WO2002037545A1 - Exposure method and system - Google Patents
Exposure method and system Download PDFInfo
- Publication number
- WO2002037545A1 WO2002037545A1 PCT/JP2001/009521 JP0109521W WO0237545A1 WO 2002037545 A1 WO2002037545 A1 WO 2002037545A1 JP 0109521 W JP0109521 W JP 0109521W WO 0237545 A1 WO0237545 A1 WO 0237545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- chamber
- exposure
- projection optical
- pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims abstract description 268
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 238000003384 imaging method Methods 0.000 claims description 105
- 238000005286 illumination Methods 0.000 claims description 25
- 230000007246 mechanism Effects 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 97
- 238000010926 purge Methods 0.000 description 37
- 239000010408 film Substances 0.000 description 36
- 239000000126 substance Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 230000004075 alteration Effects 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 239000001307 helium Substances 0.000 description 8
- 229910052734 helium Inorganic materials 0.000 description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 5
- 238000007872 degassing Methods 0.000 description 5
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 5
- 230000005499 meniscus Effects 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000000028 HMX Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
Definitions
- the present invention relates to a lithography method for manufacturing a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma display device, or a thin-film magnetic head.
- a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma display device, or a thin-film magnetic head.
- TECHNICAL FIELD The present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method for transferring an image onto a substrate via a substrate. Background art
- a projection exposure apparatus is used to transfer a reticle pattern as a mask via a projection optical system onto a wafer (or a glass plate or the like) coated with a photosensitive material as a substrate.
- a projection optical system onto a wafer (or a glass plate or the like) coated with a photosensitive material as a substrate.
- a projection exposure apparatus it is also required to improve the throughput by increasing the illuminance of an exposure beam.
- the wavelength of the exposure beam is in the vacuum ultraviolet region of a wavelength of about 200 nm or less
- substances such as oxygen, water vapor, and carbon dioxide contained in the atmosphere of the optical path of the exposure beam (hereinafter, referred to as “absorbing substances”). ) Increases the absorption of the exposure beam.
- absorbing substances contained in the atmosphere of the optical path of the exposure beam
- a trace amount of organic substance in the optical path may cause a photochemical reaction by vacuum ultraviolet light to form a cloudy substance, and if the cloudy substance adheres to the optical member, the illuminance of the exposure beam decreases. Are getting bigger and bigger.
- vacuum ultraviolet light especially light with a wavelength of about 180 nm or less
- vacuum ultraviolet light especially light with a wavelength of about 180 nm or less
- a gas that allows the exposure beam to pass that is, a gas (purge gas) such as helium or nitrogen that has a higher transmittance for the exposure beam than the above-mentioned light-absorbing substances. It is desirable to do so.
- the atmosphere of the optical path of the exposure beam is controlled by an exposure beam in order to suppress a decrease in the amount of the exposure beam due to a light absorbing substance on the optical path.
- the gas is replaced by a gas that passes through, for example, inside the projection optical system, it is necessary to reduce the fluctuation amount of the atmospheric pressure in order to stabilize the imaging characteristics. Therefore, the space inside the projection optical system and the airtight room where the reticle is placed in one of the front and rear and the airtight room where the reticle is housed in the other space before and after the reticle are stored. It is desirable to perform the gas replacement independently of each other.
- the present invention improves the optical characteristics of an optical system disposed on an optical path of an exposure beam, for example, the imaging characteristics of a projection optical system when supplying a gas that transmits the exposure beam to the optical path of the exposure beam.
- the primary purpose is to be able to maintain a stable state.
- the present invention provides an optical system on the optical path of the exposure beam, for example, a space inside the projection optical system, and a space before and after the gas, which supplies the gas that transmits the exposure beam substantially independently of each other.
- a second object is to be able to maintain good imaging characteristics of the optical system. Disclosure of the invention
- the exposure method according to the present invention is directed to an exposure method for exposing an object (W) with an exposure beam via a projection system (4), wherein a plurality of airtight chambers (3, 8, A gas that transmits the exposure beam is supplied to each of the airtight chambers, and the pressure inside at least one of the airtight chambers is measured, and the object is measured based on the measurement result. This is to adjust at least one of the image forming state of the image of the pattern to be exposed to the air and the gas supply condition to at least one of the plurality of hermetic chambers.
- the present invention for example, as at least one of the plurality of hermetic chambers, for example, measuring the air pressure of the hermetic chamber adjacent to the hermetic chamber that houses a projection system that projects a pattern image onto an object I do. Then, the relationship between the amount of change in the air pressure of the hermetic chamber and the amount of change in the imaging characteristics of the projection system is determined in advance by simulation or experimentally, and based on the measurement result of the air pressure in the adjacent hermetic chamber, Obtain the variation of the imaging characteristics of the projection optical system.
- the imaging characteristics of the projection system can be maintained in a good state, and the resolution and overlay accuracy can be maintained. Etc. can be kept high.
- the present invention as another method, among a plurality of hermetic chambers, as two hermetic chambers adjacent to each other, for example, a projection system having an airtight interior and an hermetic chamber adjacent to the projection system It is also possible to measure the air pressure in each of these two hermetic chambers.
- the air pressure in the projection system and the air pressure in the adjacent hermetic chamber are determined in advance by simulation or experimentally.
- the relationship between the atmospheric pressure difference and the amount of variation in the imaging characteristics of the projection system is determined, and the amount of variation in the imaging characteristics is determined based on the measured value of the atmospheric pressure difference and the relationship.
- the imaging characteristics can be maintained in a good state, and the resolution and the overlay accuracy can be maintained at a high level.
- the gas supply conditions may be adjusted so that the pressure difference is within a predetermined target range. This also allows the imaging characteristics to be maintained in a good state. Furthermore, by combining the adjustment of the imaging characteristics and the adjustment of the supply condition of the gas, the imaging characteristics can be maintained in a better state.
- the posture (position or inclination) of the object may be adjusted with respect to the imaging plane of the projection system.
- the exposure beam is used as the object through the mask (R) and the projection system.
- the plurality of hermetic chambers are, for example, a first chamber (3) that covers at least a part of the illumination system of the exposure beam, and a second chamber (8) that houses the mask.
- the second chamber is set to at least one of a pair of spaces sandwiching the optical system.
- the optical characteristics of the projection system can be adjusted based on the measurement result of the atmospheric pressure in the second chamber.
- the optical system is, for example, an imaging system (4) for projecting a pattern on the first surface onto the second surface, and the second chamber includes at least one of the first surface and the second surface. It is included.
- the optical system is a projection system, the imaging characteristics can be maintained in a good state, so that the resolution and the overlay accuracy are improved.
- an exposure apparatus is an exposure apparatus that exposes an object (W) with an exposure beam via an optical system (4), wherein the plurality of hermetic chambers (3, 3) provided along the optical path of the exposure beam. 8, 4, 6), a gas supply mechanism (13) for supplying a gas that transmits the exposure beam into the plurality of hermetic chambers, and an air pressure inside at least one of the plurality of hermetic chambers.
- Barometer S1 to S4 that measures the air pressure, based on the measurement results of the barometer, the imaging characteristics of the projection system, and the gas for at least one of the multiple hermetic chambers.
- a control mechanism 13, 63A to 63D, 64, 65 for controlling at least one of the supply conditions.
- the exposure method of the present invention can be performed, and the imaging characteristics of the projection system can be maintained in a good state.
- the optical system includes, for example, a projection optical system that projects an image of a pattern formed on a mask onto the object.
- the optical system is another example.
- an illumination optical system for illuminating the mask on which the pattern is formed.
- a film-shaped coating member having flexibility so as to cover a space communicating with a space between at least two adjacent airtight chambers (8, 4) among the plurality of airtight chambers (8, 4). It is desirable to provide 50).
- This coating member (or coating member) can prevent outside air from entering from the boundary between adjacent airtight chambers, and maintain high illuminance of the exposure beam.
- a plurality of airtight chambers are provided.
- a first chamber (3) that covers at least a part of the illumination optical system
- a second chamber (8) that houses the mask
- at least a part of the optical members of the projection optical system It has a third chamber (4) for covering and a fourth chamber (6) for accommodating the substrate.
- a detection device (S1 to S4) for detecting information, and the control mechanism determines the imaging characteristics of the projection optical system and the gas supply conditions based on the information detected by the detection device. It is desirable to adjust at least one.
- the device manufacturing method according to the present invention includes a step of transferring a device pattern (R) onto a workpiece (W) using the exposure method or the exposure apparatus of the present invention.
- FIG. 1 is a schematic configuration diagram with a part cut away showing a projection exposure apparatus according to an example of an embodiment of the present invention.
- FIG. 2 is a sectional view showing the projection optical system 4 of FIG. 1 and a mechanism around the projection optical system.
- FIG. 3 is a diagram showing another example of the projection optical system.
- FIG. 4 is an explanatory diagram of an example of a manufacturing process when a semiconductor device is manufactured using the projection exposure apparatus according to the embodiment of the present invention.
- BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE FOR CARRYING OUT THE INVENTION
- the present invention is applied to a step-and-scan projection exposure apparatus using vacuum ultraviolet light as an exposure beam.
- FIG. 1 is a schematic configuration diagram showing the projection exposure apparatus of this embodiment.
- the projection exposure apparatus of this embodiment uses an F 2 laser light source (wavelength: 157 nm) as an exposure light source.
- Vacuum ultraviolet light such as Ar F excimer laser light source (wavelength 193 nm), Kr 2 laser light source (wavelength 146 nm), harmonic generator of YAG laser, harmonic generator of semiconductor laser, etc.
- a light source that emits light with a wavelength of 20 Onm or less can be used.
- the present invention can be applied when it is desired to particularly increase the transmittance of the exposure beam. .
- the vacuum ultraviolet light is generated from oxygen, water vapor, hydrocarbon-based gas (carbon dioxide, etc.), organic substances, and octogen that are present in the normal atmosphere.
- the concentration of these light absorbing substances (impurities) be suppressed to, for example, about 10 to 100 ppm or less.
- the allowable value (upper limit value) of the impurity concentration may be made different in at least one of a plurality of hermetic chambers (corresponding to the projection optical system 4 and sub-chambers 3, 6, and 8 described later).
- the gas on the optical path of the exposure beam is converted into a gas through which the exposure beam passes, that is, nitrogen (N 2 ) gas or helium (He), neon (Ne), argon (A r), krypton (Kr ), Xenon (Xe) or radon (Rn), a gas that is chemically stable with a high transmittance to exposure beams and a highly light-absorbing substance (hereinafter referred to as “purge gas”). ").
- Nitrogen gas is a gas through which the exposure beam is transmitted even for light with a wavelength of up to about 150 nm even in the vacuum ultraviolet region, that is, for light with a wavelength of about 150 nm or less that can be used as a purge gas. It almost acts as a light absorbing substance. Therefore, it is desirable to use a rare gas as the purge gas for the exposure beam whose wavelength is about 150 nm or less.
- a rare gas is desirable from the viewpoint of stability of refractive index and high thermal conductivity, but helium is expensive. Therefore, when importance is attached to the operation cost and the like, another rare gas may be used.
- the absorption by oxygen is not too much as compared with the case of using F 2, single
- Helium gas or nitrogen is supplied to the interior space of the projection optical system in order to reduce the operating cost of the projector.
- nitrogen gas or dry air dry air (dry air (dry air) from which organic substances are highly removed is supplied to the interior space of the illumination optical system. ) May be supplied.
- the exposure beam in the case of using the F 2 laser, the optical path space for the exposure bi one beam extending from the light source to the substrate needs to be replaced with a purge gas.
- helium gas may be supplied to the internal space of the projection optical system, and nitrogen may be supplied to the other space, that is, the internal space of the illumination optical system.
- nitrogen may be supplied to the other space, that is, the internal space of the illumination optical system.
- purge gas not only a single kind of gas may be supplied, but also a mixed gas in which nitrogen and helium are mixed at a predetermined ratio may be supplied.
- helium gas is used as a purge gas for the stability of the refractive index (stability of the imaging characteristics) and high thermal conductivity (high cooling effect). Therefore, for example, in the machine room below the floor where the projection exposure apparatus of this example is installed, high-purity purge gas is supplied to the projection exposure apparatus and a plurality of hermetic chambers in the equipment attached to the projection exposure apparatus.
- a supply / exhaust mechanism 13 is installed to collect and reuse the gas flowing through the airtight chamber.
- the supply / exhaust mechanism 13 may be configured so that the gas exhausted from each hermetic chamber is collected, but the collected gas is not reused. Further, a configuration may be adopted in which gas disposed from each airtight chamber is exhausted via factory piping.
- the main body of the projection exposure apparatus of this example is mounted on a base member 2C, and has a substantially gate-shaped first frame 2A including four or three legs (columns) on the base member 2C. Is installed.
- the illumination optical system of the present example is composed of an exposure light source and optical members such as an optical integrator (uniformizer or homogenizer). Most of the optical members except for the exposure light source are housed in a highly airtight box-shaped first sub-chamber 3, and the first sub-chamber 3 is installed on the upper part of the first frame 2 ⁇ / b> A.
- Exposure consisting of pulsed laser light with a wavelength of 157 nm emitted from an exposure light source (not shown) of the illumination optical system
- the light (exposure beam) illuminates the pattern area on the pattern surface (lower surface) of reticle R as a mask.
- the exposure beam transmitted through the reticle R passes the projection of the reticle R onto the wafer (wafer) W as the substrate via the projection optical system 4 as the projection system. (Z4, 1Z5, etc.).
- the wafer W is, for example, a semiconductor such as silicon or a disk-shaped substrate such as SOI (silicon on insulator), on which a photoresist is applied.
- the wafer W in this example corresponds to the object to be exposed according to the present invention.
- a straight-tube type catadioptric system is used as the projection optical system 4 (details will be described later).
- a system or the like can be used.
- a material that can obtain a high transmittance as a material of the refraction member in the illumination optical system and the projection optical system 4 is fluorite (C) a F 2 ), synthetic quartz doped with predetermined impurities, and magnesium fluoride (MgF 2 ).
- C fluorite
- MgF 2 magnesium fluoride
- the Z axis is taken parallel to the optical axis of the projection optical system 4
- the X axis is taken parallel to the plane of Fig.
- the illuminated area on the reticle the slit shape is elongated in the X direction, and the reticle R and the wafer W are exposed in the Y direction during exposure.
- reticle R is held on reticle stage 7b via reticle holder 7a. Then, the reticle stage 7b continuously moves in the Y direction (scanning direction) on the reticle base 7c in a linear mode overnight, and finely adjusts the position of the reticle R in the XY plane.
- the reticle base 7c moves on the base member 21 in the direction opposite to the direction of movement of the reticle stage 7b so as to satisfy the law of conservation of momentum. The generation of vibration when the stage 7b moves is suppressed.
- the base member 21 is mounted on four (or three, etc.) support plates (only two positions are shown in FIG.
- the anti-vibration members 23A and 23B are active type anti-vibration devices that combine an air damper (or a hydraulic damper or the like) with an electromagnetic actuator such as a voice coil motor.
- Reticle stage system RS from reticle holder 7a, reticle stage 7b, reticle base 7c, etc.
- the reticle stage system RST is housed in a highly airtight box-shaped second subchannel 8 (reticle chamber).
- a substantially gate-shaped second frame 2E is installed through the, and the projection optical system 4 is placed in a U-shaped opening in the center of the upper plate of the second frame 2E. I have.
- the anti-vibration members 24A and 24B are active type anti-vibration devices similar to the anti-vibration members 23A and 23B.
- an interferometer support member 28 is installed on the upper plate of the second frame 2E, and the upper end of the interferometer support member 28 passes through an opening provided in the base member 21 through the second sub-chamber 8.
- the laser interferometer (reticle interferometer) is installed at the upper end.
- the gap between the opening of the base member 21 and the interferometer support member 28 is, for example, a bullet that has been chemically cleaned (such as coating a surface with a fluorine-based resin). Sealed with a resin having properties.
- the rotation angle around the Z axis is measured, and the position and the moving speed of the reticle stage 7b are controlled by a stage control system (not shown) based on these measured values.
- a reticle alignment support frame 12 is installed on the base member 21, and a reticle alignment microscope (not shown) is installed above the reticle stage 7 b of the support frame 12. Have been.
- the wafer W is held on the sample table 5a via a wafer holder (not shown).
- the sample stage 5a is fixed on the XY stage 5b.
- the XY stage 5b continuously moves the sample stage 5a (wafer W) on the wafer base 22 in the Y direction, and moves the sample stage 5a in the X direction and the Y direction as needed.
- the sample stage 5a controls the focus position (position in the Z direction) of the wafer W, and the tilt angle around the X axis and the Y axis.
- the XY stage 5b is driven by a drive unit (not shown) of, for example, a linear motor type so as to satisfy a movement amount conservation rule, and the generation of vibration when driving the XY stage 5b is suppressed.
- the wafer base 22 is connected via four (or three, etc.) anti-vibration members 25 A, 25 B (only two locations appear in FIG. 1).
- the vibration isolating members 25A and 25B are mounted on the base member 2C, and are active vibration isolating devices similar to the vibration isolating members 23A and 23B.
- a wafer stage system WST is composed of the sample stage 5a, the XY stage 5b, and the like, and the wafer stage system WST is housed in a highly airtight box-shaped third sub-chamber 6 (wafer chamber).
- the lower end of the interferometer support member 28 fixed to the second frame 2E is inserted into the third sub-chamber 6, and the lower end of the interferometer support member 28 is fixed to a wafer interferometer composed of a laser interferometer.
- the side of the platform 5a is machined into a movable mirror. Then, the position of the sample stage 5a (wafer W) in the X and Y directions and the rotation angles around the X, Y, and Z axes are measured by the wafer interferometer and the moving mirror of the sample stage 5a.
- the operation of the XY stage 5b is controlled by a stage control system (not shown) based on these measured values.
- an oblique incidence type multi-point optical autofocus sensor (AF sensor) 10 is fixed to the bottom surface of the upper plate of the second frame 2E. Based on the information on the focus positions at a plurality of measurement points on the wafer W measured by the method, the sample stage 5a is focused on the wafer W by the auto focus method and the auto repeller method, and the X axis and the Y axis. Controls the angle of inclination around. Thus, the surface of the wafer W is continuously focused on the image plane of the projection optical system 4 during the exposure.
- AF sensor oblique incidence type multi-point optical autofocus sensor
- a wafer alignment system 14 of an off-axis imaging system for performing the alignment of the wafer W is also fixed to the second frame 2E. Further, in the lateral direction of the first frame 2A, a reticle opening system RLD for transferring a reticle R to and from the reticle stage system RST, and a wafer W to and from the wafer stage system WST.
- the wafer loader system WLD is housed in the column • Column 17 is installed.
- the transfer port for transferring the reticle and the transfer port for transferring the wafer in this interface column 17 are gates to minimize the opening of the reticle stage system RST and wafer stage system WST to the outside air. Valves 15 and 16 are provided, respectively.
- the next shot area is moved to the scanning start position by the step movement of the XY stage 5b.
- the reticle stage 7 b and the XY stage 5 b on the wafer side Synchronous scanning in the Y direction is performed using the projection magnification j3 of the projection optical system 4 as the speed ratio, that is, scanning the reticle R and the corresponding shot area on the wafer W while maintaining the imaging relationship. Repeated in an AND-scan manner.
- the pattern image of the reticle R is sequentially transferred to each shot area on the wafer W.
- the projection exposure apparatus of this embodiment is provided with a supply / exhaust mechanism 13 for replacing (purging) gas in the space including the optical path of the exposure light with gas (purge gas) through which the exposure light passes.
- a supply / exhaust mechanism 13 for replacing (purging) gas in the space including the optical path of the exposure light with gas (purge gas) through which the exposure light passes.
- a part of the illumination optical system, the reticle stage system RST, and the wafer stage system WST are housed in highly airtight sub-chambers 3, 8, and 6 as airtight chambers, respectively.
- the space between this optical member and the lowermost optical member is a highly airtight space (this also corresponds to an “airtight room”).
- a high-purity purge gas is supplied into the sub-chambers 3, 8, and 6 by a supply / exhaust mechanism 13, and a high-purity purge gas is also supplied to a highly airtight space in the projection optical system 4. (Details below).
- pressure gauges S1 to S4 for measuring the pressure of the gas inside are respectively installed inside the sub-chambers 3 and 8, the projection optical system 4 and the sub-champer 6, pressure gauges S1 to S4 for measuring the pressure of the gas inside are respectively installed.
- the air pressure measured in steps S4 to S4 is supplied to the environmental information measurement system 47 in FIG.
- the pressure gauge S3 may be arranged in a space between the film cover 50 and the projection optical system 4.
- cylindrical film-like covers 1A, 50, and 1D are provided as flexible film-like covering members (or covering members). That is, the film cover 50 functions as a covering member that covers a part of the projection optical system 4.
- flexible cylindrical film covers 18 A and 18 B are provided, respectively. I have. Flanges made of metal such as aluminum or ceramics are provided at both ends of the film-shaped force pars 1A, 1D, 50, 18A and 18B, respectively. Of each frame It is screwed to the installation surface, for example, via an o-ring so that no outside air is mixed.
- the interferometer support member 28 is disposed outside the film cover 50.However, in order to prevent outside air from entering through a gap around the interferometer support member 28, the interferometer support member 28 is provided. It is desirable to arrange the member 28 inside the film-like cover 50.
- the film-like covers 1A, 1D, 50, 18A, and 18B can be referred to as a flexible shielding member having high flexibility or a bellows having extremely low rigidity. Since these film-shaped covers 1A, 1D, 50, 18A, and 18B substantially seal their boundaries, the optical path of the exposure light is almost completely sealed. For this reason, there is almost no mixing of the gas containing the light absorbing substance from the outside onto the optical path of the exposure light, and the attenuation of the exposure light can be extremely suppressed.
- film-shaped cover 50 of this example will be representatively described.
- the film-like cover 50 is made of a polyethylene (one (CH 2 CH 2 ) n one) protective film with good elasticity on the outer surface of a film material made of ethylene vinyl alcoholic resin (EVOH resin) via an adhesive.
- the film is formed by coating a stabilizing film made of aluminum (A1) on the inner surface of the film material by vapor deposition or the like.
- Ethylene vinyl alcohol resin (EVOH resin) is extremely excellent in gas barrier properties (gas barrier properties).
- EVOH resin for example, Kuraray Co., Ltd. “EVAL” (Kuraray trademark or registered trademark) "Etc. can be used.
- the stabilizing film is formed of a substance which does not generate degassing or which has extremely low degassing.
- the film-like cover 50 is basically formed by laminating (multilayer processing) a protective film having good elasticity and a film material having good gas barrier properties, and has a stabilized film with very little degassing on its inner surface.
- the overall thickness of the film-shaped cover 50 is about 0.1 mm. Further, in order to completely seal the film-shaped cover 50 in a closed state in a cylindrical shape, the same material as the protective film is applied via an adhesive so as to cover the joint from the outside.
- the protective film has good stretchability, but has poor gas barrier properties, is easily degassed, and has a drawback that metal and the like are not easily adhered to the inner surface. Therefore,
- a film material which has excellent gas barrier properties, can prevent inflow of outside air and outflow of purge gas, and is easily adhered to metal or the like is formed on the inner surface of the protective film, and a stabilizing film is formed on the inner surface. Is formed. Due to this stabilizing film, degassing generated from the adhesive, protective film, heat seal, and the like used when forming the film cover 50 is generated inside the film cover 50, that is, on the optical path of the exposure light. To prevent intrusion. In addition, by coating the inner surface with a stabilizing film, the barrier property against gas is further improved.
- the film-shaped cover 50 of this example has a large flexibility such as a film material, that is, is formed of a material having extremely low rigidity and excellent gas barrier properties.
- a film material that is, is formed of a material having extremely low rigidity and excellent gas barrier properties.
- almost no vibration is transmitted between the base member 21 and the second frame 2E in Fig. 1.
- the other film-shaped covers 1A, ID, 18A, and 18B are also formed in the same manner as the film-shaped cover 50, so that vibration is not easily transmitted between adjacent airtight chambers. I have.
- the material of the film material used to form the film cover 50 is not limited to the ethylene-vinyl-alcohol resin of this example, but may be polyamide (polya mide), polyimide (polyimide), or polyester (polyester). Any material may be used as long as it has good barrier properties against the air and has flexibility such as).
- the material coated as a protective film on the inner surface of the film-shaped cover 50 is not limited to aluminum of this example, but may be an exposure light such as vacuum ultraviolet light such as other metals or inorganic materials such as ceramics. Any material may be used as long as it has a low reactivity with respect to and a small amount of degassing.
- the protective film, then c may be used and polypropylene in addition to polyethylene, supply and exhaust mechanism 1 3 of the present example, storage section for storing recovery unit for recovering the purge gas, high purity par purge gas , And an air supply unit that supplies the purge gas to the outside with its temperature adjusted.
- the high-purity purge gas is supplied into the sub-chambers 3, 8, 6 and the projection optical system 4 via the air supply pipe 26, respectively.
- the gas is supplied at a pressure slightly higher than the pressure (positive pressure), and the purge gas containing impurities flowing through the sub-chambers 3, 8, 6 and the projection optical system 4 is supplied to the exhaust pipe 2 with the valve V. Collected via 7 respectively.
- the air supply pipe 26 and the inside of the projection optical system 4 are connected by a branched air supply pipe 48.
- the inside of the projection optical system 4 and the exhaust pipe 27 are connected by a branched exhaust pipe 49.
- the space inside the film-shaped cover 50 is also filled with a part of the purge gas supplied into the sub-chamber.
- the supply / exhaust mechanism 13 separates the purge gas from the collected gas and squeezes the separated purge gas to a high pressure or liquefies and temporarily accumulates the purge gas.
- impurity sensors for measuring the concentration of, for example, oxygen as a light-absorbing substance are installed inside the subchambers 3, 8, 6 and the projection optical system 4, and the light-absorbing substance detected by these impurity sensors is detected. If the concentration exceeds a specified tolerance, the recovery of gas via exhaust pipe 27 and the replenishment of high-purity purge gas via supply pipe 26 will result in an almost constant pressure (slightly positive pressure). ) Is performed by a gas flow control method in which a gas is supplied. For this reason, the same pressure is always applied to the film covers 1 A to 18 B, 50 even if the extremely flexible film covers 1 A to 18 B, 50 are used. Thus, no excessive force acts on these film covers 1A to 18B, 50.
- the supply / exhaust mechanism 13 adjusts the temperature, humidity, pressure, etc. of the supplied purge gas, and also removes dust from the dust filter such as a HEPA filter (high efficiency particulate air- ⁇ Iter).
- the above-mentioned light-absorbing substances and the like are removed from the purge gas by a filter such as a chemical filter for removing the above-mentioned light-absorbing substances including a trace amount of organic substances.
- the substances to be removed here are substances that adhere to the optical elements used in the projection exposure apparatus and cause fogging, or are suspended in the optical path of the exposure light and used for the illumination optical system and the projection optical system. Substances that change the transmittance (illuminance) or the illuminance distribution of the wafer, or substances that adhere to the surface of the wafer W (photoresist) and deform the pattern image after the development process.
- the transmittance for the exposure light is maintained high, and the illuminance of the exposure light incident on the wafer W is increased. Exposure time for each shot area can be reduced, and throughput can be improved.
- the optical path of the measurement beam of the optical measurement device such as the reticle interferometer, the wafer interferometer, and the autofocus sensor 10 provided on the interferometer support member 28 is set in the atmosphere of the purge gas. I have. By this, The occurrence of measurement errors due to the fluctuation of gas on the optical path of the measurement beam of these optical measuring instruments can be suppressed.
- FIG. 2 is a sectional view showing the projection optical system 4 of FIG. 1 and a mechanism around the projection optical system.
- the projection optical system 4 of the present embodiment forms a primary image (intermediate image) of the pattern of the reticle R.
- First imaging optical system for forming a second image for forming a secondary image of a reticle pattern on a wafer W as a photosensitive substrate at a predetermined reduction magnification based on light from the primary image.
- the first imaging optical system is configured by arranging, in order from the reticle side, a first lens group having a positive refractive power, an aperture stop AS, and a second lens group having a positive refractive power.
- the first lens group includes, in order from the reticle side, a positive meniscus lens L1 having an aspheric convex surface facing the reticle side, and a positive meniscus lens L2 having an aspheric convex surface facing the reticle side. And a positive meniscus lens L3 having an aspheric concave surface facing the e-side.
- a circular light-blocking member PF for blocking the zero-order light is disposed near the arrangement surface of the aperture stop AS.
- the second lens group includes, in order from the reticle side, a biconcave lens L having a reticle-side surface formed into an aspherical shape and a biconvex lens having a reticle-side surface formed into an aspherical shape.
- L5 a positive meniscus lens L6 with the aspherical convex surface facing the wafer side
- a positive meniscus lens L7 with the aspherical concave surface facing the wafer side.
- the second imaging optical system includes, in order from the reticle side, a primary mirror Ml having a surface reflecting surface with a concave surface facing the wafer side and having an opening at the center, a lens component L8, and a lens component L8.
- a secondary mirror M2 provided on the wafer-side surface of the component L8 and having a reflective surface having an opening in the center.
- all optical elements (refractive member, reflective member) constituting the projection optical system 4 are arranged along a single optical axis AX.
- the exposure light IL from the reticle R pattern forms a primary image (intermediate image) of the reticle pattern via the first imaging optical system, and the light from the primary image passes through the primary mirror M
- the light is reflected by the secondary mirror M2 through the central opening of 1 and the lens component L8.
- the light reflected by the secondary mirror M2 passes through the lens component L8 and is reflected by the primary mirror Ml.
- the reflected light forms a secondary image of the reticle pattern at a reduced magnification on the surface of the wafer W through the lens component L8 and the central opening of the secondary mirror M2.
- the imaging magnification i31 of the first imaging optical system is approximately 0.62
- the imaging magnification ⁇ 2 of the second imaging optical system is approximately 0.4.
- the projection magnification / 3 is 0.25 (1Z4 times).
- fluorite a crystal of G a F 2
- the oscillation center wavelength of F 2 laser light as the exposure light IL is 157. 6 nm, with the wavelength width chromatic aberration for light of 157. 6 nm ⁇ 10 pm is corrected, spherical aberration, astigmatism Various aberrations such as aberration and distortion are also corrected well.
- the detailed lens data of the projection optical system 4 in FIG. 2 is disclosed in, for example, International Publication (W0) 00/39623.
- W0 International Publication
- the catadioptric system another optical system disclosed in WO 00/39623 can also be used.
- the projection optical system 4 for example, a catadioptric optical system whose optical axis is bent in a V-shape may be used.
- the lens barrel of the projection optical system 4 of the present embodiment is configured by stacking four divided lens barrels 57 to 60 in close contact with each other along the optical axis AX. That is, the lenses L6 and L7, the primary mirror Ml, and the secondary mirror M2 (lens component L8) are held inside the first split lens barrel 57 via the lens frames, respectively. It is placed via a flange in the U-shaped opening of 2E and fixed with Porto. A second split barrel 58 is placed on the split barrel 57.
- the split barrels 57 and 58 fasten, for example, three locations of a pair of opposed flange portions F with a port 61 in the optical axis direction. As a result, they are connected in close contact with each other.
- the cross-sectional view of the projection optical system 4 in FIG. 2 is a vertical cross-sectional view at an opening angle of 120 ° about the optical axis AX.
- the lenses L5 and L4 are held in the split lens barrel 58 via three driving elements 63A and 63B that can expand and contract in the optical axis direction.
- a third divided lens barrel 59 is mounted on and coupled to the divided lens barrel 58, and is provided in the divided lens barrel 59 via three drive elements 63C and 63D which can expand and contract in the optical axis direction.
- the fourth split on split lens barrel 59 The lens barrel 60 is mounted and connected, and a lens L1 is held at the upper end in the split lens barrel 60 via a lens frame.
- the driving elements 63A to 63D an electric micro-mechanical element, a piezoelectric element (such as a piezo element), or a magnetostrictive element can be used.
- the expansion and contraction of the driving elements 63A and 63B are controlled by a driver 64 fixed to the outer surface of the divided lens barrel 58, and the expansion and contraction of the driving elements 63C and 63D
- the operation of the dryinos 64 and 65 is controlled by an imaging characteristic control system 46 equipped with a combination.
- each of the driving elements 63A to 63D has a built-in sensor for detecting the amount of expansion and contraction, such as a one-way encoder, a capacitive or optical gap sensor, and the like.
- 65 control the driving amounts of the corresponding driving elements 63 A to 63 D while feeding back the detection results of those sensors.
- the drive elements 63 A to 63 D and the drynos 64 and 65 correspond to a control mechanism for controlling the imaging characteristics of the present invention, and a film is formed so as to cover the control mechanism and the projection optical system 4. 50 covers are installed.
- the four lenses L2 to L5 can be finely moved in the optical axis AX direction, and the lenses L2 to L5 can be moved.
- Each is configured to be tiltable around two axes orthogonal to each other in a plane perpendicular to the optical axis AX.
- the optical characteristics of the projection optical system 4 for example, the imaging characteristics such as projection magnification, distortion, spherical aberration, and coma aberration can be controlled within a predetermined range. Can be controlled.
- the imaging characteristics such as projection magnification, distortion, spherical aberration, and coma aberration
- a signal cable for transmitting control information from the imaging characteristic control system 46 is connected to a connector 66 B on the outer surface of the convex portion 2Ea on the upper surface of the second frame 2E. It is connected to the drivers 64 and 65 via the signal cable part 67 inside the part 2Ea and the connector 66A on the inner surface of the convex part 2Ea.
- the connectors 66A and 66B have a highly airtight structure (a so-called vacuum joint) so that gas does not flow, and the outside air is projected through the signal cable section 67 to the projection optical system. It is configured so that it does not enter around 4.
- the lens frame of the uppermost lens L1 and the lens frame of the lowermost lens component L8 (secondary mirror M2) have a closed structure, and other lenses and The lens frame of the primary mirror M 1 has a large number of A small opening is formed.
- the air supply pipe 48 for the purge gas is inserted into the side of the uppermost split lens barrel 60 (the bottom side of the lens L 1), and the exhaust pipe 49 is connected to the lowermost split lens barrel 57.
- the purge gas which is inserted into the side surface (the upper surface side of the lens component L8) and supplied from the air supply pipe 48 to the inside of the projection optical system 4, flows around the lenses L1 to L7 and the primary mirror Ml. It is exhausted from the exhaust pipe 49. As a result, the purity of the purge gas inside the projection optical system 4 is kept high.
- the inner surfaces of the split lens barrels 57 to 60 of the projection optical system 4 are coated with, for example, a fluorine-based resin, or a hard film (such as a ceramic film or a stainless steel film) that is less degassed by plasma spraying. ) Or electrolytic polishing to perform chemical clean treatment.
- a chemical-clean material such as stainless steel or Teflon may be used as a material of the lens barrel itself.
- the imaging characteristic control system 46 of the projection optical system 4 of the present example includes the pressure gauges S 1 to S 4 ( An environment information measurement system 47 that samples measurement data from a thermometer and a hygrometer (not shown) around the projection optical system 4 and the projection optical system 4 is connected and supplied to the environment information measurement system 47.
- the measured values of the pressure gauges S1 to S4 and the measured values of temperature and humidity are supplied to the imaging characteristic control system 46.
- the pressure of the gas outside the film cover 150 on the side surface of the projection optical system 4 (which can be regarded as almost atmospheric pressure) is measured by the barometer S5, and the measured value (atmospheric pressure) Is also supplied to the imaging characteristic control system 46 via the environmental information measurement system 47.
- the integrated energy information is obtained by detecting the luminous flux branched from the exposure light with an integral sensor as a photoelectric detector in the illumination optical system in the sub-chamber 3 in FIG. 1 and integrating the detection signal.
- an integral sensor as a photoelectric detector in the illumination optical system in the sub-chamber 3 in FIG. 1 and integrating the detection signal.
- the imaging characteristics of the projection optical system 4 fluctuate due to the fluctuation of the atmospheric pressure and the integrated energy passing through the projection optical system 4.
- the relationship between the value of the atmospheric pressure and the accumulated energy and the amount of change in the imaging characteristics (hereinafter referred to as the “first relationship”), which is obtained experimentally in advance, is stored in the storage unit of the function or the te. —Remembered as Bull.
- the imaging characteristic control system 46 predicts the fluctuation amount of the imaging characteristic. Then, based on the predicted fluctuation amount, the imaging characteristic control system 46 drives the corresponding lenses L2 to L5 via the drivers 64 and 65, and the fluctuation amounts described above are canceled. Adjust the imaging characteristics of the projection optical system so that
- the fluctuation amount of the imaging characteristics is represented by the pressure as the pressure inside the projection optical system 4 (measured value of the pressure gauge S3) and the pressure in the airtight chamber before and after the projection optical system 4. It was confirmed that the pressure also changed depending on the pressure inside the subchambers 3, 8, and 6 (measured values of the pressure gauges S1, S2, and S4). This is thought to be because the refractive index of the gas in each hermetic chamber changes slightly due to the change in the atmospheric pressure inside each hermetic chamber, and the optical path of the exposure light IL also slightly changes. Therefore, there is a certain degree of reproducibility between the values of the atmospheric pressure and the amount of change in the imaging characteristics.
- the relationship between the measured values of the pressure gauges S1 to S4 and the amount of change in the imaging characteristics (hereinafter referred to as “second relationship”) is obtained in advance by experiment or simulation, and a predetermined function Alternatively, it is stored in the storage unit in the imaging characteristic control system 46 as a table.
- the imaging characteristic control system 46 predicts the variation of the imaging characteristic based on the first relationship, the measurement values of the pressure gauges S1 to S4 and the second relationship are obtained. To correct the variation of the imaging characteristics. Also, even when there is no change in the atmospheric pressure, if the measured values of the pressure gauges S1 to S4 change, the imaging characteristic control system 46 will determine the imaging characteristics based on the second relationship. Is calculated. Then, the imaging characteristic control system 46 drives the corresponding lenses L2 to L5 via the drivers 64 and 65 so as to cancel the finally obtained fluctuation amount of the imaging characteristic, and Adjust the imaging characteristics of the optical system 4.
- the value of the atmospheric pressure inside the projection optical system 4 and the sub-chambers 3, 8, and 6 is added as an offset to the relationship between the value of the atmospheric pressure, the accumulated energy, and the amount of change in the imaging characteristics.
- This is a configuration for calculating the amount of change in the imaging characteristics of the projection optical system.
- High-precision exposure can be performed while maintaining the characteristics in a desired state. That is, the pattern image of reticle R can be transferred onto wafer W with high resolution and line width control accuracy. In addition, high overlay accuracy can be obtained with overlay exposure.
- the pressure in all of the sub-chambers 3, 8, and 6. For example, only the pressure in at least one of the sub-chamber 8 (reticle chamber) or the sub-chamber 6 (wafer chamber) is typically measured. May be.
- the relationship between at least one of the measurement value of the pressure gauge S2 or the measurement value of the pressure gauge S4 and the variation amount of the imaging characteristic of the projection optical system is stored in the storage unit as a second relationship. It is good.
- the imaging characteristic control system 46 predicts at least one of the measured value of the pressure gauge S2 or the measured value of the pressure gauge S4 when predicting the variation amount of the imaging characteristic based on the first relationship, What is necessary is just to correct the fluctuation amount of the imaging characteristic using the second relation. Further, an average value of the air pressures of the reticle chamber and the wafer chamber may be used as the air pressure of the airtight chambers before and after the projection optical system 4, and the imaging characteristics of the projection optical system 4 may be adjusted using the average value. .
- the imaging characteristic of the projection optical system 4 is adjusted.
- at least a part of an illumination optical system illumination system
- the optical characteristics may be adjusted.
- the illumination optical system includes an aperture stop, a density filter for adjusting the illuminance distribution, a relay lens system, a field stop, and a condenser lens system, at least one of these optical systems is used.
- an element eg, a lens element or a density filter
- the optical characteristics may be adjusted by changing the wavelength of the exposure light.
- the method of adjusting the imaging characteristics of the projection optical system 4 is not limited to the method of driving the lenses L2 to L5 in the present example.
- the imaging characteristics of the optical system 4 may be adjusted. At this time, for example, a difference occurs between the air pressure in the sub-chamber 8 and the air pressure in the projection optical system 4, and the imaging characteristics of the projection optical system 4 are changed.
- the air pressure in the sub-chamber 8 and the air pressure in the projection optical system 4 may be returned to a predetermined common target value by the air supply / exhaust mechanism 13. This eliminated the pressure difference Therefore, its imaging characteristics are maintained in a good state.
- the imaging characteristics of the projection optical system 4 or the optical characteristics of the illumination optical system are adjusted (or corrected). Good.
- a method for driving the above lens and a method for changing the wavelength of the exposure beam may be combined.
- a method of adjusting the supply condition of the purge gas and a method of changing the wavelength of the exposure beam may be combined.
- the wafer W may be defocused due to a change in the optical path length.
- the allowable range of the variation of the deformation force is about 10 nm
- the fluctuation of the purge gas pressure is about 25 mmHg in the sub-chamber 8 (reticle chamber) containing the reticle stage system RST.
- an air supply pipe and an exhaust pipe are connected to the sub-chamber 8, the projection optical system 4, and the sub-chamber 6 independently from the air supply / exhaust mechanism 13, and the sub-chamber 8, the projection optical system 4, and the sub-chamber 6 are put into the sub-chamber 8, the projection optical system 4, and the sub-chamber 6.
- the supply and exhaust of the purge gas may be controlled independently of each other. In this case, the distortion can be effectively corrected by adjusting the air pressure of the sub-chamber 8 (reticle chamber).
- a projection optical system as shown in FIG. 3 may be used.
- the projection optical system includes a first imaging optical system having a refractive optical axis AX1 for forming a first intermediate image of a pattern of a reticle R as a projection master arranged on a first surface.
- a first optical path bending mirror Ml is arranged near the position where the first intermediate image formed by the first imaging optical system G1 is formed.
- the first optical path bending mirror Ml deflects the light beam toward the first intermediate image or the light beam from the first intermediate image toward the second imaging optical system G2.
- the second imaging optical system G2 having the optical axis AX2 has a concave reflecting mirror CM and at least one negative lens NL, and is substantially equal to the first intermediate image based on the light flux from the first intermediate image.
- 1st intermediate image (1st intermediate image) Is formed in the vicinity of the formation position of the first intermediate image.
- a second optical path bending mirror M2 is arranged near the position where the second intermediate image formed by the second imaging optical system G2 is formed.
- the second optical path bending mirror M2 deflects the light beam toward the second intermediate image or the light beam from the second intermediate image toward the third imaging optical system G3 having the refractive optical axis AX3.
- the reflecting surface of the first optical path bending mirror Ml and the reflecting surface of the second optical path bending mirror M2 are spatially separated.
- the first optical path bending mirror Ml and the second optical path bending mirror M2 integrally form a reflection block FM.
- the third imaging optical system G3 converts a reduced image of the pattern of the reticle R (an image of the second intermediate image and the final image of the catadioptric optical system) into a second image based on the light beam from the second intermediate image. It is formed on wafer W as a photosensitive substrate arranged on the surface.
- the chromatic aberration and the Pebbal sum of positive values generated in the first imaging optical system G1 and the third imaging optical system G3, which are refractive optical systems including a plurality of lenses, are converted into the second imaging light. Compensated by concave mirror CM and negative lens NL of G2. Further, with the configuration in which the second imaging optical system G2 has an imaging magnification of approximately the same magnification, it is possible to form the second intermediate image near the first intermediate image. In this projection optical system, by performing optical path separation near these two intermediate images, the distance from the optical axis of the exposure region (ie, the effective exposure region), that is, the off-axis amount can be set small.
- the second imaging optical system G2 bears all the compensation for the color difference and the positive Petzval sum generated in the first imaging optical system G1 and the third imaging optical system G3. .
- this projection optical system by adopting a configuration in which the imaging magnification of the second imaging optical system G2 is set to approximately the same magnification and the concave reflecting mirror CM can be arranged near the pupil position.
- good symmetry can be ensured, and the above-described asymmetric chromatic aberration can be prevented from occurring.
- the present invention is applied to a step-and-scan type projection exposure apparatus.
- the present invention can also be applied to a batch exposure type projection exposure apparatus such as a stepper.
- an exposure beam for example, a single wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or a fiber laser, for example, erbium (E r)
- the present invention is also applied to a case where a harmonic is amplified by a single-fiber amplifier doped with (or both erbium and ytterbium (Y b)) and wavelength-converted to ultraviolet light using a nonlinear optical crystal. .
- the illumination optical system and the projection optical system according to the above-described embodiment are assembled by arranging the respective optical members in a predetermined positional relationship, performing adjustment, and then installing the optical members on the corresponding frames and the like.
- this assembly adjustment assembling and adjusting the reticle stage system RST, the wafer stage system WST, and the air supply / exhaust mechanism 13 are performed, and the above components are electrically, mechanically, or optically connected to each other.
- the projection exposure apparatus according to the embodiment is assembled. In this case, it is desirable to perform the work in a clean room where the temperature is controlled.
- FIG. 4 shows an example of a semiconductor device manufacturing process.
- a wafer W is manufactured from a silicon semiconductor or the like.
- a photoresist is applied on the wafer W (step S10), and the wafer W is loaded on, for example, a sample table 5a of the projection exposure apparatus of FIG.
- reticle R1 is loaded on reticle holder 7a in FIG. 1, and this reticle R1 is moved below the illumination area, and the pattern of reticle R1 is entirely transferred onto wafer W. Scans and exposes the shot area SE.
- the wafer W is, for example, a wafer having a diameter of 30 O mm (12-inch wafer).
- the size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. It is a rectangular area of mm.
- step S14 a predetermined pattern is formed in each shot region SE of the wafer W by performing development, etching, ion implantation, and the like.
- step S16 a photoresist is applied on the wafer W, and then in step S18, another reticle R2 is loaded on the reticle holder 7a in FIG. 1, and this reticle R2 is illuminated. Moving below the area, the pattern of the reticle R2 is scanned and exposed on each shot area SE on the wafer W.
- step S20 the development and etching of the wafer W By performing ion implantation or the like, a predetermined pattern is formed in each shot region of the wafer W.
- the above exposure process to pattern formation process (Step S16 to Step S
- step S22 a dicing process for separating each chip CP on the wafer W one by one, a bonding process, a packaging process, and the like
- step S224 a semiconductor as a product is obtained.
- Device SP is manufactured.
- the application of the exposure apparatus of the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device.
- It can be widely applied to exposure equipment for manufacturing various devices such as exposure equipment, imaging devices (such as CCD), micro machines, thin film magnetic heads, and DNA chips.
- the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithographic process. .
- the optical characteristic of the optical system in the optical path of an exposure beam becomes a favorable state.
- the optical system is an illumination system, telecentricity and the like can be improved, and when the optical system is a projection system, high resolution and high overlay accuracy can be obtained.
- the space inside the projection system and the space before and after the projection system are substantially independent of each other.
- a gas that transmits the exposure beam is supplied to the Properties can be maintained in a good state.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
An exposure method and system capable of a high-precision exposure without compromise in image forming characteristics of a projection optical system even when the atmospheric pressures of airtight chambers in the projection optical system and locations in front and rear thereof vary. A space between the top-most lens (L1) and the lower-most lens component (L8) in the projection optical system (4) is made high in air-tightness, and part of an illuminating optical system, a reticle stage system and a wafer stage system are respectively housed in highly airtight sub-chambers. A pressure gauge (S3) is installed in the projection optical system (4) to measure an atmospheric pressure inside the projection optical system (4). Pressure gauges are installed respectively in respective sub-chambers to measure internal atmospheric pressures in respective sub-chambers. Lenses (L2-L5) are finely moved via drive elements (63A-63D) according to measurement results of pressures in the projection optical system (4) and sub-chambers to thereby adjust the image forming characteristics of the projection optical system (4).
Description
明 細 書 露光方法及び装置 技術分野 Description Exposure method and apparatus
本発明は、 例えば半導体素子、 撮像素子 (C C D等) 、 液晶表示素子、 プラズ マディスプレイ素子、 又は薄膜磁気へッド等のデバイスを製造するためのリソグ ラフイエ程で、 マスクパターンを投影光学系を介して基板上に転写するための露 光方法、 露光装置、 及びデバイス製造方法に関する。 背景技術 The present invention relates to a lithography method for manufacturing a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma display device, or a thin-film magnetic head. TECHNICAL FIELD The present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method for transferring an image onto a substrate via a substrate. Background art
マスクとしてのレチクルのパターンを投影光学系を介して基板としての感光材 料が塗布されたウェハ (又はガラスプレート等) 上に転写するために投影露光装 置が用いられる。 近年、 投影露光装置においては、 集犢回路の微細化及び高密度 化に伴い、 投影光学系の解像度の一層の向上が求められており、 投影露光装置で 使用される露光ビームは年々短波長化してきている。 A projection exposure apparatus is used to transfer a reticle pattern as a mask via a projection optical system onto a wafer (or a glass plate or the like) coated with a photosensitive material as a substrate. In recent years, with the miniaturization and high density of the projection optical system, further improvement in the resolution of the projection optical system has been demanded, and the exposure beam used in the projection exposure system has been shortened year by year. Have been doing.
また、 投影露光装置においては、 露光ビームの照度を増加してスループットを 向上することも求められている。 しかしながら、 露光ビームの波長が、 波長 2 0 0 nm程度以下の真空紫外域になると、 露光ビームの光路の雰囲気中に含まれる 酸素、 水蒸気、 二酸化炭素等の物質 (以下、 「吸光物質」 という。)による露光ビ —ムの吸収が大きくなる。 また、 光路中の微量の有機物質等が、 真空紫外光によ り光化学反応を起こして曇り物質を生成する場合があり、 この曇り物質が光学部 材に付着すると、 露光ビームの照度の低下量は益々大きくなる。 In a projection exposure apparatus, it is also required to improve the throughput by increasing the illuminance of an exposure beam. However, when the wavelength of the exposure beam is in the vacuum ultraviolet region of a wavelength of about 200 nm or less, substances such as oxygen, water vapor, and carbon dioxide contained in the atmosphere of the optical path of the exposure beam (hereinafter, referred to as “absorbing substances”). ) Increases the absorption of the exposure beam. In addition, a trace amount of organic substance in the optical path may cause a photochemical reaction by vacuum ultraviolet light to form a cloudy substance, and if the cloudy substance adheres to the optical member, the illuminance of the exposure beam decreases. Are getting bigger and bigger.
そこで、 露光ビームとして真空紫外光 (特に波長 1 8 0 nm程度以下の光) を 使用する場合には、 露光ビームを十分な照度でウェハの表面に到達させ実用的な スループットで露光を行う必要がある。 そのために、 露光ビームの光路上の大部 分の雰囲気を、 露光ビームが透過する気体、 即ち露光ビームに対する透過率が上 記の吸光物質に比べて大きいヘリウムや窒素等の気体 (パージガス) で置換する ことが望ましい。
投影露光装置において、 露光ビームとして波長が 2 0 0 n m程度以下の光を使 用する場合、 光路上の吸光物質等による露光ビームの光量の低下を抑えるため、 露光ビームの光路の雰囲気を露光ビ一ムが透過する気体で置換するものとすると、 例えば投影光学系の内部では、 結像特性を安定化するために気圧の変動量を少な くする必要がある。 そこで、 その投影光学系の内部の空間とその前後の一方に配 置され、 レチクルが収納される気密室内、 及びその前後の他方に配置され、 ゥェ 八が収納される気密室内の空間とで、 互いに独立にその気体の置換を行うことが 望ましい。 しかしながら、 このように投影光学系の内部の空間とその前後の空間 とで互いに独立に気体の置換を行うようにすると、 投影光学系の内部の空間とそ の前後の空間とで気圧差が生じ易くなる。 その結果、 その気圧差によって投影光 学系のディストーション等の結像特性が変化する恐れがある。 また、 その気圧差 が変動すると、 結像特性も変動するため、 その結像特性を常に良好な状態に維持 して、 高精度な露光を行うことが困難になつてしまうという不都合もあった。 本発明は斯かる点に鑑み、 露光ビームの光路に露光ビームが透過する気体を供 給する場合に、 その光路上に配置される光学系の光学特性、 例えば投影光学系の 結像特性を良好な状態に維持できるようにすることを第 1の目的とする。 Therefore, when vacuum ultraviolet light (especially light with a wavelength of about 180 nm or less) is used as the exposure beam, it is necessary to reach the wafer surface with sufficient illuminance and perform exposure at a practical throughput. is there. To this end, most of the atmosphere on the optical path of the exposure beam is replaced with a gas that allows the exposure beam to pass, that is, a gas (purge gas) such as helium or nitrogen that has a higher transmittance for the exposure beam than the above-mentioned light-absorbing substances. It is desirable to do so. When light having a wavelength of about 200 nm or less is used as an exposure beam in a projection exposure apparatus, the atmosphere of the optical path of the exposure beam is controlled by an exposure beam in order to suppress a decrease in the amount of the exposure beam due to a light absorbing substance on the optical path. Assuming that the gas is replaced by a gas that passes through, for example, inside the projection optical system, it is necessary to reduce the fluctuation amount of the atmospheric pressure in order to stabilize the imaging characteristics. Therefore, the space inside the projection optical system and the airtight room where the reticle is placed in one of the front and rear and the airtight room where the reticle is housed in the other space before and after the reticle are stored. It is desirable to perform the gas replacement independently of each other. However, if gas is replaced independently in the space inside the projection optical system and the space before and after it, a pressure difference occurs between the space inside the projection optical system and the space before and after it. It will be easier. As a result, the imaging characteristics such as distortion of the projection optical system may change due to the pressure difference. In addition, if the pressure difference fluctuates, the imaging characteristics also fluctuate. Therefore, it is difficult to maintain the imaging characteristics in a good state and perform high-precision exposure. In view of the above, the present invention improves the optical characteristics of an optical system disposed on an optical path of an exposure beam, for example, the imaging characteristics of a projection optical system when supplying a gas that transmits the exposure beam to the optical path of the exposure beam. The primary purpose is to be able to maintain a stable state.
更に本発明は、 露光ビームの光路上の光学系、 例えば投影光学系の内部の空間 と、 その前後の空間とに実質的に互いに独立に露光ビームを透過する気体を供給 する場合に、 その投影光学系の結像特性を良好な状態に維持できるようにするこ とを第 2の目的とする。 発明の開示 Further, the present invention provides an optical system on the optical path of the exposure beam, for example, a space inside the projection optical system, and a space before and after the gas, which supplies the gas that transmits the exposure beam substantially independently of each other. A second object is to be able to maintain good imaging characteristics of the optical system. Disclosure of the invention
本発明による露光方法は、 露光ビームで投影系 (4 ) を介して物体 (W) を露 光する露光方法において、 その露光ビームの光路に沿って設けられた複数の気密 室 (3 , 8 , 4 , 6 ) 内にそれぞれその露光ビームを透過する気体を供給し、 そ の複数の気密室のうち、 少なくとも一つの気密室の内部の気圧を計測し、 この計 測結果に基づいて、 その物体に露光されるパターンの像の結像状態と、 その複数 の気密室のうち少なくとも一つの気密室に対する気体の供給条件との少なくとも 一方を調整するものである。
斯かる本発明によれば、 例えばその複数の気密室のうち、 少なくとも一つの気 密室として、 例えば、 パターンの像を物体に投影する投影系を収納する気密室に 隣接する気密室の気圧を計測する。 そして、 予めシミュレーションにより又は実 験的にその気密室の気圧の変動量と、 投影系の結像特性の変動量との関係を求め ておき、 隣接する気密室の気圧の計測結果に基づいて、 投影光学系の結像特性の 変動量を求める。 そして、 一例として投影系の結像特性の変動量を相殺するよう に、 隣接する気密室の気圧を調整することによって、 投影系の結像特性を良好な 状態に維持でき、 解像度や重ね合わせ精度等を高く維持できる。 The exposure method according to the present invention is directed to an exposure method for exposing an object (W) with an exposure beam via a projection system (4), wherein a plurality of airtight chambers (3, 8, A gas that transmits the exposure beam is supplied to each of the airtight chambers, and the pressure inside at least one of the airtight chambers is measured, and the object is measured based on the measurement result. This is to adjust at least one of the image forming state of the image of the pattern to be exposed to the air and the gas supply condition to at least one of the plurality of hermetic chambers. According to the present invention, for example, as at least one of the plurality of hermetic chambers, for example, measuring the air pressure of the hermetic chamber adjacent to the hermetic chamber that houses a projection system that projects a pattern image onto an object I do. Then, the relationship between the amount of change in the air pressure of the hermetic chamber and the amount of change in the imaging characteristics of the projection system is determined in advance by simulation or experimentally, and based on the measurement result of the air pressure in the adjacent hermetic chamber, Obtain the variation of the imaging characteristics of the projection optical system. As an example, by adjusting the air pressure of the adjacent airtight chamber so as to offset the fluctuation amount of the imaging characteristics of the projection system, the imaging characteristics of the projection system can be maintained in a good state, and the resolution and overlay accuracy can be maintained. Etc. can be kept high.
また、 本発明によれば、 別の方法として、 複数の気密室のうち、 互いに隣接す る 2つの気密室として、 例えば、 内部が気密化された投影系と、 その投影系に隣 接する気密室とを選択し、 これら 2つの気密室のそれぞれの気圧を計測してもよ レ^ この際に、 予めシミュレーションにより又は実験的にその投影系の内部の気 圧とその隣接する気密室の気圧との気圧差と、 その投影系の結像特性の変動量と の関係を求めておき、 その気圧差の計測値とその関係とに基づいて、 その結像特 性の変動量を求める。 そして、 例えばその変動量を相殺するようにその結像特性 を調整することで、 その結像特性を良好な状態に維持でき、 解像度や重ね合わせ 精度等を高く維持できる。 Further, according to the present invention, as another method, among a plurality of hermetic chambers, as two hermetic chambers adjacent to each other, for example, a projection system having an airtight interior and an hermetic chamber adjacent to the projection system It is also possible to measure the air pressure in each of these two hermetic chambers. レ At this time, the air pressure in the projection system and the air pressure in the adjacent hermetic chamber are determined in advance by simulation or experimentally. The relationship between the atmospheric pressure difference and the amount of variation in the imaging characteristics of the projection system is determined, and the amount of variation in the imaging characteristics is determined based on the measured value of the atmospheric pressure difference and the relationship. Then, for example, by adjusting the imaging characteristics so as to cancel out the fluctuation amount, the imaging characteristics can be maintained in a good state, and the resolution and the overlay accuracy can be maintained at a high level.
また、 そのように結像特性を調整する代わりに、 例えばその気圧差が所定の目 標範囲内となるようにその気体の供給条件を調整してもよい。 これによつても、 その結像特性を良好な状態に維持できる。 更に、 その結像特性の調整とその気体 の供給条件の調整とを組み合わせることによって、 結像特性をより良好な状態に 維持できる。 Instead of adjusting the imaging characteristics as described above, for example, the gas supply conditions may be adjusted so that the pressure difference is within a predetermined target range. This also allows the imaging characteristics to be maintained in a good state. Furthermore, by combining the adjustment of the imaging characteristics and the adjustment of the supply condition of the gas, the imaging characteristics can be maintained in a better state.
この場合、 その結像特性 (光学特性) を調整するために、 その投影系の内部の 所定の光学部材を変位させることが望ましい。 このように光学部材を変位させる 場合には、 その投影系の内部の気圧が殆ど変化しないため、 制御が容易である。 同様に、 露光ビームの波長を変化させることによつても、 容易に結像特性を制御 することができる。 また、 別の調整方法として、 投影系の結像面に対して、 物体 の姿勢 (位置や傾き) を調整してもよい。 In this case, it is desirable to displace a predetermined optical member inside the projection system in order to adjust the imaging characteristics (optical characteristics). When the optical member is displaced in this manner, control is easy because the pressure inside the projection system hardly changes. Similarly, the imaging characteristics can be easily controlled by changing the wavelength of the exposure beam. Further, as another adjustment method, the posture (position or inclination) of the object may be adjusted with respect to the imaging plane of the projection system.
また、 その露光ビームでマスク (R) 及びその投影系を介してその物体として
の基板を露光する場合に、 その複数の気密室は、 一例としてその露光ビームの照 明系の少なくとも一部を覆う第 1室 (3 ) と、 そのマスクが収納される第 2室 ( 8 ) と、 その投影系 (4 ) の少なくとも一部の光学部材を覆う第 3室と、 その 基板が収納される第 4室 (6 ) とを有する。 この際に、 それらの第 1室から第 4 室内に実質的に互いに独立にその露光ビームを透過する気体を供給したとしても、 本発明によって結像特性を調整することで、 その結像特性を良好な状態に維持で きる。 Also, the exposure beam is used as the object through the mask (R) and the projection system. When the substrate is exposed, the plurality of hermetic chambers are, for example, a first chamber (3) that covers at least a part of the illumination system of the exposure beam, and a second chamber (8) that houses the mask. A third chamber for covering at least a part of the optical members of the projection system; and a fourth chamber for accommodating the substrate. At this time, even if a gas that transmits the exposure beam is supplied from the first chamber to the fourth chamber substantially independently of each other, by adjusting the imaging characteristics according to the present invention, the imaging characteristics can be reduced. It can be maintained in good condition.
また、 第 3室と、 この第 3室に隣接する第 2室 (8 ) 又は第 4室 (6 ) の少な くとも一つの気圧に関連する情報を検出し、 この検出された情報に応じてその光 学系の光学特性とその気体の供給条件との少なくとも一方を調整してもよい。 この場合、 一例として、 その第 2室は、 その光学系を挟む一対の空間の少なく とも一方に設定される。 このときに、 その第 2室の気圧の計測結果に基づいて、 投影系の光学特性を調整することができる。 Further, information relating to at least one atmospheric pressure of the third room and at least one of the second room (8) or the fourth room (6) adjacent to the third room is detected, and according to the detected information, At least one of the optical characteristics of the optical system and the gas supply conditions may be adjusted. In this case, as an example, the second chamber is set to at least one of a pair of spaces sandwiching the optical system. At this time, the optical characteristics of the projection system can be adjusted based on the measurement result of the atmospheric pressure in the second chamber.
また、 その光学系は、 一例として第 1面上のパターンを第 2面上に投影する結 像系 (4 ) であり、 その第 2室は、 その第 1面及び第 2面の少なくとも一方を含 むものである。 その光学系が投影系である場合には、 結像特性を良好な状態に維 持できるため、 解像度や重ね合わせ精度が向上する。 The optical system is, for example, an imaging system (4) for projecting a pattern on the first surface onto the second surface, and the second chamber includes at least one of the first surface and the second surface. It is included. When the optical system is a projection system, the imaging characteristics can be maintained in a good state, so that the resolution and the overlay accuracy are improved.
次に、 本発明による露光装置は、 光学系 (4 ) を介して露光ビームで物体 (W) を露光する露光装置において、 その露光ビームの光路に沿って設けられた複数の 気密室 (3 , 8, 4 , 6 ) と、 この複数の気密室内にその露光ビームを透過する 気体を供給する気体供給機構 (1 3 ) と、 その複数の気密室のうち、 少なくとも 一つの気密室の内部の気圧を計測する気圧計 (S 1〜S 4 ) と、 この気圧計の計 測結果に基づいて、 その投影系の結像特性と、 その複数の気密室のうち少なくと も一つの気密室に対する気体の供給条件との少なくとも一方を制御する制御機構 ( 1 3 , 6 3 A〜6 3 D , 6 4 , 6 5 ) とを有するものである。 斯かる本発明に よれば、 本発明の露光方法を実施することができ、 その投影系の結像特性を良好 な状態に維持できる。 Next, an exposure apparatus according to the present invention is an exposure apparatus that exposes an object (W) with an exposure beam via an optical system (4), wherein the plurality of hermetic chambers (3, 3) provided along the optical path of the exposure beam. 8, 4, 6), a gas supply mechanism (13) for supplying a gas that transmits the exposure beam into the plurality of hermetic chambers, and an air pressure inside at least one of the plurality of hermetic chambers. Barometer (S1 to S4) that measures the air pressure, based on the measurement results of the barometer, the imaging characteristics of the projection system, and the gas for at least one of the multiple hermetic chambers. And a control mechanism (13, 63A to 63D, 64, 65) for controlling at least one of the supply conditions. According to the present invention, the exposure method of the present invention can be performed, and the imaging characteristics of the projection system can be maintained in a good state.
この場合、 その光学系は、 一例としてマスクに形成されたパターンの像をその 物体に投影する投影光学系を含むものである。 また、 その光学系は、 別の例とし
て、 そのパターンが形成されたマスクを照明する照明光学系を含むものである。 また、 その複数の気密室の内の隣接する少なくとも 2つの気密室 (8, 4 ) の 間の空間に通じる空間を覆うように可撓性を有する膜状の被膜部材 (又は被覆部 材) (5 0 ) を設けることが望ましい。 この被膜部材 (又は被覆部材) によって、 隣接する気密室の境界部から外気が混入することを防止でき、 露光ビームの照度 を高く維持できる。 In this case, the optical system includes, for example, a projection optical system that projects an image of a pattern formed on a mask onto the object. The optical system is another example. And an illumination optical system for illuminating the mask on which the pattern is formed. In addition, a film-shaped coating member (or coating member) having flexibility so as to cover a space communicating with a space between at least two adjacent airtight chambers (8, 4) among the plurality of airtight chambers (8, 4). It is desirable to provide 50). This coating member (or coating member) can prevent outside air from entering from the boundary between adjacent airtight chambers, and maintain high illuminance of the exposure beam.
また、 その光学系が、 その露光ビームでそのパターンが形成されたマスクを照 明する照明光学系と、 そのパターンの像をその物体に投影する投影光学系とを有 する場合、 複数の気密室は、 一例としてその照明光学系の少なくとも一部を覆う 第 1室 (3 ) と、 そのマスクが収納される第 2室 (8 ) と、 その投影光学系の少 なくとも一部の光学部材を覆う第 3室 (4 ) と、 その基板が収納される第 4室 ( 6 ) とを有する。 When the optical system has an illumination optical system for illuminating the mask on which the pattern is formed with the exposure beam and a projection optical system for projecting an image of the pattern onto the object, a plurality of airtight chambers are provided. As an example, a first chamber (3) that covers at least a part of the illumination optical system, a second chamber (8) that houses the mask, and at least a part of the optical members of the projection optical system It has a third chamber (4) for covering and a fourth chamber (6) for accommodating the substrate.
また、 その複数の気密室のうち投影光学系の少なくとも一部が配置される第 3 室と、 この第 3室に隣接する第 2室又は第 4室の少なくとも一つとの気圧差に関 連する情報を検出する検出装置 (S 1〜S 4 ) を有し、 その制御機構は、 その検 出装置によって検出された情報に基づいてその投影光学系の結像特性とその気体 の供給条件との少なくとも一方を調整することが望ましい。 Further, it relates to a pressure difference between a third chamber in which at least a part of the projection optical system is arranged among the plurality of hermetic chambers and at least one of the second chamber and the fourth chamber adjacent to the third chamber. A detection device (S1 to S4) for detecting information, and the control mechanism determines the imaging characteristics of the projection optical system and the gas supply conditions based on the information detected by the detection device. It is desirable to adjust at least one.
また、 本発明によるデバイス製造方法は、 本発明の露光方法又は露光装置を用 いてデバイスパターン (R) をワークピース (W) 上に転写する工程を含むもの である。 図面の簡単な説明 Further, the device manufacturing method according to the present invention includes a step of transferring a device pattern (R) onto a workpiece (W) using the exposure method or the exposure apparatus of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例の投影露光装置を示す一部を切り欠いた概 略構成図である。 図 2は、 図 1の投影光学系 4及びこの周囲の機構を示す断面図 である。 図 3は、 投影光学系の別の例を示す図である。 図 4は、 本発明の実施の 形態の投影露光装置を用いて半導体デバイスを製造する場合の製造工程の一例の 説明図である。 発明を実施するための最良の形態
以下、 本発明の好ましい実施の形態の一例につき図面を参照して説明する。 本 例は、 露光ビームとして真空紫外光を使用するステップ ·アンド ·スキャン方式 の投影露光装置に本発明を適用したものである。 FIG. 1 is a schematic configuration diagram with a part cut away showing a projection exposure apparatus according to an example of an embodiment of the present invention. FIG. 2 is a sectional view showing the projection optical system 4 of FIG. 1 and a mechanism around the projection optical system. FIG. 3 is a diagram showing another example of the projection optical system. FIG. 4 is an explanatory diagram of an example of a manufacturing process when a semiconductor device is manufactured using the projection exposure apparatus according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the present invention is applied to a step-and-scan projection exposure apparatus using vacuum ultraviolet light as an exposure beam.
図 1は本例の投影露光装置を示す概略構成図であり、 この図 1において、 本例 の投影露光装置は、 露光光源として、 F2 レ一ザ光源 (波長 157nm) を使用 しているが、 それ以外の A r Fエキシマレーザ光源 (波長 193nm) 、 Kr2 レーザ光源 (波長 146nm) 、 Y AGレーザの高調波発生装置、 半導体レ一ザ の高調波発生装置等の真空紫外光 (本例では波長 20 Onm以下の光) を発生す る光源も使用することができる。 但し、 露光光源として Kr Fエキシマレ一ザ光 源 (波長 248nm) や水銀ランプ ( i線等) 等を使用する場合にも、 露光ビー ムの透過率を特に高めたい場合には本発明が適用できる。 FIG. 1 is a schematic configuration diagram showing the projection exposure apparatus of this embodiment. In FIG. 1, the projection exposure apparatus of this embodiment uses an F 2 laser light source (wavelength: 157 nm) as an exposure light source. Vacuum ultraviolet light such as Ar F excimer laser light source (wavelength 193 nm), Kr 2 laser light source (wavelength 146 nm), harmonic generator of YAG laser, harmonic generator of semiconductor laser, etc. In this case, a light source that emits light with a wavelength of 20 Onm or less can be used. However, even when a KrF excimer laser light source (wavelength: 248 nm) or a mercury lamp (i-ray, etc.) is used as the exposure light source, the present invention can be applied when it is desired to particularly increase the transmittance of the exposure beam. .
本例のように露光ビ一ムとして真空紫外光を使用する場合、 真空紫外光は、 通 常の大気中に存在する酸素、 水蒸気、 炭化水素系ガス (二酸化炭素等) 、 有機物、 及び八ロゲン化物等の吸光物質によって大きく吸収されるため、 露光ビームの減 衰を防止するためには、 これらの吸光物質 (不純物) の濃度を、 例えば 10〜1 00 p pm程度以下に抑えることが望ましく、 さらにはその不純物濃度の許容値 (上限値) を複数の気密室 (投影光学系 4と後述のサブチャンバ 3, 6, 8など に相当する) の少なくとも 1つで異ならせるようにしてもよい。 そこで本例では、 その露光ビームの光路上の気体を、 露光ビームが透過する気体、 即ち窒素 (N2 ) ガス、 又はヘリウム (He) 、 ネオン (Ne) 、 アルゴン (A r ) 、 クリプトン (Kr) 、 キセノン (Xe) 、 若しくはラドン (Rn) よりなる希ガス等の露光 ビームに対して高透過率で化学的に安定であると共に、 吸光物質が高度に除去さ れた気体 (以下、 「パージガス」 と呼ぶ。)で置換する。 When vacuum ultraviolet light is used as the exposure beam as in this example, the vacuum ultraviolet light is generated from oxygen, water vapor, hydrocarbon-based gas (carbon dioxide, etc.), organic substances, and octogen that are present in the normal atmosphere. In order to prevent the exposure beam from attenuating, it is desirable that the concentration of these light absorbing substances (impurities) be suppressed to, for example, about 10 to 100 ppm or less. Further, the allowable value (upper limit value) of the impurity concentration may be made different in at least one of a plurality of hermetic chambers (corresponding to the projection optical system 4 and sub-chambers 3, 6, and 8 described later). Therefore, in this example, the gas on the optical path of the exposure beam is converted into a gas through which the exposure beam passes, that is, nitrogen (N 2 ) gas or helium (He), neon (Ne), argon (A r), krypton (Kr ), Xenon (Xe) or radon (Rn), a gas that is chemically stable with a high transmittance to exposure beams and a highly light-absorbing substance (hereinafter referred to as “purge gas”). ").
なお、 窒素ガスは、 真空紫外域中でも波長が 150 nm程度までの光に対して は露光ビームが透過する気体、 即ちパージガスとして使用することができる力 波長が 150 nm程度以下の光に対してはほぼ吸光物質として作用するようにな る。 そこで、 波長が 150 nm程度以下の露光ビームに対するパージガスとして は希ガスを使用することが望ましい。 また、 希ガスの中では屈折率の安定性、 及 び高い熱伝導率等の観点より、 ヘリウムガスが望ましいが、 ヘリウムは高価であ
るため、 運転コスト等を重視する場合には他の希ガスを使用してもよい。 また、 例えば露光ビームとして A r Fエキシマレーザ (波長 1 9 3 n m) を使用する場 合には、 F 2 レ一ザを使用する場合に比べて酸素による吸収はあまり多くはない ため、 露光装置の運転コストを抑えるために、 投影光学系の内部空間にはへリウ ムガス又は窒素を供給し、 例えば照明光学系の内部空間には有機物等を高度に除 去した窒素ガス又はドライエアー (乾燥空気) を供給するようにしてもよい。 なお、 露光ビームとして、 F 2 レーザを使用する場合には、 光源から基板まで に至る露光ビ一ムの光路空間をパージガスで置換する必要がある。 その場合には、 投影光学系の内部空間にはヘリウムガスを供給し、 それ以外の空間、 即ち、 照明 光学系の内部空間には窒素を供給すればよい。 更に、 パージガスとしては、 単一 の種類の気体を供給するだけでなく、 例えば窒素とヘリウムとを所定比で混合し たような混合気体を供給するようにしてもよい。 Nitrogen gas is a gas through which the exposure beam is transmitted even for light with a wavelength of up to about 150 nm even in the vacuum ultraviolet region, that is, for light with a wavelength of about 150 nm or less that can be used as a purge gas. It almost acts as a light absorbing substance. Therefore, it is desirable to use a rare gas as the purge gas for the exposure beam whose wavelength is about 150 nm or less. Among rare gases, helium gas is desirable from the viewpoint of stability of refractive index and high thermal conductivity, but helium is expensive. Therefore, when importance is attached to the operation cost and the like, another rare gas may be used. Further, for example, in the case of using A r F excimer laser as an exposure beam (wavelength 1 9 3 nm), the absorption by oxygen is not too much as compared with the case of using F 2, single The exposure apparatus Helium gas or nitrogen is supplied to the interior space of the projection optical system in order to reduce the operating cost of the projector. For example, nitrogen gas or dry air (dry air (dry air) from which organic substances are highly removed is supplied to the interior space of the illumination optical system. ) May be supplied. Incidentally, as the exposure beam, in the case of using the F 2 laser, the optical path space for the exposure bi one beam extending from the light source to the substrate needs to be replaced with a purge gas. In that case, helium gas may be supplied to the internal space of the projection optical system, and nitrogen may be supplied to the other space, that is, the internal space of the illumination optical system. Further, as the purge gas, not only a single kind of gas may be supplied, but also a mixed gas in which nitrogen and helium are mixed at a predetermined ratio may be supplied.
そして、 本例では屈折率の安定性 (結像特性の安定性) 、 及び高い熱伝導率 (高い冷却効果) 等を重視して、 そのパージガスとしてヘリウムガスを使用する ものとする。 そのため、 例えば本例の投影露光装置が設置されている床の階下の 機械室には、 投影露光装置及びこれに付属する装置内の複数の気密室に対して高 純度のパージガスを供給し、 それらの気密室を流れた気体を回収して再利用する ための給排気機構 1 3が設置されている。 なお、 給排気機構 1 3として、 各気密 室から排気された気体を回収しても、 その回収した気体を再利用しない構成とし てもよい。 また、 各気密室から配置された気体を、 工場配管を介して排気する構 成であってもよい。 In this embodiment, helium gas is used as a purge gas for the stability of the refractive index (stability of the imaging characteristics) and high thermal conductivity (high cooling effect). Therefore, for example, in the machine room below the floor where the projection exposure apparatus of this example is installed, high-purity purge gas is supplied to the projection exposure apparatus and a plurality of hermetic chambers in the equipment attached to the projection exposure apparatus. A supply / exhaust mechanism 13 is installed to collect and reuse the gas flowing through the airtight chamber. The supply / exhaust mechanism 13 may be configured so that the gas exhausted from each hermetic chamber is collected, but the collected gas is not reused. Further, a configuration may be adopted in which gas disposed from each airtight chamber is exhausted via factory piping.
以下、 本例の投影露光装置の構成につき詳細に説明する。 本例の投影露光装置 の本体部はベース部材 2 C上に載置されており、 ベース部材 2 C上に 4本又は 3 本の脚部 (コラム) を含むほぼ門型の第 1フレーム 2 Aが設置されている。 そし て、 本例の照明光学系は、 露光光源及びオプティカル ·インテグレー夕 (ュニフ ォマイザ、 又はホモジナイザ) 等の光学部材から構成される。 露光光源を除く大 部分の光学部材は気密性の高い箱状の第 1サブチヤンバ 3内に収納され、 この第 1サブチヤンバ 3は第 1フレーム 2 Aの上部に設置されている。 照明光学系の露 光光源 (不図示) から射出された波長 1 5 7 n mのパルスレーザ光よりなる露光
光 (露光ビーム) は、 マスクとしてのレチクル Rのパターン面 (下面) のパター ン領域を照明する。 レチクル Rを透過した露光ビ一ムは、 投影系としての投影光 学系 4を介して基板としてのウェハ (wafer) W上に、 レチクル Rのパ夕一ンを投 影倍率 (^6は 1 Z 4, 1 Z 5等) で縮小した像を形成する。 ウェハ Wは例えば シリコン等の半導体又は S O I (s i l icon on insulator)等の円板状の基板であり、 その上にフォトレジス卜が塗布されている。 本例のウェハ Wが本発明の露光対象 の物体に対応している。 Hereinafter, the configuration of the projection exposure apparatus of this example will be described in detail. The main body of the projection exposure apparatus of this example is mounted on a base member 2C, and has a substantially gate-shaped first frame 2A including four or three legs (columns) on the base member 2C. Is installed. The illumination optical system of the present example is composed of an exposure light source and optical members such as an optical integrator (uniformizer or homogenizer). Most of the optical members except for the exposure light source are housed in a highly airtight box-shaped first sub-chamber 3, and the first sub-chamber 3 is installed on the upper part of the first frame 2 </ b> A. Exposure consisting of pulsed laser light with a wavelength of 157 nm emitted from an exposure light source (not shown) of the illumination optical system The light (exposure beam) illuminates the pattern area on the pattern surface (lower surface) of reticle R as a mask. The exposure beam transmitted through the reticle R passes the projection of the reticle R onto the wafer (wafer) W as the substrate via the projection optical system 4 as the projection system. (Z4, 1Z5, etc.). The wafer W is, for example, a semiconductor such as silicon or a disk-shaped substrate such as SOI (silicon on insulator), on which a photoresist is applied. The wafer W in this example corresponds to the object to be exposed according to the present invention.
投影光学系 4としては、 図 2に示すように直筒型の反射屈折系が使用されてい るが (詳細後述) 、 投影光学系 4としてはそれ以外の構成の反射屈折系、 反射系、 又は屈折系等を使用できる。 なお、 本例のように波長 1 5 7 n mの露光光を使用 する場合には、 照明光学系及び投影光学系 4中の屈折部材の材料として高い透過 率が得られる材料は、 蛍石 (C a F 2 ) 、 所定の不純物をド一プした合成石英、 及びフッ化マグネシウム (M g F 2 ) 等である。 以下、 投影光学系 4の光軸に平 行に Z軸を取り、 Z軸に垂直な平面内で図 1の紙面に平行に X軸を、 図 1の紙面 に垂直に Y軸を取って説明する。 この場合、 レチクル: 上の照明領域は、 X方向 に細長いスリット状であり、 レチクル R及びウェハ Wの露光時の走查方向は Y方 向である。 As shown in FIG. 2, a straight-tube type catadioptric system is used as the projection optical system 4 (details will be described later). A system or the like can be used. When exposure light having a wavelength of 157 nm is used as in this example, a material that can obtain a high transmittance as a material of the refraction member in the illumination optical system and the projection optical system 4 is fluorite (C) a F 2 ), synthetic quartz doped with predetermined impurities, and magnesium fluoride (MgF 2 ). In the following, the Z axis is taken parallel to the optical axis of the projection optical system 4, the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Fig. 1. I do. In this case, the illuminated area on the reticle: the slit shape is elongated in the X direction, and the reticle R and the wafer W are exposed in the Y direction during exposure.
先ず、 レチクル Rはレチクルホルダ 7 aを介してレチクルステージ 7 b上に保 持される。 そして、 レチクルステージ 7 bは、 レチクルベース 7 c上でリニアモ 一夕方式で Y方向 (走査方向) に連続移動すると共に、 XY平面内でのレチクル Rの位置の微調整を行う。 レチクルベース 7 cは、 レチクルステージ 7 bが Y方 向に移動する際に、 ベ一ス部材 2 1上をレチクルステージ 7 bの移動方向と反対 方向に運動量保存則を満たすように移動し、 レチクルステージ 7 bが移動する際 の振動の発生を抑制する。 また、 ベ一ス部材 2 1は、 第 1フレーム 2 Aの中間の 4箇所 (又は 3箇所等でも可) の支持板 (図 1では 2箇所のみが現れている) 上 に防振部材 2 3 A, 2 3 Bを介して支持されている。 防振部材 2 3 A, 2 3 Bは、 エアーダンパ (又は油圧式ダンバ等でもよい) とボイスコイルモー夕等の電磁式 のァクチユエ一夕とを組み合わせた能動型の防振装置である。 レチクルホルダ 7 a、 レチクルステージ 7 b、 レチクルベース 7 c等からレチクルステージ系 R S
Tが構成され、 レチクルステージ系 R S Tは気密性の高い箱状の第 2サブチャン ノ 8 (レチクル室) 内に収納されている。 First, reticle R is held on reticle stage 7b via reticle holder 7a. Then, the reticle stage 7b continuously moves in the Y direction (scanning direction) on the reticle base 7c in a linear mode overnight, and finely adjusts the position of the reticle R in the XY plane. When the reticle stage 7b moves in the Y direction, the reticle base 7c moves on the base member 21 in the direction opposite to the direction of movement of the reticle stage 7b so as to satisfy the law of conservation of momentum. The generation of vibration when the stage 7b moves is suppressed. In addition, the base member 21 is mounted on four (or three, etc.) support plates (only two positions are shown in FIG. 1) in the middle of the first frame 2A. Supported via A, 23B. The anti-vibration members 23A and 23B are active type anti-vibration devices that combine an air damper (or a hydraulic damper or the like) with an electromagnetic actuator such as a voice coil motor. Reticle stage system RS from reticle holder 7a, reticle stage 7b, reticle base 7c, etc. The reticle stage system RST is housed in a highly airtight box-shaped second subchannel 8 (reticle chamber).
また、 ベ一ス部材 2 Cの上面の第 1コラム 2 Aの内側には、 4箇所 (又は 3箇 所等でも可) の防振部材 2 4 A, 2 4 B (図 1では 2箇所のみが現れている) を を介してほぼ門型の第 2フレーム 2 Eが設置され、 この第 2フレーム 2 Eの上板 の中央部の U字型の開口に投影光学系 4が載置されている。 防振部材 2 4 A, 2 4 Bは防振部材 2 3 A, 2 3 Bと同様の能動型の防振装置である。 そして、 第 2 フレーム 2 Eの上板に干渉計支持部材 2 8が設置され、 干渉計支持部材 2 8の上 端部は、 ベ一ス部材 2 1に設けられた開口を通して第 2サブチャンバ 8内に突き 出ており、 その上端部にレーザ干渉計 (レチクル干渉計) が設置されている。 ベ —ス部材 2 1の開口と、 干渉計支持部材 2 8との隙間は、 例えば化学的にクリー ンにする処理 (表面にフッ素系の樹脂をコ一ティングする処理等) が施された弾 性を有する樹脂によって封止されている。 Inside the first column 2A on the upper surface of the base member 2C, there are four (or even three) vibration damping members 24A and 24B (only two in Fig. 1). A substantially gate-shaped second frame 2E is installed through the, and the projection optical system 4 is placed in a U-shaped opening in the center of the upper plate of the second frame 2E. I have. The anti-vibration members 24A and 24B are active type anti-vibration devices similar to the anti-vibration members 23A and 23B. Then, an interferometer support member 28 is installed on the upper plate of the second frame 2E, and the upper end of the interferometer support member 28 passes through an opening provided in the base member 21 through the second sub-chamber 8. The laser interferometer (reticle interferometer) is installed at the upper end. The gap between the opening of the base member 21 and the interferometer support member 28 is, for example, a bullet that has been chemically cleaned (such as coating a surface with a fluorine-based resin). Sealed with a resin having properties.
そのレチクル干渉計とレチクルステージ 7 b上に設置された移動鏡 1 9とによ つてレチクルステージ 7 b (レチクル R) の X方向、 Y方向の位置、 及び必要に 応じて X軸、 Y軸、 Z軸の回りの回転角が計測され、 これらの計測値に基づいて 不図示のステージ制御系によってレチクルステージ 7 bの位置及び移動速度が制 御される。 また、 ベ一ス部材 2 1上には、 レチクルァライメント系の支持フレー ム 1 2が設置され、 この支持フレーム 1 2のレチクルステージ 7 bの上方にレチ クルァライメント顕微鏡 (不図示) が設置されている。 The position of the reticle stage 7b (reticle R) in the X and Y directions by the reticle interferometer and the movable mirror 19 installed on the reticle stage 7b, and, if necessary, the X-axis and Y-axis. The rotation angle around the Z axis is measured, and the position and the moving speed of the reticle stage 7b are controlled by a stage control system (not shown) based on these measured values. A reticle alignment support frame 12 is installed on the base member 21, and a reticle alignment microscope (not shown) is installed above the reticle stage 7 b of the support frame 12. Have been.
一方、 ウェハ Wは不図示のウェハホルダを介して試料台 5 a上に保持される。 試料台 5 aは X Yステージ 5 b上に固定される。 X Yステージ 5 bはウェハべ一 ス 2 2上で試料台 5 a (ウェハ W) を Y方向に連続移動すると共に、 必要に応じ て試料台 5 aを X方向、 Y方向にステップ移動する。 試料台 5 aは、 ウェハ Wの フォーカス位置 (Z方向の位置) 、 並びに X軸及ぴ Y軸の回りの傾斜角を制御す る。 X Yステージ 5 bは、 不図示の例えばリニアモ一夕方式の駆動部によって運 動量保存則を満たすように駆動されており、 X Yステージ 5 bを駆動する際の振 動の発生が抑制されている。 また、 ウェハべ一ス 2 2は、 4箇所 (又は 3箇所等 でも可) の防振部材 2 5 A, 2 5 B (図 1では 2箇所のみが現れている) を介し
てベース部材 2 C上に載置され、 防振部材 2 5 A, 2 5 Bは防振部材 2 3 A, 2 3 Bと同様の能動型の防振装置である。 試料台 5 a、 XYステージ 5 b等からゥ ェハステージ系 W S Tが構成され、 ウェハステージ系 WS Tは気密性の高い箱状 の第 3サブチャンバ 6 (ウェハ室) 内に収納されている。 On the other hand, the wafer W is held on the sample table 5a via a wafer holder (not shown). The sample stage 5a is fixed on the XY stage 5b. The XY stage 5b continuously moves the sample stage 5a (wafer W) on the wafer base 22 in the Y direction, and moves the sample stage 5a in the X direction and the Y direction as needed. The sample stage 5a controls the focus position (position in the Z direction) of the wafer W, and the tilt angle around the X axis and the Y axis. The XY stage 5b is driven by a drive unit (not shown) of, for example, a linear motor type so as to satisfy a movement amount conservation rule, and the generation of vibration when driving the XY stage 5b is suppressed. In addition, the wafer base 22 is connected via four (or three, etc.) anti-vibration members 25 A, 25 B (only two locations appear in FIG. 1). The vibration isolating members 25A and 25B are mounted on the base member 2C, and are active vibration isolating devices similar to the vibration isolating members 23A and 23B. A wafer stage system WST is composed of the sample stage 5a, the XY stage 5b, and the like, and the wafer stage system WST is housed in a highly airtight box-shaped third sub-chamber 6 (wafer chamber).
また、 第 2フレーム 2 Eに固定された干渉計支持部材 2 8の下端部が第 3サブ チャンバ 6内に差し込まれ、 その下端部にレ一ザ干渉計よりなるウェハ干渉計が 固定され、 試料台 5 aの側面は移動鏡に加工されている。 そして、 そのウェハ干 渉計及び試料台 5 aの移動鏡によって試料台 5 a (ウェハ W) の X方向、 Y方向 の位置、 及び X軸、 Y軸、 Z軸の回りの回転角が計測され、 これらの計測値に基 づいて不図示のステージ制御系によって XYステージ 5 bの動作が制御されてい る。 また、 例えば斜入射方式で多点の光学式のォ一トフォーカスセンサ (A Fセ ンサ) 1 0が第 2フレーム 2 Eの上板の底面に固定されており、 このォ一トフォ 一カスセンサ 1 0によって計測されるウェハ W上の複数の計測点でのフォーカス 位置の情報に基づいて、 試料台 5 aはォ一トフォーカス方式及びォートレペリン グ方式でウェハ Wのフォーカス位置、 並びに X軸、 及び Y軸の回りの傾斜角を制 御する。 これによつて、 露光中継続してウェハ Wの表面が投影光学系 4の像面に 合焦される。 Also, the lower end of the interferometer support member 28 fixed to the second frame 2E is inserted into the third sub-chamber 6, and the lower end of the interferometer support member 28 is fixed to a wafer interferometer composed of a laser interferometer. The side of the platform 5a is machined into a movable mirror. Then, the position of the sample stage 5a (wafer W) in the X and Y directions and the rotation angles around the X, Y, and Z axes are measured by the wafer interferometer and the moving mirror of the sample stage 5a. The operation of the XY stage 5b is controlled by a stage control system (not shown) based on these measured values. Also, for example, an oblique incidence type multi-point optical autofocus sensor (AF sensor) 10 is fixed to the bottom surface of the upper plate of the second frame 2E. Based on the information on the focus positions at a plurality of measurement points on the wafer W measured by the method, the sample stage 5a is focused on the wafer W by the auto focus method and the auto repeller method, and the X axis and the Y axis. Controls the angle of inclination around. Thus, the surface of the wafer W is continuously focused on the image plane of the projection optical system 4 during the exposure.
また、 第 2フレーム 2 Eには、 ウェハ Wのァライメントを行うためのオフ ·ァ クシス方式で結像方式のウェハァライメント系 1 4も固定されている。 更に、 第 1フレーム 2 Aの側面方向には、 レチクルステージ系 R S Tとの間でレチクル R の受け渡しを行うレチクル口一ダ系 R L D、 及びウェハステージ系 WS Tとの間 でウェハ Wの受け渡しを行うウェハローダ系 WL Dが収納されたイン夕フェース •コラム 1 7が設置されている。 このインタフェース ·コラム 1 7中のレチクル の受け渡しを行う搬送口、 及びウェハの受け渡しを行う搬送口には、 レチクルス テージ系 R S T及びウェハステージ系 W S Tの外気への開放を最小限に抑えるた め、 ゲートバルブ 1 5及び 1 6がそれぞれ設けられている。 In addition, a wafer alignment system 14 of an off-axis imaging system for performing the alignment of the wafer W is also fixed to the second frame 2E. Further, in the lateral direction of the first frame 2A, a reticle opening system RLD for transferring a reticle R to and from the reticle stage system RST, and a wafer W to and from the wafer stage system WST. The wafer loader system WLD is housed in the column • Column 17 is installed. The transfer port for transferring the reticle and the transfer port for transferring the wafer in this interface column 17 are gates to minimize the opening of the reticle stage system RST and wafer stage system WST to the outside air. Valves 15 and 16 are provided, respectively.
そして、 走査露光時には、 ウェハ W上の一つのショット領域への露光が終わる と、 X Yステージ 5 bのステツプ移動によって次のショット領域が走査開始位置 に移動する。 その後、 レチクルステージ 7 b及びウェハ側の XYステージ 5 bを
投影光学系 4の投影倍率 j3を速度比として Y方向に同期走査する、 即ちレチクル Rとウェハ W上の当該ショット領域との結像関係を保った状態でそれらを走査す るという動作がステップ ·アンド ·スキャン方式で繰り返される。 これによつて、 ウェハ W上の各ショット領域に順次レチクル Rのパターン像が逐次転写される。 さて、 本例の投影露光装置には、 露光光の光路を含む空間内の気体を露光光が 透過する気体 (パージガス) で置換する (パージする) ための給排気機構 1 3が 設けられている。 そして、 照明光学系の一部、 レチクステージ系 R S T、 及びゥ ェハステージ系 W S Tは、 それぞれ気密室としての気密性の高いサブチヤンバ 3 , 8 , 6内に収納されており、 投影光学系 4内の最上部の光学部材と最下部の光学 部材との間の空間が気密性の高い空間 (これも 「気密室」 に対応する) とされて いる。 そして、 サブチャンバ 3, 8 , 6の内部には、 給排気機構 1 3によって高 純度のパージガスが供給されており、 投影光学系 4内の気密性の高い空間にも高 純度のパージガスが供給されている (詳細後述) 。 また、 サブチャンバ 3 , 8、 投影光学系 4、 及びサブチャンパ 6の内部には、 それぞれ内部の気体の圧力を計 測する圧力計 S 1〜S 4が設置されており、 これらの圧力計 S 1〜S 4で計測さ れる気圧が図 2の環境情報計測系 4 7に供給されている。 圧力計 S 3は、 フィル ム状カバー 5 0と、 投影光学系 4との間の空間に配置されてもよい。 Then, at the time of scanning exposure, when the exposure of one shot area on the wafer W is completed, the next shot area is moved to the scanning start position by the step movement of the XY stage 5b. After that, the reticle stage 7 b and the XY stage 5 b on the wafer side Synchronous scanning in the Y direction is performed using the projection magnification j3 of the projection optical system 4 as the speed ratio, that is, scanning the reticle R and the corresponding shot area on the wafer W while maintaining the imaging relationship. Repeated in an AND-scan manner. Thus, the pattern image of the reticle R is sequentially transferred to each shot area on the wafer W. The projection exposure apparatus of this embodiment is provided with a supply / exhaust mechanism 13 for replacing (purging) gas in the space including the optical path of the exposure light with gas (purge gas) through which the exposure light passes. . A part of the illumination optical system, the reticle stage system RST, and the wafer stage system WST are housed in highly airtight sub-chambers 3, 8, and 6 as airtight chambers, respectively. The space between this optical member and the lowermost optical member is a highly airtight space (this also corresponds to an “airtight room”). A high-purity purge gas is supplied into the sub-chambers 3, 8, and 6 by a supply / exhaust mechanism 13, and a high-purity purge gas is also supplied to a highly airtight space in the projection optical system 4. (Details below). Further, inside the sub-chambers 3 and 8, the projection optical system 4 and the sub-champer 6, pressure gauges S1 to S4 for measuring the pressure of the gas inside are respectively installed. The air pressure measured in steps S4 to S4 is supplied to the environmental information measurement system 47 in FIG. The pressure gauge S3 may be arranged in a space between the film cover 50 and the projection optical system 4.
更に、 図 1において、 第 1サブチャンバ 3と第 2サブチャンバ 8の上部との境 界部、 ベース部材 2 1の底面と第 2フレーム 2 Eの上面との境界部 (即ち、 第 2 サブチャンバ 8と投影光学系 4との間の空間に通じる空間) 、 及び第 2フレーム 2 Eの上板の底面と第 3サブチャンバ 6の上面との境界部には、 それぞれ内部の 空間を外部から隔離するように、 可撓性を有する膜状の被覆部材 (又は被膜部材) としての円筒状のフィルム状カバー 1 A, 5 0、 及び 1 Dが設けられている。 即 ち、 フィルムカバー 5 0は、 投影光学系 4の一部を被覆する被覆部材として機能 する。 また、 サブチャンバ 8及び 6とインタフェース 'コラム 1 7のゲートバル ブ 1 5及び 1 6との間にも、 それぞれ可撓性を有する円筒状のフィルム状カバー 1 8 A, 1 8 Bが設けられている。 フィルム状力パー 1 A, 1 D , 5 0 , 1 8 A, 1 8 Bの両端にはそれぞれアルミニウム等の金属、 又はセラミックス等からなる フランジが設けられており、 これらのフランジが各サブチャンバや各フレームの
設置面に、 例えば〇リングを介して外気の混入が無いようにねじ止めされている。 なお、 図 1では、 干渉計支持部材 28はフィルム状カバ一 50の外側に配置され ているが、 干渉計支持部材 28の周囲の隙間からの外気の混入を防止するために は、 干渉計支持部材 28をフィルム状カバー 50の内側に配置することが望まし い。 Further, in FIG. 1, the boundary between the first sub-chamber 3 and the upper portion of the second sub-chamber 8 and the boundary between the bottom surface of the base member 21 and the upper surface of the second frame 2E (that is, the second sub-chamber 2) And the boundary between the bottom surface of the upper plate of the second frame 2E and the upper surface of the third sub-chamber 6 isolate the internal space from the outside. As a result, cylindrical film-like covers 1A, 50, and 1D are provided as flexible film-like covering members (or covering members). That is, the film cover 50 functions as a covering member that covers a part of the projection optical system 4. Also, between the sub-chambers 8 and 6 and the gate valves 15 and 16 of the interface column 17, flexible cylindrical film covers 18 A and 18 B are provided, respectively. I have. Flanges made of metal such as aluminum or ceramics are provided at both ends of the film-shaped force pars 1A, 1D, 50, 18A and 18B, respectively. Of each frame It is screwed to the installation surface, for example, via an o-ring so that no outside air is mixed. In FIG. 1, the interferometer support member 28 is disposed outside the film cover 50.However, in order to prevent outside air from entering through a gap around the interferometer support member 28, the interferometer support member 28 is provided. It is desirable to arrange the member 28 inside the film-like cover 50.
フィルム状カバ一 1A, 1D, 50, 18A, 18 Bは、 高い可撓性を有する 軟性シールド部材、 又は極めて低い剛性を有するベローズとも呼ぶことができる。 これらのフィルム状カバー 1 A, 1 D, 50, 18A, 18 Bによってそれらの 境界部が実質的に密閉されるため、 露光光の光路はほぼ完全に密封されているこ とになる。 このため、 露光光の光路上への外部からの吸光物質を含む気体の混入 は殆ど無く、 露光光の減衰量は極めて低く抑えられる。 The film-like covers 1A, 1D, 50, 18A, and 18B can be referred to as a flexible shielding member having high flexibility or a bellows having extremely low rigidity. Since these film-shaped covers 1A, 1D, 50, 18A, and 18B substantially seal their boundaries, the optical path of the exposure light is almost completely sealed. For this reason, there is almost no mixing of the gas containing the light absorbing substance from the outside onto the optical path of the exposure light, and the attenuation of the exposure light can be extremely suppressed.
ここで、 代表的に本例のフィルム状カバ一 50について説明する。 Here, the film-shaped cover 50 of this example will be representatively described.
そのフィルム状カバー 50は、 エチレン · ビニル 'アルコール樹脂 (EVOH 樹脂) よりなるフィルム素材の外面に接着材を介してポリエチレン (一(CH2C H2) n 一) よりなる伸縮性の良好な保護膜を被着し、 更にそのフィルム素材の内 面にアルミニウム (A1) よりなる安定化膜を蒸着等によってコーティングして 形成されている。 エチレン ·ビニル .アルコール樹脂 (EVOH樹脂) は気体に 対する遮断性 (ガスバリヤ性) に極めて優れており、 EVOH樹脂としては、 例 えば株式会社クラレの 「ェパール (EVAL) (クラレの商標又は登録商標) 」 等を使用することができる。 また、 安定化膜は脱ガスの発生しない、 又は脱ガス の極めて少ない物質より形成されることが望ましい。 The film-like cover 50 is made of a polyethylene (one (CH 2 CH 2 ) n one) protective film with good elasticity on the outer surface of a film material made of ethylene vinyl alcoholic resin (EVOH resin) via an adhesive. The film is formed by coating a stabilizing film made of aluminum (A1) on the inner surface of the film material by vapor deposition or the like. Ethylene vinyl alcohol resin (EVOH resin) is extremely excellent in gas barrier properties (gas barrier properties). As EVOH resin, for example, Kuraray Co., Ltd. “EVAL” (Kuraray trademark or registered trademark) "Etc. can be used. Further, it is desirable that the stabilizing film is formed of a substance which does not generate degassing or which has extremely low degassing.
即ち、 フィルム状カバー 50は、 基本的に伸縮性の良好な保護膜と、 ガスバリ ャ性の良好なフィルム素材とをラミネート加工 (多層加工) して、 その内面に脱 ガスの極めて少ない安定化膜を被着したものであり、 そのフィルム状カバ一 50 の全体の厚さは約 0. 1mm程度となっている。 また、 そのフィルム状カバ一 5 0を円筒状に閉じた状態で完全に密閉するために、 その接合部を外側から覆うよ うに保護膜と同じ材料が接着剤を介して被着されている。 That is, the film-like cover 50 is basically formed by laminating (multilayer processing) a protective film having good elasticity and a film material having good gas barrier properties, and has a stabilized film with very little degassing on its inner surface. The overall thickness of the film-shaped cover 50 is about 0.1 mm. Further, in order to completely seal the film-shaped cover 50 in a closed state in a cylindrical shape, the same material as the protective film is applied via an adhesive so as to cover the joint from the outside.
この場合、 保護膜は伸縮性が良好であるが、 ガスバリヤ性に劣ると共に、 脱ガ スが発生し易い上に、 内面に金属等が被着しにくいという欠点がある。 そこで、
本例では、 その保護膜の内面に、 ガスバリヤ性に優れて外気の流入、 及びパージ ガスの流出を防止できると共に、 金属等が被着し易いフィルム素材を形成し、 そ の内面に安定化膜を形成している。 この安定化膜によって、 フィルム状カバー 5 0を形成する際に使用される接着材、 保護膜、 及びヒートシール等から発生する 脱ガスが、 フィルム状カバー 5 0の内側、 即ち露光光の光路上に侵入することを 防止している。 また、 内面に安定化膜をコーティングすることによって、 気体に 対する遮断性が更に向上している。 In this case, the protective film has good stretchability, but has poor gas barrier properties, is easily degassed, and has a drawback that metal and the like are not easily adhered to the inner surface. Therefore, In this example, a film material which has excellent gas barrier properties, can prevent inflow of outside air and outflow of purge gas, and is easily adhered to metal or the like is formed on the inner surface of the protective film, and a stabilizing film is formed on the inner surface. Is formed. Due to this stabilizing film, degassing generated from the adhesive, protective film, heat seal, and the like used when forming the film cover 50 is generated inside the film cover 50, that is, on the optical path of the exposure light. To prevent intrusion. In addition, by coating the inner surface with a stabilizing film, the barrier property against gas is further improved.
以上のように、 本例のフィルム状カバー 5 0は、 フィルム素材等の大きい可撓 性を有し、 即ち剛性が極めて小さいと共にガスバリヤ性に優れた材料より形成さ れており、 金属製のベロ一ズ機構を使用する場合に比べて、 同程度のガスバリヤ 性を得た上で、 図 1のべ一ス部材 2 1と第 2フレーム 2 Eとの間で相互に振動が 殆ど伝達しないようになっている。 また、 他のフィルム状カバー 1 A, I D, 1 8 A, 1 8 Bもフィルム状カバー 5 0と同様に形成されており、 隣接する気密室 間で相互に振動を伝達しにくいものとなっている。 As described above, the film-shaped cover 50 of this example has a large flexibility such as a film material, that is, is formed of a material having extremely low rigidity and excellent gas barrier properties. In addition to obtaining the same gas barrier properties as compared to the case of using a compression mechanism, almost no vibration is transmitted between the base member 21 and the second frame 2E in Fig. 1. Has become. The other film-shaped covers 1A, ID, 18A, and 18B are also formed in the same manner as the film-shaped cover 50, so that vibration is not easily transmitted between adjacent airtight chambers. I have.
なお、 フィルム状カバ一 5 0の形成に使用するフィルム素材の材料は、 本例の エチレン ' ビニル ·アルコール樹脂に限られるものではなく、 ポリアミド(polya mide) 、 ポリイミド(polyimide) 、 又はポリエステル (polyester) 等のように気 体に対する遮断性が良好で可撓性を有する材料であればよい。 また、 フィルム状 カバー 5 0の内面に保護膜としてコ一ティングする素材は、 本例のアルミニウム に限られるものではなく、 他の金属、 又はセラミックス等の無機物のように真空 紫外光等の露光光に対する反応性が低く脱ガスの少ない材料であればよい。 更に、 保護膜としては、 ポリエチレンの他にポリプロピレン等を使用することができる c 次に、 本例の給排気機構 1 3は、 パージガスを回収する回収部、 高純度のパー ジガスを蓄積する蓄積部、 及びパージガスを温度調整して外部に供給する給気部 等から構成されており、 高純度のパージガスを給気管 2 6を介してサブチャンバ 3 , 8 , 6及び投影光学系 4内にそれぞれ大気圧よりも僅かに高い程度の気圧 (陽圧) で供給し、 サブチャンバ 3 , 8 , 6及び投影光学系 4の内部を流れた不 純物を含んだパージガスを、 バルブ V付きの排気管 2 7を介してそれぞれ回収す る。 この際に、 給気管 2 6と投影光学系 4の内部とは分岐した給気管 4 8で連結
され、 投影光学系 4の内部と排気管 2 7とは分岐した排気管 4 9で連結されてい る。 また、 本例では、 フィルム状カバー 5 0の内部の空間にも、 サプチャンバ内 に供給されたパージガスの一部が満たされている。 The material of the film material used to form the film cover 50 is not limited to the ethylene-vinyl-alcohol resin of this example, but may be polyamide (polya mide), polyimide (polyimide), or polyester (polyester). Any material may be used as long as it has good barrier properties against the air and has flexibility such as). Further, the material coated as a protective film on the inner surface of the film-shaped cover 50 is not limited to aluminum of this example, but may be an exposure light such as vacuum ultraviolet light such as other metals or inorganic materials such as ceramics. Any material may be used as long as it has a low reactivity with respect to and a small amount of degassing. Further, as the protective film, then c may be used and polypropylene in addition to polyethylene, supply and exhaust mechanism 1 3 of the present example, storage section for storing recovery unit for recovering the purge gas, high purity par purge gas , And an air supply unit that supplies the purge gas to the outside with its temperature adjusted.The high-purity purge gas is supplied into the sub-chambers 3, 8, 6 and the projection optical system 4 via the air supply pipe 26, respectively. The gas is supplied at a pressure slightly higher than the pressure (positive pressure), and the purge gas containing impurities flowing through the sub-chambers 3, 8, 6 and the projection optical system 4 is supplied to the exhaust pipe 2 with the valve V. Collected via 7 respectively. At this time, the air supply pipe 26 and the inside of the projection optical system 4 are connected by a branched air supply pipe 48. The inside of the projection optical system 4 and the exhaust pipe 27 are connected by a branched exhaust pipe 49. In this example, the space inside the film-shaped cover 50 is also filled with a part of the purge gas supplied into the sub-chamber.
更に、 給排気機構 1 3は、 それらの回収された気体からパージガスを分離して、 分離したパージガスを高圧に圧搾するか、 又は液化して一時的に蓄積する。 一例 として、 サブチャンバ 3, 8 , 6及び投影光学系 4の内部には吸光物質としての 例えば酸素の濃度を計測する不純物センサが設置されており、 これらの不純物セ ンサで検出される吸光物質の濃度が所定の許容値を超えた場合に、 排気管 2 7を 介しての気体の回収、 及び給気管 2 6を介しての高純度のパージガスの補充が、 ほぼ一定の気圧 (僅かに陽圧) の気体を流すガスフロー制御方式で行われる。 こ のため、 極めて可撓性の高いフィルム状カバー 1 A〜l 8 B, 5 0が使用されて いても、 フィルム状カバー 1 A〜l 8 B , 5 0には、 常に略同じ圧力をかけるこ とができ、 これらのフィルム状カバ一 1 A〜l 8 B , 5 0に過大な力が作用する ことは無い。 Further, the supply / exhaust mechanism 13 separates the purge gas from the collected gas and squeezes the separated purge gas to a high pressure or liquefies and temporarily accumulates the purge gas. As an example, impurity sensors for measuring the concentration of, for example, oxygen as a light-absorbing substance are installed inside the subchambers 3, 8, 6 and the projection optical system 4, and the light-absorbing substance detected by these impurity sensors is detected. If the concentration exceeds a specified tolerance, the recovery of gas via exhaust pipe 27 and the replenishment of high-purity purge gas via supply pipe 26 will result in an almost constant pressure (slightly positive pressure). ) Is performed by a gas flow control method in which a gas is supplied. For this reason, the same pressure is always applied to the film covers 1 A to 18 B, 50 even if the extremely flexible film covers 1 A to 18 B, 50 are used. Thus, no excessive force acts on these film covers 1A to 18B, 50.
また、 給排気機構 1 3はパージガスを供給する際に、 供給するパージガスの温 度、 湿度、 気圧等を調整すると共に、 H E P Aフィルタ(high efficiency parti culate air-Π I ter)等の除塵フィル夕や微量な有機物質等を含む上記の吸光物質 を除去するためのケミカルフィル夕等のフィルタによりそのパージガスから上記 の吸光物質等の除去を行う。 ここで除去される物質には、 投影露光装置に使用さ れている光学素子に付着してその曇りの原因となる物質、 あるいは露光光の光路 内に浮遊して照明光学系や投影光学系 4の透過率 (照度) 若しくは照度分布等を 変動させる物質、 又はウェハ W (フォトレジスト) の表面に付着して現像処理後 のパターン像を変形させる物質等も含まれている。 When supplying the purge gas, the supply / exhaust mechanism 13 adjusts the temperature, humidity, pressure, etc. of the supplied purge gas, and also removes dust from the dust filter such as a HEPA filter (high efficiency particulate air-Π Iter). The above-mentioned light-absorbing substances and the like are removed from the purge gas by a filter such as a chemical filter for removing the above-mentioned light-absorbing substances including a trace amount of organic substances. The substances to be removed here are substances that adhere to the optical elements used in the projection exposure apparatus and cause fogging, or are suspended in the optical path of the exposure light and used for the illumination optical system and the projection optical system. Substances that change the transmittance (illuminance) or the illuminance distribution of the wafer, or substances that adhere to the surface of the wafer W (photoresist) and deform the pattern image after the development process.
以上のように、 露光光の光路上の雰囲気を高純度のパージガスで置換すること によって、 露光光に対する透過率が高く維持されて、 ウェハ Wに入射する露光光 の照度が高くなり、 ウェハ Wの各ショット領域に対する露光時間が短縮でき、 ス ループットが向上する。 また、 本例では、 干渉計支持部材 2 8に設けられたレチ クル干渉計、 ウェハ干渉計、 及びオートフォーカスセンサ 1 0等の光学測定機器 の計測ビームの光路がパージガスの雰囲気内に設置されている。 これによつて、
これらの光学測定機器の計測ビームの光路上の気体の揺らぎによる測定誤差の発 生を抑えることができる。 As described above, by replacing the atmosphere on the optical path of the exposure light with the high-purity purge gas, the transmittance for the exposure light is maintained high, and the illuminance of the exposure light incident on the wafer W is increased. Exposure time for each shot area can be reduced, and throughput can be improved. Also, in this example, the optical path of the measurement beam of the optical measurement device such as the reticle interferometer, the wafer interferometer, and the autofocus sensor 10 provided on the interferometer support member 28 is set in the atmosphere of the purge gas. I have. By this, The occurrence of measurement errors due to the fluctuation of gas on the optical path of the measurement beam of these optical measuring instruments can be suppressed.
次に、 本例の投影光学系 4について図 2を参照して詳細に説明する。 Next, the projection optical system 4 of the present example will be described in detail with reference to FIG.
図 2は、 図 1の投影光学系 4及びこの周囲の機構を示す断面図であり、 この図 2において、 本例の投影光学系 4は、 レチクル Rのパターンの一次像 (中間像) を形成するための第 1結像光学系と、 その一次像からの光に基づいてレチクルパ ターンの二次像を所定の縮小倍率で感光性基板としてのウェハ W上に形成するた めの第 2結像光学系とから構成されている。 第 1結像光学系は、 レチクル側から 順に正の屈折力を有する第 1レンズ群と、 開口絞り A Sと、 正の屈折力を有する 第 2レンズ群とを配置して構成されている。 第 1レンズ群は、 レチクル側から順 に、 レチクル側に非球面形状の凸面を向けた正メニスカス形状のレンズ L 1と、 レチクル側に非球面形状の凸面を向けた正メニスカス形状のレンズ L 2と、 ゥェ 八側に非球面形状の凹面を向けた正メニスカス形状のレンズ L 3とから構成され ている。 そして、 開口絞り A Sの配置面の近傍に、 0次光を遮光するための円形 の遮光部材 P Fが配置されている。 FIG. 2 is a sectional view showing the projection optical system 4 of FIG. 1 and a mechanism around the projection optical system. In FIG. 2, the projection optical system 4 of the present embodiment forms a primary image (intermediate image) of the pattern of the reticle R. First imaging optical system for forming a second image for forming a secondary image of a reticle pattern on a wafer W as a photosensitive substrate at a predetermined reduction magnification based on light from the primary image. And an optical system. The first imaging optical system is configured by arranging, in order from the reticle side, a first lens group having a positive refractive power, an aperture stop AS, and a second lens group having a positive refractive power. The first lens group includes, in order from the reticle side, a positive meniscus lens L1 having an aspheric convex surface facing the reticle side, and a positive meniscus lens L2 having an aspheric convex surface facing the reticle side. And a positive meniscus lens L3 having an aspheric concave surface facing the e-side. A circular light-blocking member PF for blocking the zero-order light is disposed near the arrangement surface of the aperture stop AS.
また、 第 2レンズ群は、 レチクル側から順に、 レチクル側の面が非球面形状に 形成された両凹形状のレンズ L と、 レチクル側の面が非球面形状に形成された 両凸形状のレンズ L 5と、 ウェハ側に非球面形状の凸面を向けた正メニスカス形 状のレンズ L 6と、 ウェハ側に非球面形状の凹面を向けた正メニスカス形状のレ ンズ L 7とから構成されている。 The second lens group includes, in order from the reticle side, a biconcave lens L having a reticle-side surface formed into an aspherical shape and a biconvex lens having a reticle-side surface formed into an aspherical shape. L5, a positive meniscus lens L6 with the aspherical convex surface facing the wafer side, and a positive meniscus lens L7 with the aspherical concave surface facing the wafer side. .
一方、 第 2結像光学系は、 レチクル側から順にウェハ側に凹面を向けた表面反 射面を有し且つ中央に開口部を有する主鏡 M lと、 レンズ成分 L 8と、 そのレン ズ成分 L 8のウェハ側の面上に設けられ且つ中央に開口部を有する反射面を備え た副鏡 M 2とから構成されている。 この場合、 投影光学系 4を構成する全ての光 学要素 (屈折部材、 反射部材) は単一の光軸 AXに沿って配置されている。 こうして本例においては、 レチクル Rのパターンからの露光光 I Lが、 第 1結 像光学系を介して、 レチクルパターンの一次像 (中間像) を形成し、 一次像から の光は、 主鏡 M 1の中央の開口部及びレンズ成分 L 8を介して副鏡 M 2で反射さ れる。 そして、 副鏡 M 2で反射された光は、 レンズ成分 L 8を介して主鏡 M lで
反射され、 この反射光は、 レンズ成分 L 8及び副鏡 M2の中央の開口部を介して ウェハ Wの表面にレチクルパターンの二次像を縮小倍率で形成する。 図 2の例で は、 第 1結像光学系の結像倍率 i31は約 0. 62、 第 2結像光学系の結像倍率^ 2は約 0. 4であり、 レチクル Rからウェハ Wに対する投影倍率 /3は 0. 25 (1Z4倍) となっている。 On the other hand, the second imaging optical system includes, in order from the reticle side, a primary mirror Ml having a surface reflecting surface with a concave surface facing the wafer side and having an opening at the center, a lens component L8, and a lens component L8. A secondary mirror M2 provided on the wafer-side surface of the component L8 and having a reflective surface having an opening in the center. In this case, all optical elements (refractive member, reflective member) constituting the projection optical system 4 are arranged along a single optical axis AX. Thus, in this example, the exposure light IL from the reticle R pattern forms a primary image (intermediate image) of the reticle pattern via the first imaging optical system, and the light from the primary image passes through the primary mirror M The light is reflected by the secondary mirror M2 through the central opening of 1 and the lens component L8. Then, the light reflected by the secondary mirror M2 passes through the lens component L8 and is reflected by the primary mirror Ml. The reflected light forms a secondary image of the reticle pattern at a reduced magnification on the surface of the wafer W through the lens component L8 and the central opening of the secondary mirror M2. In the example of FIG. 2, the imaging magnification i31 of the first imaging optical system is approximately 0.62, and the imaging magnification ^ 2 of the second imaging optical system is approximately 0.4. The projection magnification / 3 is 0.25 (1Z4 times).
本例では、 投影光学系 4を構成する全ての屈折光学部材 (レンズ成分) に蛍石 (G a F2 の結晶) を使用している。 また、 露光光 ILとしての F2 レーザ光の 発振中心波長は 157. 6 nmであり、 波長幅が 157. 6nm±10 pmの光 に対して色収差が補正されていると共に、 球面収差、 非点収差、 及び歪曲収差な どの諸収差も良好に補正されている。 なお、 図 2の投影光学系 4の詳細なレンズ データは、 例えば国際公開 (W0) 00/39623号に開示されている。 更に、 反射屈折 系としては、 その国際公開 (TO) 00/39623号に開示されている別の光学系を使用 することもできる。 なお、 投影光学系 4としては、 例えば光軸が V字型に折れ曲 がったような反射屈折型の光学系を使用してもよい。 In this example, fluorite (a crystal of G a F 2 ) is used for all refractive optical members (lens components) constituting the projection optical system 4. The oscillation center wavelength of F 2 laser light as the exposure light IL is 157. 6 nm, with the wavelength width chromatic aberration for light of 157. 6 nm ± 10 pm is corrected, spherical aberration, astigmatism Various aberrations such as aberration and distortion are also corrected well. The detailed lens data of the projection optical system 4 in FIG. 2 is disclosed in, for example, International Publication (W0) 00/39623. Further, as the catadioptric system, another optical system disclosed in WO 00/39623 can also be used. As the projection optical system 4, for example, a catadioptric optical system whose optical axis is bent in a V-shape may be used.
そして、 本例の投影光学系 4の鏡筒は、 4個の分割鏡筒 57〜60を光軸 AX に沿って密着させて積み重ねることによって構成されている。 即ち、 第 1の分割 鏡筒 57の内部にそれぞれレンズ枠を介してレンズ L 6, L7、 主鏡 Ml、 及び 副鏡 M2 (レンズ成分 L8) が保持され、 分割鏡筒 57は、 第 2フレーム 2Eの U字型の開口にフランジ部を介して載置され、 ポルトで固定されている。 また、 分割鏡筒 57の上に第 2の分割鏡筒 58が載置され、 分割鏡筒 57及び 58は、 1対の対向するフランジ部 Fの例えば 3箇所を光軸方向にポルト 61で締め付け ることによって、 互いに密着した状態で連結されている。 これは、 他の分割鏡筒 の連結でも同様である。 なお、 図 2の投影光学系 4の断面図は、 光軸 AXを中心 として 120° の開き角における縦断面図を示している。 そして、 分割鏡筒 58 内にそれぞれ 3箇所の光軸方向に伸縮自在の駆動素子 63 A及び 63 Bを介して レンズ L 5及び L 4が保持されている。 The lens barrel of the projection optical system 4 of the present embodiment is configured by stacking four divided lens barrels 57 to 60 in close contact with each other along the optical axis AX. That is, the lenses L6 and L7, the primary mirror Ml, and the secondary mirror M2 (lens component L8) are held inside the first split lens barrel 57 via the lens frames, respectively. It is placed via a flange in the U-shaped opening of 2E and fixed with Porto. A second split barrel 58 is placed on the split barrel 57. The split barrels 57 and 58 fasten, for example, three locations of a pair of opposed flange portions F with a port 61 in the optical axis direction. As a result, they are connected in close contact with each other. The same applies to the connection of other split lens barrels. Note that the cross-sectional view of the projection optical system 4 in FIG. 2 is a vertical cross-sectional view at an opening angle of 120 ° about the optical axis AX. The lenses L5 and L4 are held in the split lens barrel 58 via three driving elements 63A and 63B that can expand and contract in the optical axis direction.
更に、 分割鏡筒 58上に第 3の分割鏡筒 59が載置して連結され、 分割鏡筒 5 9内にそれぞれ 3箇所の光軸方向に伸縮自在の駆動素子 63C及び 63Dを介し Further, a third divided lens barrel 59 is mounted on and coupled to the divided lens barrel 58, and is provided in the divided lens barrel 59 via three drive elements 63C and 63D which can expand and contract in the optical axis direction.
3及ぴ L 2が保持されている。 そして、 分割鏡筒 59上に第 4の分割
鏡筒 6 0が載置して連結され、 分割鏡筒 6 0内の上端部にレンズ枠を介してレン ズ L 1が保持されている。 駆動素子 6 3 A〜 6 3 Dとしては、 電動式のマイクロ メ一夕、 圧電素子 (ピエゾ素子等) 、 又は磁歪素子等が使用できる。 また、 駆動 素子 6 3 A, 6 3 Bの伸縮は分割鏡筒 5 8の外側面に固定されたドライバ 6 4に よって制御され、 駆動素子 6 3 C , 6 3 Dの伸縮は分割鏡筒 5 9の外側面に固定 されたドライバ 6 5によって制御され、 ドライノ 6 4, 6 5の動作はコンビユー 夕を備えた結像特性制御系 4 6によって制御される。 この際に、 各駆動素子 6 3 A〜 6 3 Dにはそれぞれ伸縮量を検出するセンサ (口一タリエンコーダ、 静電容 量式又は光学式のギャップセンサ等) が組み込まれており、 ドライノ 6 4 , 6 5 はそれらのセンサの検出結果をフィードバックしながら、 対応する駆動素子 6 3 A〜 6 3 Dの駆動量を制御する。 これらの駆動素子 6 3 A〜 6 3 D及びドライノ 6 4, 6 5が、 本発明の結像特性を制御する制御機構に対応しており、 この制御 機構及び投影光学系 4を覆うようにフィルム状カバ一 5 0が設置されている。 本例では、 駆動素子 6 3 A〜 6 3 Dを駆動することで、 4枚のレンズ L 2〜: L 5をそれぞれ光軸 A X方向に微動できると共に、 それらのレンズ L 2〜L 5をそ れぞれ光軸 A Xに垂直な面内で直交する 2つの軸の回りに傾斜できるように構成 されている。 このように 4枚のレンズ L 2〜L 5を駆動することによって、 投影 光学系 4の光学特性、 例えば、 投影倍率、 ディストーション、 球面収差、 及びコ マ収差等の結像特性を所定範囲内で制御することができる。 また、 図 2において、 結像特性制御系 4 6からの制御情報を伝送するための信号ケーブルが、 第 2フレ ーム 2 Eの上面の凸部 2 E aの外面のコネクタ 6 6 B、 凸部 2 E aの内部の信号 ケーブル部 6 7、 及び凸部 2 E aの内面のコネクタ 6 6 Aを介してドライバ 6 4, 6 5に接続されている。 この場合、 コネクタ 6 6 A, 6 6 Bは気体の流通が起こ らないように気密性の高い構造 (いわゆる真空継ぎ手) とされており、 その信号 ケーブル部 6 7を介して外気が投影光学系 4の周囲に混入しないように構成され ている。 3 and L 2 are held. And the fourth split on split lens barrel 59 The lens barrel 60 is mounted and connected, and a lens L1 is held at the upper end in the split lens barrel 60 via a lens frame. As the driving elements 63A to 63D, an electric micro-mechanical element, a piezoelectric element (such as a piezo element), or a magnetostrictive element can be used. The expansion and contraction of the driving elements 63A and 63B are controlled by a driver 64 fixed to the outer surface of the divided lens barrel 58, and the expansion and contraction of the driving elements 63C and 63D The operation of the dryinos 64 and 65 is controlled by an imaging characteristic control system 46 equipped with a combination. At this time, each of the driving elements 63A to 63D has a built-in sensor for detecting the amount of expansion and contraction, such as a one-way encoder, a capacitive or optical gap sensor, and the like. , 65 control the driving amounts of the corresponding driving elements 63 A to 63 D while feeding back the detection results of those sensors. The drive elements 63 A to 63 D and the drynos 64 and 65 correspond to a control mechanism for controlling the imaging characteristics of the present invention, and a film is formed so as to cover the control mechanism and the projection optical system 4. 50 covers are installed. In this example, by driving the driving elements 63A to 63D, the four lenses L2 to L5 can be finely moved in the optical axis AX direction, and the lenses L2 to L5 can be moved. Each is configured to be tiltable around two axes orthogonal to each other in a plane perpendicular to the optical axis AX. By driving the four lenses L2 to L5 in this manner, the optical characteristics of the projection optical system 4, for example, the imaging characteristics such as projection magnification, distortion, spherical aberration, and coma aberration can be controlled within a predetermined range. Can be controlled. In FIG. 2, a signal cable for transmitting control information from the imaging characteristic control system 46 is connected to a connector 66 B on the outer surface of the convex portion 2Ea on the upper surface of the second frame 2E. It is connected to the drivers 64 and 65 via the signal cable part 67 inside the part 2Ea and the connector 66A on the inner surface of the convex part 2Ea. In this case, the connectors 66A and 66B have a highly airtight structure (a so-called vacuum joint) so that gas does not flow, and the outside air is projected through the signal cable section 67 to the projection optical system. It is configured so that it does not enter around 4.
また、 本例の投影光学系 4において、 最上部のレンズ L 1のレンズ枠、 及び最 下部のレンズ成分 L 8 (副鏡 M 2 ) のレンズ枠は、 密閉構造であり、 それ以外の レンズや主鏡 M 1のレンズ枠にはそれぞれパージガスを流通させるための多数の
小さい開口が形成されている。 そして、 パ一ジガスの給気管 4 8は、 最上段の分 割鏡筒 6 0の側面 (レンズ L 1の底面側) に差し込まれ、 排気管 4 9は、 最下段 の分割鏡筒 5 7の側面 (レンズ成分 L 8の上面側) に差し込まれており、 給気管 4 8から投影光学系 4の内部に供給されたパージガスは、 レンズ L 1〜L 7及び 主鏡 M lの周囲を流れて排気管 4 9から排気されている。 これによつて、 投影光 学系 4の内部のパージガスの純度は高く維持されている。 In the projection optical system 4 of this example, the lens frame of the uppermost lens L1 and the lens frame of the lowermost lens component L8 (secondary mirror M2) have a closed structure, and other lenses and The lens frame of the primary mirror M 1 has a large number of A small opening is formed. The air supply pipe 48 for the purge gas is inserted into the side of the uppermost split lens barrel 60 (the bottom side of the lens L 1), and the exhaust pipe 49 is connected to the lowermost split lens barrel 57. The purge gas, which is inserted into the side surface (the upper surface side of the lens component L8) and supplied from the air supply pipe 48 to the inside of the projection optical system 4, flows around the lenses L1 to L7 and the primary mirror Ml. It is exhausted from the exhaust pipe 49. As a result, the purity of the purge gas inside the projection optical system 4 is kept high.
更に、 例えば投影光学系 4の分割鏡筒 5 7〜6 0の内表面には、 例えばフッ素 系の樹脂をコーティングしたり、 プラズマ溶射により脱ガスの少ない硬い膜 (セ ラミックス膜やステンレス膜等) を形成したり、 あるいは電解研磨することによ つて、 ケミカルクリーン処理が施されている。 なお、 これらの鏡筒そのものの素 材として、 ステンレス或いはテフロン等のケミカルクリ一ンな素材を使用しても よい。 Furthermore, for example, the inner surfaces of the split lens barrels 57 to 60 of the projection optical system 4 are coated with, for example, a fluorine-based resin, or a hard film (such as a ceramic film or a stainless steel film) that is less degassed by plasma spraying. ) Or electrolytic polishing to perform chemical clean treatment. In addition, as a material of the lens barrel itself, a chemical-clean material such as stainless steel or Teflon may be used.
さて、 本例の投影光学系 4の結像特性制御系 4 6には、 サブチャンバ 3, 8、 投影光学系 4、 及びサブチャンバ 6内部の気圧をそれぞれ計測する圧力計 S 1〜 S 4 (図 1参照) や投影光学系 4の周囲の不図示の温度計、 湿度計等からの計測 データをサンプリングする環境情報計測系 4 7が接続されており、 環境情報計測 系 4 7に供給された圧力計 S 1〜S 4の計測値、 及び温度や湿度の計測値が結像 特性制御系 4 6に供給されている。 更に、 投影光学系 4の側面のフィルム状カバ 一 5 0の外部の気体の圧力 (ほぼ大気圧とみなすことができる) が気圧計 S 5に よって計測されており、 この計測値 (大気圧) の情報も環境情報計測系 4 7を介 して結像特性制御系 4 6に供給されている。 更に、 結像特性制御系 4 6には、 投 影光学系 4を通過した露光光 I Lの積算エネルギーの情報も供給されている。 こ の積算エネルギーの情報は、 一例として図 1のサブチヤンバ 3内の照明光学系に おいて、 露光光から分岐した光束を光電検出器としてのインテグレ一夕センサで 検出し、 この検出信号を積算することによって求めることができる。 By the way, the imaging characteristic control system 46 of the projection optical system 4 of the present example includes the pressure gauges S 1 to S 4 ( An environment information measurement system 47 that samples measurement data from a thermometer and a hygrometer (not shown) around the projection optical system 4 and the projection optical system 4 is connected and supplied to the environment information measurement system 47. The measured values of the pressure gauges S1 to S4 and the measured values of temperature and humidity are supplied to the imaging characteristic control system 46. Further, the pressure of the gas outside the film cover 150 on the side surface of the projection optical system 4 (which can be regarded as almost atmospheric pressure) is measured by the barometer S5, and the measured value (atmospheric pressure) Is also supplied to the imaging characteristic control system 46 via the environmental information measurement system 47. Further, information on the integrated energy of the exposure light IL that has passed through the projection optical system 4 is also supplied to the imaging characteristic control system 46. As an example, the integrated energy information is obtained by detecting the luminous flux branched from the exposure light with an integral sensor as a photoelectric detector in the illumination optical system in the sub-chamber 3 in FIG. 1 and integrating the detection signal. Can be obtained by:
この場合、 大気圧の変動、 及び投影光学系 4を通過する積算エネルギーによつ て投影光学系 4の結像特性が変動することが従来より知られており、 結像特性制 御系 4内の記憶部には、 予め実験的に求められた、 大気圧の値及び積算エネルギ 一と結像特性の変動量との関係 (以下、 「第 1の関係」 と呼ぶ) が関数、 又はテ
—ブルとして記憶されている。 その第 1の関係と大気圧、 及び積算エネルギーの 計測値とに基づいて、 結像特性制御系 4 6は結像特性の変動量を予測する。 そし て、 予測された変動量に基づいて、 結像特性制御系 4 6は、 ドライバ 6 4 , 6 5 を介して、 対応するレンズ L 2〜L 5を駆動し、 上述した変動量が相殺されるよ うに、 投影光学系の結像特性を調整する。 In this case, it is conventionally known that the imaging characteristics of the projection optical system 4 fluctuate due to the fluctuation of the atmospheric pressure and the integrated energy passing through the projection optical system 4. The relationship between the value of the atmospheric pressure and the accumulated energy and the amount of change in the imaging characteristics (hereinafter referred to as the “first relationship”), which is obtained experimentally in advance, is stored in the storage unit of the function or the te. —Remembered as Bull. Based on the first relationship and the measured values of the atmospheric pressure and the integrated energy, the imaging characteristic control system 46 predicts the fluctuation amount of the imaging characteristic. Then, based on the predicted fluctuation amount, the imaging characteristic control system 46 drives the corresponding lenses L2 to L5 via the drivers 64 and 65, and the fluctuation amounts described above are canceled. Adjust the imaging characteristics of the projection optical system so that
更に、 本願の発明者によって、 その結像特性の変動量は、 投影光学系 4の内部 の気圧 (圧力計 S 3の計測値) 、 及び投影光学系 4の前後の気密室の気圧として の図 1のサブチャンバ 3, 8 , 6の内部の気圧 (圧力計 S 1, S 2 , S 4の計測 値) によっても変化することが確かめられた。 これは、 各気密室の内部の気圧の 変化によって、 各気密室内での気体の屈折率が僅かに変化するため、 露光光 I L の光路も微妙に変化するためと考えられる。 従って、 それらの気圧の値と結像特 性の変動量との間には或る程度の再現性がある。 そこで、 本例では圧力計 S l〜 S 4の計測値と結像特性の変動量との関係 (以下、 「第 2の関係」 と呼ぶ) が、 予め実験又はシミュレーションにより求められ、 所定の関数又はテ一ブルとして 結像特性制御系 4 6内の記憶部に記憶されている。 Further, according to the inventor of the present application, the fluctuation amount of the imaging characteristics is represented by the pressure as the pressure inside the projection optical system 4 (measured value of the pressure gauge S3) and the pressure in the airtight chamber before and after the projection optical system 4. It was confirmed that the pressure also changed depending on the pressure inside the subchambers 3, 8, and 6 (measured values of the pressure gauges S1, S2, and S4). This is thought to be because the refractive index of the gas in each hermetic chamber changes slightly due to the change in the atmospheric pressure inside each hermetic chamber, and the optical path of the exposure light IL also slightly changes. Therefore, there is a certain degree of reproducibility between the values of the atmospheric pressure and the amount of change in the imaging characteristics. Therefore, in this example, the relationship between the measured values of the pressure gauges S1 to S4 and the amount of change in the imaging characteristics (hereinafter referred to as “second relationship”) is obtained in advance by experiment or simulation, and a predetermined function Alternatively, it is stored in the storage unit in the imaging characteristic control system 46 as a table.
そして、 結像特性制御系 4 6は、 その第 1の関係に基づいて結像特性の変動量 を予測したときに、 その圧力計 S 1〜 S 4の計測値とその第 2の関係とを用いて その結像特性の変動量を補正する。 また、 大気圧の変動が無い場合でも、 圧力計 S 1〜S 4の計測値が変化した場合には、 結像特性制御系 4 6は、 その第 2の関 係に基づいてその結像特性の変動量を算出する。 そして、 最終的に得られる結像 特性の変動量を相殺するように、 結像特性制御系 4 6は、 ドライバ 6 4 , 6 5を 介して対応するレンズ L 2〜L 5を駆動し、 投影光学系 4の結像特性を調整する。 即ち、 本実施の形態では、 大気圧の値及び積算エネルギーと結像特性の変動量の 関係に、 オフセットとして、 投影光学系 4及びサブチャンバ 3 , 8, 6の内部の 気圧の値を加え、 投影光学系の結像特性の変動量を算出する構成である。 これに より、 露光中に例えばパージガスの流量のバランスが微妙に変化して、 投影光学 系 4の内部やその前後の気密室の気圧が変化した場合であっても、 投影光学系 4 の結像特性を所望の状態に維持して、 高精度な露光を行うことができる。 即ち、 高い解像度、 及び線幅制御精度でレチクル Rのパターン像をゥェハ W上に転写で
きると共に、 重ね合わせ露光であれば高い重ね合わせ精度が得られる。 Then, when the imaging characteristic control system 46 predicts the variation of the imaging characteristic based on the first relationship, the measurement values of the pressure gauges S1 to S4 and the second relationship are obtained. To correct the variation of the imaging characteristics. Also, even when there is no change in the atmospheric pressure, if the measured values of the pressure gauges S1 to S4 change, the imaging characteristic control system 46 will determine the imaging characteristics based on the second relationship. Is calculated. Then, the imaging characteristic control system 46 drives the corresponding lenses L2 to L5 via the drivers 64 and 65 so as to cancel the finally obtained fluctuation amount of the imaging characteristic, and Adjust the imaging characteristics of the optical system 4. That is, in this embodiment, the value of the atmospheric pressure inside the projection optical system 4 and the sub-chambers 3, 8, and 6 is added as an offset to the relationship between the value of the atmospheric pressure, the accumulated energy, and the amount of change in the imaging characteristics. This is a configuration for calculating the amount of change in the imaging characteristics of the projection optical system. As a result, even if, for example, the balance of the flow rate of the purge gas changes slightly during exposure, and the pressure inside the projection optical system 4 and the airtight chamber before and after it changes, the imaging of the projection optical system 4 can be performed. High-precision exposure can be performed while maintaining the characteristics in a desired state. That is, the pattern image of reticle R can be transferred onto wafer W with high resolution and line width control accuracy. In addition, high overlay accuracy can be obtained with overlay exposure.
なお、 必ずしもサブチャンバ 3, 8 , 6の全部で気圧を計測する必要はなく、 例えばサブチャンパ 8 (レチクル室) 又はサブチャンバ 6 (ウェハ室) の少なく とも一方の気圧のみを代表的に計測するだけでもよい。 この場合には、 圧力計 S 2の計測値又は圧力計 S 4の計測値の少なくとも一つと、 投影光学系の結像特性 の変動量との関係を第 2の関係として記憶部に記憶しておけばよい。 そして、 結 像特性制御系 4 6は、 第 1の関係に基づいて結像特性の変動量を予測したときに、 圧力計 S 2の計測値又は圧力計 S 4の計測値の少なくとも一つと、 その第 2の関 係とを用いて結像特性の変動量を補正するようにすればよい。 また、 投影光学系 4の前後の気密室の気圧としてレチクル室とウェハ室との気圧の平均値を用い、 この平均値を用いて投影光学系 4の結像特性を調整するようにしてもよい。 Note that it is not always necessary to measure the pressure in all of the sub-chambers 3, 8, and 6. For example, only the pressure in at least one of the sub-chamber 8 (reticle chamber) or the sub-chamber 6 (wafer chamber) is typically measured. May be. In this case, the relationship between at least one of the measurement value of the pressure gauge S2 or the measurement value of the pressure gauge S4 and the variation amount of the imaging characteristic of the projection optical system is stored in the storage unit as a second relationship. It is good. Then, the imaging characteristic control system 46 predicts at least one of the measured value of the pressure gauge S2 or the measured value of the pressure gauge S4 when predicting the variation amount of the imaging characteristic based on the first relationship, What is necessary is just to correct the fluctuation amount of the imaging characteristic using the second relation. Further, an average value of the air pressures of the reticle chamber and the wafer chamber may be used as the air pressure of the airtight chambers before and after the projection optical system 4, and the imaging characteristics of the projection optical system 4 may be adjusted using the average value. .
さらに、 上記実施形態では投影光学系 4の結像特性を調整するものとしたが、 その他に、 又はそれに加えて、 例えば露光光でレチクル Rを照明する照明光学系 (照明系) の少なくとも一部の光学特性 (テレセントリシティ、 照度むらなど) を調整するようにしてもよい。 この際に、 照明光学系には、 開口絞り、 照度分布 調整用の濃度フィルタ、 リレ一レンズ系、 視野絞り、 及びコンデンサレンズ系な どが含まれているため、 それらの内の少なくとも 1つの光学素子 (例えばレンズ エレメント、 又は濃度フィル夕など) を変位させることによって、 その光学特性 を調整することができる。 この場合にも、 その光学素子を変位させる代わりに、 露光光の波長を変化させることによって、 その光学特性を調整してもよい。 Further, in the above embodiment, the imaging characteristic of the projection optical system 4 is adjusted. In addition, or in addition, at least a part of an illumination optical system (illumination system) that illuminates the reticle R with exposure light, for example. The optical characteristics (telecentricity, uneven illuminance, etc.) may be adjusted. At this time, since the illumination optical system includes an aperture stop, a density filter for adjusting the illuminance distribution, a relay lens system, a field stop, and a condenser lens system, at least one of these optical systems is used. By displacing an element (eg, a lens element or a density filter), its optical properties can be adjusted. Also in this case, instead of displacing the optical element, the optical characteristics may be adjusted by changing the wavelength of the exposure light.
なお、 投影光学系 4の結像特性を調整する方法は、 本例のレンズ L 2〜L 5を 駆動する方法に限られるものではなく、 例えば、 給排気機構 1 3によって投影光 学系 4やサブチャンバ 3, 8 , 6に供給するパージガスの供給条件 (例えば、 流 量、 圧力など) を調整することによって、 投影光学系 4やサブチャンバ 3, 8 , 6内部の気圧を調整して、 投影光学系 4の結像特性を調整するようにしてもよい この際に、 例えばサブチャンバ 8内の気圧と投影光学系 4内の気圧とに差が生じ て、 投影光学系 4の結像特性が変動する恐れのあるときには、 一例として給排気 機構 1 3によってサブチャンバ 8内の気圧と投影光学系 4内の気圧とを予め定め られている共通の目標値に戻せばよい。 これによつて、 その気圧差がなくなるた
め、 その結像特性は良好な状態に維持される。 The method of adjusting the imaging characteristics of the projection optical system 4 is not limited to the method of driving the lenses L2 to L5 in the present example.For example, the method of adjusting the projection optical system 4 or the By adjusting the supply conditions (for example, flow rate, pressure, etc.) of the purge gas supplied to the sub-chambers 3, 8, and 6, the pressure inside the projection optical system 4 and the sub-chambers 3, 8, and 6 is adjusted, and the projection is performed. The imaging characteristics of the optical system 4 may be adjusted. At this time, for example, a difference occurs between the air pressure in the sub-chamber 8 and the air pressure in the projection optical system 4, and the imaging characteristics of the projection optical system 4 are changed. When there is a possibility that the pressure may fluctuate, for example, the air pressure in the sub-chamber 8 and the air pressure in the projection optical system 4 may be returned to a predetermined common target value by the air supply / exhaust mechanism 13. This eliminated the pressure difference Therefore, its imaging characteristics are maintained in a good state.
更に、 露光光 (露光ビーム) の波長を変化させることによって、 投影光学系 4 の結像特性、 又は照明光学系の光学特性 (テレセントリシティなど) などを調整 (又は補正) するようにしてもよい。 この場合、 調整量を大きくするために、 上 記のレンズを駆動する方式と、 その露光ビームの波長を変化させる方式とを組み 合わせてもよい。 その他に、 パ一ジガスの供給条件を調整する方式と、 その露光 ビームの波長を変化させる方式とを組み合わせてもよい。 Furthermore, by changing the wavelength of the exposure light (exposure beam), the imaging characteristics of the projection optical system 4 or the optical characteristics of the illumination optical system (such as telecentricity) are adjusted (or corrected). Good. In this case, in order to increase the adjustment amount, a method for driving the above lens and a method for changing the wavelength of the exposure beam may be combined. In addition, a method of adjusting the supply condition of the purge gas and a method of changing the wavelength of the exposure beam may be combined.
また、 露光中にパージガスの圧力変動が生じると、 光路長が変化することによ つて例えばウェハ Wのデフォーカスが生じる恐れがある。 一例としてデフォー力 ス量の変動量の許容範囲が 1 0 nm程度である場合には、 パージガスの圧力変動 をレチクルステージ系 R S Tが収納されているサブチヤンバ 8 (レチクル室) 内 では 2 5 mmH g程度以下、 投影光学系 4内は 2 mmH g程度以下、 ウェハステ ージ系 W S Tが収納されているサブチャンバ 6 (ウェハ室) 内では 2 2 mmH g 程度以下に抑えることが望ましい。 そこで、 サブチャンパ 8、 投影光学系 4、 及 びサブチャンバ 6に、 互いに独立に給排気機構 1 3から給気管及び排気管を接続 し、 サブチャンバ 8、 投影光学系 4、 及びサブチャンバ 6内へのパージガスの給 排気を互いに独立に制御するようにしてもよい。 この場合、 特にサブチャンバ 8 (レチクル室) の気圧を調整することによってディストーションの補正を効果的 に行うことができる。 Further, if the pressure of the purge gas fluctuates during the exposure, for example, the wafer W may be defocused due to a change in the optical path length. As an example, when the allowable range of the variation of the deformation force is about 10 nm, the fluctuation of the purge gas pressure is about 25 mmHg in the sub-chamber 8 (reticle chamber) containing the reticle stage system RST. Hereinafter, it is desirable to keep the projection optical system 4 to about 2 mmHg or less, and to keep the wafer stage system WST in the sub-chamber 6 (wafer chamber) to about 22 mmHg or less. Therefore, an air supply pipe and an exhaust pipe are connected to the sub-chamber 8, the projection optical system 4, and the sub-chamber 6 independently from the air supply / exhaust mechanism 13, and the sub-chamber 8, the projection optical system 4, and the sub-chamber 6 are put into the sub-chamber 8, the projection optical system 4, and the sub-chamber 6. The supply and exhaust of the purge gas may be controlled independently of each other. In this case, the distortion can be effectively corrected by adjusting the air pressure of the sub-chamber 8 (reticle chamber).
なお、 本実施の形態で示した投影光学系 4として、 例えば、 図 3に示すような 投影光学系を使用してもよい。 In addition, as the projection optical system 4 shown in the present embodiment, for example, a projection optical system as shown in FIG. 3 may be used.
図 3において、 この投影光学系は、 第 1面に配置された投影原版としてのレチ クル Rのパターンの第 1中間像を形成するための屈折型の光軸 AX 1を持つ第 1 結像光学系 G 1を備えている。 第 1結像光学系 G 1が形成する第 1中間像の形成 位置の近傍には、 第 1光路折り曲げ鏡 M lが配置されている。 第 1光路折り曲げ 鏡 M lは、 第 1中間像へ向かう光束、 又はその第 1中間像からの光束を第 2結像 光学系 G 2に向かって偏向する。 光軸 AX 2を持つ第 2結像光学系 G 2は、 凹面 反射鏡 C Mと少なくとも 1つの負レンズ N Lとを有し、 その第 1中間像からの光 束に基づいて第 1中間像とほぼ等倍の第 2中間像 (第 1中間像の像であってバタ
ーンの 2次像) を第 1中間像の形成位置の近傍に形成する。 第 2結像光学系 G 2 が形成する第 2中間像の形成位置の近傍には、 第 2光路折り曲げ鏡 M 2が配置さ れている。 第 2光路折り曲げ鏡 M 2は、 その第 2中間像へ向かう光束または第 2 中間像からの光束を屈折型の光軸 A X 3を持つ第 3結像光学系 G 3に向かって偏 向する。 ここで、 第 1光路折り曲げ鏡 M lの反射面と第 2光路折り曲げ鏡 M 2の 反射面とは、 空間的に隔絶されている。 また、 第 1光路折り曲げ鏡 M lと第 2光 路折り曲げ鏡 M 2とは一体的に反射プロック F Mを構成している。 第 3結像光学 系 G 3は、 第 2中間像からの光束に基づいて、 レチクル Rのパターンの縮小像 (第 2中間像の像であって反射屈折光学系の最終像) を、 第 2面に配置された感 光性基板としてのゥェハ W上に形成する。 In FIG. 3, the projection optical system includes a first imaging optical system having a refractive optical axis AX1 for forming a first intermediate image of a pattern of a reticle R as a projection master arranged on a first surface. With system G1. A first optical path bending mirror Ml is arranged near the position where the first intermediate image formed by the first imaging optical system G1 is formed. The first optical path bending mirror Ml deflects the light beam toward the first intermediate image or the light beam from the first intermediate image toward the second imaging optical system G2. The second imaging optical system G2 having the optical axis AX2 has a concave reflecting mirror CM and at least one negative lens NL, and is substantially equal to the first intermediate image based on the light flux from the first intermediate image. 1st intermediate image (1st intermediate image) Is formed in the vicinity of the formation position of the first intermediate image. A second optical path bending mirror M2 is arranged near the position where the second intermediate image formed by the second imaging optical system G2 is formed. The second optical path bending mirror M2 deflects the light beam toward the second intermediate image or the light beam from the second intermediate image toward the third imaging optical system G3 having the refractive optical axis AX3. Here, the reflecting surface of the first optical path bending mirror Ml and the reflecting surface of the second optical path bending mirror M2 are spatially separated. In addition, the first optical path bending mirror Ml and the second optical path bending mirror M2 integrally form a reflection block FM. The third imaging optical system G3 converts a reduced image of the pattern of the reticle R (an image of the second intermediate image and the final image of the catadioptric optical system) into a second image based on the light beam from the second intermediate image. It is formed on wafer W as a photosensitive substrate arranged on the surface.
上述の構成では、 複数のレンズを含む屈折光学系である第 1結像光学系 G 1及 び第 3結像光学系 G 3で生じる色収差及び正値のぺッッバール和を、 第 2結像光 学系 G 2の凹面反射鏡 CM及び負レンズ N Lにより補償する。 また、 第 2結像光 学系 G 2がほぼ等倍の結像倍率を有する構成により、 第 1中間像の近傍に第 2中 間像を形成することが可能となる。 この投影光学系では、 この 2つの中間像の近 傍において光路分離を行うことにより、 露光領域 (即ち、 実効露光領域) の光軸 からの距離、 即ち軸外し量を小さく設定することができる。 上述したように、 第 2結像光学系 G 2は、 第 1結像光学系 G 1及び第 3結像光学系 G 3で生じる色収 差及び正値のペッツバール和の補償を一手に負担する。 このため、 第 2結像光学 系 G 2を構成する凹面反射鏡 C M及び負レンズ N Lのパヮ一を共に大きく設定す る必要がある。 したがって、 第 2結像光学系 G 2の対称性が崩れると、 倍率色収 差や色コマ収差のような非対称色収差の発生が大きくなり、 十分な解像力を得る ことができなくなってしまう。 そこで、 この投影光学系では、 第 2結像光学系 G 2の結像倍率をほぼ等倍に設定し且つその瞳位置の近傍に凹面反射鏡 C Mを配置 することのできる構成を採用することにより、 良好な対称性を確保し、 上述の非 対称色収差の発生を防ぐことができる。 In the configuration described above, the chromatic aberration and the Pebbal sum of positive values generated in the first imaging optical system G1 and the third imaging optical system G3, which are refractive optical systems including a plurality of lenses, are converted into the second imaging light. Compensated by concave mirror CM and negative lens NL of G2. Further, with the configuration in which the second imaging optical system G2 has an imaging magnification of approximately the same magnification, it is possible to form the second intermediate image near the first intermediate image. In this projection optical system, by performing optical path separation near these two intermediate images, the distance from the optical axis of the exposure region (ie, the effective exposure region), that is, the off-axis amount can be set small. As described above, the second imaging optical system G2 bears all the compensation for the color difference and the positive Petzval sum generated in the first imaging optical system G1 and the third imaging optical system G3. . For this reason, it is necessary to set both the concave reflecting mirror CM and the negative lens NL constituting the second imaging optical system G2 to have a large power. Therefore, if the symmetry of the second imaging optical system G2 is broken, asymmetric chromatic aberration such as chromatic aberration of magnification and chromatic coma will increase, and it will be impossible to obtain a sufficient resolving power. Therefore, in this projection optical system, by adopting a configuration in which the imaging magnification of the second imaging optical system G2 is set to approximately the same magnification and the concave reflecting mirror CM can be arranged near the pupil position. However, good symmetry can be ensured, and the above-described asymmetric chromatic aberration can be prevented from occurring.
また、 上記の実施の形態は、 本発明をステップ ·アンド 'スキャン方式の投影 露光装置に適用したものであるが、 本発明はステツパ一等の一括露光型の投影露 光装置にも適用できることは明らかである。
また、 露光ビームとして、 例えば D F B半導体レーザやファイバ一レーザから 発振される赤外域、 又は可視域の単一波長レ一ザを、 例えばエルビウム (E r )In the above embodiment, the present invention is applied to a step-and-scan type projection exposure apparatus. However, the present invention can also be applied to a batch exposure type projection exposure apparatus such as a stepper. it is obvious. As an exposure beam, for example, a single wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or a fiber laser, for example, erbium (E r)
(又はエルビウムとイッテルビウム (Y b ) との両方) がドープされたファイバ 一アンプで増幅し、 非線形光学結晶を用いて紫外光に波長変換した高調波を用い る場合にも本発明が適用される。 The present invention is also applied to a case where a harmonic is amplified by a single-fiber amplifier doped with (or both erbium and ytterbium (Y b)) and wavelength-converted to ultraviolet light using a nonlinear optical crystal. .
また、 上記の実施の形態の照明光学系及び投影光学系は、 各光学部材を所定の 位置関係で配置して調整を行った後、 それぞれ対応するフレーム等に設置するこ とによって組み上げられる。 そして、 この組立調整と共に、 レチクルステージ系 R S T、 ウェハステージ系 W S T、 及び給排気機構 1 3等の組立及び調整を行い、 各構成要素を、 電気的、 機械的又は光学的に連結することによって上記の実施の 形態の投影露光装置が組み上げられる。 この場合の作業は温度管理が行われたク リーンルーム内で行うことが望ましい。 Further, the illumination optical system and the projection optical system according to the above-described embodiment are assembled by arranging the respective optical members in a predetermined positional relationship, performing adjustment, and then installing the optical members on the corresponding frames and the like. Along with this assembly adjustment, assembling and adjusting the reticle stage system RST, the wafer stage system WST, and the air supply / exhaust mechanism 13 are performed, and the above components are electrically, mechanically, or optically connected to each other. The projection exposure apparatus according to the embodiment is assembled. In this case, it is desirable to perform the work in a clean room where the temperature is controlled.
次に、 上記の実施の形態の投影露光装置を使用レた半導体デバイスの製造工程 の一例につき図 4を参照して説明する。 Next, an example of a semiconductor device manufacturing process using the projection exposure apparatus of the above embodiment will be described with reference to FIG.
図 4は、 半導体デバイスの製造工程の一例を示し、 この図 4において、 まずシ リコン半導体等からウェハ Wが製造される。 その後、 ウェハ W上にフォトレジス トを塗布し (ステップ S 1 0 ) 、 このウェハ Wを図 1の投影露光装置の例えば試 料台 5 a上にロードする。 次のステップ S 1 2において、 図 1のレチクルホルダ 7 a上にレチクル R 1をロードして、 このレチクル R 1を照明領域の下方に移動 して、 レチクル R 1のパターンをウェハ W上の全部のショット領域 S Eに走査露 光する。 なお、 ウェハ Wは例えば直径 3 0 O mmのウェハ (1 2インチウェハ) であり、 ショッ卜領域 S Eの大きさは一例として非走査方向の幅が 2 5 mmで走 查方向の幅が 3 3 mmの矩形領域である。 次に、 ステップ S 1 4において、 現像 及びエッチングやイオン注入等を行うことにより、 ウェハ Wの各ショット領域 S Eに所定のパターンが形成される。 次に、 ステップ S 1 6において、 ウェハ W上 にフォトレジストを塗布し、 その後ステップ S 1 8において、 図 1のレチクルホ ルダ 7 a上に別のレチクル R 2をロードし、 このレチクル R 2を照明領域の下方 に移動して、 レチクル R 2のパターンをウェハ W上の各ショット領域 S Eに走査 露光する。 そして、 ステップ S 2 0において、 ウェハ Wの現像及びエッチングや
イオン注入等を行うことにより、 ウェハ Wの各ショット領域に所定のパターンが 形成される。 以上の露光工程〜パターン形成工程 (ステップ S 1 6〜ステップ SFIG. 4 shows an example of a semiconductor device manufacturing process. In FIG. 4, first, a wafer W is manufactured from a silicon semiconductor or the like. Thereafter, a photoresist is applied on the wafer W (step S10), and the wafer W is loaded on, for example, a sample table 5a of the projection exposure apparatus of FIG. In the next step S12, reticle R1 is loaded on reticle holder 7a in FIG. 1, and this reticle R1 is moved below the illumination area, and the pattern of reticle R1 is entirely transferred onto wafer W. Scans and exposes the shot area SE. The wafer W is, for example, a wafer having a diameter of 30 O mm (12-inch wafer). The size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. It is a rectangular area of mm. Next, in step S14, a predetermined pattern is formed in each shot region SE of the wafer W by performing development, etching, ion implantation, and the like. Next, in step S16, a photoresist is applied on the wafer W, and then in step S18, another reticle R2 is loaded on the reticle holder 7a in FIG. 1, and this reticle R2 is illuminated. Moving below the area, the pattern of the reticle R2 is scanned and exposed on each shot area SE on the wafer W. Then, in step S20, the development and etching of the wafer W By performing ion implantation or the like, a predetermined pattern is formed in each shot region of the wafer W. The above exposure process to pattern formation process (Step S16 to Step S
2 0 ) は所望の半導体デバイスを製造するのに必要な回数だけ繰り返される。 そ して、 ウェハ W上の各チップ C Pを 1つ 1つ切り離すダイシング工程 (ステップ S 2 2 ) や、 ボンディング工程、 及びパッケージング工程等 (ステップ S 2 4 ) を経ることによって、 製品としての半導体デバイス S Pが製造される。 20) is repeated as many times as necessary to produce the desired semiconductor device. Then, through a dicing process (step S22) for separating each chip CP on the wafer W one by one, a bonding process, a packaging process, and the like (step S224), a semiconductor as a product is obtained. Device SP is manufactured.
なお、 本発明の露光装置の用途としては半導体デバイス製造用の露光装置に限 定されることなく、 例えば、 角型のガラスプレートに形成される液晶表示素子、 若しくはプラズマディスプレイ等のディスプレイ装置用の露光装匱や、 撮像素子 ( C C D等) 、 マイクロマシーン、 薄膜磁気ヘッド、 及び D N Aチップ等の各種 デバイスを製造するための露光装置にも広く適用できる。 更に、 本発明は、 各種 デバイスのマスクパターンが形成されたマスク (フォトマスク、 レチクル等) を フォトリソグフイエ程を用いて製造する際の、 露光工程 (露光装置) にも適用す ることができる。 The application of the exposure apparatus of the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device. For example, a liquid crystal display element formed on a square glass plate, or a display apparatus such as a plasma display. It can be widely applied to exposure equipment for manufacturing various devices such as exposure equipment, imaging devices (such as CCD), micro machines, thin film magnetic heads, and DNA chips. Further, the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithographic process. .
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない範 囲で種々の構成を取り得ることは勿論である。 また、 明細書、 特許請求の範囲、 図面、 及び要約を含む 2 0 0 0年 1 0月 3 1日付け提出の日本国特願 2 0 0 0 - It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention. In addition, the specification, claims, drawings, and abstract, including the description, the Japanese patent application filed on October 31, 2000, 2000-
3 3 3 9 9 6の全ての開示内容は、 そつくりそのまま引用して本願に組み込まれ ている。 産業上の利用の可能性 The entire disclosure of 3 3 3 9 9 6 is hereby incorporated by reference in its entirety. Industrial applicability
本発明によれば、 露光ビームの光路に露光ビ一ムが透過する気体を供給する場 合に、 露光ビームの光路上の光学系の光学特性、 例えば投影系の結像特性を良好 な状態に維持できる利点がある。 従って、 その光学系が照明系であるときには、 テレセントリシティ等を向上できると共に、 その光学系が投影系であるときには、 高い解像度、 及び高い重ね合わせ精度が得られる。 ADVANTAGE OF THE INVENTION According to this invention, when supplying the gas which an exposure beam permeates to the optical path of an exposure beam, the optical characteristic of the optical system in the optical path of an exposure beam, for example, the imaging characteristic of a projection system, becomes a favorable state. There are advantages that can be maintained. Accordingly, when the optical system is an illumination system, telecentricity and the like can be improved, and when the optical system is a projection system, high resolution and high overlay accuracy can be obtained.
また、 投影系の内部の気圧、 及びその前後の空間の内部の気圧に基づいて結像 特性を調 する場合には、 投影系の内部の空間と、 その前後の空間とに実質的に 互いに独立に露光ビームを透過する気体を供給する場合に、 その投影系の結像特
性を良好な状態に維持できる。
When adjusting the imaging characteristics based on the pressure inside the projection system and the pressure inside the space before and after the projection system, the space inside the projection system and the space before and after the projection system are substantially independent of each other. When a gas that transmits the exposure beam is supplied to the Properties can be maintained in a good state.
Claims
1 . 露光ビームで物体を露光する露光方法において、 1. In an exposure method for exposing an object with an exposure beam,
前記露光ビームの光路に沿って設けられた複数の気密室内に、 それぞれ前記露 光ビームを透過する気体を供給し、 Supplying gas that transmits the exposure beam to a plurality of hermetic chambers provided along the optical path of the exposure beam;
前記複数の気密室のうち、 少なくとも一つの気密室の内部の気圧を計測し、 該計測結果に基づいて、 前記物体に露光されるパターンの像の結像状態と、 前 記複数の気密室のうち、 少なくとも一つの気密室に対する前記気体の供給条件と の少なくとも一方を調整することを特徴とする露光方法。 Among the plurality of hermetic chambers, the air pressure inside at least one hermetic chamber is measured, and based on the measurement result, an image forming state of an image of a pattern exposed on the object, and An exposure method, wherein at least one of the gas supply conditions to at least one hermetic chamber is adjusted.
2 . 前記パターンの像の結像状態は、 前記露光ビームの光路中に配置される光学 系の光学特性を調整することによって調整されることを特徴とする請求の範囲 1 に記載の露光方法。 2. The exposure method according to claim 1, wherein an image formation state of the image of the pattern is adjusted by adjusting an optical characteristic of an optical system arranged in an optical path of the exposure beam.
3 . 前記光学系は、 前記パターンが形成されたマスクと前記物体との間に配置さ れ、 前記パターンの像を前記物体に投影する投影光学系を含み、 3. The optical system is disposed between a mask on which the pattern is formed and the object, and includes a projection optical system that projects an image of the pattern onto the object.
前記パターンの像の結像状態は、 前記投影光学系の内部の所定の光学部材を変 位させることによって調整されることを特徴とする請求の範囲 2に記載の露光方 法。 3. The exposure method according to claim 2, wherein an image forming state of the image of the pattern is adjusted by displacing a predetermined optical member inside the projection optical system.
4 . 前記光学系は、 前記パターンが形成されたマスクを照明する照明光学系を含 むことを特徴とする請求の範囲 3に記載の露光方法。 4. The exposure method according to claim 3, wherein the optical system includes an illumination optical system that illuminates a mask on which the pattern is formed.
5 . 前記パターンの像の結像状態は、 前記露光ビームの波長を変化させることに よつて調整されることを特徴とする請求の範囲 2に記載の露光方法。 5. The exposure method according to claim 2, wherein the imaging state of the image of the pattern is adjusted by changing a wavelength of the exposure beam.
6 . 前記光学系は、 前記露光ビームで前記パターンが形成されたマスクを照明す る照明光学系と、 前記パターンの像を前記物体に投影する投影光学系とを有し、 前記複数の気密室は、 前記照明光学系の少なくとも一部を覆う第 1室と、 前記 マスクが収納される第 2室と、 前記投影光学系の少なくとも一部の光学部材を覆 ' う第 3室と、 前記基板が収納される第 4室とを有することを特徴とする請求の範 囲 2に記載の露光方法。 6. The optical system includes: an illumination optical system that illuminates the mask on which the pattern is formed with the exposure beam; and a projection optical system that projects an image of the pattern onto the object. A first chamber that covers at least a part of the illumination optical system, a second chamber that houses the mask, a third chamber that covers at least a part of optical members of the projection optical system, and the substrate. 3. The exposure method according to claim 2, further comprising a fourth chamber in which is stored.
7 . 前記第 3室は、 前記第 2室と前記第 4室との間に配置されることを特徴とす る請求の範囲 6に記載の露光方法。
7. The exposure method according to claim 6, wherein the third chamber is disposed between the second chamber and the fourth chamber.
8 . 前記第 3室と、 該第 3室に隣接する前記第 2室又は前記第 4室との少なくと も一方の気圧差に関連する情報を検出し、 8. Detecting information related to at least one pressure difference between the third chamber and the second chamber or the fourth chamber adjacent to the third chamber,
該検出された情報に応じて前記光学系の光学特性と前記気体の供給条件との少 なくとも一方を調整することを特徴とする請求の範囲 6に記載の露光方法。 7. The exposure method according to claim 6, wherein at least one of an optical characteristic of the optical system and a supply condition of the gas is adjusted according to the detected information.
9 . 前記複数の気密室のそれぞれの気圧を計測し、 該計測結果に基づいて、 前記 複数の気密室に供給する前記気体の供給条件のそれぞれを調整することを特徴と する請求の範囲 1に記載の露光方法。 9. The method according to claim 1, wherein the air pressure of each of the plurality of airtight chambers is measured, and the supply conditions of the gas to be supplied to the plurality of airtight chambers are adjusted based on the measurement result. Exposure method according to the above.
1 0 . 光学系を介して露光ビームで物体を露光する露光装置において、 10. In an exposure apparatus that exposes an object with an exposure beam via an optical system,
, 前記露光ビームの光路に沿って設けられた複数の気密室と、 A plurality of airtight chambers provided along the optical path of the exposure beam,
前記複数の気密室内に前記露光ビームを透過する気体を供給する気体供給機構 と、 A gas supply mechanism for supplying a gas that transmits the exposure beam into the plurality of airtight chambers;
前記複数の気密室のうち、 少なくとも一つの気密室内の気圧を計測する気圧計 と、 A barometer that measures the air pressure in at least one of the plurality of hermetic chambers;
前記気圧計の計測結果に基づいて、 前記物体に露光されるパターンの像の結像 状態と、 前記複数の気密室のうち少なくとも一つの気密室に対する気体の供給条 件との少なくとも一方を制御する制御機構とを有することを特徴とする露光装置 Based on a measurement result of the barometer, at least one of an imaging state of an image of a pattern exposed on the object and a gas supply condition to at least one of the plurality of hermetic chambers is controlled. Exposure apparatus characterized by having a control mechanism
1 1 . 前記光学系は、 マスクに形成されたパターンの像を前記物体に投影する投 影光学系を含むことを特徴とする請求の範囲 1 0に記載の露光装置。 11. The exposure apparatus according to claim 10, wherein the optical system includes a projection optical system that projects an image of a pattern formed on a mask onto the object.
1 2 . 前記制御機構は、 前記投影光学系の所定の光学部材を変位させる駆動部を 含むことを特徴とする請求の範囲 1 1に記載の露光装置。 12. The exposure apparatus according to claim 11, wherein the control mechanism includes a driving unit that displaces a predetermined optical member of the projection optical system.
1 3 . 前記光学系は、 前記パターンが形成されたマスクを照明する照明光学系を 含むことを特徴とする請求の範囲 1 1に記載の露光装置。 13. The exposure apparatus according to claim 11, wherein the optical system includes an illumination optical system that illuminates a mask on which the pattern is formed.
1 4. 前記複数の気密室のうち隣接する少なくとも 2つの気密室の間の空間に通 じる空間を覆うように可撓性を有する膜状の被膜部材を設けたことを特徴とする 請求の範囲 1 0から 1 3の何れか一項に記載の露光装置。 14. A flexible film member is provided so as to cover a space that communicates with a space between at least two adjacent airtight chambers among the plurality of airtight chambers. The exposure apparatus according to any one of ranges 10 to 13.
1 5 . 前記光学系は、 前記露光ビームで前記パターンが形成されたマスクを照明 する照明光学系と、 前記パターンの像を前記物体に投影する投影光学系とを有し、 前記複数の気密室は、 前記照明光学系の少なくとも一部を覆う第 1室と、 前記 マスクが収納される第 2室と、 前記投影光学系の少なくとも一部の光学部材を覆
う第 3室と、 前記基板が収納される第 4室とを有することを特徴とする請求の範 囲 1 0に記載の露光装置。 15. The optical system includes: an illumination optical system that illuminates a mask on which the pattern is formed with the exposure beam; and a projection optical system that projects an image of the pattern onto the object. A first chamber for covering at least a part of the illumination optical system, a second chamber for containing the mask, and a cover for at least a part of the optical members of the projection optical system. The exposure apparatus according to claim 10, further comprising a third chamber, and a fourth chamber in which the substrate is stored.
1 6 . 前記第 3室は、 前記第 2室と前記第 4室との間に配置されることを特徴と する請求の範囲 1 5に記載の露光装置。 16. The exposure apparatus according to claim 15, wherein the third chamber is disposed between the second chamber and the fourth chamber.
1 7 . 前記第 3室と、 該第 3室に隣接する前記第 2室又は前記第 4室との気圧差 に関連する情報を検出する検出装置を有し、 17. A detection device for detecting information relating to a pressure difference between the third chamber and the second chamber or the fourth chamber adjacent to the third chamber,
前記制御機構は、 前記検出装置によって検出された情報に応じて前記投影光学 系の結像特性と前記気体の供給条件との少なくとも一方を調整することを特徴と する請求の範囲 1 6に記載の露光装置。 The control mechanism according to claim 16, wherein the control mechanism adjusts at least one of an imaging characteristic of the projection optical system and a supply condition of the gas in accordance with information detected by the detection device. Exposure equipment.
1 8 . 前記気圧計は、 前記複数の気密室のそれぞれに設けられ、 18. The barometer is provided in each of the plurality of airtight chambers,
前記気体供給機構は、 前記複数の気密室に設けられた前記気圧計の検出結果に 基づいて、 前記気体の供給条件を調整することを特徴とする請求の範囲 1 1に記 The gas supply mechanism according to claim 11, wherein the gas supply mechanism adjusts a supply condition of the gas based on a detection result of the barometer provided in the plurality of airtight chambers.
1 9 . 請求の範囲 1から 9の何れか一項に記載の露光方法を用いてデバイスパ夕1 9. Device device using the exposure method according to any one of claims 1 to 9.
—ンをワークピース上に転写する工程を含むことを特徴とするデバイス製造方法 c
- A device manufacturing method characterized in that it comprises a step of transferring the down on the workpiece c
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002540198A JPWO2002037545A1 (en) | 2000-10-31 | 2001-10-30 | Exposure method and apparatus |
| AU2002210978A AU2002210978A1 (en) | 2000-10-31 | 2001-10-30 | Exposure method and system |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000-333996 | 2000-10-31 | ||
| JP2000333996 | 2000-10-31 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002037545A1 true WO2002037545A1 (en) | 2002-05-10 |
Family
ID=18809992
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2001/009521 WO2002037545A1 (en) | 2000-10-31 | 2001-10-30 | Exposure method and system |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JPWO2002037545A1 (en) |
| AU (1) | AU2002210978A1 (en) |
| WO (1) | WO2002037545A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011127901A (en) * | 2009-12-15 | 2011-06-30 | Canon Inc | Interference measuring apparatus |
| US8873022B2 (en) | 2009-02-12 | 2014-10-28 | Carl Zeiss Smt Gmbh | Projection exposure method, system and objective |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0430412A (en) * | 1990-05-25 | 1992-02-03 | Canon Inc | Projection exposure device |
| EP0742492A1 (en) * | 1995-05-09 | 1996-11-13 | Canon Kabushiki Kaisha | Projection exposure method and apparatus and device manufacturing method |
| JP2000124121A (en) * | 1998-10-16 | 2000-04-28 | Canon Inc | Optical device, exposure device, lens barrel, connecting device, housing and lens barrel end shield |
| JP2000200743A (en) * | 1998-12-28 | 2000-07-18 | Canon Inc | Exposure apparatus, lens barrel, housing, and transportation method thereof |
| EP1020897A1 (en) * | 1997-08-26 | 2000-07-19 | Nikon Corporation | Aligner, exposure method, method of pressure adjustment of projection optical system, and method of assembling aligner |
| EP1030351A1 (en) * | 1997-11-12 | 2000-08-23 | Nikon Corporation | Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses |
| JP2001345248A (en) * | 2000-05-31 | 2001-12-14 | Canon Inc | Exposure apparatus, device manufacturing method, semiconductor manufacturing factory, and maintenance method of exposure apparatus |
-
2001
- 2001-10-30 JP JP2002540198A patent/JPWO2002037545A1/en not_active Withdrawn
- 2001-10-30 WO PCT/JP2001/009521 patent/WO2002037545A1/en active Application Filing
- 2001-10-30 AU AU2002210978A patent/AU2002210978A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0430412A (en) * | 1990-05-25 | 1992-02-03 | Canon Inc | Projection exposure device |
| EP0742492A1 (en) * | 1995-05-09 | 1996-11-13 | Canon Kabushiki Kaisha | Projection exposure method and apparatus and device manufacturing method |
| EP1020897A1 (en) * | 1997-08-26 | 2000-07-19 | Nikon Corporation | Aligner, exposure method, method of pressure adjustment of projection optical system, and method of assembling aligner |
| EP1030351A1 (en) * | 1997-11-12 | 2000-08-23 | Nikon Corporation | Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses |
| JP2000124121A (en) * | 1998-10-16 | 2000-04-28 | Canon Inc | Optical device, exposure device, lens barrel, connecting device, housing and lens barrel end shield |
| JP2000200743A (en) * | 1998-12-28 | 2000-07-18 | Canon Inc | Exposure apparatus, lens barrel, housing, and transportation method thereof |
| JP2001345248A (en) * | 2000-05-31 | 2001-12-14 | Canon Inc | Exposure apparatus, device manufacturing method, semiconductor manufacturing factory, and maintenance method of exposure apparatus |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8873022B2 (en) | 2009-02-12 | 2014-10-28 | Carl Zeiss Smt Gmbh | Projection exposure method, system and objective |
| US9036129B2 (en) | 2009-02-12 | 2015-05-19 | Carl Zeiss Smt Gmbh | Projection exposure method, system and objective |
| US9678440B2 (en) | 2009-02-12 | 2017-06-13 | Carl Zeiss Smt Gmbh | Projection exposure method, system and objective |
| JP2011127901A (en) * | 2009-12-15 | 2011-06-30 | Canon Inc | Interference measuring apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2002210978A1 (en) | 2002-05-15 |
| JPWO2002037545A1 (en) | 2004-03-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4826695B2 (en) | Catadioptric optical system and projection exposure apparatus provided with the optical system | |
| US6757051B2 (en) | Projection optical system, manufacturing method thereof, and projection exposure apparatus | |
| EP1279984A1 (en) | Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method | |
| JP4881853B2 (en) | Optical element unit for exposure process | |
| EP1229573A1 (en) | Exposure method and system | |
| CN102854755A (en) | Exposure apparatus | |
| WO1999027570A1 (en) | Projection exposure system | |
| US6961113B1 (en) | Exposure method and apparatus | |
| EP1341221A1 (en) | Aligner, aligning method and method for fabricating device | |
| JP2013161992A (en) | Deformable reflective optical element, optical system, and exposure device | |
| WO2005064382A1 (en) | Apparatus for holding optical element, barrel, exposure apparatus, and device producing method | |
| WO2002039491A1 (en) | Optical device, exposure device and device manufacturing method | |
| JP4265257B2 (en) | Exposure apparatus, exposure method, and film structure | |
| US20070268470A1 (en) | Support Method and Support Structure of Optical Member, Optical Unit, Exposure Apparatus, and Device Manufacturing Method | |
| JP2002134384A (en) | Exposure method and apparatus, and device manufacturing method | |
| CN100472713C (en) | Exposure apparatus and device manufacturing method | |
| JP2013106017A (en) | Optical element holding device, optical device, and exposure device | |
| JP2003124095A (en) | Projection exposure method and apparatus, and device manufacturing method | |
| CN100470723C (en) | Exposure apparatus and device manufacturing method | |
| EP1168028A2 (en) | Projection optical system, manufacturing method thereof, and projection exposure apparatus | |
| WO2002037545A1 (en) | Exposure method and system | |
| JPWO2002075795A1 (en) | Exposure method and apparatus, and device manufacturing method | |
| JPWO2002049084A1 (en) | Exposure method and apparatus, and device manufacturing method | |
| JP2003163157A (en) | Gas supply method and apparatus, lens barrel, optical apparatus, exposure apparatus and method | |
| JP2007017632A (en) | Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2002540198 Country of ref document: JP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase |