WO2002036139A1 - Method for management of blood glucose levels - Google Patents
Method for management of blood glucose levels Download PDFInfo
- Publication number
- WO2002036139A1 WO2002036139A1 PCT/CA2000/001281 CA0001281W WO0236139A1 WO 2002036139 A1 WO2002036139 A1 WO 2002036139A1 CA 0001281 W CA0001281 W CA 0001281W WO 0236139 A1 WO0236139 A1 WO 0236139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tea
- vanadate
- blood glucose
- suspended
- glucose levels
- Prior art date
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 82
- 239000008103 glucose Substances 0.000 title claims abstract description 82
- 239000008280 blood Substances 0.000 title claims abstract description 80
- 210000004369 blood Anatomy 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims description 22
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims abstract description 178
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 48
- 244000269722 Thea sinensis Species 0.000 claims description 175
- 235000013616 tea Nutrition 0.000 claims description 93
- 235000006468 Thea sinensis Nutrition 0.000 claims description 52
- 235000020279 black tea Nutrition 0.000 claims description 52
- 235000009569 green tea Nutrition 0.000 claims description 36
- 239000008194 pharmaceutical composition Substances 0.000 claims description 12
- 230000002496 gastric effect Effects 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 6
- 235000003942 Rubus occidentalis Nutrition 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 240000007651 Rubus glaucus Species 0.000 claims 3
- 206010012735 Diarrhoea Diseases 0.000 abstract description 24
- 230000000694 effects Effects 0.000 abstract description 22
- 238000011282 treatment Methods 0.000 abstract description 16
- 241001122767 Theaceae Species 0.000 abstract 2
- 206010012601 diabetes mellitus Diseases 0.000 description 54
- 241001465754 Metazoa Species 0.000 description 50
- 241000700159 Rattus Species 0.000 description 29
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 22
- 238000003304 gavage Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 15
- 102000004877 Insulin Human genes 0.000 description 12
- 108090001061 Insulin Proteins 0.000 description 12
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 12
- 229940125396 insulin Drugs 0.000 description 11
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 10
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 10
- 229960001052 streptozocin Drugs 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 8
- 235000006708 antioxidants Nutrition 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 241000207840 Jasminum Species 0.000 description 6
- 235000010254 Jasminum officinale Nutrition 0.000 description 6
- 244000235659 Rubus idaeus Species 0.000 description 6
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 5
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 description 5
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 description 5
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 description 5
- 241000282326 Felis catus Species 0.000 description 5
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 5
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 5
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 5
- 235000005487 catechin Nutrition 0.000 description 5
- 238000013375 chromatographic separation Methods 0.000 description 5
- 229950001002 cianidanol Drugs 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 description 5
- 235000012734 epicatechin Nutrition 0.000 description 5
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 description 5
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 235000005875 quercetin Nutrition 0.000 description 5
- 229960001285 quercetin Drugs 0.000 description 5
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 description 5
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 description 5
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 description 5
- 235000005493 rutin Nutrition 0.000 description 5
- 229960004555 rutoside Drugs 0.000 description 5
- 235000018991 trans-resveratrol Nutrition 0.000 description 5
- 229940100389 Sulfonylurea Drugs 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000002218 hypoglycaemic effect Effects 0.000 description 4
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 230000004584 weight gain Effects 0.000 description 4
- 235000019786 weight gain Nutrition 0.000 description 4
- CZMRCDWAGMRECN-UHFFFAOYSA-N 2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 3
- 235000011034 Rubus glaucus Nutrition 0.000 description 3
- 235000009122 Rubus idaeus Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000001019 normoglycemic effect Effects 0.000 description 3
- 235000018553 tannin Nutrition 0.000 description 3
- 229920001864 tannin Polymers 0.000 description 3
- 239000001648 tannin Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 244000067456 Chrysanthemum coronarium Species 0.000 description 2
- 235000007871 Chrysanthemum coronarium Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000036528 appetite Effects 0.000 description 2
- 235000019789 appetite Nutrition 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000009429 distress Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 208000026775 severe diarrhea Diseases 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical group [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 2
- 229940041260 vanadyl sulfate Drugs 0.000 description 2
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 2
- 244000302899 Cassia mimosoides Species 0.000 description 1
- 235000014112 Cassia mimosoides Nutrition 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- PZTQVMXMKVTIRC-UHFFFAOYSA-L chembl2028348 Chemical compound [Ca+2].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 PZTQVMXMKVTIRC-UHFFFAOYSA-L 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- -1 for example Chemical compound 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000015810 grayleaf red raspberry Nutrition 0.000 description 1
- 230000010243 gut motility Effects 0.000 description 1
- 230000005986 heart dysfunction Effects 0.000 description 1
- 235000015092 herbal tea Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000002486 insulinomimetic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012792 lyophilization process Methods 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/163—Liquid or semi-liquid tea extract preparations, e.g. gels or liquid extracts in solid capsules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/73—Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
- A61K36/736—Prunus, e.g. plum, cherry, peach, apricot or almond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/82—Theaceae (Tea family), e.g. camellia
Definitions
- the present invention relates generally to a pharmaceutical composition. More specifically, the present invention relates to a pharmaceutical composition for managing blood glucose levels.
- sulfonylurea drugs are usually used only in cases of mild diabetes.
- insulin injections although effective, are not an optimum way of controlling the disease. This is due to the fact that daily injections with needles is painful and unpleasant.
- other means of delivering insulin for example, implanted mini-pumps and islet transplantation, have not evolved to a point where they could be considered viable replacements for daily injections of insulin (Pierce et al, 1988).
- vanadate was identified over 10 years ago as a replacement for insulin (Heyliger et al, 1985, Science 227: 1474). Therein, vanadate was shown to control diabetes in an insulin-deficient, streptozotocin-induced rat model of diabetes (Heyliger et al, 1985). Specifically, vanadate was included in the drinking water of the rats, thus removing the need for unpleasant injections (Heyliger et al, 1985).
- vanadate was considered a potentially important therapy for controlling diabetes, the side-effects associated with its administration have been so serious as to preclude any clinical use.
- vanadate analogues (Aharon et al, 1998, Diabetes Care 21: 2194; Halberstam et al, 1996, Diabetes 45: 659-666; Goldfine et al, 1995, J Clin Endocrinol Metab 80: 3312-3320) that would increase the hypoglycemic action while limiting the harmful side effects, that is, the generation of diarrhea.
- An example is vanadyl sulfate (Aharon et al, 1998).
- no vanadate analogues have successfully addressed the problem in a manner that would make these compounds useful in a clinical setting.
- an orally-administered pharmaceutical composition for treating diabetes comprising an insulin-mimetic agent such as vanadate and a suitable carrier such that side-effects are minimized is needed.
- a method of preparing a mixture for maintaining blood glucose levels comprising: providing a tea reputed to have gastrointestinal soothing properties; adding the tea to boiling water; boiling the tea; cooling the tea; and suspending a quantity of vanadate in the tea.
- the tea may be selected from the group consisting of green tea, black tea and raspberry tea.
- the method may include filtering the tea prior to suspending the vanadate in the tea.
- composition comprising as an active ingredient the mixture of the methods described above.
- mixture for maintaining blood glucose levels comprising decocted tea and vanadate.
- the decocted tea may be selected from the group consisting of green tea, black tea and raspberry tea.
- a method of treating diabetes comprising: providing the pharmaceutical composition described above; and administering the pharmaceutical composition to a diabetic individual, thereby normalizing the blood glucose levels of the individual.
- FIG. 1 is a bar graph of percent survival of subjects administered varying quantities of vanadate suspended in black tea, green tea and water.
- FIG. 2 is a graph of body weight over time of subjects administered 30 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
- FIG. 3 is a graph of body weight over time of subjects administered 40 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
- FIG. 4 is a graph of body weight over time of subjects administered 50 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
- FIG. 5 is a plot of blood glucose levels over time in subjects administered 30 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
- FIG. 6 is a plot of blood glucose levels over time in subjects administered 40 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
- FIG. 7 is a plot of blood glucose levels over time in subjects administered 50 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
- FIG. 8 shows a high performance liquid chromatographic separation of black tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
- FIG. 9 shows- a high performance liquid chromatographic separation of Chinese green tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
- FIG. 10 shows a high performance liquid chromatographic separation of Japanese tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
- FIG. 11 shows a high performance liquid chromatographic separation of raspberry tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
- FIG. 12 shows the effects of sodium orthovanadate and black tea on the generation of diarrhea and death compared to vanadate delivered with water in streptozotocin-induced diabetic rats.
- FIG. 13 shows the effect of sodium orthovanadate and black tea on blood glucose concentration in streptozotocin-induced diabetic rats.
- FIG. 14 shows the effect of sodium orthovanadate and black tea on individual blood glucose concentration in streptozotocin-induced diabetic rats.
- FIG. 15 shows the effect of sodium orthovanadate and black tea on mortality compared to vanadate delivered with water in Zucker diabetic rats.
- FIG. 16 shows the effect of sodium orthovanadate in black tea on diarrhea compared to vanadate delivered with water in Zucker diabetic rats.
- FIG. 17 shows the effect of lyophilized sodium orthovanadate in black tea on blood glucose levels in streptozotocin-induced diabetic rats.
- FIG. 18 shows the effect of lyophilized sodium orthovanadate in jasmine tea on blood glucose levels in streptozotocin-induced diabetic rats.
- TABLE 4 summarizes results of subjects administered 30 mg of vanadate suspended in green tea.
- TABLE 8 summarizes results of subjects administered 40 mg of vanadate suspended in black tea.
- Gastro-intestinal soothing tea refers to any tea known in the art as a remedy for Gl distress.
- decocted tea refers to a concentrated tea extract containing medicinal constituents of the tea obtained by simmering dried tea leaves and other parts in boiling water.
- Described herein is a method of utilizing vanadate as an effective insulinomimetic agent while preventing the vanadate-induced gastrointestinal distress (diarrhea) associated with administration of vanadate.
- the vanadate was suspended in a decoction of specific teas, which were chosen based on their reputed abilities to prevent or treat gastrointestinal problems like diarrhea.
- the teas were prepared to generate a highly concentrated decoction as described below and the vanadate was suspended therein.
- the decocted tea and vanadate mixtures lowered blood glucose levels of test animals to normal levels, in some cases for an extended period of time, with fewer side effects, compared to administered doses of a water and vanadate mixture.
- the tannin or high antioxidant content of the teas, or another specific component of the tea would be enriched in this decoction in such a manner as to avoid the diarrhea side-effects and enhance the hypoglycemic action of vanadate.
- the data indicates that elements in the tea are counteracting the harmful effects of vanadate, possibly by modifying the vanadate in some way, as discussed below.
- pharmaceutical compositions based on the decocted tea and vanadate mixture may have long-term hypoglycemic effects, thereby obviating the need for daily insulin injections to treat diabetes and/or control blood glucose levels.
- the decocted tea is lessening the side effects of vanadate.
- the tea may modify the vanadate into something more palatable to the gut. For example, once the vanadate is added to the tea, the mixture slowly darkens over a 24 hour period. This is similar to the darkening seen when iron is added to tea which is thought to be caused by the formation of soluble and insoluble complexes within the tea. It is possible that a similar reaction is occurring with the vanadate and tea.
- the antioxidant content of the tea may be altering the redox potential of the vanadate.
- the tea may instead act upon the gut itself and have no important interactions with the vanadate. For example, it is known tea inhibits gut motility - this may deter the diarrhea effects of vanadate and allow the vanadate to cross the gut wall at the same time. Most of these effects have been attributed to its tannin content.
- the decocted tea mixture is also enhancing the normoglycemic properties of vanadate, as blood glucose levels are stabilized for longer periods of time following treatment.
- the active ingredients of these mixtures or synthetic preparations thereof could be used to develop pharmaceutical compositions for managing blood glucose levels and treating diabetes in humans using methods known in the art.
- a therapeutically effective amount of the decocted tea/vanadate mixture may be combined with pharmaceutically acceptable carriers and/or excipients.
- the decocted tea/vanadate mixture may be lyophilized and, for example, combined with binders to form a tablet or inserted into caplets.
- kits for carrying out the methods of the invention. Accordingly, a variety of kits are provided.
- the kits may be used for any one or more of the following : treating diabetes in an individual; or maintaining blood glucose levels in an individual.
- kits of the invention comprise one or more containers comprising vanadate suspended in a decocted tea as described above or lyophilized vanadate suspended in a decocted tea and a set of instructions, generally written instructions although electronic storage media (e.g., magnetic diskette or optical disk) containing instructions are also acceptable, relating to the use and dosage of the vanadate suspended in decocted tea for the intended treatment (e.g., treating diabetes or maintaining blood glucose levels) .
- the instructions included with the kit generally include information as to dosage, dosing schedule, and route of administration for the intended treatment.
- the containers of vanadate suspended in decocted tea may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses.
- the vanadate suspended in decocted tea of the kit may be packaged in any convenient, appropriate packaging.
- the vanadate suspended in decocted tea is a freeze-dried formulation
- an ampoule with a resilient stopper is normally used, so that the drug may be easily reconstituted by injecting fluid through the resilient stopper.
- black tea, green tea and raspberry tea were decocted.
- the black tea used was China Lichee Black Tea (Golden Sail Brand) produced by China Tuhsu Guangdong Tea Import and Export Corporation, Golden Sail Brand, China; and the green tea was Japanese Green Tea, produced by Ujinotsuyu-Aoyanagi Midori Tea Company, Japan.
- Chinese Green Tea produced by Golden Dragon and Red Raspberry Leaf Tea produced by The Canadian Herbal Tea Company, PO Box 20024, Selkirk, MB, Canada, R1A 1S0 were also used, as described below.
- other teas having similar properties that is, tannin and/or high anti-oxidant concentrations and/or reputed gastrointestinal soothing properties may also be suitable.
- the decoction of tea was prepared as follows: 100 grams of a given tea was added to 800 ml of boiling water in a container. In this embodiment, a stainless steel container was utilized although other suitable containers may also be used. The container was then covered and boiled for 15 minutes with occasional stirring. The heat was turned off and the decoction was allowed to cool while covered on the burner. After approximately 8 hours, the cool tea decoction was filtered and aliquoted in 250 ml bottles. In the examples described herein, the decoction was filtered once through cheesecloth. This filtering step removes large particulate compounds from the decoction and as such it is to be understood that other methods for removing the large particulate compounds may also be used. Following filtration, the tea decoction contained small particulate matter.
- methods for preparing the decocted tea may vary, according to the brand and type of tea used.
- the volume of water or weight of dried tea leaves may be varied
- vanadate was then suspended in the tea. Specifically, the quantity of vanadate added in the examples described herein was 15, 20 or 25 milligrams/ml as described below. In the examples described herein, sodium orthovanadate from SigmaTM was used as the vanadate source. As will be apparent, other suitable forms of vanadate, for example, vanadyl sulfate or sodium metavanadate may also be used.
- the decocted tea plus vanadate was allowed to stand for 8 hours prior to use. It is of note that bottles were shaken prior to the removal of an aliquot for administration purposes.
- vanadate suspended in either water, black tea or green tea at concentrations of 15, 20 or 25 mg/ml was administered to test animals in a 2 ml aliquot by oral gavage.
- the test animals were streptozotocin-induced diabetic rats.
- the animals were identified by number and by the presence or absence of a red stripe, designated Red and None respectively.
- the dosage regime was different for each animal, depending upon their response to treatment. That is, some animals received only two to three doses of the vanadate/tea mixture and were normoglycemic for from three to six weeks without further doses.
- TABLE 1 summarizes the results observed using animals administered doses of 30 mg of vanadate suspended in water.
- two (37 Red and 38 None) of the six animals died of diarrhea, a common side effect of vanadate treatment, as discussed above.
- two of the animals 38 Red and 39 Red
- blood glucose levels remained normal approximately five weeks after the last dose.
- one animal usually responded to vanadate treatment but blood glucose levels remained normal for only a few days, meaning that more frequent doses were needed.
- animal 37 None blood glucose level was difficult to control and remained elevated after the 7 th dose.
- the results obtained with the vanadate and green tea mixtures indicate that higher concentrations of vanadate (50 mg) produced the desired results, that is, promoted normal blood glucose levels after only a few doses.
- vanadate and green tea mixture had a higher survival rate than the vanadate and water mixture.
- the vanadate and green tea mixture promoted weight gain at a rate higher than the diabetic control as shown in FIGs 2-4.
- the vanadate and green tea mixture was more apt at managing blood glucose levels and also had fewer side effects compared to the vanadate and water mixture.
- animals were administered 30 mg doses of vanadate suspended in decocted black tea. As can be seen, two animals (48 Red and 48 None) required multiple doses and their blood glucose level remained difficult to control throughout the study. Furthermore, one animal (51 None) always responded to the vanadate doses but the blood glucose levels remained normal for only a few days, meaning that multiple treatments were required. However, six animals (47 Red, 49 Red, 49 None, 50 Red, 50 None and 50 Red) required only two doses and maintained normal glucose levels approximately five weeks after the final dosage. Referring to TABLE 8, animals were administered 40 mg doses of vanadate suspended in decocted black tea. As can be seen, one animal (55 Red) died from diarrhea. However, nine animals (52 Red, 52 None, 53 Red, 53 None, 54 Red, 54 None, 55 None, 56 Red and 56 None) required only two to three doses of the vanadate black tea mixture and maintained normal blood glucose levels for three to five weeks after the last dose.
- animals were administered 50 mg doses of vanadate suspended in decocted black tea. As can be seen, three animals (44 None, 41 None and 40 None) died from diarrhea. Two others (41 Red and 44 Red) were usually responsive to vanadate but blood glucose levels increased after only a few days, necessitating several doses. However, five animals (40 Red, 42 Red, 42 None, 43 Red and 43 None) required only two to three doses of the vanadate black tea mixture and maintained normal blood glucose levels for three to five weeks after the last dose.
- the mixture of vanadate and black tea produced the desired results at the low and medium vanadate concentrations (30 mg and 40 mg). That is, these doses stabilized blood glucose levels after only a few doses. Furthermore, there is considerably less variability in the results obtained compared to the water and vanadate mixture. Finally, the vanadate and black tea mixture had a low mortality rate as shown in FIG. 1 and increased weight gain, as shown in FIGs 2-4.
- FIG. 1 plots survival against vanadate dosage.
- suspension of the vanadate in either decocted black tea or decocted green tea results in increased survival compared with similar quantities of vanadate suspended in water. This clearly shows that the suspension of the vanadate in the decocted tea helps to overcome the side effects associated with vanadate administration.
- FIGs 2-4 show weight gain over time of animals administered varying doses of vanadate suspended in water, decocted black tea or green tea.
- animals administered vanadate suspended in water tended to gain weight at a rate very similar to the diabetic control.
- animals administered vanadate suspended in decocted black tea or decocted green tea tended to gain weight at a rate more similar to that of wild type animals.
- the plot of 30 mg (FIG. 2) and particularly 40 mg (FIG. 3) vanadate resuspended in black tea closely follows that of wild type. ,
- FIGs 5-7 show blood glucose levels over time of animals administered varying doses of vanadate suspended in water, decocted black tea or green tea.
- the doses of vanadate regardless of the carrier, caused blood glucose levels to decrease to approach normal levels.
- doses of 40 mg or 50 mg vanadate suspended in decocted tea caused blood glucose levels to remain relatively constant at near wild type levels.
- Sodium orthovanadate suspended in decocted black tea and vanadate suspended in water were administered separately to two groups of 14 streptozotocin-induced diabetic rats. Specifically, the administered dose was 40 mg vanadate per 2 ml. As can be seen in Figure 12, 11 of the 14 rats administered vanadate in water developed diarrhea and 1 of the 14 rats died. Conversely, none of the rats administered sodium orthovanadate in decocted black tea developed diarrhea.
- FIG. 14 shows the number of weeks for which each of the 12 rats maintained normal blood glucose levels without further treatment. As can be seen, the length of time that blood glucose levels remained normal without further treatment varied from 5 weeks to 20 weeks in the rats, with a mean of 12 weeks.
- sodium orthovanadate was suspended in decocted black tea or jasmine tea and the mixture was lyophilized. Specifically, in some experiments, 2.125 g of sodium orthovanadate was suspended in 600 ml of decocted black tea or jasmine tea, prepared as described above. The tea/vanadate solution was then placed in the freezer and frozen at -20°C for approximately 72 hours. The frozen mixture was then placed in a LabconcoTM lyophilizer for approximately 72 hours. The resulting powders were weighed and amounted to 5.1 g of black tea/vanadate and 4.5 g of jasmine tea/vanadate.
- lyophilized jasmine tea/vanadate was prepared as described above to a dosage of 40 mg per 2 mis.
- the mixture was administered to streptozotocin- induced diabetic rats and blood glucose levels were measured over time.
- blood glucose levels dropped to normal levels, indicating that, as with the vanadate/black tea mixture, the lyophilization did not alter effectiveness. From this, it is evident that other known gastro-intestinal soothing teas may be utilized in the lyophilization process.
- VANADATE STUDY PARAMETER 30mg Vanadate & Green Tea
- VANADATE STUDY PARAMETER 40mg Vanadate & Green Tea
- VANADATE STUDY PARAMETER 50mg Vanadate & Green Tea
- VANADATE STUDY PARAMETER 30mg Vanadate & Black Tea
- VANADATE STUDY PARAMETER 40mg Vanadate & Black Tea
- VANADATE STUDY PARAMETER 50mg Vanadate & Black Tea
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dispersion Chemistry (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A composition for managing blood glucose levels is herein described. The composition comprises decocted tea and vanadate and does not cause the same side effects as vanadate and water mixtures known in the prior art. Specifically, the vanadate suspended in decocted tea does not cause diarrhea and in some cases stabilizes blood glucose at normal levels for several weeks after only a few treatments.
Description
METHOD FOR MANAGEMENT OF BLOOD GLUCOSE LEVELS
This application is derived from Provisional Patent Application Serial Number 60/135,653 filed on May 24, 1999
FIELD OF THE INVENTION
The present invention relates generally to a pharmaceutical composition. More specifically, the present invention relates to a pharmaceutical composition for managing blood glucose levels.
BACKGROUND OF THE INVENTION
Since the discovery of insulin by Banting and Best, regular insulin injections have remained the best and most frequently used therapy to control abnormal blood glucose levels in diabetic patients (Pierce et al in Heart Dysfunction in Diabetes (CRC Press: Boca Raton, Florida, 1988). The use of insulin has significantly prolonged the life of diabetic patients and reduced the severity of many complications associated with this disease. Besides insulin, only the sulfonylurea drugs have gained widespread use for the control of diabetes (Pierce et al, 1988).
Despite the acceptance of insulin and sulfonylurea drugs as effective therapies, there are significant limitations inherent in their use. For example, sulfonylurea drugs are usually used only in cases of mild diabetes. Furthermore, insulin injections, although effective, are not an optimum way of controlling the disease. This is due to the fact that daily injections with needles is painful and unpleasant. Unfortunately, other means of delivering insulin, for example, implanted mini-pumps and islet transplantation, have not evolved to a point where they could be considered viable replacements for daily injections of insulin (Pierce et al, 1988).
As a consequence, there has been considerable effort expended searching for insulin-mimetic compounds. For example, vanadate was identified over 10 years ago as a replacement for insulin (Heyliger et al, 1985, Science 227: 1474). Therein, vanadate was shown to control diabetes in an insulin-deficient, streptozotocin-induced rat model of diabetes (Heyliger et al, 1985). Specifically,
vanadate was included in the drinking water of the rats, thus removing the need for unpleasant injections (Heyliger et al, 1985). However, there were three important limitations in this methodology: first, the animals began to stop drinking the water containing vanadate; second, it was difficult to regulate and quantitate the amount of vanadate being administered to the rats in this manner; and third, and most importantly, the animals developed a life-threatening diarrhea when the vanadate was administered in this manner. Other complications accompanying the severe diarrhea included weight loss, depressed appetite, neurological disorders, liver cytotoxicity and death (Mongold et al, 1990, Pharm Tox 67: 192-198; Domingo et al, 1995, Mol Cell Bio 153: 233-240; Malabu et al, 1994, Diabetes 43: 9-15; Llobet and Domingo, 1984, Tox Letters 23: 227-231 ; Domingo et al, Pharm Tox 68: 249- 253).
Thus, although vanadate was considered a potentially important therapy for controlling diabetes, the side-effects associated with its administration have been so serious as to preclude any clinical use.
Some laboratories have attempted to circumvent the gastrointestinal complications by developing vanadate analogues (Aharon et al, 1998, Diabetes Care 21: 2194; Halberstam et al, 1996, Diabetes 45: 659-666; Goldfine et al, 1995, J Clin Endocrinol Metab 80: 3312-3320) that would increase the hypoglycemic action while limiting the harmful side effects, that is, the generation of diarrhea. An example is vanadyl sulfate (Aharon et al, 1998). However, to our knowledge, no vanadate analogues have successfully addressed the problem in a manner that would make these compounds useful in a clinical setting. The central problem remains: ingestion of vanadate induces severe diarrhea and other toxic complications (Shechter, 1990, Diabetes 39: 1-5; Mongold et al, 1990; Domingo et al, 1995; Malabu et al, 1994; Llobet and Domingo, 1984; Domingo et al, 1991 ). However, "the idea of having an insulin-mimetic agent capable of utilizing an alternative pathway is very attractive, as discussed earlier. This is especially true if the substance can be administered orally. Studies should continue to elucidate the level of vanadate toxicity over prolonged treatment and to search for agents that can be coadministered with vanadate and reduce the dosage required to achieve normoglycemia" (Shechter, 1990).
Clearly, a method for orally administering vanadate without the side-
effects discussed above is needed. Similarly, an orally-administered pharmaceutical composition for treating diabetes comprising an insulin-mimetic agent such as vanadate and a suitable carrier such that side-effects are minimized is needed.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, there is provided a method of preparing a mixture for maintaining blood glucose levels comprising: providing a tea reputed to have gastrointestinal soothing properties; adding the tea to boiling water; boiling the tea; cooling the tea; and suspending a quantity of vanadate in the tea.
The tea may be selected from the group consisting of green tea, black tea and raspberry tea.
The method may include filtering the tea prior to suspending the vanadate in the tea.
According to a second aspect of the invention, there is provided a pharmaceutical composition comprising as an active ingredient the mixture of the methods described above.
According to a third aspect of mixture for maintaining blood glucose levels comprising decocted tea and vanadate.
The decocted tea may be selected from the group consisting of green tea, black tea and raspberry tea.
According to a fourth aspect of the invention, there is provided a method of treating diabetes comprising: providing the pharmaceutical composition described above; and administering the pharmaceutical composition to a diabetic individual, thereby normalizing the blood glucose levels of the individual.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a bar graph of percent survival of subjects administered varying quantities of vanadate suspended in black tea, green tea and water.
FIG. 2 is a graph of body weight over time of subjects administered 30 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
FIG. 3 is a graph of body weight over time of subjects administered 40 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
FIG. 4 is a graph of body weight over time of subjects administered 50 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
FIG. 5 is a plot of blood glucose levels over time in subjects administered 30 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
FIG. 6 is a plot of blood glucose levels over time in subjects administered 40 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
FIG. 7 is a plot of blood glucose levels over time in subjects administered 50 mg of vanadate suspended in green tea, black tea and water, as well as wild type and diabetic controls.
FIG. 8 shows a high performance liquid chromatographic separation of black tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
FIG. 9 shows- a high performance liquid chromatographic separation of Chinese green tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
FIG. 10 shows a high performance liquid chromatographic separation of Japanese tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
FIG. 11 shows a high performance liquid chromatographic separation of raspberry tea, showing levels of antioxidants catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t-res) and quercetin (quer).
FIG. 12 shows the effects of sodium orthovanadate and black tea on the generation of diarrhea and death compared to vanadate delivered with water in streptozotocin-induced diabetic rats.
FIG. 13 shows the effect of sodium orthovanadate and black tea on blood glucose concentration in streptozotocin-induced diabetic rats.
FIG. 14 shows the effect of sodium orthovanadate and black tea on individual blood glucose concentration in streptozotocin-induced diabetic rats.
FIG. 15 shows the effect of sodium orthovanadate and black tea on mortality compared to vanadate delivered with water in Zucker diabetic rats.
FIG. 16 shows the effect of sodium orthovanadate in black tea on diarrhea compared to vanadate delivered with water in Zucker diabetic rats.
FIG. 17 shows the effect of lyophilized sodium orthovanadate in black tea on blood glucose levels in streptozotocin-induced diabetic rats.
FIG. 18 shows the effect of lyophilized sodium orthovanadate in jasmine tea on blood glucose levels in streptozotocin-induced diabetic rats.
TABLE 1 summarizes results of subjects administered 30 mg of vanadate suspended in water.
TABLE 2 summarizes results of subjects administered 40 mg of vanadate suspended in water.
TABLE 3 summarizes results of subjects administered 50 mg of vanadate suspended in water.
TABLE 4 summarizes results of subjects administered 30 mg of vanadate suspended in green tea.
TABLE 5 summarizes results of subjects administered 40 mg of vanadate suspended in green tea.
TABLE 6 summarizes results of subjects administered 50 mg of vanadate suspended in green tea.
TABLE 7 summarizes results of subjects administered 30 mg of vanadate suspended in black tea.
TABLE 8 summarizes results of subjects administered 40 mg of vanadate suspended in black tea.
TABLE 9 summarizes results of subjects administered 50 mg of vanadate suspended in black tea.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Unless defined otherwise, all technical and scientific terms used
herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference.
DEFINITIONS
As used herein, "gastro-intestinal soothing tea" refers to any tea known in the art as a remedy for Gl distress.
As used herein, "decocted tea" refers to a concentrated tea extract containing medicinal constituents of the tea obtained by simmering dried tea leaves and other parts in boiling water.
Described herein is a method of utilizing vanadate as an effective insulinomimetic agent while preventing the vanadate-induced gastrointestinal distress (diarrhea) associated with administration of vanadate. Specifically, the vanadate was suspended in a decoction of specific teas, which were chosen based on their reputed abilities to prevent or treat gastrointestinal problems like diarrhea. The teas were prepared to generate a highly concentrated decoction as described below and the vanadate was suspended therein. As discussed below, the decocted tea and vanadate mixtures lowered blood glucose levels of test animals to normal levels, in some cases for an extended period of time, with fewer side effects, compared to administered doses of a water and vanadate mixture. It was hypothesized that the tannin or high antioxidant content of the teas, or another specific component of the tea would be enriched in this decoction in such a manner as to avoid the diarrhea side-effects and enhance the hypoglycemic action of vanadate. The data indicates that elements in the tea are counteracting the harmful effects of vanadate, possibly by modifying the vanadate in some way, as discussed below. Clearly, pharmaceutical compositions based on the decocted tea and vanadate mixture may have long-term hypoglycemic effects, thereby obviating the need for daily insulin injections to treat diabetes and/or control blood glucose levels.
Clearly, the decocted tea is lessening the side effects of vanadate. The tea may modify the vanadate into something more palatable to the gut. For
example, once the vanadate is added to the tea, the mixture slowly darkens over a 24 hour period. This is similar to the darkening seen when iron is added to tea which is thought to be caused by the formation of soluble and insoluble complexes within the tea. It is possible that a similar reaction is occurring with the vanadate and tea. Alternatively, the antioxidant content of the tea may be altering the redox potential of the vanadate. Or, the tea may instead act upon the gut itself and have no important interactions with the vanadate. For example, it is known tea inhibits gut motility - this may deter the diarrhea effects of vanadate and allow the vanadate to cross the gut wall at the same time. Most of these effects have been attributed to its tannin content.
Furthermore, the decocted tea mixture is also enhancing the normoglycemic properties of vanadate, as blood glucose levels are stabilized for longer periods of time following treatment.
Clearly, the active ingredients of these mixtures or synthetic preparations thereof could be used to develop pharmaceutical compositions for managing blood glucose levels and treating diabetes in humans using methods known in the art. Specifically, a therapeutically effective amount of the decocted tea/vanadate mixture may be combined with pharmaceutically acceptable carriers and/or excipients. In other embodiments, the decocted tea/vanadate mixture may be lyophilized and, for example, combined with binders to form a tablet or inserted into caplets.
The invention provides kits for carrying out the methods of the invention. Accordingly, a variety of kits are provided. The kits may be used for any one or more of the following : treating diabetes in an individual; or maintaining blood glucose levels in an individual.
The kits of the invention comprise one or more containers comprising vanadate suspended in a decocted tea as described above or lyophilized vanadate suspended in a decocted tea and a set of instructions, generally written instructions although electronic storage media (e.g., magnetic diskette or optical disk) containing instructions are also acceptable, relating to the use and dosage of the vanadate suspended in decocted tea for the intended treatment (e.g., treating diabetes or maintaining blood glucose levels) . The instructions included with the kit generally include information as to dosage, dosing schedule, and route of
administration for the intended treatment. The containers of vanadate suspended in decocted tea may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses.
The vanadate suspended in decocted tea of the kit may be packaged in any convenient, appropriate packaging. For example, if the vanadate suspended in decocted tea is a freeze-dried formulation, an ampoule with a resilient stopper is normally used, so that the drug may be easily reconstituted by injecting fluid through the resilient stopper.
The following Examples are provided to illustrate, but not limit, the invention. In the examples discussed herein, black tea, green tea and raspberry tea were decocted. Specifically, the black tea used was China Lichee Black Tea (Golden Sail Brand) produced by China Tuhsu Guangdong Tea Import and Export Corporation, Golden Sail Brand, China; and the green tea was Japanese Green Tea, produced by Ujinotsuyu-Aoyanagi Midori Tea Company, Japan. For the HPLC studies discussed below, Chinese Green Tea, produced by Golden Dragon and Red Raspberry Leaf Tea produced by The Canadian Herbal Tea Company, PO Box 20024, Selkirk, MB, Canada, R1A 1S0 were also used, as described below. As will be appreciated by one skilled in the art, other teas having similar properties, that is, tannin and/or high anti-oxidant concentrations and/or reputed gastrointestinal soothing properties may also be suitable.
In an illustrative example, the decoction of tea was prepared as follows: 100 grams of a given tea was added to 800 ml of boiling water in a container. In this embodiment, a stainless steel container was utilized although other suitable containers may also be used. The container was then covered and boiled for 15 minutes with occasional stirring. The heat was turned off and the decoction was allowed to cool while covered on the burner. After approximately 8 hours, the cool tea decoction was filtered and aliquoted in 250 ml bottles. In the examples described herein, the decoction was filtered once through cheesecloth. This filtering step removes large particulate compounds from the decoction and as such it is to be understood that other methods for removing the large particulate compounds may also be used. Following filtration, the tea decoction contained small particulate matter.
As will be appreciated by one knowledgeable in the art, methods for
preparing the decocted tea may vary, according to the brand and type of tea used. For example, the volume of water or weight of dried tea leaves may be varied
The vanadate was then suspended in the tea. Specifically, the quantity of vanadate added in the examples described herein was 15, 20 or 25 milligrams/ml as described below. In the examples described herein, sodium orthovanadate from Sigma™ was used as the vanadate source. As will be apparent, other suitable forms of vanadate, for example, vanadyl sulfate or sodium metavanadate may also be used. The decocted tea plus vanadate was allowed to stand for 8 hours prior to use. It is of note that bottles were shaken prior to the removal of an aliquot for administration purposes.
As discussed below, vanadate suspended in either water, black tea or green tea at concentrations of 15, 20 or 25 mg/ml was administered to test animals in a 2 ml aliquot by oral gavage. In these experiments, the test animals were streptozotocin-induced diabetic rats. The animals were identified by number and by the presence or absence of a red stripe, designated Red and None respectively. As discussed in the accompanying tables, the dosage regime was different for each animal, depending upon their response to treatment. That is, some animals received only two to three doses of the vanadate/tea mixture and were normoglycemic for from three to six weeks without further doses. Other animals responded to treatment with the decocted tea and vanadate mixture but remained normoglycemic for only a few days, requiring more frequent doses. It is also of note that some test animals did not respond to treatment, while other developed vanadate-associated diarrhea and died, as described below. During the course of the study, body weight (FIGs 2-4) and blood glucose levels (FIGs 5-7) were also monitored at regular intervals, as described below. Specifically, blood glucose levels were measured using glucose test strips and a drop of blood obtained via the tail snip method, as known in the art.
The relevant data for each of the animals in the test groups are summarized in TABLEs 1-9.
Specifically, TABLE 1 summarizes the results observed using animals administered doses of 30 mg of vanadate suspended in water. As can be seen, two (37 Red and 38 None) of the six animals died of diarrhea, a common side effect of vanadate treatment, as discussed above. However, two of the
animals (38 Red and 39 Red) required only two doses of the vanadate water mixture. As can be seen, in these animals, blood glucose levels remained normal approximately five weeks after the last dose. Furthermore, one animal (38 None) usually responded to vanadate treatment but blood glucose levels remained normal for only a few days, meaning that more frequent doses were needed. Finally, in animal 37 None, blood glucose level was difficult to control and remained elevated after the 7th dose.
Referring to TABLE 2, it is of note that three (34 Red, 35 Red and 36 None) of the animals administered 40 mg doses of vanadate suspended in water died of diarrhea. However, one animal (36 Red) required only two doses of the vanadate water mixture to retain normal blood glucose levels approximately five weeks after the last dose. Furthermore, one animal (34 None) usually responded to vanadate but the blood glucose levels remained normal for only a few days, meaning that more frequent doses were needed. Finally, in animal 36 None, blood glucose level was difficult to control and remained elevated after the 6th dose.
Referring to TABLE 3, it is of note that three (31 Red, 32 Red and 32 None) of the animals administered 50 mg doses of vanadate suspended in water died of diarrhea. Furthermore, one animal (33 None) required three doses of the vanadate water mixture to retain normal blood glucose levels approximately three weeks after the last dose. In addition, one animal (31 None) usually responded to vanadate but had blood glucose levels that remained normal for only about two days, meaning that more frequent doses were needed. Finally, one animal (33 Red) had blood glucose levels that were elevated after the final dose although this animal had previously responded to vanadate.
The results obtained indicate that the vanadate suspended in water produced somewhat variable results in terms of normalization of blood glucose levels and also side effects. Specifically, as shown in Figure 1 , the vanadate and water mixture caused considerable mortality. Furthermore, as shown in Figures 2- 4, the water and vanadate mixture did not promote significant weight gain compared to the diabetic control.
Referring to TABLE 4, animals were administered doses of 30 mg vanadate suspended in decocted green tea. As can be seen, all four animals (13 Red, 13 None, 16 Red and 16 None) received multiple doses of the vanadate
green tea mixture and their blood glucose level remained elevated.
Referring to TABLE 5, animals were administered 40 mg vanadate suspended in decocted green tea. As can be seen, one animal (10 None) died from diarrhea. Two others (10 Red and 12 Red) received multiple doses of the vanadate green tea mixture and their blood glucose level remained elevated. However, three animals (11 Red, 11 None and 12 None) received from two to three doses of the vanadate green tea mixture and retained normal blood glucose levels for 3-5 weeks after the final dose.
Referring to TABLE 6, animals were administered 50 mg vanadate suspended in decocted green tea. As can be seen, one animal (9 None) died from diarrhea. Three others (7 Red, 8 None and 9 Red) received multiple doses of the vanadate green tea mixture and their blood glucose level remained elevated. However, four animals (6 Red, 6 None, 7 None and 7 Red) received from two to three doses of the vanadate green tea mixture and retained normal blood glucose levels for 4-5 weeks after the final dose.
The results obtained with the vanadate and green tea mixtures indicate that higher concentrations of vanadate (50 mg) produced the desired results, that is, promoted normal blood glucose levels after only a few doses. Referring to Figure 1 , it can be seen that the vanadate and green tea mixture had a higher survival rate than the vanadate and water mixture. Furthermore, the vanadate and green tea mixture promoted weight gain at a rate higher than the diabetic control as shown in FIGs 2-4. Thus, the vanadate and green tea mixture was more apt at managing blood glucose levels and also had fewer side effects compared to the vanadate and water mixture.
Referring td TABLE 7, animals were administered 30 mg doses of vanadate suspended in decocted black tea. As can be seen, two animals (48 Red and 48 None) required multiple doses and their blood glucose level remained difficult to control throughout the study. Furthermore, one animal (51 None) always responded to the vanadate doses but the blood glucose levels remained normal for only a few days, meaning that multiple treatments were required. However, six animals (47 Red, 49 Red, 49 None, 50 Red, 50 None and 50 Red) required only two doses and maintained normal glucose levels approximately five weeks after the final dosage.
Referring to TABLE 8, animals were administered 40 mg doses of vanadate suspended in decocted black tea. As can be seen, one animal (55 Red) died from diarrhea. However, nine animals (52 Red, 52 None, 53 Red, 53 None, 54 Red, 54 None, 55 None, 56 Red and 56 None) required only two to three doses of the vanadate black tea mixture and maintained normal blood glucose levels for three to five weeks after the last dose.
Referring to TABLE 9, animals were administered 50 mg doses of vanadate suspended in decocted black tea. As can be seen, three animals (44 None, 41 None and 40 None) died from diarrhea. Two others (41 Red and 44 Red) were usually responsive to vanadate but blood glucose levels increased after only a few days, necessitating several doses. However, five animals (40 Red, 42 Red, 42 None, 43 Red and 43 None) required only two to three doses of the vanadate black tea mixture and maintained normal blood glucose levels for three to five weeks after the last dose.
Thus, the mixture of vanadate and black tea produced the desired results at the low and medium vanadate concentrations (30 mg and 40 mg). That is, these doses stabilized blood glucose levels after only a few doses. Furthermore, there is considerably less variability in the results obtained compared to the water and vanadate mixture. Finally, the vanadate and black tea mixture had a low mortality rate as shown in FIG. 1 and increased weight gain, as shown in FIGs 2-4.
The above-described results are summarized in the figures.
Specifically, FIG. 1 plots survival against vanadate dosage. As can be seen, suspension of the vanadate in either decocted black tea or decocted green tea results in increased survival compared with similar quantities of vanadate suspended in water. This clearly shows that the suspension of the vanadate in the decocted tea helps to overcome the side effects associated with vanadate administration.
FIGs 2-4 show weight gain over time of animals administered varying doses of vanadate suspended in water, decocted black tea or green tea. As can be seen, animals administered vanadate suspended in water tended to gain weight at a rate very similar to the diabetic control. However, animals administered vanadate suspended in decocted black tea or decocted green tea tended to gain weight at a
rate more similar to that of wild type animals. As can be seen, the plot of 30 mg (FIG. 2) and particularly 40 mg (FIG. 3) vanadate resuspended in black tea closely follows that of wild type. ,
FIGs 5-7 show blood glucose levels over time of animals administered varying doses of vanadate suspended in water, decocted black tea or green tea. As can be seen, the doses of vanadate, regardless of the carrier, caused blood glucose levels to decrease to approach normal levels. However, doses of 40 mg or 50 mg vanadate suspended in decocted tea caused blood glucose levels to remain relatively constant at near wild type levels.
Sodium orthovanadate suspended in decocted black tea and vanadate suspended in water were administered separately to two groups of 14 streptozotocin-induced diabetic rats. Specifically, the administered dose was 40 mg vanadate per 2 ml. As can be seen in Figure 12, 11 of the 14 rats administered vanadate in water developed diarrhea and 1 of the 14 rats died. Conversely, none of the rats administered sodium orthovanadate in decocted black tea developed diarrhea.
Sodium orthovanadate suspended in decocted black tea was administered to 14 streptozotocin-induced diabetic rats at a dosage of 30 mg per 2 mis. As can be seen in Figure 13, this treatment reduced blood glucose to normal levels (< 10 mmol/l) over extended periods of time.
Sodium orthovanadate suspended in decocted black tea was administered to 12 streptozotocin-induced diabetic rats at a dosage of 30 mg vanadate per 2 mis. Specifically, the rats were given 4-18 doses of the vanadate/tea mixture and thereafter remained untreated. Figure 14 shows the number of weeks for which each of the 12 rats maintained normal blood glucose levels without further treatment. As can be seen, the length of time that blood glucose levels remained normal without further treatment varied from 5 weeks to 20 weeks in the rats, with a mean of 12 weeks.
Sodium orthovanadate suspended in decocted black tea and vanadate suspended in water were administered to individual test groups of Zucker diabetic rats at a dosage of 30 mg vanadate per 2 is in both groups. As can be seen in Figure 15, 8% mortality was seen in the group administered the vanadate/water mixture compared to 0% mortality in the group administered the
black tea/vanadate mixture. Furthermore, as can be seen in Figure 16, 50% of the water/vanadate test group developed diarrhea whereas none of the black tea/vanadate test group developed diarrhea.
The results clearly demonstrate that the diarrhea induced by vanadate when delivered in water is reduced or prevented when decocted tea is used as the delivery vehicle. Also, the animals gain weight during the treatment with vanadate suspended in decocted tea. Furthermore, and most importantly, delivery of the vanadate in the presence of decocted tea controls the blood sugar levels in diabetic rats for extended periods of time (>1 week). Clearly, this is superior to daily injections of insulin or daily doses of sulfonylurea drugs. The tea, therefore, prevents the diarrhea, maintains appetite and body weight and enhances the hypoglycemic action of vanadate.
Furthermore, it is of note that the effectiveness of the different concentrations of vanadate appeared to vary according to the specific tea used. That is, 40 mg of vanadate was most effective when suspended in decocted black tea, whereas 50 mg of vanadate was most effective when suspended in decocted green. This indicates that components of the teas are having an effect on the vanadate. As a result, high performance liquid chromatographic separation was carried out on the components within black tea (FIG. 8), Chinese green tea (FIG. 9), Japanese green tea (FIG. 10) and raspberry tea (FIG. 11). Five antioxidant peaks are identified: catechin (cat), epicatechin (epi), rutin (rut), transresveratrol (t- res) and quercetin (quer). Identified peaks were quantified with known standards.
In other experiments, sodium orthovanadate was suspended in decocted black tea or jasmine tea and the mixture was lyophilized. Specifically, in some experiments, 2.125 g of sodium orthovanadate was suspended in 600 ml of decocted black tea or jasmine tea, prepared as described above. The tea/vanadate solution was then placed in the freezer and frozen at -20°C for approximately 72 hours. The frozen mixture was then placed in a Labconco™ lyophilizer for approximately 72 hours. The resulting powders were weighed and amounted to 5.1 g of black tea/vanadate and 4.5 g of jasmine tea/vanadate. To achieve an effective concentration of 40 mg vanadate/2 ml decocted tea for use in gavaging the diabetic rats, we calculated that 96 mg and 85 mg of the vanadate/black tea and vanadate/jasmine tea powders respectively were to be
suspended in 2 ml of deionized water. The lyophilized powder dissolved in the water extremely quickly (within seconds). lyophilized black tea/vanadate was prepared as described above to a dosage of 40 mg per 2 mis. The mixture was administered to streptozotocin- induced diabetic rats and blood glucose levels were measured over time. As can be seen in Figure 17, blood glucose levels dropped to normal levels, indicating that the lyophilization did not alter effectiveness. lyophilized jasmine tea/vanadate was prepared as described above to a dosage of 40 mg per 2 mis. The mixture was administered to streptozotocin- induced diabetic rats and blood glucose levels were measured over time. As can be seen in Figure 18, blood glucose levels dropped to normal levels, indicating that, as with the vanadate/black tea mixture, the lyophilization did not alter effectiveness. From this, it is evident that other known gastro-intestinal soothing teas may be utilized in the lyophilization process.
While the preferred embodiments of the invention have been described above, it will be recognized and understood that various modifications may be made therein, and the appended claims are intended to cover all such modifications which may fall within the spirit and scope of the invention.
TABLE 1
VANADATE STUDY PARAMETER: 30mg Vanadate in Water
Rat No. of Last Period Without Physical Other
Gavages Gavage Gavage Condition
TABLE 2
PARAMETER: 40 mg Vanadate in Water
TABLE 3
PARAMETER: 50mg Vanadate in Water
Rat No. of Last Period Without Physical Other Gavages Gavage Gavage Condition
TABLE 4
VANADATE STUDY PARAMETER: 30mg Vanadate & Green Tea
TABLE 5
VANADATE STUDY PARAMETER: 40mg Vanadate & Green Tea
TABLE 6
VANADATE STUDY PARAMETER: 50mg Vanadate & Green Tea
VANADATE STUDY PARAMETER: 30mg Vanadate & Black Tea
Rat No. of Last Period Without Physical Other Gavages Gavage Gavag e Condition 6 red Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal None not diabetic Did not respond to STZ 7 Red Feb. 27 5 weeks very good March = Last blood glucose measurement: Normal. Mildly diabetic at start of study. None not diabetic Did not respond to STZ 8 Red 7 Mar. 29 < 1 week very good Difficult to control. Blood glucose maximum still elevated after last gavage (#7) None 7 Mar. 29 <1 week very good Difficult to control. Blood glucose maximum finally normal after last gavage (#7) Red Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal None Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal Red Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal. Mild diabetes at start of study. None Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal. Mild diabetes at start of study. Red Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal. Mild diabetes at start of study. None 7 <1 week very good Always responds to Vanadate. maximum Remains normal only for few days. Initial blood glucose: very high. Treatment required to reverse the subsequent slightly elevated levels. March 29= Last measurement: Normal
TABLE 8
VANADATE STUDY PARAMETER: 40mg Vanadate & Black Tea
Rat No. of Last Period Without Physical Other
Gavages Gavage Gavage Condition Red Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal. Mild diabetes at start of study. None Mar. 08 3 weeks very good March 29= Last blood glucose measurement: Normal Red Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal. Mild diabetes at start of study. None Feb. 27 5 weeks very good March 29= Last blood glucose measurement: Normal Red Feb. 27 5 weeks very good March 29= Last biood glucose measurement: Normal. Mild diabetes at start of study. None Mar. 08 3 weeks very good March 29= Last blood glucose measurement: Normal Red Died: Diarrhea None Feb. 27 5 weeks very good March 29= Last biood glucose measurement: Normal. Mild diabetes at start of study. Red Mar. 23 3 weeks very good March 29= Last blood glucose Measurement: Normal None Mar. 08 3 weeks very good March 29= Last blood glucose measurement: Normal
TABLE 9
VANADATE STUDY PARAMETER: 50mg Vanadate & Black Tea
Rat No. of Last Period Without Physical Other Gavages Gavage Gavage Condition
Claims
1. A method of preparing a mixture for maintaining blood glucose levels comprising: providing a tea reputed to have gastrointestinal soothing properties; adding the tea to boiling water; boiling the tea; cooling the tea; and suspending a quantity of vanadate in the tea.
2. The method according to claim 1 wherein the tea is selected from the group consisting of green tea, black tea and raspberry tea.
3. The method according to claim 1 including filtering the tea prior to suspending the vanadate in the tea.
4. The method according to claim 1 including lyophilizing the vanadate and tea mixture to form a powder.
5. A pharmaceutical composition for normalizing blood glucose levels in an individual comprising a therapeutically effective amount of vanadate suspended in decocted tea.
6. The pharmaceutical composition according to claim 5 wherein the tea is selected from the group consisting of green tea, black tea and raspberry tea.
7. A method of normalizing blood glucose levels in an individual comprising: providing a pharmaceutical composition comprising a therapeutically effective amount of vanadate suspended in decocted tea; and normalizing the blood glucose levels of the individual by administering the pharmaceutical composition to the individual.
8. The method according to claim 7 wherein the tea is selected from the group consisting of green tea, black tea and raspberry tea.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CA2000/001281 WO2002036139A1 (en) | 2000-11-01 | 2000-11-01 | Method for management of blood glucose levels |
| AU2001212603A AU2001212603A1 (en) | 2000-11-01 | 2000-11-01 | Method for management of blood glucose levels |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CA2000/001281 WO2002036139A1 (en) | 2000-11-01 | 2000-11-01 | Method for management of blood glucose levels |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002036139A1 true WO2002036139A1 (en) | 2002-05-10 |
Family
ID=4143104
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA2000/001281 WO2002036139A1 (en) | 2000-11-01 | 2000-11-01 | Method for management of blood glucose levels |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2001212603A1 (en) |
| WO (1) | WO2002036139A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9233204B2 (en) | 2014-01-31 | 2016-01-12 | Aseko, Inc. | Insulin management |
| US9483619B2 (en) | 2012-09-11 | 2016-11-01 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US9486580B2 (en) | 2014-01-31 | 2016-11-08 | Aseko, Inc. | Insulin management |
| US9886556B2 (en) | 2015-08-20 | 2018-02-06 | Aseko, Inc. | Diabetes management therapy advisor |
| US9892234B2 (en) | 2014-10-27 | 2018-02-13 | Aseko, Inc. | Subcutaneous outpatient management |
| US9897565B1 (en) | 2012-09-11 | 2018-02-20 | Aseko, Inc. | System and method for optimizing insulin dosages for diabetic subjects |
| US11081226B2 (en) | 2014-10-27 | 2021-08-03 | Aseko, Inc. | Method and controller for administering recommended insulin dosages to a patient |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2695390A1 (en) * | 1992-09-09 | 1994-03-11 | Ir2M | Organometallic derivatives resulting from the complexation of tannins or mixtures of tannins with metals having an oxidation degree of at least 3 and a pharmaceutical composition containing them. |
| CN1093267A (en) * | 1993-04-07 | 1994-10-12 | 广西北海市华侨鸿发有限公司 | Instant honeysuckle flower tea |
-
2000
- 2000-11-01 AU AU2001212603A patent/AU2001212603A1/en not_active Abandoned
- 2000-11-01 WO PCT/CA2000/001281 patent/WO2002036139A1/en active Application Filing
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2695390A1 (en) * | 1992-09-09 | 1994-03-11 | Ir2M | Organometallic derivatives resulting from the complexation of tannins or mixtures of tannins with metals having an oxidation degree of at least 3 and a pharmaceutical composition containing them. |
| CN1093267A (en) * | 1993-04-07 | 1994-10-12 | 广西北海市华侨鸿发有限公司 | Instant honeysuckle flower tea |
Non-Patent Citations (1)
| Title |
|---|
| DATABASE WPI Section Ch Week 199717, Derwent World Patents Index; Class B04, AN 1997-180235, XP002174490 * |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9897565B1 (en) | 2012-09-11 | 2018-02-20 | Aseko, Inc. | System and method for optimizing insulin dosages for diabetic subjects |
| US9483619B2 (en) | 2012-09-11 | 2016-11-01 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US11733196B2 (en) | 2012-09-11 | 2023-08-22 | Aseko, Inc. | System and method for optimizing insulin dosages for diabetic subjects |
| US11131643B2 (en) | 2012-09-11 | 2021-09-28 | Aseko, Inc. | Method and system for optimizing insulin dosages for diabetic subjects |
| US10629294B2 (en) | 2012-09-11 | 2020-04-21 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US10410740B2 (en) | 2012-09-11 | 2019-09-10 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US9773096B2 (en) | 2012-09-11 | 2017-09-26 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US9811638B2 (en) | 2012-09-11 | 2017-11-07 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US10102922B2 (en) | 2012-09-11 | 2018-10-16 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US9965596B2 (en) | 2012-09-11 | 2018-05-08 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
| US10535426B2 (en) | 2014-01-31 | 2020-01-14 | Aseko, Inc. | Insulin management |
| US9604002B2 (en) | 2014-01-31 | 2017-03-28 | Aseko, Inc. | Insulin management |
| US9892235B2 (en) | 2014-01-31 | 2018-02-13 | Aseko, Inc. | Insulin management |
| US12288620B2 (en) | 2014-01-31 | 2025-04-29 | Glytec, Llc | Method and system for insulin management |
| US9965595B2 (en) | 2014-01-31 | 2018-05-08 | Aseko, Inc. | Insulin management |
| US12127831B2 (en) | 2014-01-31 | 2024-10-29 | Aseko, Inc. | Insulin management |
| US12027266B2 (en) | 2014-01-31 | 2024-07-02 | Aseko, Inc. | Insulin management |
| US10255992B2 (en) | 2014-01-31 | 2019-04-09 | Aseko, Inc. | Insulin management |
| US11857314B2 (en) | 2014-01-31 | 2024-01-02 | Aseko, Inc. | Insulin management |
| US9898585B2 (en) | 2014-01-31 | 2018-02-20 | Aseko, Inc. | Method and system for insulin management |
| US9710611B2 (en) | 2014-01-31 | 2017-07-18 | Aseko, Inc. | Insulin management |
| US10453568B2 (en) | 2014-01-31 | 2019-10-22 | Aseko, Inc. | Method for managing administration of insulin |
| US9233204B2 (en) | 2014-01-31 | 2016-01-12 | Aseko, Inc. | Insulin management |
| US9486580B2 (en) | 2014-01-31 | 2016-11-08 | Aseko, Inc. | Insulin management |
| US10811133B2 (en) | 2014-01-31 | 2020-10-20 | Aseko, Inc. | System for administering insulin boluses to a patient |
| US11804300B2 (en) | 2014-01-31 | 2023-10-31 | Aseko, Inc. | Insulin management |
| US11081233B2 (en) | 2014-01-31 | 2021-08-03 | Aseko, Inc. | Insulin management |
| US9504789B2 (en) | 2014-01-31 | 2016-11-29 | Aseko, Inc. | Insulin management |
| US11158424B2 (en) | 2014-01-31 | 2021-10-26 | Aseko, Inc. | Insulin management |
| US11311213B2 (en) | 2014-01-31 | 2022-04-26 | Aseko, Inc. | Insulin management |
| US11468987B2 (en) | 2014-01-31 | 2022-10-11 | Aseko, Inc. | Insulin management |
| US11490837B2 (en) | 2014-01-31 | 2022-11-08 | Aseko, Inc. | Insulin management |
| US11783945B2 (en) | 2014-01-31 | 2023-10-10 | Aseko, Inc. | Method and system for insulin infusion rate management |
| US11621074B2 (en) | 2014-01-31 | 2023-04-04 | Aseko, Inc. | Insulin management |
| US11783946B2 (en) | 2014-01-31 | 2023-10-10 | Aseko, Inc. | Method and system for insulin bolus management |
| US10403397B2 (en) | 2014-10-27 | 2019-09-03 | Aseko, Inc. | Subcutaneous outpatient management |
| US11694785B2 (en) | 2014-10-27 | 2023-07-04 | Aseko, Inc. | Method and dosing controller for subcutaneous outpatient management |
| US11678800B2 (en) | 2014-10-27 | 2023-06-20 | Aseko, Inc. | Subcutaneous outpatient management |
| US11081226B2 (en) | 2014-10-27 | 2021-08-03 | Aseko, Inc. | Method and controller for administering recommended insulin dosages to a patient |
| US10128002B2 (en) | 2014-10-27 | 2018-11-13 | Aseko, Inc. | Subcutaneous outpatient management |
| US12023127B2 (en) | 2014-10-27 | 2024-07-02 | Aseko, Inc. | Subcutaneous outpatient management |
| US9892234B2 (en) | 2014-10-27 | 2018-02-13 | Aseko, Inc. | Subcutaneous outpatient management |
| US11574742B2 (en) | 2015-08-20 | 2023-02-07 | Aseko, Inc. | Diabetes management therapy advisor |
| US10380328B2 (en) | 2015-08-20 | 2019-08-13 | Aseko, Inc. | Diabetes management therapy advisor |
| US12040096B2 (en) | 2015-08-20 | 2024-07-16 | Aseko, Inc. | Diabetes management therapy advisor |
| US9886556B2 (en) | 2015-08-20 | 2018-02-06 | Aseko, Inc. | Diabetes management therapy advisor |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2001212603A1 (en) | 2002-05-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Ali et al. | Experimental gentamicin nephrotoxicity and agents that modify it: a mini‐review of recent research | |
| US5886029A (en) | Method and composition for treatment of diabetes | |
| JP2020128404A (en) | Pharmaceutical composition used for local fat reduction and use thereof | |
| US6890568B2 (en) | Method for management of blood glucose levels | |
| US8492426B1 (en) | Use of carvedilol for treatment of diabetes mellitus | |
| JP2018531220A6 (en) | Pharmaceutical composition used for local fat reduction and use thereof | |
| CN100512835C (en) | Chinese herbal medicine slow release agent for preventing and treating rabbit and chicken coccidiosis and preparing method thereof | |
| Naim et al. | Comparative study of antidiabetic activity of hexane-extract of lemon peel (Limon citrus) and glimepiride in alloxan-induced diabetic rats | |
| Faria et al. | Acute and subacute oral toxicity assessment of dry encapsulated and non-encapsulated green coffee fruit extracts | |
| CN116637115A (en) | Application of ligustrazine nitrone derivative composition in preventing and treating diabetes complication diseases | |
| RU2155060C1 (en) | Biologically active addition showing adaptogenic activity | |
| US8993008B1 (en) | Herbal composition for treating diabetes | |
| WO2000000212A1 (en) | Promoting nitric oxide and cyclic gmp activity | |
| AU710108B2 (en) | Medicinal composition for diabetes | |
| WO2002036139A1 (en) | Method for management of blood glucose levels | |
| JP5690102B2 (en) | Composition for preventing and treating urological diseases and method for producing the same | |
| RU2695224C2 (en) | Pharmaceutical combination containing silybin | |
| US20050008712A1 (en) | Compositions incorporating high-caffeine green tea extract and related methods for promoting healthy body weight | |
| Duraisami et al. | Evaluation of antidiabetic efficacy of polyherbal formulations in experimentally induced hyperglycemic rats | |
| US20110166226A1 (en) | Process for obtaining an extract rich in rosmarinic acid (ra) from the plant origanum vulgare and its use for the treatment of diabetes | |
| CN101085076B (en) | Combined Chinese and Western medicine slow-release injection for preventing and treating rabbit coccidiosis and preparation method thereof | |
| US20040115285A1 (en) | Method of normalizing glucose levels in blood of patients with diabetes mellitus by oral administration of proanthocyanidins containing plant extracts | |
| US20010053389A1 (en) | Method for management of blood glucose levels | |
| US20040097429A1 (en) | Method for the reduction of the mammalian appetite | |
| RU2535020C1 (en) | Pharmaceutical composition possessing sedative and spasmolytic action |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase |