WO2002039038A1 - Gas liquefaction method - Google Patents
Gas liquefaction method Download PDFInfo
- Publication number
- WO2002039038A1 WO2002039038A1 PCT/EP2001/007811 EP0107811W WO0239038A1 WO 2002039038 A1 WO2002039038 A1 WO 2002039038A1 EP 0107811 W EP0107811 W EP 0107811W WO 0239038 A1 WO0239038 A1 WO 0239038A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- temperature
- pressure
- liquefaction
- heat exchanger
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000000203 mixture Substances 0.000 claims abstract description 32
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 6
- 230000007704 transition Effects 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 106
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052756 noble gas Inorganic materials 0.000 claims description 3
- 150000002835 noble gases Chemical class 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000007710 freezing Methods 0.000 description 8
- 230000008014 freezing Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/066—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0685—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0685—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases
- F25J3/069—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases of helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/58—Argon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/42—Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/44—Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
Definitions
- the invention relates to a method for liquefying a gas (primary gas) which is part of a gas mixture which contains at least one second gas (secondary gas), the second gas having a higher liquefaction temperature than the first gas, the gas mixture being cooled in particular by a heat exchanger and the second gas undergoes a phase transition at a separation temperature in which the first gas is gaseous and the second gas is liquid and / or solid, or in which the first gas is gaseous or liquid and the second gas is solid.
- a gas primary gas
- second gas second gas
- Such a gas mixture is the mixture of nitrogen and noble gases (argon, helium, etc.), which is obtained from the air by non-cryogenic separation.
- the pressure is 1 bar Liquefaction temperature of nitrogen at 77 K lower than the freezing temperature of argon at 83 K.
- a refrigeration machine is used in a known method for liquefying a gas which is mixed with various secondary gases.
- Two different temperature levels are required for the liquefaction of the gas which is mixed with a gas, one for the phase change of the secondary gas and one for the actual liquefaction of the primary gas.
- the two different temperature levels are realized either with two different chillers or with a two-stage chiller.
- the gas mixture is passed to the first stage, where the secondary gas liquefies at a certain temperature. With the help of a separator, the liquefied secondary gas is separated from the still gaseous gas. The gas is then passed to the second stage, where it liquefies at a certain temperature.
- the physical properties of the secondary gas are characterized in that the temperature difference between the liquefaction temperature and the freezing temperature of the secondary gas is small, ice formation occurs in the first stage of the liquefaction chamber.
- the wall temperature of the liquefaction chamber must be below the freezing temperature of the secondary gas, or the design of the heat exchanger must be adapted accordingly.
- the adaptation of the design of the heat exchanger means that the surface of the heat exchanger must be designed to be large enough so that the temperature difference can be kept small. In the case of chillers, where the cooling capacity is only available in a small area, the increase in the surface area is structurally complex and uneconomical.
- the object of the invention is to avoid the formation of ice in secondary gases or not to allow them to take place in the liquefaction chamber of the refrigerator.
- This object is achieved according to the invention in that the gas mixture is cooled by the heat exchanger to a temperature which is above the separation temperature, and in that an expansion valve is arranged behind the heat exchanger, through which the gas mixture flows and is cooled to the separation temperature.
- a separation of the gases into different phases is thus achieved in a simple and reliable manner without the formation of ice in the secondary gases or the formation of ice not taking place in the liquefaction chamber of the refrigerator.
- the heat exchanger cools down less than in the prior art and the final cooling takes place only through the expansion valve.
- the first gas is nitrogen and the second gases are noble gases.
- the throttle element is an expansion valve, a capillary tube, an orifice, an expansion machine or a turbine.
- FIG. 1 is a system diagram of a first embodiment
- Fig. 3 is a system diagram of a second embodiment
- Fig. 4 is a diagram with the vapor pressure curve of the second embodiment.
- the gas mixture from the first gas A to be obtained and the secondary gas B is liquefied with the aid of a refrigeration machine and thereby avoids the formation of ice in the secondary gas B.
- the refrigeration capacity of the refrigeration machine is determined by means of constructive measures provided at two different temperature levels.
- An expansion valve is used between the two stages. Pressure and temperature conditions in the stages are defined based on the physical properties of the gases.
- the process has the following features: a) The gas mixture is compressed from pressure P 0 to pressure Pi. An increase in temperature of the temperature T 0 to the temperature T to take place. b) After optional pre-cooling, the compressed gas mixture is passed into the first liquefaction stage and cooled down to the temperature Ti. The gas B is partially liquefied. c) After stage 1, the gas mixture and the liquefied gas B are expanded in an expansion valve from the pressure Pi to the pressure P 2 . The temperature drops from Ti to T 2 and the gas B is completely liquefied. d) The gaseous gas A is separated from the liquefied gas B in a separator. e) In the second stage, the gas A is liquefied at the pressure P 2 and at the temperature T 3 (T 3 ⁇ Tfl A ).
- FIG. 1 The system diagram of the process is shown in FIG. 1.
- the selection of the suitable process parameters is to be made using the vapor pressure curves of the two gases shown in FIG. 2.
- Curves A and B represent the vapor pressure curves of gas A and gas B.
- the curve is intended to represent the course of expansion of the gas mixture A + B.
- a desired final state 5 (T 3 and P 2 ) should be defined in which the gas A is liquefied.
- a temperature T 2 (Tf B ⁇ T 2 ⁇ Tfl B ) should be selected based on the physical properties of gas A and gas B (for example the enthalpy of vaporization of gas B, concentration), at which the complete liquefaction of gas B at the pressure P 2 is guaranteed. This corresponds to point 4 of Fig. 2.
- a critical temperature T crit ⁇ is defined depending on the liquefaction conditions in stage 1, which ensures a sufficient safety distance from Tf B.
- T krtt ⁇ The temperature T krtt ⁇ is used to determine the critical pressure P kr it ⁇ from the curve.
- critical pressure P kr i t2 and the corresponding critical temperature Tkr. 2 can be defined. This point is the intersection of the curves A and ⁇ . (Substance A changes its state from gaseous to liquid.) - The pressure Pi is selected between the two critical pressures.
- Point 1 corresponds to the initial state of the gas mixture from A and B.
- the two-stage liquefaction and the selection of the correct operating parameters for the liquefaction process ensure that ice formation in the liquefaction chamber is avoided. This enables a continuous liquefaction process without the heat transfer processes being impaired by the ice layer and without the process being interrupted by defrosting.
- Gas A and Gas B are separated from each other, liquefied and collected in separate storage containers.
- the gas mixture of gas A and B is liquefied with the aid of a refrigerator and thereby avoids the formation of ice in the liquefaction chamber of the refrigerator.
- the cooling capacity of the chiller is made available at a defined temperature Ti.
- the gas mixture of A and B compressed up to the pressure Pi is cooled to the temperature T ⁇ in the liquefaction chamber of the refrigerator. Both gases are liquefied.
- the liquefied gases are expanded in an expansion valve up to the pressure P 2 .
- the process has the following features: a) The gas mixture is compressed by the pressure P 0 at the pressure Pi, thereby it comes to a change in temperature from To to T. b) The gas mixture is liquefied in the heat exchanger of the refrigerator at the corresponding temperature Ti. c) The liquefied mixture of A and B is expanded in an expansion valve from the pressure Pi to the pressure P 2 . The gas B crystallizes and the liquid A partially evaporates. d) The evaporated portion of gas A is separated from the liquid gas and the ice in a separator. e) The cold vaporized gas A is used in an additional heat exchanger 2 for precooling the main stream of the mixture of A and B. Here, the main flow of A and B from the initial temperature T on until cooled to the temperature T gw.
- the property of the gases is used that the condensing temperature of the gases increases with increasing pressure, but the freezing temperature remains almost constant.
- Curves A and B are the corresponding vapor pressure curves for gases A and B.
- the critical pressure P kr .t2 is defined at which the liquefaction temperature of gas A is equal to the freezing temperature Tf B.
- the condensing pressure Pi is determined as follows.
- the condensing temperature Ti results from the point of intersection of the condensing pressure Pi with the curve A.
- the pressure in the operating points 2 and 3 is determined by the pressure Pi determined in point 4. This pressure corresponds to the final compression pressure.
- the temperature in point 3 T gw is the temperature after pre-cooling in the counterflow heat exchanger, and the temperature in point 2 T an depends on the change in state between points 1 and 2.
- Point 1 corresponds to the initial state of the gas mixture from A and B.
- the selection of the correct operating parameters for the liquefaction process ensures that ice formation in the liquefaction chamber is avoided. This enables a continuous liquefaction process without the heat transfer processes being impaired by the ice layers and without the process being interrupted by defrosting.
- the secondary gas can be an impurity gas and the throttle element can be an expansion valve, a capillary tube, an orifice, an expansion machine or a turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
The invention relates to a method for liquefying a gas (primary gas) which is part of a gas mixture that contains at least one second gas (secondary gas). Said second gas has a higher liquefaction temperature than the first gas. The gas mixture is especially cooled down by means of a heat exchanger. The second gas is subjected to phase transition at a separation temperature at which the first gas is gaseous and the second gas is liquid and/or solid, or at which the first gas is gaseous or liquid and the second gas is solid. The heat exchanger cools down the gas mixture to a temperature that lies above the separation temperature. Downstream of the heat exchanger a throttle element is disposed through which the gas mixture flows and is cooled down to the separation temperature.
Description
Verfahren zum Verflüssigen eines GasesProcess for liquefying a gas
Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Gases (Primärgas), das Bestandteil eines Gasgemisches ist, das mindestens ein zweites Gas (Sekundärgas) enthält, wobei das zweite Gas eine höhere Verflüssigungstemperatur besitzt als das erste Gas, das Gasgemisch insbesondere durch einen Wärmeaustauscher abgekühlt wird und das zweite Gas bei einer Trenntemperatur eine Phasenumwandlung erfährt, bei der das erste Gas gasförmig und das zweite Gas flüssig und/oder fest ist, oder bei der das erste Gas gasförmig oder flüssig und das zweite Gas fest ist.The invention relates to a method for liquefying a gas (primary gas) which is part of a gas mixture which contains at least one second gas (secondary gas), the second gas having a higher liquefaction temperature than the first gas, the gas mixture being cooled in particular by a heat exchanger and the second gas undergoes a phase transition at a separation temperature in which the first gas is gaseous and the second gas is liquid and / or solid, or in which the first gas is gaseous or liquid and the second gas is solid.
Während des Verflüssigungsvorganges eines Gasgemisches, das verschiedene Gase enthält , kommt es vor, dass die Gefriertemperatur eines der Sekundärgase höher liegt als die Verflüssigungstemperatur des Primärgases. Dies führt während der Verflüssigung des Gasgemisches zur Eisbildung des Sekundärgases in der Verflüssigungskammer der Kältemaschine. Als Folge wird der Verflüssigungsprozess stark beeinträchtigt. Um die Eisschicht in der Verflüssigungskammer zu entfernen, wird entweder eine eisschichtzerstörende Einrichtung oder eine spezielle Abtauperiode vorgesehen.During the liquefaction process of a gas mixture that contains various gases, it happens that the freezing temperature of one of the secondary gases is higher than the liquefaction temperature of the primary gas. This leads to ice formation of the secondary gas in the liquefaction chamber of the refrigerator during the liquefaction of the gas mixture. As a result, the liquefaction process is severely affected. In order to remove the ice layer in the liquefaction chamber, either an ice layer-destroying device or a special defrosting period is provided.
Ein Beispiel für ein solches Gasgemisch ist das Gemisch aus Stickstoff u-nd Edelgasen (Argon, Helium usw.), das durch nicht kryogene Separation aus der Luft gewonnen wird. In diesem Gemisch liegt bei dem Druck 1 bar die
Verflüssigungstemperatur des Stickstoffs mit 77 K niedriger als die Gefriertemperatur des Argons mit 83 K.An example of such a gas mixture is the mixture of nitrogen and noble gases (argon, helium, etc.), which is obtained from the air by non-cryogenic separation. In this mixture, the pressure is 1 bar Liquefaction temperature of nitrogen at 77 K lower than the freezing temperature of argon at 83 K.
Bei einem bekannten Verfahren zur Verflüssigung eines Gases, das mit verschiedenen Sekundärgasen gemischt ist, kommt eine Kältemaschine zum Einsatz. Hierbei sind für die Verflüssigung des Gases, das mit einem Gas gemischt ist, zwei verschiedene Temperaturniveaus notwendig, eines für die Phasenumwandlung des Sekundärgases und eines für die eigentliche Verflüssigung des Primärgases . Die zwei verschiedenen Temperaturniveaus werden entweder durch zwei verschiedene Kältemaschinen oder mit einer zweistufigen Kältemaschine realisiert. Das Gasgemisch wird in die erste Stufe geleitet, wo das Sekundärgas bei einer bestimmten Temperatur verflüssigt. Mit Hilfe eines Abscheiders wird das verflüssigte Sekundärgas von dem noch gasförmigen Gas getrennt. Danach wird das Gas in die zweite Stufe geleitet, in der es bei einer bestimmten Temperatur verflüssigt.A refrigeration machine is used in a known method for liquefying a gas which is mixed with various secondary gases. Two different temperature levels are required for the liquefaction of the gas which is mixed with a gas, one for the phase change of the secondary gas and one for the actual liquefaction of the primary gas. The two different temperature levels are realized either with two different chillers or with a two-stage chiller. The gas mixture is passed to the first stage, where the secondary gas liquefies at a certain temperature. With the help of a separator, the liquefied secondary gas is separated from the still gaseous gas. The gas is then passed to the second stage, where it liquefies at a certain temperature.
Dieser Prozess hat folgende Nachteile:This process has the following disadvantages:
1. Falls die physikalischen Eigenschaften des Sekundärgases dadurch gekennzeichnet sind, dass die Temperaturdifferenz zwischen der Verflüssigungstemperatur und der Gefriertemperatur des Sekundärgases klein ist, kommt es in der ersten Stufe der Verflüssigungskammer zur Eisbildung. Um die nahezu vollständige Verflüssigung des Sekundärgases zu gewährleisten, muss entweder die Wandtemperatur der Verflüssigungskammer unterhalb der Gefriertemperatur des Sekundärgases liegen, oder die Konstruktion des Wärmetauschers entsprechend angepasst werden. Die Anpassung der Konstruktion des Wärmetauschers bedeutet, dass die Oberfläche des Wärmetauschers entsprechend groß gestaltet sein muss, damit die Temperaturdifferenz klein gehalten werden kann. Bei den Kältemaschinen, bei denen die Kälteleistung nur an einer kleinen Fläche verfügbar ist, wird die Vergrößerung der Oberfläche konstruktiv aufwendig und unwirtschaftlich.1. If the physical properties of the secondary gas are characterized in that the temperature difference between the liquefaction temperature and the freezing temperature of the secondary gas is small, ice formation occurs in the first stage of the liquefaction chamber. To ensure almost complete liquefaction of the secondary gas, either the wall temperature of the liquefaction chamber must be below the freezing temperature of the secondary gas, or the design of the heat exchanger must be adapted accordingly. The adaptation of the design of the heat exchanger means that the surface of the heat exchanger must be designed to be large enough so that the temperature difference can be kept small. In the case of chillers, where the cooling capacity is only available in a small area, the increase in the surface area is structurally complex and uneconomical.
2. Trotz der obengenannten Maßnahmen ist die vollständige Verflüssigung des Sekundärgases nicht möglich, so dass der noch gasförmige Anteil dieses
Gases in der zweiten Stufe kristallisiert. Diese Eiskristalle wirken als Dämmschicht und verschlechtern den Wärmeübergang in der zweiten Stufe.2. Despite the above measures, the complete liquefaction of the secondary gas is not possible, so that the gaseous portion of this Gases crystallized in the second stage. These ice crystals act as an insulation layer and worsen the heat transfer in the second stage.
Aufgabe der Erfindung ist es, die Eisbildung von Sekundärgasen zu vermeiden oder nicht in der Verflüssigungskammer der Kältemaschine stattfinden zu lassen.The object of the invention is to avoid the formation of ice in secondary gases or not to allow them to take place in the liquefaction chamber of the refrigerator.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass durch den Wärmetauscher das Gasgemisch auf eine Temperatur abgekühlt wird, die oberhalb der Trenntemperatur liegt, und dass hinter dem Wärmeaustauscher ein Expansionsventil angeordnet ist, durch dass das Gasgemisch strömt und auf die Trenntemperatur abgekühlt wird.This object is achieved according to the invention in that the gas mixture is cooled by the heat exchanger to a temperature which is above the separation temperature, and in that an expansion valve is arranged behind the heat exchanger, through which the gas mixture flows and is cooled to the separation temperature.
Somit wird auf einfache und sichere Weise eine Trennung der Gase in verschiedene Phasen erreicht, ohne dass es zu einer Eisbildung bei den Sekundärgasen kommt bzw. eine Eisbildung nicht in der Verflüssigungskammer der Kältemaschine stattfindet. Im Wäremaustauscher wird weniger stark abgekühlt als im Stand der Technik und die endgültige Abkühlung erfolgt erst durch das Expansionsventil.A separation of the gases into different phases is thus achieved in a simple and reliable manner without the formation of ice in the secondary gases or the formation of ice not taking place in the liquefaction chamber of the refrigerator. The heat exchanger cools down less than in the prior art and the final cooling takes place only through the expansion valve.
Besonders vorteilhaft ist es, wenn das erste Gas Stickstoff und die zweiten Gase Edelgase sind. Vorzugsweise wird vorgeschlagen, dass das Drosselorgan ein Expansionsventil, ein Kapillarrohr, eine Blende, eine Entspannungsmaschine oder eine Turbine ist.It is particularly advantageous if the first gas is nitrogen and the second gases are noble gases. It is preferably proposed that the throttle element is an expansion valve, a capillary tube, an orifice, an expansion machine or a turbine.
Zwei Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigenTwo embodiments of the invention are shown in the drawings and are described in more detail below. Show it
Fig. 1 ein Anlagenschema einer ersten Ausführung,1 is a system diagram of a first embodiment,
Fig. 2 ein Diagramm mit den Dampfdruckkurven der ersten Ausführung,
Fig. 3 ein Anlagenschema einer zweiten Ausführung und2 shows a diagram with the vapor pressure curves of the first embodiment, Fig. 3 is a system diagram of a second embodiment and
Fig. 4 ein Diagramm mit der Dampfdruckkurve der zweiten Ausführung.Fig. 4 is a diagram with the vapor pressure curve of the second embodiment.
In dem in den Fig. 1 und 2 dargestellten ersten Verfahren wird das Gasgemisch aus dem zu gewinnenden ersten Gas A und dem Sekundärgas B mit Hilfe einer Kältemaschine verflüssigt und vermeidet dabei die Eisbildung des Sekundärgases B. Im Rahmen dieses Prozesses wird die Kälteleistung der Kältemaschine mittels konstruktiver Maßnahmen bei zwei verschiedenen Temperaturniveaus zur Verfügung gestellt. Zwischen den beiden Stufen wird ein Entspannungsventil eingesetzt. Druck- und Temperaturverhältnisse in den Stufen werden aufgrund der physikalischen Eigenschaften der Gase definiert.In the first method shown in FIGS. 1 and 2, the gas mixture from the first gas A to be obtained and the secondary gas B is liquefied with the aid of a refrigeration machine and thereby avoids the formation of ice in the secondary gas B. As part of this process, the refrigeration capacity of the refrigeration machine is determined by means of constructive measures provided at two different temperature levels. An expansion valve is used between the two stages. Pressure and temperature conditions in the stages are defined based on the physical properties of the gases.
Der Prozess hat folgende Merkmale: a) Das Gasgemisch wird vom Druck P0 auf den Druck Pi komprimiert. Dabei findet ein Temperaturanstieg von der Temperatur T0 auf die Temperatur Tan statt. b) Das komprimierte Gasgemisch wird nach optionaler Vorkühlung in die erste Verflüssigungsstufe geleitet und bis zur Temperatur T-i abgekühlt. Dabei wird das Gas B teilweise verflüssigt. c) Nach der Stufe 1 werden das Gasgemisch und das verflüssigte Gas B in einem Expansionsventil von dem Druck Pi zu dem Druck P2 entspannt. Dabei sinkt die Temperatur von Ti auf T2, und das Gas B wird vollständig verflüssigt. d) In einem Abscheider wird das gasförmige Gas A vom verflüssigten Gas B getrennt. e) In der zweiten Stufe wird das Gas A bei dem Druck P2 und bei der Temperatur T3 (T3<TflA) verflüssigt.The process has the following features: a) The gas mixture is compressed from pressure P 0 to pressure Pi. An increase in temperature of the temperature T 0 to the temperature T to take place. b) After optional pre-cooling, the compressed gas mixture is passed into the first liquefaction stage and cooled down to the temperature Ti. The gas B is partially liquefied. c) After stage 1, the gas mixture and the liquefied gas B are expanded in an expansion valve from the pressure Pi to the pressure P 2 . The temperature drops from Ti to T 2 and the gas B is completely liquefied. d) The gaseous gas A is separated from the liquefied gas B in a separator. e) In the second stage, the gas A is liquefied at the pressure P 2 and at the temperature T 3 (T 3 <Tfl A ).
Das Anlagenschema des Prozesses ist in der Fig. 1 dargestellt.
Die Auswahl der geeigneten Prozessparameter soll mit Hilfe der in der Fig. 2 dargestellten Dampfdruckkurven der beiden Gase getroffen werden.The system diagram of the process is shown in FIG. 1. The selection of the suitable process parameters is to be made using the vapor pressure curves of the two gases shown in FIG. 2.
Die Kurven A und B stellen die Dampfdruckkurven von Gas A und Gas B dar. Die Kurve soll den Expansionsverlauf des Gasgemisches A + B darstellen.Curves A and B represent the vapor pressure curves of gas A and gas B. The curve is intended to represent the course of expansion of the gas mixture A + B.
Bei der Auswahl von Prozessparametern (Arbeitsdrucken und Temperaturen) soll folgendes beachtet werden: a) Es soll zuerst ein gewünschter Endzustand 5 (T3 und P2) definiert werden, in dem das Gas A verflüssigt ist. b) Es soll aufgrund der physikalischen Eigenschaften des Gases A und des Gases B (zum Beispiel Verdampfungsenthalpie des Gases B, Konzentration) eine Temperatur T2 (TfB < T2 < TflB) ausgewählt werden, bei der die vollständige Verflüssigung des Gases B bei dem Druck P2 gewährleistet ist. Das entspricht dem Punkt 4 der Fig. 2. c) Um den Betriebspunkt 3 (P2, T-i) zu ermitteln, muss folgendes beachtet werden:When selecting process parameters (working pressures and temperatures), the following should be considered: a) First, a desired final state 5 (T 3 and P 2 ) should be defined in which the gas A is liquefied. b) A temperature T 2 (Tf B <T 2 <Tfl B ) should be selected based on the physical properties of gas A and gas B (for example the enthalpy of vaporization of gas B, concentration), at which the complete liquefaction of gas B at the pressure P 2 is guaranteed. This corresponds to point 4 of Fig. 2. c) To determine the operating point 3 (P 2 , Ti), the following must be observed:
- Für die Temperatur T2 wird die Kurve (Expansionskurve des Gemisches als Funktion von Druck und Temperatur) betrachtet.- The curve (expansion curve of the mixture as a function of pressure and temperature) is considered for the temperature T 2 .
- Falls die Differenz zwischen Verflussigungstemperatur Tflß und Gefriertemperatur TfB des Gases B bei dem Druck P2 zu klein ist, wird in Abhängigkeit der Verflüssigungsbedingungen in der Stufe 1 eine kritische Temperatur Tkritι festgelegt, die einen ausreichenden Sicherheitsabstand zu TfB gewährleistet.- If the difference between the condensation temperature Tfl ß and the freezing temperature Tf B of the gas B at the pressure P 2 is too small, a critical temperature T crit ι is defined depending on the liquefaction conditions in stage 1, which ensures a sufficient safety distance from Tf B.
- Mit Hilfe der Temperatur Tkrttι wird aus der Kurve der kritische Druck Pkritι ermittelt.- The temperature T krtt ι is used to determine the critical pressure P kr itι from the curve.
- Um die Verflüssigung des Gases A in der Stufe 1 zu vermeiden, müssen kritischer Druck Pkrit2 und die entsprechende kritische Temperatur Tkr. 2 definiert werden. Dieser Punkt ist der Schnittpunkt der Kurven A und <α. (Stoff A ändert seinen Zustand von gasförmig auf flüssig.)
- Der Druck Pi wird zwischen den beiden kritischen Drucken ausgewählt.- In order to avoid the liquefaction of gas A in stage 1, critical pressure P kr i t2 and the corresponding critical temperature Tkr. 2 can be defined. This point is the intersection of the curves A and <α. (Substance A changes its state from gaseous to liquid.) - The pressure Pi is selected between the two critical pressures.
Pkrit. < P1 < Pkrit2Pcrit. <P1 <Pkrit2
- Die Temperatur T-i ist die aus der Expansionskurve α resultierende Temperatur bei dem Druck Pi (Punkt 3 in Fig. 2). d) Der Druck im Betriebspunkt 2 wird durch den im Punkt 3 ermittelten Druck Pi bestimmt. Dieser Druck entspricht dem Verdichtungsenddruck. Die Temperatur im Punkt 2 ist von der Zustandsänderung zwischen den Punkten 1 und 2 während der Kompression abhängig. e) Punkt 1 entspricht dem Ausgangszustand des Gasgemisches aus A und B.- The temperature T-i is the temperature resulting from the expansion curve α at the pressure Pi (point 3 in Fig. 2). d) The pressure at operating point 2 is determined by the pressure Pi determined in point 3. This pressure corresponds to the final compression pressure. The temperature in point 2 depends on the change in state between points 1 and 2 during the compression. e) Point 1 corresponds to the initial state of the gas mixture from A and B.
Vorteile des Prozesses:Advantages of the process:
1. Durch die zweistufige Verflüssigung und durch die Auswahl der richtigen Betriebsparameter für den Verflüssigungsvorgang wird gewährleistet, dass eine Eisbildung in der Verflüssigungskammer vermieden wird. Dies ermöglicht einen kontinuierlichen Verflüssigungsprozess, ohne dass dabei die Wärmeübertragungsvorgänge durch die Eisschicht verschlechtert werden und ohne dass der Prozess durch Abtauung unterbrochen wird.1. The two-stage liquefaction and the selection of the correct operating parameters for the liquefaction process ensure that ice formation in the liquefaction chamber is avoided. This enables a continuous liquefaction process without the heat transfer processes being impaired by the ice layer and without the process being interrupted by defrosting.
2. Aufgrund dieses zweistufigen Verfahren kann auf größere Wärmeübertragungsflächen (großer Wärmetauscher) verzichtet werden, die sonst zur Vermeidung der Eisbildung notwendig wären.2. Due to this two-stage process, there is no need for larger heat transfer surfaces (large heat exchangers) that would otherwise be necessary to avoid ice formation.
3. Gas A und Gas B werden voneinander getrennt, verflüssigt und in separaten Aufbewahrungsbehältern gesammelt.3. Gas A and Gas B are separated from each other, liquefied and collected in separate storage containers.
In dem in den Fig. 3 und 4 dargestellten zweiten Verfahren wird das Gasgemisch aus Gas A und B mit Hilfe einer Kältemaschine verflüssigt und vermeidet dabei die Eisbildung in der Verflüssigungskammer der Kältemaschine. In diesem Prozess wird die Kälteleistung der Kältemaschine bei einer definierten Temperatur Ti zur Verfügung gestellt. Das bis zu dem Druck Pi verdichtete Gasgemisch aus A und B wird in der Verflüssigungskammer der Kältemaschine bis zur Temperatur T^ abgekühlt. Dabei werden beide Gase verflüssigt. Die
verflüssigten Gase werden in einem Expansionsventil bis zu dem Druck P2 entspannt.In the second method shown in FIGS. 3 and 4, the gas mixture of gas A and B is liquefied with the aid of a refrigerator and thereby avoids the formation of ice in the liquefaction chamber of the refrigerator. In this process, the cooling capacity of the chiller is made available at a defined temperature Ti. The gas mixture of A and B compressed up to the pressure Pi is cooled to the temperature T ^ in the liquefaction chamber of the refrigerator. Both gases are liquefied. The liquefied gases are expanded in an expansion valve up to the pressure P 2 .
Der Prozess hat folgende Merkmale: a) Das Gasgemisch wird von dem Druck P0 zu dem Druck Pi komprimiert, dabei kommt es zu einer Temperaturänderung von To zu Tan. b) Das Gasgemisch wird im Wärmetauscher der Kältemaschine bei der entsprechenden Temperatur T-i verflüssigt. c) Das verflüssigte Gemisch aus A und B wird in einem Expansionsventil von dem Druck Pi zu dem Druck P2 entspannt. Dabei kristallisiert das Gas B und die Flüssigkeit A verdampft zum Teil. d) Der verdampfte Anteil von Gas A wird in einem Abscheider vom flüssigen Gas und dem Eis getrennt. e) Das kalte verdampfte Gas A wird in einem zusätzlichen Wärmetauscher 2 zum Vorkühleri des Hauptstroms des Gemisches aus A und B eingesetzt. Dabei wird der Hauptstrom aus A und B von der Anfangstemperatur Tan bis zur Temperatur Tgw abgekühlt.The process has the following features: a) The gas mixture is compressed by the pressure P 0 at the pressure Pi, thereby it comes to a change in temperature from To to T. b) The gas mixture is liquefied in the heat exchanger of the refrigerator at the corresponding temperature Ti. c) The liquefied mixture of A and B is expanded in an expansion valve from the pressure Pi to the pressure P 2 . The gas B crystallizes and the liquid A partially evaporates. d) The evaporated portion of gas A is separated from the liquid gas and the ice in a separator. e) The cold vaporized gas A is used in an additional heat exchanger 2 for precooling the main stream of the mixture of A and B. Here, the main flow of A and B from the initial temperature T on until cooled to the temperature T gw.
Der Prozessablauf ist in Fig. 3 dargestellt.The process flow is shown in Fig. 3.
In diesem Prozess wird die Eigenschaft der Gase genutzt, dass die Verflüssigungstemperatur der Gase mit steigendem Druck größer wird, aber die Gefriertemperatur nahezu konstant bleibt.In this process, the property of the gases is used that the condensing temperature of the gases increases with increasing pressure, but the freezing temperature remains almost constant.
Die Zustandsänderungen des Verflüssigungsprozesses sind in Fig. 4 dargestellt. Die Kurven A und B sind die entsprechenden Dampfdruckkurven der Gase A und B. Bei der Auswahl der Prozessparameter (Arbeitsdrücke und Temperaturen) soll folgendes beachtet werden: a) Es soll zuerst ein gewünschter Endzustand (Tf|A und P2) definiert werden, in dem Gas A verflüssigt ist. b) Um Betriebspunkt 4 (P1, T1) zu ermitteln, muss folgendes beachtet werden:
- -Falls die Differenz zwischen Verflussigungstemperatur TflB und Gefriertemperatur TfB des Gases B bei dem Druck P2 zu klein ist, muss in Abhängigkeit der Verflüssigungsbedingungen in der Verflüssigungskammer eine kritische Temperatur Tkπti festgelegt werden, um einen ausreichenden Sicherheitsabstand von TfB zu gewährleisten.The changes in state of the liquefaction process are shown in FIG. 4. Curves A and B are the corresponding vapor pressure curves for gases A and B. When selecting the process parameters (working pressures and temperatures), the following should be observed: a) First, a desired final state (T f | A and P 2 ) should be defined, in which gas A is liquefied. b) To determine operating point 4 (P1, T1), the following must be observed: - If the difference between the condensing temperature Tfl B and the freezing temperature Tf B of the gas B at the pressure P 2 is too small, a critical temperature T k π t i must be determined depending on the condensing conditions in the condensing chamber in order to ensure a sufficient safety margin of Tf B to ensure.
- Es wird der kritische Druck Pkr.t2 definiert, bei dem die Verflüssigungstemperatur des Gases A gleich der Gefriertemperatur TfB ist.- The critical pressure P kr .t2 is defined at which the liquefaction temperature of gas A is equal to the freezing temperature Tf B.
- Der Verflüssigungsdruck Pi wird wie folgt bestimmt.- The condensing pressure Pi is determined as follows.
P rftt < P^ Pkrit2 < PiP rftt <P ^ Pkrit2 <Pi
- Die Verflussigungstemperatur Ti resultiert aus dem Schnittpunkt des Verflüssigungsdrucks Pi mit der Kurve A. c) Der Druck in den Betriebspunkten 2 und 3 wird durch den im Punkt 4 ermittelten Druck Pi bestimmt. Dieser Druck entspricht dem Verdichtungsenddruck. Die Temperatur im Punkt 3 Tgw ist die Temperatur nach der Vorkühlung im Gegenstromwärmetauscher, und die Temperatur im Punkt 2 Tan ist von der Zustandsänderung zwischen den Punkten 1 und 2 abhängig. d) Punkt 1 entspricht dem Ausgangszustand des Gasgemisches aus A und B.- The condensing temperature Ti results from the point of intersection of the condensing pressure Pi with the curve A. c) The pressure in the operating points 2 and 3 is determined by the pressure Pi determined in point 4. This pressure corresponds to the final compression pressure. The temperature in point 3 T gw is the temperature after pre-cooling in the counterflow heat exchanger, and the temperature in point 2 T an depends on the change in state between points 1 and 2. d) Point 1 corresponds to the initial state of the gas mixture from A and B.
Die Vorteile des erfindungsgemäßen Verfahrens sind:The advantages of the method according to the invention are:
1. Der Verflüssigungsprozeß ist mit nur einer Temperaturstufe möglich.1. The liquefaction process is possible with only one temperature level.
2. Trotz des einstufigen Verfahrens kann auf größere Wärmeübertragungsfiächen (großer Wärmetauscher) verzichtet werden, die sonst zur Vermeidung der Eisbildung notwendig wären.2. Despite the one-step process, there is no need for larger heat transfer surfaces (large heat exchangers) that would otherwise be necessary to avoid ice formation.
3. Durch die Auswahl der richtigen Betriebsparameter für den Verflüssigungsvorgang wird gewährleistet, dass eine Eisbildung in der Verflüssigungskammer vermieden wird. Dies ermöglicht einen kontinuierlichen Verflüssigungsprozess, ohne dass dabei die Wärmeübertra ungsvorgänge durch die Eisschichten verschlechtert werden und ohne dass der Prozess durch Abtauung unterbrochen wird.
Das Sekundärgas kann ein Verunreinigungsgas und das Drosselorgan ein Expansionsventil, ein Kapillarrohr, eine Blende, eine Entspannungsmaschine oder eine Turbine sein.
3. The selection of the correct operating parameters for the liquefaction process ensures that ice formation in the liquefaction chamber is avoided. This enables a continuous liquefaction process without the heat transfer processes being impaired by the ice layers and without the process being interrupted by defrosting. The secondary gas can be an impurity gas and the throttle element can be an expansion valve, a capillary tube, an orifice, an expansion machine or a turbine.
Claims
1. Verfahren zum Verflüssigen eines Gases (A), das Bestandteil eines Gasgemisches ist, das mindestens ein zweites Gas (B) enthält, wobei das zweite Gas eine höhere Verflüssigungstemperatur besitzt als das erste Gas, das Gasgemisch insbesondere durch einen Wärmeaustauscher abgekühlt wird und das zweite Gas bei einer Trenntemperatur eine Phasenumwaήdlung erfährt, bei der das erste Gas gasförmig und das zweite Gas flüssig und/oder fest ist, oder bei der das erste Gas gasförmig oder flüssig und das zweite Gas fest ist, dadurch gekennzeichnet, dass durch den Wärmetauscher das Gasgemisch auf eine Temperatur abgekühlt wird, die oberhalb der Trenntemperatur liegt, und dass hinter dem Wärmeaustauscher ein Drosselorgan angeordnet ist, durch dass das Gasgemisch strömt und auf die Trenntemperatur abgekühlt wird.1. A process for liquefying a gas (A) which is part of a gas mixture which contains at least one second gas (B), the second gas having a higher liquefaction temperature than the first gas, the gas mixture being cooled in particular by a heat exchanger and that second gas undergoes a phase transition at a separation temperature, in which the first gas is gaseous and the second gas is liquid and / or solid, or in which the first gas is gaseous or liquid and the second gas is solid, characterized in that the heat exchanger Gas mixture is cooled to a temperature which is above the separation temperature, and that a throttle element is arranged behind the heat exchanger, through which the gas mixture flows and is cooled to the separation temperature.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das erste Gas (A) Stickstoff und die zweiten Gase (B) Edelgase sind.2. The method according to claim 1, characterized in that the first gas (A) nitrogen and the second gases (B) are noble gases.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Drosselorgan ein Expansionsventil, ein Kapillarrohr, eine Blende, eine Entspannungsmaschine oder eine Turbine ist. 3. The method according to claim 1, characterized in that the throttle member is an expansion valve, a capillary tube, an orifice, an expansion machine or a turbine.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2001272528A AU2001272528A1 (en) | 2000-11-08 | 2001-07-07 | Gas liquefaction method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10055321.4 | 2000-11-08 | ||
| DE2000155321 DE10055321A1 (en) | 2000-11-08 | 2000-11-08 | Method of condensing gases involves condensing gas mixture to allow separation of lower condensation temperature gas |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002039038A1 true WO2002039038A1 (en) | 2002-05-16 |
Family
ID=7662552
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2001/007811 WO2002039038A1 (en) | 2000-11-08 | 2001-07-07 | Gas liquefaction method |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU2001272528A1 (en) |
| DE (1) | DE10055321A1 (en) |
| WO (1) | WO2002039038A1 (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8312738B2 (en) | 2007-01-19 | 2012-11-20 | Exxonmobil Upstream Research Company | Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery |
| US9149761B2 (en) | 2010-01-22 | 2015-10-06 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with CO2 capture and sequestration |
| US9423174B2 (en) | 2009-04-20 | 2016-08-23 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream, and method of removing acid gases |
| US9562719B2 (en) | 2013-12-06 | 2017-02-07 | Exxonmobil Upstream Research Company | Method of removing solids by modifying a liquid level in a distillation tower |
| US9752827B2 (en) | 2013-12-06 | 2017-09-05 | Exxonmobil Upstream Research Company | Method and system of maintaining a liquid level in a distillation tower |
| US9803918B2 (en) | 2013-12-06 | 2017-10-31 | Exxonmobil Upstream Research Company | Method and system of dehydrating a feed stream processed in a distillation tower |
| US9823016B2 (en) | 2013-12-06 | 2017-11-21 | Exxonmobil Upstream Research Company | Method and system of modifying a liquid level during start-up operations |
| US9829247B2 (en) | 2013-12-06 | 2017-11-28 | Exxonmobil Upstream Reseach Company | Method and device for separating a feed stream using radiation detectors |
| US9829246B2 (en) | 2010-07-30 | 2017-11-28 | Exxonmobil Upstream Research Company | Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices |
| US9869511B2 (en) | 2013-12-06 | 2018-01-16 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a spray assembly |
| US9874395B2 (en) | 2013-12-06 | 2018-01-23 | Exxonmobil Upstream Research Company | Method and system for preventing accumulation of solids in a distillation tower |
| US9874396B2 (en) | 2013-12-06 | 2018-01-23 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids |
| US9964352B2 (en) | 2012-03-21 | 2018-05-08 | Exxonmobil Upstream Research Company | Separating carbon dioxide and ethane from a mixed stream |
| US10139158B2 (en) | 2013-12-06 | 2018-11-27 | Exxonmobil Upstream Research Company | Method and system for separating a feed stream with a feed stream distribution mechanism |
| US10222121B2 (en) | 2009-09-09 | 2019-03-05 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream |
| US10323495B2 (en) | 2016-03-30 | 2019-06-18 | Exxonmobil Upstream Research Company | Self-sourced reservoir fluid for enhanced oil recovery |
| US10365037B2 (en) | 2015-09-18 | 2019-07-30 | Exxonmobil Upstream Research Company | Heating component to reduce solidification in a cryogenic distillation system |
| US10408534B2 (en) | 2010-02-03 | 2019-09-10 | Exxonmobil Upstream Research Company | Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams |
| US10495379B2 (en) | 2015-02-27 | 2019-12-03 | Exxonmobil Upstream Research Company | Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process |
| US11255603B2 (en) | 2015-09-24 | 2022-02-22 | Exxonmobil Upstream Research Company | Treatment plant for hydrocarbon gas having variable contaminant levels |
| US11306267B2 (en) | 2018-06-29 | 2022-04-19 | Exxonmobil Upstream Research Company | Hybrid tray for introducing a low CO2 feed stream into a distillation tower |
| US11378332B2 (en) | 2018-06-29 | 2022-07-05 | Exxonmobil Upstream Research Company | Mixing and heat integration of melt tray liquids in a cryogenic distillation tower |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2753278C1 (en) * | 2020-10-09 | 2021-08-12 | Общество с ограниченной ответственностью «Газпромнефть Научно-Технический Центр» | Method for preparation of associated petroleum gas, installation and system for preparation of associated petroleum gas |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3398544A (en) * | 1966-07-27 | 1968-08-27 | Continental Oil Co | Solidification of acidic components in natural gas |
| US3724225A (en) * | 1970-02-25 | 1973-04-03 | Exxon Research Engineering Co | Separation of carbon dioxide from a natural gas stream |
| US4659351A (en) * | 1986-01-29 | 1987-04-21 | Air Products And Chemicals, Inc. | Combined process to produce liquid helium, liquid nitrogen, and gaseous nitrogen from a crude helium feed |
| EP0469781A2 (en) * | 1990-07-31 | 1992-02-05 | The Boc Group, Inc. | Separation of carbon dioxide and nitrogen from combustion exhaust gas with nitrogen and argon by-product recovery |
| US5339641A (en) * | 1993-07-07 | 1994-08-23 | Praxair Technology, Inc. | Cryogenic liquid nitrogen production system |
| EP0856713A2 (en) * | 1997-01-31 | 1998-08-05 | The BOC Group plc | Production of cryogenic liquid mixtures |
| US5819555A (en) * | 1995-09-08 | 1998-10-13 | Engdahl; Gerald | Removal of carbon dioxide from a feed stream by carbon dioxide solids separation |
| WO1999035455A1 (en) * | 1998-01-08 | 1999-07-15 | Satish Reddy | Autorefrigeration separation of carbon dioxide |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3813501A1 (en) * | 1988-04-22 | 1989-11-09 | Licentia Gmbh | COUNTERFLOW HEAT EXCHANGER |
| US5305611A (en) * | 1992-10-23 | 1994-04-26 | Praxair Technology, Inc. | Cryogenic rectification system with thermally integrated argon column |
-
2000
- 2000-11-08 DE DE2000155321 patent/DE10055321A1/en not_active Withdrawn
-
2001
- 2001-07-07 AU AU2001272528A patent/AU2001272528A1/en not_active Abandoned
- 2001-07-07 WO PCT/EP2001/007811 patent/WO2002039038A1/en active Application Filing
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3398544A (en) * | 1966-07-27 | 1968-08-27 | Continental Oil Co | Solidification of acidic components in natural gas |
| US3724225A (en) * | 1970-02-25 | 1973-04-03 | Exxon Research Engineering Co | Separation of carbon dioxide from a natural gas stream |
| US4659351A (en) * | 1986-01-29 | 1987-04-21 | Air Products And Chemicals, Inc. | Combined process to produce liquid helium, liquid nitrogen, and gaseous nitrogen from a crude helium feed |
| EP0469781A2 (en) * | 1990-07-31 | 1992-02-05 | The Boc Group, Inc. | Separation of carbon dioxide and nitrogen from combustion exhaust gas with nitrogen and argon by-product recovery |
| US5339641A (en) * | 1993-07-07 | 1994-08-23 | Praxair Technology, Inc. | Cryogenic liquid nitrogen production system |
| US5819555A (en) * | 1995-09-08 | 1998-10-13 | Engdahl; Gerald | Removal of carbon dioxide from a feed stream by carbon dioxide solids separation |
| EP0856713A2 (en) * | 1997-01-31 | 1998-08-05 | The BOC Group plc | Production of cryogenic liquid mixtures |
| WO1999035455A1 (en) * | 1998-01-08 | 1999-07-15 | Satish Reddy | Autorefrigeration separation of carbon dioxide |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8312738B2 (en) | 2007-01-19 | 2012-11-20 | Exxonmobil Upstream Research Company | Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery |
| US9423174B2 (en) | 2009-04-20 | 2016-08-23 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream, and method of removing acid gases |
| US10222121B2 (en) | 2009-09-09 | 2019-03-05 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hydrocarbon gas stream |
| US9149761B2 (en) | 2010-01-22 | 2015-10-06 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with CO2 capture and sequestration |
| US11112172B2 (en) | 2010-02-03 | 2021-09-07 | Exxonmobil Upstream Research Company | Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams |
| US10408534B2 (en) | 2010-02-03 | 2019-09-10 | Exxonmobil Upstream Research Company | Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams |
| US9829246B2 (en) | 2010-07-30 | 2017-11-28 | Exxonmobil Upstream Research Company | Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices |
| US9964352B2 (en) | 2012-03-21 | 2018-05-08 | Exxonmobil Upstream Research Company | Separating carbon dioxide and ethane from a mixed stream |
| US10323879B2 (en) | 2012-03-21 | 2019-06-18 | Exxonmobil Upstream Research Company | Separating carbon dioxide and ethane from a mixed stream |
| US9562719B2 (en) | 2013-12-06 | 2017-02-07 | Exxonmobil Upstream Research Company | Method of removing solids by modifying a liquid level in a distillation tower |
| US9752827B2 (en) | 2013-12-06 | 2017-09-05 | Exxonmobil Upstream Research Company | Method and system of maintaining a liquid level in a distillation tower |
| US9874396B2 (en) | 2013-12-06 | 2018-01-23 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids |
| US9823016B2 (en) | 2013-12-06 | 2017-11-21 | Exxonmobil Upstream Research Company | Method and system of modifying a liquid level during start-up operations |
| US10139158B2 (en) | 2013-12-06 | 2018-11-27 | Exxonmobil Upstream Research Company | Method and system for separating a feed stream with a feed stream distribution mechanism |
| US9803918B2 (en) | 2013-12-06 | 2017-10-31 | Exxonmobil Upstream Research Company | Method and system of dehydrating a feed stream processed in a distillation tower |
| US9874395B2 (en) | 2013-12-06 | 2018-01-23 | Exxonmobil Upstream Research Company | Method and system for preventing accumulation of solids in a distillation tower |
| US9829247B2 (en) | 2013-12-06 | 2017-11-28 | Exxonmobil Upstream Reseach Company | Method and device for separating a feed stream using radiation detectors |
| US9869511B2 (en) | 2013-12-06 | 2018-01-16 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a spray assembly |
| US10495379B2 (en) | 2015-02-27 | 2019-12-03 | Exxonmobil Upstream Research Company | Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process |
| US10365037B2 (en) | 2015-09-18 | 2019-07-30 | Exxonmobil Upstream Research Company | Heating component to reduce solidification in a cryogenic distillation system |
| US11255603B2 (en) | 2015-09-24 | 2022-02-22 | Exxonmobil Upstream Research Company | Treatment plant for hydrocarbon gas having variable contaminant levels |
| US10323495B2 (en) | 2016-03-30 | 2019-06-18 | Exxonmobil Upstream Research Company | Self-sourced reservoir fluid for enhanced oil recovery |
| US11306267B2 (en) | 2018-06-29 | 2022-04-19 | Exxonmobil Upstream Research Company | Hybrid tray for introducing a low CO2 feed stream into a distillation tower |
| US11378332B2 (en) | 2018-06-29 | 2022-07-05 | Exxonmobil Upstream Research Company | Mixing and heat integration of melt tray liquids in a cryogenic distillation tower |
Also Published As
| Publication number | Publication date |
|---|---|
| DE10055321A1 (en) | 2002-05-16 |
| AU2001272528A1 (en) | 2002-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2002039038A1 (en) | Gas liquefaction method | |
| DE60016536T2 (en) | Gas liquefaction process by partial condensation of mixed refrigerant at intermediate temperatures | |
| DE60017951T2 (en) | Hybrid cycle for the production of liquid natural gas | |
| DE1019333B (en) | Process for the production of gaseous oxygen under pressure | |
| DE69209572T3 (en) | Process for the production of the purest nitrogen | |
| DE19938216A1 (en) | Liquefaction process | |
| WO2008022689A2 (en) | Method for the liquefaction of a hydrocarbon-rich flow | |
| DE102009008230A1 (en) | Process for liquefying a hydrocarbon-rich stream | |
| EP3948124B1 (en) | Method for operating a heat exchanger, assembly with heat exchanger and system with corresponding assembly | |
| EP1078208B1 (en) | Method and device for producing cold | |
| WO2015154786A2 (en) | Installation for reducing a carbon dioxide content of a gas flow which contains carbon dioxide and is rich in hydrocarbons, and a corresponding method | |
| DE19612173C1 (en) | Procedure for liquefaction of hydrocarbon rich process flow, especially natural gas | |
| DE69808087T2 (en) | TWO-STAGE COLD CIRCUIT WITH MULTICOMPONENT COLD AGENT | |
| EP3594596A1 (en) | Method for operating a heat exchanger, assembly with a heat exchanger and air processing installation with such an assembly | |
| DE19648902C2 (en) | Method for realizing a mixture Joule-Thomson process and device for carrying out this method | |
| WO2007020252A2 (en) | Method and arrangement for liquefying a stream rich in hydrocarbons | |
| DE19755484A1 (en) | Method for cold generation in temperature range 50.1- 63 K | |
| EP1084207B1 (en) | Method for producing cold in a temperature range of 90 to 110 k. | |
| DE102008053846A1 (en) | Method for separating e.g. nitrogen from helium- or neon stream, involves cooling stream so that components are freezed out against coolant medium, where amount and/or consistency of utilized coolant medium are controllable | |
| DE19821308A1 (en) | Refrigeration process using Joule-Thomson heat exchange | |
| DE19848280A1 (en) | Heat exchangers used in liquefying natural gas include anti-thermosiphons and non-return valves to prevent reverse flow on shutdown, minimize thermal stressing, cheapen materials of construction and hasten production recovery | |
| DE102011003391A1 (en) | Plant has shut-off valve that is provided to prevent fluid communication between cryogenic temperature region and high temperatures region | |
| EP3322947B1 (en) | Method for cooling a process flow | |
| DE102011115987B4 (en) | Liquefied Natural gas | |
| DE102004036708A1 (en) | Process for liquefying a hydrocarbon-rich stream |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |