a thickness of 45 ⁇ , Except that the oxygen-absorbing resin composition pellet prepared in Example 1 was extruded and laminated at a thickness of 30 / m on the overlayer, an oxygen-absorbing layer was laminated, and the surface of the oxygen-absorbing layer was subjected to corona discharge treatment. Similarly, a stretched multilayer film was produced. A two-layer film of an oxygen permeable layer Z and an oxygen absorption layer was obtained.
  • nylon and alumina-deposited PET with printing on the oxygen-absorbing layer surface are laminated by dry lamination, and the composition of the oxygen-absorbing multilayer film and oxygen-absorbing multilayer film is as follows: oxygen permeable layer (45 m) / oxygen absorbing layer (30 / zm) Nylon printing (15 ⁇ ) / Alumina evaporated PET ( ⁇ 2 ⁇ ).
  • This deoxygenated laminated film is cut into 10 cm x 8 cm, and is bonded on one side to a 10 cm x 8 cm film of LLDP ⁇ 40 ⁇ m / nylon 15 ⁇ / alumina-deposited PET 12 xm to make a three-sided heat-sealed bag. Individually filled and sealed. It was stored at 23 ° C and the oxygen concentration in the bag on the first day was measured and found to be 0.1% or less. Furthermore, it was stored at 23 ° C for 3 months, and the appearance of the cut rice cake was inspected. No mold was generated and there was no problem with odor.
  • the deoxygenated thermoplastic resin is a metallocene-catalyzed linear low-density polyethylene (SP2040 manufactured by Mitsui Chemicals, Inc.), and the composition of the deoxidized resin composition is 45 wt% of the deoxidized composition, 53 wt% of the thermoplastic resin. % And quicklime 2 wt%.
  • the oxygen-permeable layer is 70 wt ° / metacene catalyzed linear low density polyethylene (manufactured by Mitsui Chemicals, Inc., SP0540, MF R 4.0 g / 10 min, density 0.905 gZcm 3 , melting point 93 ° C).
  • Example 1 Polymethylpentene (DX 845, manufactured by Mitsui Chemicals, Inc., MFR 9.0g / 10min, density 0.833gZcm 3 , melting point 236 ° C) 20wt% Powdered titanium oxide used in Example 1 (manufactured by Sakai Chemical Industry Co., Ltd.) (Product name: SR-1, average particle size: 0.25 / zm) 10 wt%, both layers are laminated by co-extrusion, and the laminate of oxygen permeable layer and deoxygenated layer is stretched by 6 to 6.5 times ( (Area magnification of 5.5 to 6 times) A stretched deoxygenated multilayer film was produced.
  • Example 2 A deoxygenated multilayer film and a deoxygenated laminated film stretched in the same manner as in Example 1 except that the composition of the oxygen-permeable layer was only linear low-density polyethylene, and polymethylpentene and titanium oxide were not added. . No protrusion of iron powder was observed in the obtained deoxidized laminated film, but the deoxidation time was 500 hours. Comparative Example 2
  • the oxygen-absorbing composition such as iron powder in an oxygen-absorbing layer
  • the oxygen-absorbing multilayer body while preventing the oxygen-absorbing composition, such as iron powder in an oxygen-absorbing layer, from exposing to the surface of the oxygen-permeable layer of a multilayer body, the oxygen-absorbing multilayer body with a large oxygen-absorbing rate, or oxygen-absorbing layer.
  • the container using the deoxidized multilayer body or the deoxygenated laminated film of the present invention has a high deoxygenation performance and requires only a short time to deoxygenate the atmosphere in the container, so that the preserving action of the contents is improved.

Landscapes

  • Laminated Bodies (AREA)

Description

明 細 書 脱酸素多層体及び製造方法 技術分野 '
本発明は脱酸素機能を有するフィルムまたはシートに関する。 より詳しくは、 食品、 医薬品や金属製品などの、 酸素の影響を受けて変質し易い各種製品の酸化 を防止する目的を持つ脱酸素体または脱酸素性容器を構成するために用いられる、 脱酸素多層体に関する。 背景技術
食品や医薬品、 金属製品に代表される、 酸素の影響を受けて変質し易い各種製 品の酸化を防止する目的で、酸素除去を行う脱酸素剤が従来より使用されている。 この脱酸素剤として初期に開発され現在も多く使用されている形態は、 粒状また は粉状の脱酸素組成物を小袋に詰めたものである。 これを改良するものとして、 より取扱いが容易で適用範囲が広く、 誤食などの問題のない安全な脱酸素体とし て、 脱酸素組成物を固定したフィルムまたはシート状のものが考えられている。 フィルムまたはシートの形状とするためには、 熱可塑性樹脂をマトリックス成 分に利用して、 粒状または粉状の脱酸素組成物と複合化する方法が簡便である。 し力 し、 この複合化したフィルムまたはシートをそのまま用いると、 この脱酸素 体と内容物との接触、 特に液体との接触により、 脱酸素組成物による内容物の汚 染を発生させる危険性がある。 この対策として、 他の遮蔽層または遮蔽用の包装 体でこの単層の脱酸素層を覆えばよいことになるが、 フィルム又はシートの特性 を生かすためには、他の遮蔽層で脱酸素層を密着させて覆う構成が理想的である。 このような構成例として特開平 8— 7 2 9 4 1号公報等がある。
このような脱酸素性のフィルムまたはシートは、 樹脂に脱酸素組成物を練り込 んでいるため、 小袋状の脱酸素剤に比べ脱酸素速度が遅いという問題点がある。 これに対処するために、 脱酸素層を延伸時に多孔化し、 その上面を無孔質な遮蔽 層で保護する多層構成とすると、 酸素透過速度が大きく、 脱酸素剤の露出または 溶出のない脱酸素性のフィルムまたはシートを作製できることが、 特開平 9一 2 3 4 8 1 1号公報及び特開平 1 0— 2 6 4 2 7 9号公報に示されている。
しかし、 脱酸素層を延伸しても遮蔽層が酸素透過性に優れていないと、 良好な 脱酸素速度を得ることには限界がある。 このため、 特開平 9一 2 3 4 8 1 1号公 報及び特開平 1 0— 2 6 4 2 7 9号公報には、 遮蔽層と脱酸素層との間に、 多孔 化した層を設け脱酸素速度を損なうことなく脱酸素剤の露出を防止する方法が開 示されている。 発明の開示
遮蔽層の酸素透過性を向上させるためには、 遮蔽層をできるだけ薄くすること が好ましい。 しかしながら、 遮蔽層を薄くすると、 脱酸素層中の脱酸素成分が遮 蔽層を突き破り多層体表面に露出するおそれがあり、 また、 多孔化した層と脱酸 素層との層間強度が弱くなるという問題点がある。
本発明の解決すべき課題は、 脱酸素剤成分の多層体表面への突き出しを防止し つつ、 脱酸素速度の大きな脱酸素多層体を提供することである。
本発明者らは、 脱酸素多層体の酸素透過層に、 (A)ポリオレフイン系樹脂、 (B) これに分散する非相溶性の熱可塑性樹脂粒子及び (C)無機物粉体を含み、かつ、(A) ポリォレフィン系樹脂の融点が(B)非相溶性の熱可塑性樹脂の融点より 50°C以上 低 、組合せからなる樹脂組成物を延伸してなる層を用いることにより、 脱酸素組 成物が表面に突き出すことを防止しつつ、 脱酸素速度を高くすることができるこ とを見出し、 本発明を完成した。
すなわち、 本発明は、 (A)ポリオレフイン系樹脂、 (B)これに分散する非相溶性 の熱可塑性樹脂粒子及び (C)無機物粉体からなる樹脂組成物を延伸してなる延伸 フィルムであって、 (A)ポリオレフイン系樹脂と(B)これに分散する非相溶性の熱 可塑性樹脂の組み合わせが、 基材となるポリオレフイン系樹脂の融点がこれに分 散する非相溶性の熱可塑性樹脂の融点より 5 0 °C以上低い組み合わせを用い、 酸 素透過性を向上させたことを特徴とする。 発明を実施するための最良の形態
本発明において、 各粒子の平均粒径は、 相当する層について粒子の直径を測定 し、 その平均値を求めることにより測定される。 本発明の脱酸素多層体を包装容 器として用いる場合は、 脱酸素層の片面を酸素透過層と積層し、 もう一方の面を 酸素透過性の低いガスバリア層と積層し、 かかる多層体の酸素透過層を容器内面 に配置し、 ガスバリア層を容器外面に配置する。 酸素透過層は、 隣接する他のガ スバリァ性材料の熱可塑性樹脂表面層または脱酸素多層体の酸素透過層を構成す る熱可塑性樹脂と共にヒートシールされ、 容器の密閉性を保持するヒートシール 層となる。
本発明の酸素透過層は、(A)ポリォレフィン系樹脂を基材とする樹脂組成物から なる。 ポリオレフイン系樹脂は、 気体透過性が高い方が好ましく、 酸素透過度が 100cm3/m2 - 24hr - atm (25°C、 RH90%、 20 μ ) 以上のポリオレフイン系樹脂を用 いることが好ましい。 具体的なポリオレフイン系樹脂の例としては、 ポリエチレ ン、 ポリプロピレン、 ポリ一 1—ブテン、 ポリ一 4ーメチルー 1 _ペンテンなど のポリオレフイン類が挙げられる。 さらに、 エチレン一酢酸ビエル共重合体、 ェ チレンーブテン共重合体等のォレフィン系共重合体を用いてもよい。好ましくは、 ポリエチレン、 ポリプロピレン、 エチレン系共重合体もしくはプロピレン系共重 合体である。
酸素透過層の基材となる熱可塑性樹脂は、 単独のモノマー種から重合された高 分子のみでなく、 各種の共重合体、 樹脂の混合体でもよく、 非極性または低極性 の高分子が好ましい。 また、 酸素透過層には脱酸素層のマトリックス成分となる 熱可塑性樹脂と同種の熱可塑性樹脂を用いることが好ましく、 異なる樹脂を用い る場合には、 両者の熱融着が可能な程度に相溶性を持っている熱可塑性樹脂が好 ましい。
酸素透過層に用いられる具体的な樹脂の例としては、 エチレン、 プロピレン、 1ーブテン、 4ーメチルー 1一ペンテンなどのォレフィン類の単独重合体および 共重合体、 エチレン一酢酸ビエル共重合体、 ポリブタジエン、 ポリイソプレン、 スチレン—ブタジエン共重合体とその水素添加物、各種シリコン樹脂などがあり、 さらにこれらの変成物、 グラフト体、 混合物などであってもよい。 酸素透過層を ヒートシール層とする場合には、 ヒートシール性の点からォレフィン系樹脂、 特 にポリプロピレン、 ポリエチレン、 エチレン共重合体、 またはプロピレン共重合 体を用いることが好ましい。
本発明の酸素透過層に用いる(B)非相溶性の熱可塑性樹脂は、酸素透過層の基材 となるポリオレフィン系樹脂に対して実質的に相溶せずに基材樹脂中に分散する 熱可塑性樹脂である。 非相溶性の熱可塑性樹脂自体は、 必ずしも良好な気体透過 性を有する樹脂種に限定されないが、 通気性延伸フィルム全体として少しでも気 体透過性を高めることができるため、 非相溶性樹脂は、 基材となる樹脂と同様、 気体透過性が良い樹脂種が好ましい。
具体的な樹脂の例としては、 ポリエチレン、 ポリプロピレン、 ポリ一 1ーブテ ン、 ポリ一 4ーメチル一 1一ペンテンなどのポリオレフイン類、ポリブタジエン、 ポリイソプレンなどのポリジェン類とその水素添加物、 ポリスチレンなどの芳香 族樹脂、 各種シリコン樹脂やフッ素樹脂、 さらにポリエチレンテレフタレート、 ポリブチレンテレフタレート、 ポリエチレンナフタレートなどのポリエステル、 6ナイロン、 MX D 6ナイロン、 6 6ナイロン等のナイロン、 ポリカーボネート、 ポリフエ二レンエーテ 4^、 ポリアセターノレ、 ポリフエ二レンサノレフアイ ド、 液晶 ポリマー、 ポリスノレフォン、 ポリエーテノレスノレフォン、 ポリエーテルエーテノレケ トン、 ポリアミ ドイミド、 ポリエーテルイミド等が例示される。 あるいは、 ェチ レン一酢酸ビ ル共重合体、 エチレン一ブテン共重合体、 スチレン—ブタジエン 共重合体等の共重合体、 あるいは、 A B S等のように、 2種以上を組み合わせた 樹脂組成物を用いてもよい。
亀裂を生じさせることにより酸素透過性を向上させるため、 非相溶†生樹脂自体 が必ずしも良好な酸素透過性を有する必要はないが、酸素透過層全体から見れば、 非相溶性樹脂として酸素透過性が良い熱可塑性樹脂の使用が好ましい。 また、 添 加する非相溶性樹脂が酸素透過層を構成する樹脂よりも硬度の大きい材料とする と脱酸素組成物の突き出しを抑制する効果が大きレ、。
非相溶性樹脂の平均粒径は、好ましくは 0 . 1〜 1 0 0 μ m、より好ましくは 1 〜 5 0 mであ 。
非相溶性樹脂の平均粒径が 0 . 1 x m以下であると、延伸時に樹脂界面で生じさ せる亀裂が細かくなり、 効果が低い。 1 0 0 /x m以上では、 延伸時に樹脂界面に 生じさせる亀裂が疎らになり、 酸素透過層の強度が低下する。 非相溶性樹脂の添 加量としては、 1〜5 O w t %が好ましく、 3〜3 O w t %がより好ましい。 添 加量が少ないと亀裂の効果が小さく、 多いと適切な分散粒径を形成しないか、 亀 裂が連続的になり脱酸素組成物の成分が酸素透過層を通して内容物に移行するお それが発生する。
このような要件を満たす基材となるポリオレフィン系樹脂とこれに分散する非 相溶性の熱可塑性樹脂の組み合わせとして、 (A)ポリオレフィン系樹脂の融点が (B)これに分散する非相溶性の熱可塑性樹脂の融点より 5 0 °C以上低い組み合わ せであることが必要である。
さらに、 (A)基材となるポリオレフィン系樹脂の軟化点が (B)これに分散する非 相溶性の熱可塑性樹脂の軟化点より 50°C以上低い組み合わせが好ましく、 100°C 以上低い組み合わせがより好ましい。
このような要件を満たす樹脂として、 熱可塑性樹脂がポリエチレン又はポリプ ロピレン、 非相溶性樹脂がポリ一 4—メチルペンテン一 1、 ポリエステル、 ナイ 口ン、 ポリカーボネート又はポリアセタールの組み合わせが好ましく、 熱可塑性 樹脂が低密度ポリエチレン又はポリプロピレン、 非相溶性樹脂がポリー 4ーメチ ルペンテン一 1の組み合わせがより好ましく、 熱可塑性樹脂が低密度ポリエチレ ン、 直鎖状低密度ポリエチレン又はメタロセン触媒低密度ポリェチレン、 非相溶 性樹脂がポリ一 4—メチルペンテン一 1の組み合わせが最も好ましい。
具体的には、 基材となるポリオレフイン系樹脂がポリエチレン、 ポリプロピレ ン、 エチレン共重合体もしくはプロピレン共重合体、 非相溶性熱可塑性樹脂がポ V一 4ーメチルペンテン一 1、 ポリエステル、 ナイロン、 ポリカーボネート又は ポリアセタールである組み合わせが好ましく ;基材となるポリオレフイン系樹脂 がポリエチレン又はポリプロピレン、 非相溶性熱可塑性樹脂がポリ— 4ーメチル ペンテン一 1又はその共重合体である組み合わせがより好ましく ;基材となるポ リオレフイン系樹脂が低密度ポリエチレン、 直鎖状低密度ポリエチレン、 メタ口 セン触媒低密度ポリエチレン又はポリプロピレン、 非相溶性熱可塑性樹脂がポリ - 4ーメチルペンテン一 1である組み合わせが最も好ましい。
基材樹脂中に分散する非相溶性熱可塑性樹脂粒子の平均分散粒径は、 0. 1〜100 μ πιであり、 好ましくは 1〜50 μ πι、 より好ましくは 5〜25 μ mである。 延伸操 作により、 基材樹脂と非相溶性熱可塑性樹脂との樹脂界面で亀裂を生じ、 基材樹 脂中に分散する非相溶性熱可塑性樹脂粒子の周囲に空隙を生じさせることにより 気体透過性を向上させる。 非相溶性樹脂粒子の平均分散粒径が 0. l // m以下であ ると、 延伸時に、 非相溶性熱可塑性樹脂粒子の周囲に生じる空隙が細かくなりす ぎ、 酸素透過効果が低くなる。 非相溶性樹脂粒子の平均分散粒径が 100 / m以上 では、 延伸時に非相溶性熱可塑性樹脂粒子の周囲に生じる空隙が疎らになり、 や はり酸素透過効果が低くなる。
本発明の通気性延伸フィルムにおける非相溶性熱可塑性樹脂粒子の平均分散粒 径は、 フィルム断面を電子顕微鏡にて 1000〜50000倍に拡大して写真を撮り、 粒 子粒径を測定し、粒子 10個以上について平均値をとることにより求めた。粒子が 楕円状である場合には、 その長径をもって粒径とした。 .
(B)非相溶性の熱可塑性樹脂の配合量としては、 熱可塑性樹脂成分 (A)及び (B) の総量に対して 1〜5 0重量%が好ましく、 3〜4 0重量%がより好ましい。 非 相溶性の熱可塑性樹脂の配合量がこの範囲より少ないと延伸時に榭脂界面で生じ る空隙の効果が小さくて優れた酸素透過性が得られず、 多いと適切な分散粒径を 形成しないか、 空隙が連続的になって液体を含む内容物から液が脱酸素層にまで 浸透することがある。
本発明の通気性延伸フィルムにおいては、 樹脂成分以外の成分として、 基材と なる樹脂にもこれに非相溶性の熱可塑性樹脂にも相溶性のない(C)無機物粉体を 配合する。 配合した無機物粉体の一部は、 基材樹脂と非相溶性熱可塑性樹脂の界 面に介在して基材となる樹脂とこれに非相溶な熱可塑性樹脂との摩擦力を低下せ しめ、 延伸した際に、 非相溶性熱可塑性樹脂の周囲に空隙を有効に生じるのを促 進する効果をもたらす。
酸素透過層の第 3成分として、 添加する樹脂よりも平均粒径の細かい無機物粉 体を加えることにより、 界面での亀裂の生成が促進される。 本発明で用いられる 無機物粉体としては、 酸素透過層を構成する樹脂にも酸素透過層に添加する樹脂 にも相溶性のない物質が好ましい。平均粒径が 0 . 0 1〜 1 0 μ mの粉状無機物が 好ましい。 無機物粉体の平均粒径は、 酸素透過層に分散された非相溶性樹脂の粒 径よりも小さいことが好ましい。
添加した無機物粉体の一部は、 酸素透過層に添加する非相溶性樹脂と酸素透過 層を構成する樹脂との界面付近に分布し、 酸素透過層を構成する基材樹脂と酸素 透過層に添加した非相溶性樹脂との親和力ないし密着性を阻害し、 酸素透過層を 延伸した際に、 酸素透過層を構成する熱可塑性樹脂が非相溶性樹脂との界面にお いて亀裂を有効に生じせしめる効果をもたらす。 (C)無機物粉体の配合量としては、 樹脂成分の総量に対して 1〜50重量%が好 ましく、 3〜30重量%がより好ましい。 非相溶性の熱可塑性樹脂の配合量に対す る無機物粉体の配合量の重量比は、 通常 0 . 1〜1、 好ましくは 0 . 3〜0 . 7 である。 この範囲の通気性延伸フィルムは、 酸素透過性が大きい。
無機物粉体の平均粒子径は、 0. 001〜10 μ πιが好ましく、 0. 01〜10 /i mがより好 ましく、 0. 1〜 5 μ mが最も好ましい。無機物粉体の平均粒子径が非相溶性熱可塑 性樹脂の分散平均粒径よりも小さい場合が、 延伸による界面での空隙の発生がよ り促進されるので好ましい。 無機物粉体の平均粒子径は、 フィ /レム断面を電子顕 微鏡にて 1000〜50000倍に拡大して写真を撮り、粒子粒径を測定し、粒子 10個以 上について平均値をとることにより求めた。 粒子が楕円状である場合には、 その 長径をもって粒径とした。
このような粉状無機物としては、 酸素透過層を構成する熱可塑性樹脂及び非相 溶性樹脂と親和性がない無機物が好ましい。
無機物粉体としては、 酸化チタン、 炭酸カルシウム、 炭酸マグネシウム、 水酸 化マグネシウム、 酸化亜鉛、 水酸化カルシウム、 酸化カルシウム、 石膏、 硫酸力 ルシゥム、 リン酸カルシウム、 炭酸マグネシウム、 硫酸マグネシウム、 水和ケィ 酸、 無水ケィ酸、 ソーダ灰、 塩ィ匕ナトリウム、 硫酸ナトリウム、 硫酸バリウム、 ケィ酸カルシウム、 タルク、 マイ力、 ガラスフレーク、 ガラスビーズ、 ゼォライ ト、 アルミナ、 シリカ、 シリカゲル、 クレー、 各種セメント、 火山灰、 シラス、 酸化鉄、 カーボンブラック、 活性炭、 珪藻土、 各種粘土鉱物などがある。 これら の内から 2種以上を組み合わせて用いることもできる。 これらの中で、 粒径が細 かい点、 安全衛生性、 安価である点等から酸化チタンが最も好ましい。
本発明の酸素透過層においては、 前記ポリオレフイン系樹脂及び非相溶性の熱 可塑性樹脂粒子以外の樹脂成分として、 その性質を変化させない範囲で、 ポリブ タジェン、 ポリイソプレンなどのポリジェン類もしくはその水素添加物、 ポリス チレンなどの芳香族樹脂、 各種シリコーン樹脂やフッ素樹脂、 ポリエチレンテレ フタレート、 ポリブチレンテレフタレート、 ポリエチレンナフタレートなどのポ リエステル、 6ナイロン、 MX D 6ナイロン、 6 6ナイロン等のナイロン、 ポリ カーボネート、 ポリフエ二レンエーテ Λ^、 ポリアセターノレ、 ポリフエ二レンサノレ ファイ ド、 :液晶ポリマー、 ポリスノレフォン、 ポリエーテ^/スノレフォン、 ポリエー テルエーテルケトン、 ポリアミドイミド、ポリエーテルィミド等の樹脂、 または、 スチレン—ブタジエン共重合体、 A B S樹脂等の共重合体もしくは樹脂組成物を 添加しても良レ、。
本発明の酸素透過層を構成する、 基材となるポリオレフイン系樹脂、 非相溶性 樹脂と無機物粉体の組み合わせの他に、 必要に応じて、 着色剤、 可塑剤、 帯電防 止剤、 ヒートシール性向上剤、 難燃剤、 消臭剤などを、 通気性延伸フィルムの機 能を損なわない範囲で加えることができる。
また、 脱酸素層と酸素透過層との間に、 ポリオレフイン等からなる接着層又は その他の層を設けても良い。
酸素透過層に添加する非相溶性樹脂や粉状無機物 (及び場合によりその他の成 分) を添加する方法には、 特に制限はない。 これらを混練してマスターパッチを 作製する方法でも良いし、 酸素透過層を作製する際に熱溶融させた酸素透過層を 構成する熱可塑性樹脂に添加混合する方法でも良い。 いずれの方法においても、 酸素透過層を構成する樹脂が溶融し、 かつ、 酸素透過層に分散させる非相溶性樹 脂も溶融する温度で混合することが好ましい。
酸素透過層は、酸素透過層を含むフィルムの温度が、 (A)基材となるポリオレフ イン系樹脂の軟化点より 30°C低い温度から該軟化点より 10°C高い温度までの範 囲で、 力つ、 (B)分散させる非相溶性樹脂の軟化点以下の温度、好ましくは、該軟 化点より 20°C低い温度から該軟化点温度までの範囲で、 かつ、分散させる非相溶 性樹脂の軟化点以下の温度で延伸することにより製造される。
例えば、 基材となるポリオレフイン系樹脂、 これに非相溶性の熱可塑性樹脂及 び無機物粉体を混練して得られたマスターバッチを用いてフィルムを製膜後、 所 望により脱酸素層を積層し、 延伸する方法が使用できる。 混練操作は、 基材とな るポリオレフィン系樹脂の融点及びこれに混合する非相溶性の熱可塑性樹脂の融 点より高い温度で行うことが好ましい。 フィルムを製膜後、 さらに他のフィルム を積層し、 延伸することもできる。
また、 基材となるポリオレフィン系樹脂からなる熱溶融状態のフィルムに非相 溶性の熱可塑性樹脂粒子及び無機物粉体を添加し、 所望により他のフィルムを積 層して延伸する方法でも良いし、 基材となるポリオレフィン系樹脂からなる熱溶 融状態のフィルムに非相溶性の熱可塑性樹脂粒子 (又は無機物粉体) を添加して 得られたマスターバツチからなる熱溶融状態のフィルムに無機物粉体 (又は非相 溶性の熱可塑性樹脂粒子) を添加し、 所望により他のフィルムを積層して延伸す る方法でも良い。
本発明の酸素透過層の延伸方法には、 公知の延伸方法を使用でき、 一軸延伸、 二軸同時 伸、 二軸逐次延伸のいずれの手法を用いてもよい。 延伸倍率は、 面積 倍率 (延伸前フィルム面積に対する延伸後フィルム面積) として、 1. 2〜20 倍とするのが好ましく、 1. 5〜10倍とするのがより好ましく、 1. 7〜8倍と するのが最も好ましい。 延伸倍率がこの範囲より低いと、 空隙の発生及び成長が 不十分であり、 延伸倍率がこの範囲より高いと、 フィルムとしての機械的強度が 低下する。
延伸時のフィルムの酸素透過層の温度は、 (A)基材となるポリオレフィン樹脂の 軟化点より 30°C低い温度から軟化点より 10°C高い温度までの範囲で、 かつ、 (B) 分散させる非相溶性樹脂の軟化点以下の温度が好ましい。 好ましくは、 該軟化点 より 20°C低い温度から該軟化点温度までの範囲で、 かつ、 分散させる非相溶性樹 脂の軟化点以下の温度が好ましい。
本発明の酸素透過層は、 ポリオレフイン系樹脂とこれに非相溶性の熱可塑性樹 脂の粒子との界面には、 1〜200μπι、好ましくは 10~100μπιの平均長さの空隙 を有する。 なお、 ここでの平均空隙は、 フィルム断面を電子顕微鏡にて 1000〜 50000倍に拡大して写真を撮り、 延伸方向に生じた空隙の長さを測定し、 粒子 10 個以上について平均値をとることにより求めた。 隣り合う非相溶性の熱可塑性樹 脂粒子まで空隙が到達している場合には、 粒子間の距離をもって空隙の長さとす ることができる。
この空隙により、 本発明の酸素透過層は、 J I SK7126の差圧法に準じて 測定される酸素透過度が 2000 Ocm3/tn2'24hr'atm (25°C、 RH50%、 50μπι) 以上の高い通気性を有する。
酸素透過層の厚さは、 酸素透過率で表される脱酸素対象物の要求性能と樹脂の 酸素透過係数とにより決定されるが、 5〜 100 が好ましく、 10〜80 μ mがより好ましく、 20〜60 / mが最も好ましい。
本発明の酸素透過層の厚さは、 通常、 5~200 μιηが好ましく、 10〜10 0 μπιがより好ましく、 20〜80 μπιが最も好ましい。 本発明の通気性延伸フィルムは、 本通気性延伸フィルム同士、 又は、 ポリオレ フィン等のヒートシール層を有する他の通気性もしくは非通気性の材料のヒート シール層と熱融着することができる。
本発明の (A)ポリオレフィン系樹脂、 (B)これに分散する非相溶性の熱可塑性樹 脂粒子及び (C)無機物粉体からなり、延伸により、前記ポリオレフィン系樹脂と前 記非相溶性の熱可塑性樹脂粒子との界面に空隙を有する、 耐液性に優れた通気性 延伸フィルムの片面又は両面には、通気性を有するフィルム又は補強材を積層し、 積層フィルムとして使用することもできる。 積層されるフィルムとしては、 有孔 プラスチックフィルム、 微多孔プラスチックフィルム、 不織布もしくは紙等の通 気性を有するフィルム、 又は、 これらの 2種以上を積層してなる通気性を有する 積層フィルムが使用できる。
脱酸素層に配合する脱酸素組成物としては、 公知の脱酸素性組成物が使用でき る。 例えば、 固体状の脱酸素組成物、 または、 液状の脱酸素組成物を適当な顆粒 状物質に担持させた脱酸素組成物が使用できる。 また、 脱酸素層に水に難溶また は不溶の無機フィラーを多孔化補助剤として加えてもよい。
中でも脱酸素層に用いる脱酸素組成物としては、 鉄粉、 アルミ ウム粉、 ケィ 素粉などの金属粉、 第一鉄塩などの無機塩類、 ァスコルビン酸とその塩類、 カテ コール、 没食子酸、 グリセリンなどのァノレコール、 フエノーノレ類、 ブタジエン、 イソプチレンなどの不飽和炭化水素、 トール油、 大豆油などの不飽和脂肪酸、 不 飽和結合を有する有機化合物などを主剤とする脱酸素性組成物が好ましい。特に、 鉄粉とハロゲン化金属塩類からなる組成物が好ましい。
脱酸素組成物の粒径としては、 最大粒径が脱酸素層の厚さ未満であることが好 ましく、 酸化速度を大きくし、 他の層を傷つけない (貫通などのない) ためには より細かいものが望ましい。 通常、 最大粒径として 2 0 0 /z m以下、 より好まし くは 1 0 0 μ ΐη以下のものから選ばれる。 酸化速度を大きくしつつ、 脱酸素層の 機械特性を維持するためには、 脱酸素組成物の脱酸素層に占める量は、 1 0〜6 0 w t %であることが好ましく、 3 0〜5 5 w t %がより好ましい。 脱酸素層は 延伸により多孔化してもよい。
脱酸素層に用いる樹脂としては、 鉄粉などの脱酸素組成物や難水溶性の無機フ イラ一を容易に混合、 分散させられるものであれば、 特に制限はなく、 酸素透過 層との相溶 'I生、 脱酸素多層フィルム又はシートの使用温度範囲などを考慮して選 択される。
脱酸素層に用いられる具体的な樹脂の例としては、 エチレン、 プロピレン、 1
-ブテン、 4—メチル一 1—ペンテンなどのォレフィン類の単独重合体およぴ共 重合体、 エチレン一酢酸ビュル共重合体、 ポリブタジエン、 ポリイソプレン、 ス チレン一ブタジエン共重合体とその水素添加物、 各種シリコン樹脂などがあり、 さらにこれらの変成物、 グラフト体、 混合物などであってもよい。
脱酸素層に用いる樹脂は、 隣接層との相溶性を有することが好ましく、 酸素透 過層と同種の樹脂を用いて直接積層することが最も好ましい。
脱酸素層の厚さは、 1 0〜2 0 0 Ai mが好ましく、 2 0〜1 5 0 がより好 ましく、 3 0〜: L 0 0 /i mが最も好ましい。
脱酸素多層体の脱酸素層の酸素透過層を設けた面と反対の面には酸素透過性の 低いガスパリア層を設けた積層フィルムとすることが好ましい。 すなわち、 本発 明の一つは、 前記した脱酸素多層体の脱酸素層の酸素透過層を設けた側と反対の 側にガスバリア層が積層された脱酸素積層フィルムである。
ガスバリア層は、 ガスバリア性材料からなり、 容器外部から酸素が侵入するの を防ぐ働きをする。 ガスバリア層を構成する材料としては、 ポリエチレンテレフ タレートなどのポリエステノレ類、 ナイロン 6、 ナイロン MX D 6などのポリアミ ド類、 ポリ塩化ビュル、 ポリ塩化ビニリデンなどの塩素含有樹脂、 エチレン一ビ -ルアルコール共重合体などの低酸素透過性の樹脂、 それらのコート品、 アルミ -ゥムなどの金属箔または金属蒸着樹脂、 ケィ素酸化物などの無機化合物蒸着樹 脂などが例示される。
本発明の脱酸素多層体は、 容器包装に用いる場合には、 内容物に接する側に酸 素透過層を配し、 容器外空気と接する面にはガスバリア層を配する。 酸素透過層 はヒートシール層を兼ねることができる。 酸素透過層の表面には、 さらにポリオ レフィン樹脂のみからなるヒートシール層を設けてシール強度を高めることも可 能である。
各層を構成する材料には、 脱酸素性のフィルムおよびシートの脱酸素速度と脱 酸素組成物の溶出の防止とが維持でき、さらに新たな溶出などの問題がなければ、 前述の材料以外に種々の物質を加えることが可能である。 この添加物としては、 例えば、 着色または隠蔽のための顔料や染料、 酸化防止や分解防止などのための 安定化成分、 帯電防止成分、 吸湿成分、 脱臭成分、 可塑化成分、 難燃化成分など が挙げられる。 また、 同様に脱酸素性のフィルムおよびシートとしての性能に悪 影響を与えない限り、 印刷層や易開封層、 易剥離層などの層を付加することが可 能である。 '
本発明を構成する各層の積層においては、 通常の共押出や押出コーティング、 押出ラミネートなどの公知の積層方法を用いることが可能である。
延伸においては、 通常知られているように、 1軸延伸、 2軸同時延伸、 2軸逐 次延伸のいずれの手法を用いてもよい。延伸倍率は 2〜20倍とするのが好ましい。 また、 酸素透過層を延伸した後に脱酸素層を接着、 融着あるいは蒸着などによ り積層しても良いし、 あるいは酸素透過層と脱酸素層を別々に延伸した後に脱酸 素層を接着、 融着あるいは蒸着などにより積層しても良い。 二枚の酸素透過層を 延伸した後に、 これを脱酸素層の両面に接着、 融着あるいは蒸着などにより積層 して、 あるいは、 二枚の酸素透過層を延伸した後に、 これを別に延伸した脱酸素 層の両面に接着、 融着あるいは蒸着などにより積層して、 脱酸素層の両面がとも に酸素透過性の脱酸素多層体を得ることもできる。
バリア層に樹脂を使用する場合は、 酸素透過性樹脂層、 脱酸素層及びバリア層 を積層した後に延伸しても良い。 バリア層に金属箔又は金属蒸着フィルム等の非 延伸性材料を使用する場合には、 バリア層を熱ラミネート、 ドライラミネート、 押出コーティングなどの通常の方法により接着または融着して、 最終的な多層構 造とすることができる。
本発明の脱酸素多層体は、 片面がガスバリア性で、 他の片面が酸素を吸収する ことができる場合には、 脱酸素包装材料として、 その特性に応じ、 例えば、 包装 袋や包装容器の一部や全部に種々の形で使用される。 例えば、 包装用容器のトツ ブシールフィルムや、 包装袋に使用することができる。 また、 内容物は固体だけ でなく、 液体、 または固体と液体の混合物も可能である。 両面がともに酸素透過 性の脱酸素多層体は、 通気性包装材料により包装して又は包装しないで、 脱酸素 剤として使用することができる。
【実施例】
以下、 実施例と比較例を用いて本発明をさらに詳しく説明するが、 本発明はこ れによって限定されるものではない。なお、樹脂組成物中の各粒子の平均粒径は、 樹脂,袓成物断面を電子顕微鏡にて 1 0 0 0〜5 0 0 0倍に拡大して写真をとり、 1 0個以上の粒子映像について粒径を測定し、 その平均値をとることにより決め た。 粒子映像が楕円状である場合には、 その長径を粒径とした。
実施例 1
最大粒径約 50 mの鉄粉 100重量部に対して塩化カルシウム 2重量部を含む水 溶液を噴霧し加熱乾燥させて得られた脱酸素組成物、 生石灰及びメタロセン触媒 直鎖状低密度ポリエチレン (三井化学 (株)製、 商品名 S P 2 0 4 0、 メルトフ口 一レート 4. 0g/10min、 融点 116°C) をドライブレンド後、 30rani径 2軸押出機にて 混練、 ストランドダイより押し出し、 冷却、 ペレタイザ一で切断して、 脱酸素性 樹脂組成物のペレッ トを得た。 該脱酸素性樹脂組成物の組成は、 脱酸素組成物
50wt%、 生石灰 2wt% 直鎖状低密度ポリェチレン 48wt%である。
前記脱酸素性樹脂組成物に使用したのと同じ直鎖状低密度ポリエチレン、 ポリ 一 4ーメチルペンテン一 1樹脂 (三井化学 (株)製、 商品名 D X 8 4 5、 メルトフ ローレ一ト 7〜llg/10min、 融点 236°C)、及び、粉状酸化チタン (堺化学工業 (株) 製、 商品名 SR - 1、 平均粒径 0. 25 m) を、 重量比で 7 0 : 2 0 : 1 0となるよう に混合し、 脱酸素性樹脂組成物と同様にして白色ペレッ トを作製した。 この白色 ペレツトと前記脱酸素性樹脂組成物ペレツトを用いて共押出により積層し、 酸素 透過層(120 μ tn)と脱酸素層(150 μ m)の 2層からなる中間積層体を得た。
この中間積層体を一軸延伸機にて 5倍 (面積倍率 4. 5倍) に延伸して脱酸素性 の積層体を得た。 延伸後の積層体の各層の厚さは、 酸素透過層 40 μ ηι、 脱酸素層 50 mであった。 次いで、 この脱酸素層にバリア層としてアルミ箔をウレタン系 接着剤 (武田薬品工業 (株)製商品名 A— 5 1 5と硬化剤 A— 5 0の混合比 10: 1 組成物) を用いてドライラミネートにより接着し、 脱酸素積層フィルムを得た。 得られた脱酸素積層フィルム脱酸素層の鉄粉は、 脱酸素積層フィルムの酸素透過 層表面から十分に隠蔽され、多層フィルム表面への突き出しも認められなかつた。 また、 脱酸素積層フィルムの断面を走査型電子顕微鏡 (S E M) にて観察したと ころ、酸素透過層において分散しているポリメチルペンテンの平均粒径は 10 /ζ ηι、 酸化チタンの平均粒径は 0. 25 μ ιη、直鎖状低密度ポリエチレンとポリ一 4ーメチ ルペンテン一 1樹脂との界面にある空隙の平均長さは 20 // mであった。 脱酸素積層フィルムを両面に用いた lOcmX 10cmの 4方シール袋に、加湿用に水 を含ませた脱脂綿及び 200CCの空気を入れて、 酸素透過層表面でヒートシールし て密封した。 25°Cにおける 4方シール袋内の酸素濃度の経時変化をガスクロマト グラ 7 ( (株)島津製作所、 GC-14B) で追跡した。 酸素濃度 0. lvol%に達するまで の所要時間 (以下、 「脱酸素時間」 と称する) を求め、 脱酸素速度を評価した。 脱 酸素時間は 2 0時間であった。
実施例 2
酸素透過層の構成比を直鎖状低密度ポリエチレン:ポリメチルペンテン:酸化 チタン = 7 0 : 1 0 : 2 0 (重量比) とした以外は実施例 1と同様にして延伸さ れた脱酸素多層フィルム及び脱酸素積層フィルムを作製した。 得られた脱酸素積 層フィルムの脱酸素層の鉄粉は、 同フィルム表面から十分に隠蔽され、 フィルム 表面への突き出しも認められなかった。 また、 脱酸素多層フィルムの断面を走査 型電子顕微鏡にて観察したところ、 酸素透過層において分散しているポリメチル ペンテンの平均粒径は 10 μ m、酸化チタンの平均粒径は 0. 25 μ m、直鎖状低密度 ポリエチレンとポリ一 4ーメチルペンテンー 1樹脂との界面にある空隙の平均長 さは 20 μ mであつた。 脱酸素積層フィルムの脱酸素時間は 2 0時間であつた。 実施例 3
粉状無機物として酸化チタンに替えて粉状炭酸カルシウム (白石工業 (株)製、 商品名 P— 3 0、 平均粒径 4. 3 // m) を使用し、 酸素透過層の組成を直鎖状低密 度ポリエチレン: ポリメチルペンテン:炭酸カルシウム = 7 0 : 2 0 : 1 0 (重 量比) とした他は、 実施例 1と同様にして延伸された脱酸素多層フィルム及び脱 酸素積層フィルムを作製した。得られた脱酸素積層フィルムの脱酸素層の鉄粉は、 フィルム表面から十分に隠蔽され、 フィルム表面への突き出しも認められなかつ た。 また、 脱酸素積層フィルムの断面を走査型電子顕微鏡にて観察したところ、 酸素透過層において分散しているポリメチルペンテンの平均粒径は 10 / m、炭酸 カルシウムの平均粒径は 4. 3 μ πι、 直鎖状低密度ポリエチレンとポリ一 4—メチ
-樹脂との界面にある空隙の平均長さは 40 μ mであつた。脱酸素積 )脱酸素時間は 5 0時間であつた。
実施例 4
酸素透過層に添加する非相溶性樹脂をポリメチルペンテンに替えて MXナイ口 ン (三菱ガス化学 (株)製、 商品名 6007、 メルトフローレート 2.0g/10min、 融 点 243°C) を使用し、 実施例 1と同様に直鎖状低密度ポリエチレン: MXナイ口. ン:酸化チタン =70 : 20 : 10 (重量比) とした。 あらかじめ脱酸素層から なるシートを厚さ O/ mで作製した後、 前記樹脂組成物からなる酸素透過層を 押出ラミネートにて厚さ 150μπιで積層した。 その後、 実施例 1と同様の手順で 延伸倍率 4.5倍に延伸を行い、脱酸素多層フィルム及び脱酸素積層フィルムを作 製した。
脱酸素積層フィルムの脱酸素層の鉄粉は、 フィルム表面から十分に隠蔽され、 フィルム表面への突き出しも認められなかった。 また、 脱酸素積層フィルムの断 面を走査型電子顕微鏡にて観察したところ、 酸素透過層において分散している Μ Xナイ口ンの平均粒径は ΙΟμ m、酸化チタンの平均粒径は 0.25 m、直鎖状低密 度ポリエチレンと MXナイロンとの界面にある空隙の平均長さは 10μ mであつ た。 脱酸素積層フィルムの脱酸素時間は 45時間であった。
実施例 5
最大粒径約 50μηιの鉄粉 100重量部に対して塩化ナトリゥム 2重量部を含む水 溶液を噴霧し加熱乾燥させて得られた脱酸素組成物、 生石灰、 活性炭、 前記直鎖 状低密度ポリエチレン及びメタロセン触媒直鎖状低密度ポリエチレン (日本ポリ ケム(株)製、商品名 KC 570 S、メルトフローレート ll.Og/lOmin、融点 116°C) をドライブレンド後、 実施例 1と同様にして脱酸素性樹脂組成物のペレットを得 た。 該脱酸素性樹聘組成物の組成は、 脱酸素組成物 40wt%、 生石灰 2wt%、 活性炭 3wt%、直鎖状低密度ポリエチレン 35wt%及びメタロセン触媒直鎖状低密度ポリェ チレン 20wt%である。
酸素透過層に添加する非相溶性樹脂をポリメチルペンテンと MXナイロンの等 量混合物を使用し、 直鎖状低密度ポリエチレン:ポリメチルペンテン: MXナイ ロン :酸化チタン = 55 : 15 : 20 : 10 (重量比) とした。 その他は実施例 4と同様にして延伸された脱酸素多層フィルム及び脱酸素積層フィルムを作製し た。 得られた脱酸素積層フィルムの脱酸素層の鉄粉は、 フィルム表面から十分に 隠蔽され、 フィルム表面への突き出しも認められなかった。 また、 脱酸素積層フ ィルムの断面を走査型電子顕微鏡にて観察したところ、 酸素透過層において分散 しているポリメチルペンテンの平均粒径は 10μπι、ΜΧナイロンの平均粒径は 10 μ m、酸化チタンの平均粒径は 0.25 μ m、 直鎖状低密度ポリエチレンとポリ一 4 ーメチルペンテン一 1樹脂又は MXナイロンとの界面にある空隙の平均長さは 20 μ mであつた。 脱酸素積層フィルムの脱酸素時間は 50時間であつた。
実施例 6
実施例 1で用いた酸素透過層の樹脂を厚さ 150 μπι単層のフィルムを押出した 後、一軸延伸にて 6倍 (面積倍率 5倍) に延伸し、 厚さ 45μπιとした後、 酸素透 過層の上に実施例 1で作製した脱酸素性樹脂組成物ペレツトを厚さ 30/ mで押 出ラミネートし、 酸素吸収層を積層、 酸素吸収層面をコロナ放電処理した以外は 実施例 1と同様にして延伸された多層フィルムを作製した。 酸素透過層 Z酸素吸 収層の 2層フィルムを得た。 さらに酸素吸収層面に印刷を施したナイロン、 及び アルミナ蒸着 PETをドライラミネートにて積層し、 脱酸素多層フィルム及び脱 脱酸素積層フィルムの構成は、 酸素透過層 (45 m) /酸素吸収層 (30 /zm) ナイロンノ印刷 (15μπι) /アルミナ蒸着 PET (Ι2μιη) である。
この脱酸素積層フィルムを 10cmX8cmに切り取り、 片面に L LD P Ε40μ m/ ナイロン 15μπι/アルミナ蒸着 PET12 xmの 10cmX8cmのフィルムと貼り合わ せ、 3方ヒートシール袋を作製し、 切り餅 (80 g) を 1個充填し、 密封した。 23°C下に保存し、 1日目の袋内酸素濃度を測定したところ、 0. 1%以下であ つた。 さらに、 23 °C ' 3ヶ月保存し、 切り餅の外観を検査し、 カビの発生がな く、 臭気にも問題がなかった。
実施例 7
脱酸素層の熱可塑性樹脂をメタロセン触媒直鎖状低密度ポリエチレン (三井化 学 (株)製 S P 2040) とし、脱酸素性樹脂組成物の組成を、脱酸素組成物 45wt%、 熱可塑性樹脂 53wt%、生石灰 2wt%とした。 酸素透過層は、 メタ口セン触媒直鎖状 低密度ポリエチレン (三井化学(株)製 S P 0540、 MF R4.0g/10min、 密度 0.905 gZcm3、 融点 93°C) 70wt°/。、 ポリメチルペンテン (三井化学 (株)製 DX 845、 MFR9.0g/10min、 密度 0.833gZcm3、 融点 236°C) 20wt% 実施例 1で用いた粉状酸化チタン(堺化学工業 (株)製、商品名 SR- 1、平均粒径 0.25 /z m) 10wt%とし、共押出にて両層を積層し、酸素透過層と脱酸素層との積層体を延伸倍 率 6〜6. 5倍 (面積倍率 5.5〜 6倍) で延伸した以外は実施例 1と同様にして 延伸された脱酸素多層フィルムを作製した。 脱酸素多層フィルムの断面を走査型 電子顕微鏡 (S EM) にて観察したところ、 酸素透過層において分散している直 鎖状低密度ポリエチレンとポリ一 4ーメチルペンテン一 1'樹脂との界面にある空 隙の平均長さは 40 μ mであった。脱酸素多層フィルムにアルミ箔を貼りつけた脱 酸素積層フィルムの脱酸素時間は 2 3時間であつた。
比較例 1
酸素透過層の組成を直鎖状低密度ポリエチレンのみとしてポリメチルペンテン 及び酸化チタンを添加しなかった他は、 実施例 1と同様にして延伸された脱酸素 多層フィルム及び脱酸素積層フィルムを作製した。 得られた脱酸素積層フィルム には、鉄粉の突き出しは認められなかったが、脱酸素時間は 5 0 0時間であった。 比較例 2
酸素透過層の組成を直鎖状低密度ポリエチレン:酸化チタン = 9 0 : 1 0 (重 量比) としてポリメチルペンテンを添加しなかった他は、 実施例 1と同様にして 延伸された脱酸素多層フィルム及び脱酸素積層フィルムを作製した。 得られた脱 酸素積フィルムには、 鉄粉の突き出しは認められなかったが、 その脱酸素時間は 3 0 0時間であった。
比較例 3
粉状無機物として粒状炭酸カルシウム(丸尾カルシウム(株)製、商品名 R重炭、 平均粒径 20 /z m) を使用した他は、 実施例 3と同様にして延伸された脱酸素多層 フィルム及び脱酸素積層フィルムを作製した。得られた脱酸素積層フィルムには、 鉄粉の突き出しは認められなかったが、 その脱酸素時間は 3 0 0時間であった。 また、 脱酸素積層フィルムの断面を走査型電子顕微鏡にて観察したところ、 分 散しているポリメチルペンテンの平均粒径は 10 z m、炭酸カルシウムの平均粒径 は 20 μ mであった。 産業上の利用の可能性
本発明によれば、 脱酸素層中の鉄粉等の脱酸素組成物が多層体の酸素透過層表 面に露出することを防止しつつ、 脱酸素速度の大きな脱酸素多層体または脱酸素
,を得ることができる。 また、 多孔化した層と脱酸素層との層間強度 の低下も防止される。
本発明の脱酸素多層体または脱酸素積層フィルムを用いた容器は、 脱酸素性能 が高く、 容器内雰囲気を脱酸素するのに要する時間が短くてすむので、 内容物の 保存作用が向上する。

Claims

請 求 の 範 囲
1 脱酸素組成物が配合された熱可塑性樹脂からなる脱酸素層: 及び、 脱酸素層 の少なくとも一方の側に配した、 熱可塑性樹脂からなる酸素透過層からなる脱酸 素多層体であって、
酸素透過層が (A)基材となるポリオレフイン系樹脂、 (B)これに分散する非相溶性 の熱可塑性樹脂粒子及び (C)無機物粉体からなる樹脂組成物を延伸してなる延伸 層であって、 かつ、
該 (A)ポリオレフイン系樹脂と(B)非相溶性の熱可塑性樹脂の組み合わせが、 (A) ポリオレフィン系樹脂の融点が(B)非相溶性の熱可塑性樹脂の融点より 50°C以上 低い組み合わせであることを特徴とする脱酸素多層体。
2 (C)無機物粉体の平均粒子径が (B)非相溶性の熱可塑性樹脂の粒子の平均粒子 径より小さい請求項 1に記載の脱酸素多層体。
3 (C)無機物粉体の平均粒子径が 0 . 0 0 1〜 1 0 /2 mである請求項 1に記載の 脱酸素多層体。
4 (C)無機物粉体の配合量が樹脂成分の総量に対して 1〜5 0重量%である請 求項 1に記載の脱酸素多層体。
5 (C)無機物粉体が酸化チタン粉末である請求項 1に記載の脱酸素多層体。
6 (B)非相溶性の熱可塑性樹脂粒子が 0 . 1〜 1 0 0 μ mの平均粒径を有して (A)ポリオレフィン系樹脂中に分散していることを特徴とする請求項 1に記載の 脱酸素多層体。
7 (B)非相溶性の熱可塑性樹脂の配合量が酸素透過層の樹脂成分の総量に対し て 1〜5 0重量。/。である請求項 1に記載の脱酸素多層体。
8 (B)非相溶性の熱可塑性樹脂がポリ— 4—メチルペンテン一 1である請求項 1に記載の脱酸素多層体。
9 酸素透過層において、 (A)ポリオレフィン系樹脂と(B)非相溶性の熱可塑性樹 脂粒子との界面に l〜200 /x mの平均長さの空隙を有する請求項 1に記載の脱酸
1 0 酸素透過層が、 (A)基材となるポリオレフイン系樹脂の軟化点より 30°C低 い温度から該軟化点より 10°C高い温度までの範囲で、 かつ、 (B)分散させる非相 溶性樹脂の軟化点以下の温度で延伸されたものである請求項 1に記載の脱酸素多 層体。
1 1 脱酸素組成物が配合された熱可塑性樹脂からなる脱酸素層、 及び、 脱酸素 層の少なくとも一方の側に配した、 熱可塑性樹脂からなる酸素透過層からなる脱 酸素多層体であって、 酸素透過層が (A)基材となるポリオレフイン系樹脂、 (B)こ れに分散する非相溶性の熱可塑性樹脂粒子及び (C)無機物粉体からなる樹脂組成 物を延伸してなる延伸層であって、 かつ、 該 (A)ポリオレフイン系樹脂と(B)非相 溶性の熱可塑性樹脂の組み合わせが、 (A)ポリオレフイン系樹脂の融点が(B)非相 溶性の熱可塑性樹脂の融点より 50°C以上低い組み合わせである脱酸素多層体の 製造方法であって、
酸素透過層が、 (A)基材となるポリオレフイン系樹脂の軟化点より 30°C低い温度 から該軟化点より 10°C高い温度までの範囲で、 かつ、 (B)分散させる非相溶性樹 脂の軟化点以下の温度で延伸したことを特徴とする請求項 1に記載の脱酸素多層 体の製造方法。
1 0 請求項 1に記載の脱酸素多層体の脱酸素層の側にさらにガスバリア層が積 層されてなる脱酸素積層:
PCT/JP2001/007371 2000-08-28 2001-08-28 Desoxydant multicouche et son procede de production WO2002018140A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20010958564 EP1314549A1 (en) 2000-08-28 2001-08-28 Multilayered deoxidizer and production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000257102 2000-08-28
JP2000-257102 2000-08-28

Publications (2)

Publication Number Publication Date
WO2002018140A1 true WO2002018140A1 (fr) 2002-03-07
WO2002018140A9 WO2002018140A9 (fr) 2002-05-16

Family

ID=18745620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007371 WO2002018140A1 (fr) 2000-08-28 2001-08-28 Desoxydant multicouche et son procede de production

Country Status (3)

Country Link
US (1) US20030180519A1 (ja)
EP (1) EP1314549A1 (ja)
WO (1) WO2002018140A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021746B2 (en) * 2006-07-19 2011-09-20 E.I. Du Pont De Nemours And Company Article comprising oxygen permeable layer
JP2008231368A (ja) * 2007-03-23 2008-10-02 Nippon Oil Corp 光線反射率および強度に優れた液晶ポリエステル樹脂組成物
US8147592B2 (en) * 2008-03-14 2012-04-03 The Boeing Company Using a metallocene to remove oxygen from a stream of gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162251A (ja) * 1991-12-13 1993-06-29 Sumitomo Chem Co Ltd 酸素吸収多層シート
JPH09176499A (ja) * 1995-12-22 1997-07-08 Mitsubishi Gas Chem Co Inc 酸素吸収性樹脂組成物及び酸素吸収性積層体
EP0812677A1 (en) * 1995-12-27 1997-12-17 Mitsubishi Gas Chemical Company, Inc. Deoxidizing multilayered body and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162251A (ja) * 1991-12-13 1993-06-29 Sumitomo Chem Co Ltd 酸素吸収多層シート
JPH09176499A (ja) * 1995-12-22 1997-07-08 Mitsubishi Gas Chem Co Inc 酸素吸収性樹脂組成物及び酸素吸収性積層体
EP0812677A1 (en) * 1995-12-27 1997-12-17 Mitsubishi Gas Chemical Company, Inc. Deoxidizing multilayered body and method of manufacturing the same

Also Published As

Publication number Publication date
US20030180519A1 (en) 2003-09-25
EP1314549A1 (en) 2003-05-28
WO2002018140A9 (fr) 2002-05-16

Similar Documents

Publication Publication Date Title
KR100240734B1 (ko) 다층구조체
KR101912766B1 (ko) 흡착제 조성물, 흡착제 함유 필름 및 그 제조 방법
KR100461284B1 (ko) 산소흡수성수지,그수지를사용한탈산소성다층구조체및포장용기
KR100356696B1 (ko) 액체식품보존용수지조성물및적층체
JP2020157559A (ja) 消臭積層体
JPH06340036A (ja) 食品容器用包装材料及びその製造方法
JP3460789B2 (ja) 脱酸素性多層フィルム
WO2002018140A1 (fr) Desoxydant multicouche et son procede de production
JP3978542B2 (ja) 脱酸素性多層体及びこれよりなる包装容器
JP7419664B2 (ja) 消臭ptp包装体
JPH11123794A (ja) 酸素吸収多層フィルム及び酸素吸収包装容器
JP4548566B2 (ja) 脱酸素多層体
JPH09176499A (ja) 酸素吸収性樹脂組成物及び酸素吸収性積層体
JP3962882B2 (ja) 脱酸素性樹脂組成物、これよりなるシート又はフィルム及び包装容器
JP2002201360A (ja) 酸素吸収組成物、該組成物からなるフィルムまたはシート及び該組成物からなる層を有する酸素吸収積層フィルムまたはシート、該フィルムまたはシートからなる包装容器
JP3545089B2 (ja) 酸素吸収性容器の製造方法及びこの方法により得られる酸素吸収性容器
JP3376915B2 (ja) 脱酸素性多層体、これを用いた包装容器、及び食品又は医薬品の保存方法
JP2002052655A (ja) 酸素吸収性多層体及びこれを用いた低水分含有物品の保存方法
JP4544377B2 (ja) 酸素吸収性多層体
JP3826975B2 (ja) 脱酸素性多層体、これよりなる包装容器及び食品または医薬品の保存方法
JP3724526B2 (ja) 米飯の保存方法及び包装体
JP4433111B2 (ja) 延伸された脱酸素多層体の製造方法
JP2000318091A (ja) 脱酸素性多層シート及び容器
HK1208009A1 (en) Polymer films containing microspheres
JP7371341B2 (ja) 炭酸ガス吸収積層体とバルブレス包装体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

COP Corrected version of pamphlet

Free format text: PAGE 20, CLAIMS, REPLACED BY A NEW PAGE 20: AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZED BY THE INTERNATIONAL SEARCHING AUTHORITY

WWE Wipo information: entry into national phase

Ref document number: 10362417

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001958564

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001958564

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001958564

Country of ref document: EP