[go: up one dir, main page]

WO2003067353A1 - Dispositif de traitement et procede d'entretien dudit dispositif - Google Patents

Dispositif de traitement et procede d'entretien dudit dispositif Download PDF

Info

Publication number
WO2003067353A1
WO2003067353A1 PCT/JP2003/001337 JP0301337W WO03067353A1 WO 2003067353 A1 WO2003067353 A1 WO 2003067353A1 JP 0301337 W JP0301337 W JP 0301337W WO 03067353 A1 WO03067353 A1 WO 03067353A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning liquid
flow rate
supply path
liquid
control device
Prior art date
Application number
PCT/JP2003/001337
Other languages
English (en)
French (fr)
Inventor
Daisuke Toriya
Kenji Homma
Akihiko Tsukada
Kouji Shimomura
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020047012091A priority Critical patent/KR100633891B1/ko
Priority to US10/503,126 priority patent/US7367350B2/en
Publication of WO2003067353A1 publication Critical patent/WO2003067353A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4402Reduction of impurities in the source gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling
    • Y10T137/0419Fluid cleaning or flushing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4238With cleaner, lubrication added to fluid or liquid sealing at valve interface
    • Y10T137/4245Cleaning or steam sterilizing
    • Y10T137/4259With separate material addition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow

Definitions

  • the present invention relates to a processing apparatus for performing processing such as film formation on a substrate such as a semiconductor wafer using a liquid source, and a maintenance method for such a processing apparatus.
  • a liquid source is used in a film forming process for a semiconductor wafer (hereinafter, referred to as a wafer).
  • a liquid source PET (Penyu ethoxy tantalum: Ta (OC 2 H 5 ) 5 ) is used.
  • PET Pulenyu ethoxy tantalum: Ta (OC 2 H 5 ) 5
  • PET is sent from a liquid source tank to a vaporizer via piping, where it is vaporized.
  • the flow rate of PET supplied to the vaporizer is controlled by a mass flow controller, which is a liquid flow control device provided in the piping.
  • an oxygen gas is supplied into the processing vessel loaded with the wafer, and the film is formed.
  • the mass flow controller detects the flow rate based on the difference between the transfer of heat from the fluid to the two points upstream and downstream of the flow path. Therefore, if solidified PET adheres to the mass flow controller, the heat transfer will change, a detection error will occur, and PET with a flow rate several times the flow rate set by the mass flow controller may flow.
  • the mouthpiece controller is periodically removed from the piping and inspected. This inspection is performed by flowing alcohol through the masochist controller and measuring the flow rate with a graduated cylinder, and comparing the measurement result with the set flow rate of the mass flow controller.
  • it is difficult to measure the flow rate accurately with a graduated cylinder because the PET flow rate at the time of deposition is small and the mass flow controller is used for a small flow rate.
  • the piping and the inside of the mass flow controller are washed with the cleaning liquid.
  • the PET remaining in the mass flow controller reacts with the moisture in the air and solidifies.
  • the PET may be solidified when the PET flows thereafter.
  • the solidified PET becomes like a ceramic, and it is virtually impossible to remove it by washing, in which case the mass flow controller must be replaced. That is, there is a possibility that the operation of confirming the operation of the masochist controller may cause the masochist controller to become defective. Disclosure of the invention
  • the present invention has been made under such a background, and the inspection of the flow control device of the liquid source can be performed without removing the flow control device from the liquid source supply line or disassembling the liquid source supply line.
  • the primary objective is to provide a technology that can be performed with high accuracy.
  • a second object of the present invention is to achieve the first object without reducing the cleaning efficiency of the liquid source supply path.
  • the present invention provides a processing container in which an object to be processed is internally processed using a liquid source, and a liquid source supplied from a liquid source supply source to the processing container.
  • a liquid source supply path provided to supply the liquid source; a flow control device provided in the liquid source supply path to control a flow rate of the liquid source flowing through the liquid source supply path to a predetermined target flow rate;
  • a cleaning liquid supply path provided to supply a cleaning liquid from a supply source to the liquid source supply path on the upstream side of the flow control device; a cleaning liquid flow path provided in the cleaning liquid supply path and flowing through the cleaning liquid supply path.
  • an inspection device having at least one of a function of measuring a flow rate of the cleaning liquid and a function of controlling a flow rate of the cleaning liquid flowing through the cleaning liquid supply path to a predetermined target flow rate.
  • a processing device configured to be able to flow through a flow control device.
  • the processing apparatus may further include: a cleaning liquid flowing through the inspection device to the flow control device, a target flow rate of the cleaning liquid set in the flow control device, and an actual flow rate of the cleaning liquid measured by the inspection device. Or the actual flow rate of the cleaning liquid measured by the flow sensor provided in the flow control device and the setting in the inspection device when the cleaning liquid is passed through the inspection device to the flow control device.
  • the flow rate control device may further include a determination unit that determines whether or not the flow rate control device is operating normally based on the comparison with the target flow rate.
  • the present invention further provides a processing container in which an object is processed using a liquid source inside, and a liquid source supply path provided to supply a liquid source from the liquid source supply source to the processing container.
  • a flow control device provided in the liquid source supply path, for controlling a flow rate of the liquid source flowing through the liquid source supply path to a predetermined target flow rate; and
  • a cleaning liquid supply path provided to supply a cleaning liquid to an upstream side of the flow control device; one end connected to the cleaning liquid supply path and the other end connected to the cleaning liquid supply path or the liquid source supply path;
  • a bypass path that bypasses a part of the supply path; a function provided in the bypass path to measure a flow rate of the cleaning liquid flowing through the bypass path;
  • An inspection device having at least one function of controlling the flow rate of the cleaning liquid to be a predetermined target flow rate, and a first state in which the cleaning liquid is supplied to the liquid source supply path through the bypass path.
  • a valve that can switch between a second state in which the cleaning liquid is supplied to the
  • the processing apparatus may further include a flow rate adjusting device provided at the part of the cleaning liquid supply path and adjusting a flow rate of the cleaning liquid supplied to the liquid source supply path through the part of the cleaning liquid supply path. Can be.
  • the processing apparatus is provided upstream of the part of the cleaning liquid supply path, and the flow rate of the cleaning liquid supplied to the liquid source supply path through at least the part of the cleaning liquid supply path May be further provided.
  • the present invention further provides a processing container in which an object is processed using a liquid source inside, and a liquid source supply path provided to supply a liquid source from the liquid source supply source to the processing container.
  • a flow control device provided in the liquid source supply path and controlling a flow rate of the liquid source flowing through the liquid source supply path to a predetermined target flow rate;
  • An inspection instrument having at least one of a function of measuring a flow rate of the cleaning liquid flowing through the apparatus and a function of controlling the flow rate of the cleaning liquid flowing through the inspection apparatus to a predetermined target flow rate; and
  • a first cleaning liquid supply path connected to a source supply path and provided to supply a cleaning liquid upstream of a flow control device of the liquid source supply path without passing through the inspection device;
  • a portion connected to the body source supply path and having the testing device disposed therein, provided so as to supply the cleaning liquid to the liquid source supply path on the upstream side of the flow control device through the testing device.
  • a processing apparatus provided with a second cleaning liquid supply path.
  • At least a part of the first cleaning liquid supply path may be shared with at least a part of the second cleaning liquid supply path.
  • the processing apparatus can further include a flow rate adjusting device provided in a portion of the first cleaning liquid supply path that is not shared with the second cleaning liquid supply path.
  • the flow control device provided can further be provided.
  • the first cleaning liquid supply path and the second cleaning liquid supply path may not have any shared part. In this case, two cleaning liquid supply sources are provided.
  • the present invention provides a processing container in which an object to be processed is internally processed using a liquid source, a liquid source supply path for supplying a liquid source to the processing container, and a liquid flowing through the liquid source supply path.
  • a flow control device for controlling a flow rate of a source comprising: a flow detection unit, a flow control valve, and an opening of the flow control pulp such that a flow rate of the fluid detected by the flow detection unit becomes a target flow rate.
  • a flow control device having a controller, and a relationship between a data related to a target flow rate and a data related to an opening degree of the flow control valve when the flow control device is operating normally.
  • a storage unit that stores the relationship between data related to a target flow rate when the flow control device is actually operating and data related to an opening degree of the flow control pulp; The flow control device based on a result of comparison between the relationships that are to provide a processing apparatus and a determination unit that it is functioning properly.
  • a method for maintaining a processing apparatus wherein the processing apparatus supplies a liquid source to a processing container via a flow rate control device provided in a liquid source supply path.
  • the cleaning liquid is supplied through an inspection instrument having at least one of a function of measuring a flow rate of the cleaning liquid and a function of controlling the flow rate of the cleaning liquid to be a target flow rate.
  • a method comprising: The present invention also relates to a method for maintaining a processing apparatus, wherein the processing apparatus includes a liquid source.
  • Is configured to be supplied to the processing vessel via a flow control device provided in the liquid source supply path, wherein the cleaning liquid flows through the liquid source supply path at a first flow rate, and A cleaning step of cleaning the source supply path; and an inspection step of flowing the cleaning liquid through the flow control device at a second flow rate and inspecting the flow control device, wherein the inspection step includes: Flowing through the flow control device via an inspection device having at least one of a function of measuring a flow rate of the cleaning liquid and a function of controlling the flow rate of the cleaning liquid to be a target flow rate; The target flow rate of the cleaning liquid set in the flow control device and the actual flow of the cleaning liquid measured by the inspection device when the cleaning liquid flows through the inspection device to the flow control device.
  • a method comprising: comparing with a target flow rate set in a device; and determining whether or not the flow control device is operating normally based on the comparison.
  • FIG. 1 is a diagram showing an entire configuration of an embodiment of a processing apparatus according to the present invention.
  • FIG. 2 is a flowchart showing a calibration procedure of the mass flow controller of the processing apparatus of FIG. 1 according to the method of the present invention.
  • FIG. 3 is a diagram showing an overall configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 4 is a diagram showing the entire configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 5 is a diagram showing the overall configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 6 is a diagram showing a main configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 7 is a diagram showing a main configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 8 is a graph schematically showing the relationship between the set flow rate of the mass flow controller and the valve opening control voltage.
  • FIG. 9 is a diagram showing the overall configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 10 is a flowchart showing a step of cleaning the liquid source supply path in the processing apparatus of FIG.
  • FIG. 11 is a diagram showing the overall configuration of another embodiment of the processing apparatus according to the present invention.
  • FIG. 12 is a diagram showing the overall configuration of another embodiment of the processing apparatus according to the present invention. Description of the preferred embodiment
  • FIG. 1 shows as an embodiment of the processing apparatus according to the present invention, a substrate processing apparatus for forming a film of a semiconductor wafer (hereinafter abbreviated as ⁇ E c) W surface tantalum oxide (Ta 2 ⁇ 5) film It is.
  • reference numeral 11 denotes a liquid source tank (liquid source supply source) in which pentaethoxy tantalum [T a (OC2H5) 5 : hereinafter abbreviated as “PET”] is stored as a liquid source serving as a raw material of a deposition gas. ).
  • the liquid source tank 11 is connected to a processing container 2 for performing a film forming process (gas process) on the wafer W via a liquid source supply path 12 composed of a pipe.
  • the liquid source tank 11 is connected to a He gas supply unit 14 via a gas pipe 13 and a valve V 0, and He gas supplied from the He gas supply unit 14 into the liquid source tank 11 is a liquid source tank.
  • the PET in 11 is sent to the liquid source supply path 12.
  • He gas has a small solubility in PET. Therefore, when the PET is vaporized in the vaporizer 16, the heat of heat and heat causes the He gas dissolved in the PET to evaporate and rapidly expand, thereby disturbing the flow rate control of the PET. Absent. It is preferable to use He gas from such a viewpoint, but it is also possible to use a gas other than He gas.
  • valves VI0, V9, VI, a mass flow controller (hereinafter abbreviated as “MFC”) 15, which is a liquid flow control device, a vaporizer 16, and a valve V2 are located upstream. From this order.
  • MFC mass flow controller
  • the MFC 15 is an integrated unit that includes a flow control valve, a flow sensor (flow meter), and a controller (none of which is shown in FIG. 1). It controls the opening of the flow control valve based on the flow rate) and the value detected by the flow sensor.
  • the flow rate of PET is quite small, about 0.2 cc / min, so the flow rate of MFC 15 can be adjusted within the range of 0.1 Occ / min to 0.5 Occ / min. Is used.
  • a flow control device may be configured by separately providing a flow control valve, a flow sensor, and a controller.
  • a mass flow meter provided with a controller may be provided in place of the MFC 15 and a flow control valve whose opening is controlled by the controller may be incorporated in the vaporizer 16.
  • the vaporizer 16 is connected to a carrier gas supply source 17 for supplying a carrier gas such as He gas.
  • a carrier gas such as He gas.
  • the carrier gas is heated to about 160 ° C. by a built-in heater (not shown).
  • the PET is supplied together with the heated carrier gas to a reactor (not shown) in the vaporizer 16 where it is vaporized and sent out to the processing vessel 2 as a film forming gas.
  • a mounting table 21 for mounting the wafer W is provided inside the processing container 2.
  • a heater (not shown) for heating the wafer W from the back side during the film forming process is embedded in the mounting table 21.
  • a shower head 22 having a number of holes (not shown) formed below the ceiling is provided on the ceiling of the processing container 2. The shower head 22 receives the film-forming gas supplied through the liquid source supply path 12 as described above and the oxygen (0 gas) supplied from the oxygen gas supply unit 23, on the mounting table 2. It is supplied to the wafer W mounted on 1.
  • An exhaust port 24 is provided at the bottom of the processing container 2, and an exhaust path 25 composed of a pipe is connected to the exhaust port 24.
  • the other end of the exhaust path 25 is connected to a vacuum pump 26 (exhaust means).
  • a valve V3 is interposed in the exhaust path 25, and a branch point between the vaporizer 16 and the valve V2 is provided between the valve V3 and the vacuum pump 26 in the exhaust path 25.
  • a bypass path 18 branched from the liquid source supply path 12 is connected.
  • the no-pass passage 18 is used for cleaning the liquid source supply passage 12.
  • a valve V4 is interposed in the bypass passage 18, and the flow path of the fluid downstream of the branch point P1 can be switched by interlocking and switching the valves V2 and V4.
  • reference numeral 31 denotes a cleaning liquid tank (cleaning liquid supply source), in which Contains a cleaning liquid, such as ethanol (C 2 H 5 OH), for flushing PET in the liquid source supply path 12.
  • a cleaning liquid such as ethanol (C 2 H 5 OH)
  • ethanol is hydrophilic, water adhering to the inner wall of the pipe can be removed by passing it through a new pipe or a pipe connected after maintenance. Since ethanol itself easily contains water, it is preferable to maintain the water content of ethanol at 100 ppm or less.
  • the cleaning liquid is not limited to ethanol, but may be another alcohol or an organic solvent such as acetone.
  • the cleaning solution is not necessarily limited to a hydrophilic solution, but may be a hydrophobic chemical solution, such as hexane or octane, which can wash PET.
  • a cleaning liquid supply path 32 extends from the cleaning liquid tank 31 and the cleaning liquid supply path 32 is connected to the liquid source supply path 12 at a position (connection point P 2) between valves V 1 and V 9. .
  • the cleaning liquid tank 31 is connected to a nitrogen (N 2 ) gas supply source 34 via a gas supply path 33.
  • N 2 nitrogen
  • the cleaning liquid in the cleaning liquid tank 31 is sent out to the cleaning liquid supply path 32 by the pressure of the nitrogen gas, and heads for the liquid source supply path 12.
  • the cleaning liquid supply path 32 is provided with a 21 dollar valve 35, a valve V6, and a valve V7, which are cleaning liquid flow control devices, in order from the cleaning liquid tank 31 side. Further, a discharge passage 30 is branched from between the valves V9 and VIO of the liquid source supply passage 12. The discharge path 30 is connected to a drain tank (not shown) via a valve V11. The discharge path 30 is used for cleaning the liquid source supply path 12.
  • the cleaning liquid supply path 32 is connected to a bypass path 41 that bypasses a portion of the cleaning liquid supply path 32 where the needle valve 35 and the valve V6 are provided.
  • a muff mouth meter (hereinafter abbreviated as MFM) 42 as an inspection device and a valve V8 are interposed in order from the upstream side.
  • MFM muff mouth meter
  • the processing apparatus includes a first cleaning liquid supply path connected to the liquid source supply path 12 from the cleaning liquid tank 31 via a dollar valve 35, and a part of the first cleaning liquid supply path.
  • a second cleaning liquid supply that is shared and connected from the cleaning liquid tank 31 to the liquid source supply path 12 via the MFM 42 A road is provided.
  • the needle valve 35 is used for adjusting the flow rate of the cleaning liquid when cleaning the liquid source supply path 12 and / or equipment such as the MFC 15 provided in the liquid source supply path 12.
  • the needle valve 35 is adjusted so that the washing liquid flows at a flow rate of about 5 cc / min. Since precise flow rate adjustment is not required during cleaning, the cleaning liquid flow rate adjustment device does not need to have a function to automatically control while monitoring the flow rate of the fluid flowing therethrough. Is enough.
  • the needle valve 35 is used as an inexpensive flow control device that satisfies such requirements, but another type of flow control device can be used.
  • the MFM42 is provided as a device for inspecting the MFC15, the measurement range corresponding to the flow rate adjustment range described above for the MFC15, for example, 0.1 Occ / min to 0.5 Occ / min. Is used. It is desirable that the flow rate detection accuracy of the MFM 42 is approximately equal to or higher than the flow rate control accuracy of the MFC 15. It should be noted that, if the flow rate detection accuracy is such, a flow rate measuring device of a type different from that of the mask can be used instead of the MFM42.
  • the maximum flow rate of the cleaning solution that can be passed through the MFM 42 having a measurement range of 0.10 / min to 0.5 Occ / min as described above is based on the preferable flow rate of the cleaning solution during cleaning (about 5 cc / min in this example). small. Therefore, a bypass 41 that bypasses the MFM 42 is provided so that the cleaning liquid can flow at a desired large flow rate during cleaning.
  • the MFC 15 and the flow meter 42 are connected to the computer 5.
  • the computer 5 is preferably a system controller for controlling the operation of the entire processing apparatus.
  • the MFC 15 has a function of determining whether or not the MFC 15 is operating normally based on the flow rate detected by the built-in flow rate sensor and the flow rate measured by the MFM 42.
  • the computer 5 displays on the display unit (not shown) that the MFC 15 is normal, while the operation state of the MFC 15 is abnormal. Is displayed on the display (not shown). It has a function to display that the MFC 15 is abnormal. Further, the computer 5 may have a function of issuing an alarm when the MFC 15 is determined to be abnormal, or may have a function of transmitting a signal for prohibiting the start of the film forming process.
  • the wafer W is loaded into the mounting table 21 via a gate valve (not shown) provided on the side of the processing container 2.
  • the vacuum pump 26 is operated, and the inside of the processing container 2 is maintained at a predetermined degree of vacuum by adjusting the opening of the valve V3.
  • the wafer W is heated by a heater (not shown) embedded in the mounting table 21, and the surface temperature thereof is set to a predetermined process temperature.
  • the PE T steam and oxygen gas is fed subjected to wafer W via the head 22 to the shower, tantalum oxide by a chemical vapor phase reaction on the entire surface of the wafer W (T a 2 ⁇ 5) Is formed.
  • the system controller (not shown) adjusts the flow rate of PET flowing in the liquid source supply path 12 to a predetermined flow rate, for example, 0.12 cc / min by the MFC 15, and a gas muff controller (not shown).
  • a predetermined flow rate for example, 0.12 cc / min by the MFC 15, and a gas muff controller (not shown).
  • the supply flow rate of the oxygen gas is adjusted to a predetermined flow rate.
  • the tank 11 is replaced. This replacement operation is performed by removing the downstream pipe from the valve VI 0 of the liquid source supply path 12 and connecting the pipe attached to the new tank 11 to the valve V 10. Before this replacement work, clean the inside of the piping downstream of the valve VI0 to remove PET.
  • the valve V8 When performing this cleaning work, the valve V8 is closed, the valve V6 is opened, and the cleaning liquid is supplied by adjusting the dollar valve 35 so that the flow rate of the cleaning liquid is about 5 cc / min.
  • the cleaning liquid cleans the area between the valves V1 and V10 of the liquid source supply path 12, and cleans the area there.
  • PET is removed and discharged together with the PET through a discharge passage 30 to a drain tank (not shown).
  • the flow rate of the cleaning liquid is adjusted by manually adjusting the degree of engagement of the needle valve 35 based on experience.
  • valves V6, V9, Close V2 and open valves V8, V7, VI, and V4 step S1 in Figure 2.
  • the valve V5 is opened to send the cleaning liquid in the cleaning liquid tank 31 into the cleaning liquid supply path 32, and the cleaning liquid flows through the MFC 15 via the MFM 42, is vaporized by the vaporizer 16 and is exhausted through the bypass path 18.
  • the flow rate of the cleaning liquid is set to a flow rate within a range controllable by the MFC 15 using the MFC 15, for example, a flow rate (0.12 cc / min) corresponding to the flow rate of the PET during film formation.
  • the computer 5 compares the set flow rate of the MFC 15 (the target flow rate preset in the MFC 15) with the flow rate measured by the MFM 42, and determines whether or not the two are the same. It is determined whether it is within the range of the measurement error allowed for the device (step S3). If the flow rate is within the allowable range, the cleaning liquid flows through the MFC 15 at the set flow rate, so that the MFC 15 is operating normally. The display is performed (step S4). However, if it is out of the allowable range, it means that the cleaning fluid is not flowing at the flow rate according to the set flow rate in the MFC 15, so that a message indicating that there is an abnormality is displayed on the display 5 (step S5), and for example, An alarm is issued.
  • each part of the supply path 12 touches the outside air to disassemble the liquid source supply path 12, and as described above, the moisture contained in the outside air reacts with the PET on the part to solidify. There is a possibility that. Therefore, before and after this disassembling operation, the inside of the liquid source supply path 12 is washed. At this time, the valves V8 and V6 are switched to supply the cleaning liquid to the liquid source supply path 12 via the needle valve 35. At this time, a signal is sent to the MFC 15 to fully open the flow control valve built in the MFC 15. This allows the cleaning liquid to flow into the MFC 15 at a large flow rate that exceeds the flow control range of the MFC 15 during normal operation.
  • the MFC 42 is provided in the cleaning liquid supply path 32, the cleaning liquid is supplied to the MFC 15 for controlling the flow rate of the liquid source, and the MFC 42 is compared with the set flow rate of the MFC 15 and the measured flow rate of the MFM 42.
  • the cleaning liquid supply path 32 is connected to the bypass path 41 having the MFM 42 used for testing the MFC 15 interposed therebetween. For this reason, at the time of cleaning, the cleaning liquid can be flown at a large flow rate to perform the cleaning promptly, and at the time of inspection of the MFC 15, the cleaning liquid can be flowed at a small flow rate corresponding to the flow rate of the liquid source at the time of film formation.
  • the layout of the bypass is not limited to that shown in FIG. 1, and the bypass may be provided as shown in FIG. In the embodiment shown in FIG.
  • the processing apparatus includes a first cleaning liquid supply path connected from the cleaning liquid tank 31 via the needle valve 35 to the liquid source supply path 12 at a connection point P2, and the first cleaning liquid supply path.
  • a second cleaning liquid supply path is provided which is connected to the liquid source supply path 12 at the connection point P3 from the cleaning liquid tank 31 via the needle valve 35 and the MFM 42.
  • the cleaning liquid can be supplied through either the first cleaning liquid supply path or the second cleaning liquid supply path.
  • a bypass may be arranged as shown in FIG.
  • one end of each of the bypass passages 41 is connected between the valve V6 of the cleaning liquid supply passage 32 and the needle valve 35, and the other end of the bypass passage 41 5 'is connected to the liquid source supply passage. It is connected to the connection point P 3 between the valve V 1 and the MF C 15 in the line 12.
  • the processing apparatus includes a first cleaning liquid supply path connected from the cleaning liquid tank 31 via the needle valve 35 to the liquid source supply path 12 at the connection point P2, and the first cleaning liquid supply path.
  • a second cleaning liquid supply path is provided which shares a part and is connected from the cleaning liquid tank 31 to the liquid source supply path 12 via the dollar valve 35 and the MFM 42 at the connection point P3.
  • the cleaning liquid can be selectively supplied through the first cleaning liquid supply path or the second cleaning liquid supply path.
  • two cleaning liquid tanks 31, 31 may be provided.
  • the processing unit the first cleaning liquid supply line connected at a connection point P 2 from the cleaning liquid tank 31 via the needle valve 35 to the liquid source feed passage 12 (32), from the wash solution tank 31 5 MFM42
  • a second cleaning liquid supply path (32,) connected to the liquid source supply path 12 at a connection point P4 and having no portion shared with the first cleaning liquid supply path is provided. Will be.
  • the processing apparatus includes a first cleaning liquid supply path connected from the cleaning liquid tank 31 to the liquid source supply path 12 via the dollar valve 35 at the connection point P2, and a part of the first cleaning liquid supply path. And a second cleaning liquid supply path connected from the cleaning liquid tank 31 'to the liquid source supply path 12 via the MFM 42 at the connection point P2.
  • the above-described configuration can also be applied to a processing apparatus in which a common liquid source tank 11 and cleaning liquid tank 31 are provided for a plurality of processing containers as shown in FIG.
  • the embodiment shown in FIG. 5 is based on the configuration of the processing apparatus shown in FIG. 1 and branches the liquid source supply path 12 into three systems on the upstream side of the valve V9 and the cleaning liquid supply path on the upstream side of the valve V7. This corresponds to a configuration in which 32 is divided into three systems.
  • the desired MFC 15 can be calibrated using the MFM 42, which is a common inspection device.
  • parts downstream of the valve VI bypass path 18, exhaust path 25, valve V3, vacuum pump 26
  • FIG. 5 for simplification of the drawing, parts downstream of the valve VI (bypass path 18, exhaust path 25, valve V3, vacuum pump 26) are omitted, but these parts are omitted. Actually, they are arranged as shown in Fig. 1 for each processing vessel.
  • a flow control device may be used instead of the MFM42 (flow measurement device device) used in the above embodiment.
  • the flow control device one having a flow control range overlapping with the flow control range of the MFC 15 for the liquid source, for example, the same mass flow controller as the MFC 15 can be used.
  • the MFC 61 for inspection may be provided upstream of the dollar valve 35 of the cleaning liquid supply passage 32, as shown in FIG. From the viewpoint of improving the efficiency of the cleaning operation, it is preferable that the MFC61 be capable of flowing a large flow rate of the cleaning liquid exceeding the controllable range during normal operation by fully opening the built-in flow control valve. If an MFC that cannot flow a large flow rate of the cleaning liquid beyond the controllable range during normal operation is used, the cleaning is performed at a flow rate within the controllable range. In such a case, it is possible to use a flow measurement device such as Mass Flow Meter instead of MFC 61, but the flow rate of the cleaning solution in that case is limited by the maximum flow rate allowed for the flow measurement device.
  • a flow measurement device such as Mass Flow Meter
  • the needle valve 35 can be omitted from the configuration shown in FIG.
  • the MFC 61 can also be used as a device for adjusting the flow rate of the cleaning solution during cleaning and as a device for inspection.
  • the MFC 15 includes a flow rate detection unit (flow rate sensor) 71, a controller that compares a flow rate detected by the flow rate detection unit 71 with a set flow rate, and outputs an operation signal based on a deviation thereof. 72, and a flow control valve 74 whose opening is adjusted via the actuator 73 by the operation signal.
  • Reference numeral 8 denotes a computer, which includes a storage unit 81 and a determination unit 82.
  • the storage unit 81 stores the data corresponding to the set flow rate of the MFC 15 when the cleaning liquid flows through the normally operating MFC 15 (for example, the set flow rate of the MFC 15 is displayed.
  • Data or data corresponding to a command signal sent from the system controller to the MFC 15 to set the set flow rate of the MFC 15) and data corresponding to the valve opening corresponding to the set flow rate (data).
  • data corresponding to a signal indicating the displacement of the actuator 73 is stored (or data indicating the control voltage of the actuator 73).
  • the entire configuration of the processing apparatus may be the same as the configuration in FIG. 1 except that the bypass path 41, the MFM 42, and the valve V8 are not provided.
  • the set flow rate of the MFC 15 is set to the same value as the set flow rate stored in the storage unit 81, and the cleaning liquid is supplied to the MFC 15.
  • the computer 8 captures the data corresponding to the actual valve opening at that time (in this case, a signal indicating the displacement of the actuator 73) and stores the data corresponding to the valve opening stored in the storage unit 81.
  • the determination means 82 compares whether the value matches the evening, and determines whether the MFC 15 is operating normally based on the comparison.
  • FIG. 8 is a graph showing the relationship between the set flow rate of the MFM 15 and the valve control voltage corresponding to the valve opening, and the solid line a shows the relationship when the MFM 15 is operating normally. If PET adheres to the part of the MFC 15 involved in flow rate detection, the flow rate detection sensitivity will be reduced. If only the detection value of 0. Ice is obtained even though the washing liquid is flowing at 0.2 cc, the slope of the valve will increase and the slope will increase as indicated by the solid line b even at the same set flow rate. Therefore, by comparing the actual valve opening with the stored valve opening as described above, it can be determined whether or not the MFC 15 is operating normally.
  • a function indicating the relationship between the set flow rate and the valve opening signal (for example, the one indicated by the straight line a in FIG. 8) is determined in advance, and the set flow rate during inspection and the actual valve Judgment can also be made depending on whether or not the opening conforms to the function.
  • the calibration can be performed without removing the MFC 15 without providing an inspection device in the cleaning liquid supply path 32.
  • FIG. 9 differs from the processing apparatus shown in FIG. 1 in the following points.
  • a branch path 33 ' is connected to a gas supply path 33 for supplying nitrogen gas into the cleaning liquid tank 31 and sending out the cleaning liquid, and this branch path 33' is connected to the downstream side of the valve V6 of the cleaning liquid supply path 32. And a valve VI 2 is provided in the branch line 33 '.
  • a valve V13 is provided downstream of the position where the branch path 33 'of the gas supply path 33 is connected, and by switching valves VI2 and VI3, nitrogen gas is supplied to the cleaning liquid tank 31 and the cleaning liquid is supplied. Mode to send nitrogen to the cleaning liquid supply path 32 and flush nitrogen gas. A mode in which the cleaning solution tank 31 is bypassed and the cleaning solution is directly sent to the cleaning solution supply path 32 can be selected.
  • a pressure regulator 36 is provided between the nitrogen gas supply source 34 and the valve V5.
  • the discharge path 30 branched from between the valves V9 and V10 of the liquid source supply path 12 further extends through the drain tank 9 and is connected to the exhaust path 25 for exhausting the processing vessel 2.
  • the drain tank 9 is composed of a sealed container, and on its upper surface, a discharge path 30 (30a) on the liquid source supply path 12 side and a discharge path 30 (30b) on the vacuum pump 26 side are valves V14 and V15, respectively. Connected through.
  • a flow path from the nitrogen gas supply source 34 to the vacuum pump 26 through the liquid source supply path 12 and the bypass path 18 sequentially, and a flow path from the nitrogen gas supply source 34 to the liquid source supply path 12 and the discharge path 30 sequentially A flow path leading to the vacuum pump 26 is formed, and nitrogen from the nitrogen gas supply source 34 flows into the liquid source supply path 12 through the cleaning liquid supply path 32.
  • the PET is pumped to the vacuum pump 26 side, and the inside of the pipe is replaced with nitrogen gas (step S1).
  • the PET existing downstream from the point P 2 is vaporized by the vaporizer 16 and exhausted through the bypass 18.
  • the PET existing between the point P 2 and the valve V 10 passes through the exhaust path 30 (30a), is temporarily stored in the drain tank 9, and the nitrogen gas is discharged through the exhaust path 30 (30b).
  • the PET flows from the exhaust path 30 to the exhaust path 25.
  • the liquid flows out, it is vaporized at a stretch, so that the load on the vacuum pump 26 increases.
  • there is a buffer for temporarily storing PET so that there is an advantage that the load on the vacuum pump 26 can be reduced.
  • valve V5 of the gas supply path 33 is closed to stop the supply of the nitrogen gas, and the piping downstream of the valve V5, namely, the cleaning liquid supply path 32, the liquid source supply path 12 and the discharge path 30 Is evacuated by the vacuum pump 26 (step S 2).
  • the valves V12 and V12 of the branch passages 33 and, the valve V11 of the discharge passage 30 and the valve V4 of the bypass passage 18 are closed, and the knobs VI3 and V6 are opened.
  • nitrogen gas is supplied into the cleaning liquid tank 31 from which the cleaning liquid is pumped.
  • the cleaning liquid supply path 32 and the liquid source supply path 12 are in a reduced pressure atmosphere, the cleaning liquid flows into and fills them (step S3).
  • step S1 After 5 seconds to 30 minutes, the same valving operation as in step S1 is performed to reach the vacuum pump 26 from the nitrogen gas supply source 34 through the liquid source supply path 12 and the bypass path 18 sequentially.
  • a second fluid flow path is formed from the first fluid flow path and the nitrogen gas supply source 34 to the vacuum pump 26 through the liquid source supply path 12 and the discharge path 30 in order, and the cleaning liquid is formed by the nitrogen gas.
  • the cleaning liquid in the supply path 32 and the liquid source supply path 12 is pumped out and discharged (step S4). Thereafter, the flow of nitrogen gas is continued, and the inside of the pipe is replaced with nitrogen gas (step S5).
  • step S2 the valve V5 on the nitrogen gas supply source 34 side is closed to stop the supply of nitrogen gas, and the cleaning liquid supply path 32, the liquid source supply path 12 and the discharge path 30 are closed. Evacuation is performed by the vacuum pump 26 (step S6). Subsequently, the valve V5 is opened and the pressure of the nitrogen gas is adjusted by the pressure adjusting unit 36 to fill the inside of the pipe with nitrogen gas at atmospheric pressure (step S7). Then close valve V5. After washing the pipes in this way, disassemble the liquid supply path 12 and open it to the atmosphere, and replace the pipes or MFC 15 or other equipment or replace the liquid source tank 11 Maintenance work is performed.
  • steps S2 to S6 shown in FIG. 10 are performed. That is, the inside of the pipe is evacuated and then filled with the cleaning liquid, and then the nitrogen gas is supplied to discharge the cleaning liquid, and further evacuated. You. As described above, ethanol can be used as the cleaning liquid. Even if traces of water are present in the piping when ethanol is evacuated and traces of water are present in the ethanol, the boiling point of the mixture of ethanol and water will be , The mixture evaporates first (azeotropic phenomenon), and substantially no water remains in the piping.
  • step S5 and step S6 are repeated a plurality of times, even if a small amount of liquid remains in the pipe, it can be efficiently eliminated. Then, by closing valves V7, VII, and V4 and opening valve V0 on the inlet side of liquid source tank 11 and valve V10 on the outlet side, helium gas causes PET in liquid source tank 11 to be opened. It is extruded and flows into the liquid source supply path 12 in a vacuum atmosphere, which is filled with PET.
  • a cleaning step is performed, for example, even after the piping is constructed when the apparatus is newly installed, and then a tantalum oxide film forming step is performed.
  • the above-described cleaning process performed before and after the maintenance is performed by controlling the opening and closing of each valve based on a program stored in a memory of a system controller that controls the operation of the entire processing apparatus.
  • the PET and / or cleaning liquid present in the pipe is expelled by the nitrogen gas, the liquid can be quickly removed, and the amount of the remaining liquid can be suppressed to a very small amount.
  • the nitrogen gas replaced with the liquid is evacuated, even if a trace amount of liquid remains in the pipe, it is discharged together with the nitrogen gas, and as a result, PET or the cleaning liquid can be quickly and reliably removed. it can.
  • air existing in the pipe is also discharged. Therefore, even if PET, which is a raw material gas that is extremely sensitive to moisture, is supplied after cleaning, there is no problem such as solidification of PET.
  • the present invention is not limited to a processing apparatus configured to vaporize a liquid source by a vaporizer and supply the liquid source to the processing container, but to supply the liquid source to the processing container in a liquid state and vaporize the liquid source in the processing container.
  • the present invention can also be applied to a processing apparatus configured as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Description

明 細 書 処理装置およびその保守方法 技 術 分 野
本発明は、 液体ソースを用いて半導体ウェハなどの基板に対して成膜などの処 理を行う処理装置及びこのような処理装置の保守方法に関する。 背 景 技 術
半導体ウェハ (以下ウェハという) に対する成膜処理において液体ソースを使 用する場合がある。 例えば、 DRAMのキャパシ夕膜として使用される酸化タン タル膜を成膜する際には、 液体ソースである PET (ペン夕エトキシタンタル: T a (OC2H5) 5) が使用される。 成膜を行う際には、 PETは液体ソースタン クから配管を介して気化器に送られて、 そこで気化される。 配管に設けられた液 体流量制御機器であるマスフローコントローラにより、 気化器に供給される PE Tの流量が制御される。 気化された PETに加えて酸素ガスが、 ウェハが装填さ れた処理容器内に供給され、 成膜処理が行われる。
液体ソースタンクや気化器を交換するときには、 これらが配管から切り離され る。 PETは水分と接触すると固化するため、 配管を大気に開放する前には洗浄 液例えばアルコールにより配管内を洗浄して PE Tを完全に除去する必要がある。 また、 配管を接続した後には配管内から空気を完全に追い出しておく必要がある。 洗浄が不十分な場合には、 配管内の PE Tが大気中の水分と反応して固化して配 管内に付着する。 また洗浄液の含有水分量が多い場合には、 PETが洗浄液中の 水分と反応して同様に固化する。 マスフローコントローラは、 流路の上流および 下流側の 2点に対する流体からの熱の授受の差に基づいて流量を検出するもので ある。 従って、 マスフローコントローラ内に固化した PETが付着すると熱の伝 わりが変わってしまい、 検出エラーが生じ、 マスフローコントローラの設定流量 の数倍の流量の PETが流れる場合もある。
P E Tの流量が設定流量から外れると、 キャパシ夕の容量が予定通りに得られ ないことがある。 P E Tの流量が設定流量よりも大きいと、 P E Tの消費量が多 くなつて、 液体ソ一スタンクの交換の頻度が増え、 また処理容器のクリーニング サイクルも短くなる。 また、 マスフローコントローラの流量検出精度が低下する と、 コンピュータによる積算流量管理が適切にできなくなる。
このような問題を防止するため、 マスフ口一コントローラは定期的に配管から 取り外され検査される。 この検査は、 マスフ口一コントローラにアルコールを流 してその流量をメスシリンダ一で測定し、 その測定結果とマスフローコントロー ラの設定流量とを比較することにより行われる。 しかし、 キャパシ夕成膜時の P E T流量は小さく、 マスフローコントロ一ラも小流量用のものが用いられている ため、 メスシリンダ一で正確に流量測定を行うことは困難である。
マスフ口一コントローラを配管から取り外す前には、 配管及びマスフローコン トロ一ラ内が洗浄液で洗浄される。 しかし、 洗浄が不十分であると、 マスフロー コントローラ内に残存する P E Tが大気中の水分と反応して固化してしまう。 ま た、 検査終了後にマスフ口一コントローラを配管に取り付けた後に配管内に入り 込んだ空気を完全に除去しないと、 その後に P E Tを流したときに P E Tが固化 するおそれもある。 固化した P E Tは、 いわばセラミックスのようになり、 洗浄 して除去することは事実上不可能であり、 その場合マスフローコントローラは交 換せざるを得ない。 即ち、 マスフ口一コントローラの動作を確認するための作業 が原因でマスフ口一コントローラが不良になるおそれがある。 発 明 の 開 示
本発明は、 このような背景の下になされたものであり、 液体ソースの流量制御 機器の検査を、 流量制御機器を液体ソース供給路から取り外したり液体ソース供 給路を分解したりすることなく、 精度よく行うことができる技術を提供すること を第 1の目的としている。
本発明の第 2の目的は、 液体ソース供給路の洗浄効率を低下させることなく、 上記第 1の目的を達成することにある。
上記目的を達成するため、 本発明は、 内部で液体ソースを用いて被処理体に処 理が行われる処理容器と、 液体ソース供給源から前記処理容器に液体ソースを供 給するように設けられた液体ソース供給路と、 前記液体ソース供給路に設けられ、 前記液体ソース供給路を流れる液体ソースの流量を所定の目標流量となるように 制御する流量制御機器と、 洗浄液供給源から前記液体ソース供給路の前記流量制 御機器の上流側に洗浄液を供給するように設けられた洗浄液供給路と、 前記洗浄 液供給路に設けられ、 前記洗浄液供給路を流れる洗浄液の流量を計測する機能お よび前記洗浄液供給路を流れる洗浄液の流量を所定の目標流量となるように制御 する機能の少なくとも一方の機能を有する検査用機器と、 を備え、 洗浄液を前記 検査用機器を通して前記流量制御機器に通流させることができるように構成され ている処理装置を提供する。
前記処理装置は、 洗浄液を前記検査用機器を通して前記流量制御機器に通流さ せた場合における、 前記流量制御機器に設定された洗浄液の目標流量と前記検査 用機器により測定された洗浄液の実際の流量との比較、 または洗浄液を前記検査 用機器を通して前記流量制御機器に通流させた場合における、 前記流量制御機器 に設けられた流量センサにより測定された洗浄液の実際の流量と前記検査用機器 に設定された目標流量との比較、 に基づいて前記流量制御機器が正常に動作して いるか否かを判定する判定部を更に備えることができる。
本発明は、 更に、 内部で液体ソースを用いて被処理体に処理が行われる処理容 器と、 液体ソース供給源から前記処理容器に液体ソースを供給するように設けら れた液体ソース供給路と、 前記液体ソース供給路に設けられ、 前記液体ソース供 給路を流れる液体ソースの流量を所定の目標流量となるように制御する流量制御 機器と、 洗浄液供給源から前記液体ソース供給路の前記流量制御機器の上流側に 洗浄液を供給するように設けられた洗浄液供給路と、 前記洗浄液供給路に一端が 接続されるとともに前記洗浄液供給路または前記液体ソース供給路に他端が接続 され、 洗浄液供給路の一部をバイパスするバイパス路と、 前記バイパス路に設け られ、 前記バイパス路を流れる洗浄液の流量を計測する機能および前記バイパス 路を流れる洗浄液の流量を所定の目標流量となるように制御する機能の少なくと も一方の機能を有する検査用機器と、 洗浄液が前記バイパス路を通して前記液体 ソース供給路に供給される第 1の状態と、 洗浄液が前記バイパス路を通らずに前 記液体ソース供給路に供給される第 2の状態とを切り替えることができるバルブ と、 を備え、 洗浄液を前記バイパス路に設けられた前記検査用機器を通して前記 流量制御機器に通流させることができるように構成されている処理装置を提供す る
前記処理装置は、 前記洗浄液供給路の前記一部に設けられ、 前記洗浄液供給路 の前記一部を通って前記液体ソース供給路に供給される洗浄液の流量を調節する 流量調節機器を更に備えることができる。
これに代えて、 前記処理装置は、 前記洗浄液供給路の前記一部より上流側に設 けられ、 少なくとも前記洗浄液供給路の前記一部を通って前記液体ソース供給路 に供給される洗浄液の流量を調節する流量調節機器を更に備えることができる。 本発明は、 更に、 内部で液体ソースを用いて被処理体に処理が行われる処理容 器と、 液体ソース供給源から前記処理容器に液体ソースを供給するように設けら れた液体ソース供給路と、 前記液体ソース供給路に設けられ、 前記液体ソース供 給路を流れる液体ソースの流量を所定の目標流量となるように制御する流量制御 機器と、 検査用機器であって、 該検査用機器を通って流れる洗浄液の流量を計測 する機能および該検査用機器を通って流れる洗浄液の流量を所定の目標流量とな るように制御する機能の少なくとも一方の機能を有する検査用機器と、 前記液体 ソース供給路に接続され、 前記検査用機器を通さないで洗浄液を前記液体ソース 供給路の流量制御機器の上流側に供給するように設けられた第 1の洗浄液供給路 と、 前記液体ソース供給路に接続されるとともに前記検査用機器が配置された部 分を有し、 前記検査用機器を通して洗浄液を前記液体ソース供給路の流量制御機 器の上流側に供給するように設けられた第 2の洗浄液供給路と、 を備えた処理装 置を提供する。
前記第 1の洗浄液供給路の少なくとも一部分が、 第 2の洗浄液供給路の少なく とも一部分と共有されていてもよい。 この場合、 前記処理装置は、 前記第 1の洗 浄液供給路のうちの前記第 2の洗浄液供給路と共有されていない部分に設けられ た流量調節機器を更に備えることができる。 また、 これに代えて、 前記第 1の洗 浄液供給路のうちの前記第 2の洗浄液供給路と共有されている前記少なくとも一 部分であって、 かつ、 前記検査用機器の上流側に設けられた流量調節機器を更に 備えることができる。 前記第 1の洗浄液供給路の少なくとも一部分が第 2の洗浄液供給路の少なくと も一部分と共有され留場合、 前記第 1の洗浄液流路および前記第 2の洗浄液流路 に洗浄液を供給する共通の洗浄液供給源を設けることが好適である。
なお、 前記第 1の洗浄液供給路および第 2の洗浄液供給路に全く共有部分が無 くてもよい。 この場合、 2つの洗浄液供給源が設けられる。
更に、 本発明は、 内部で液体ソースを用いて被処理体に処理が行われる処理容 器と、 前記処理容器に液体ソースを供給する液体ソース供給路と、 前記液体ソー ス供給路を流れる液体ソースの流量を制御する流量制御機器であって、 流量検出 部と、 流量調節バルブと、 流量検出部により検出された流体の流量が目標流量と なるように前記流量調節パルプの開度を調整するコントローラと、 を有する流量 制御機器と、 前記流量制御機器が正常に動作している場合における目標流量に関 連するデ一夕と前記流量調節バルブの開度に関連するデ一夕との関係を記憶した 記憶部と、 前記流量制御機器が実際に動作している場合における目標流量に関連 するデータと前記流量調節パルプの開度に関連するデ一夕との関係と、 前記記憶 部に記憶されている前記関係との比較結果に基づいて前記流量制御機器が正常に 動作しているかを判定する判定部と、 を備えた処理装置を提供する。
また、 本発明の第 2の観点によれば、 処理装置の保守方法であって、 前記処理 装置が、 液体ソースが液体ソース供給路に設けられた流量制御機器を介して処理 容器に供給されるように構成されているものにおいて、 洗浄液を、 該洗浄液の流 量を計測する機能および該洗浄液の流量を目標流量となるように制御する機能の 少なくとも一方の機能を有する検査用機器を介して、 前記流量制御機器に通流さ せる工程と、 洗浄液を前記検査用機器を通して前記流量制御機器に通流させた場 合における、 前記流量制御機器に設定された洗浄液の目標流量と前記検査用機器 により測定された洗浄液の実際の流量との比較、 または、 洗浄液を前記検査用機 器を通して前記流量制御機器に通流させた場合における、 前記流量制御機器に設 けられた流量センサにより測定された洗浄液の実際の流量と前記検査用機器に設 定された目標流量との比較を行う工程と、 前記比較に基づいて前記流量制御機器 が正常に動作しているか否かを判定する工程と、 を備えた方法が提供される。 また、 本発明は、 処理装置の保守方法であって、 前記処理装置が、 液体ソース が液体ソース供給路に設けられた流量制御機器を介して処理容器に供給されるよ うに構成されているものにおいて、 洗浄液を、 第 1の流量で前記液体ソース供給 路に通流して、 前記液体ソース供給路を洗浄する洗浄工程と、 洗浄液を、 第 2の 流量で前記流量制御機器に通流して、 前記流量制御機器を検査する検査工程と、 を備え、 前記検査行程は、 洗浄液を、 該洗浄液の流量を計測する機能および該洗 浄液の流量を目標流量となるように制御する機能の少なくとも一方の機能を有す る検査用機器を介して、 前記流量制御機器に通流させる工程と、 洗浄液を前記検 査用機器を通して前記流量制御機器に通流させた場合における、 前記流量制御機 器に設定された洗浄液の目標流量と前記検査用機器により測定された洗浄液の実 際の流量との比較、 または、 洗浄液を前記検査用機器を通して前記流量制御機器 に通流させた場合における、 前記流量制御機器に設けられた流量センサにより測 定された洗浄液の実際の流量と前記検査用機器に設定された目標流量との比較を 行う工程と、 前記比較に基づいて前記流量制御機器が正常に動作しているか否か を判定する工程と、 を含む方法を提供する。 図面の簡単な説明
図 1は、 本発明による処理装置の一実施形態の全体構成を示す図である。 図 2は、 本発明方法による図 1の処理装置のマスフローコントローラの校正手 順を示すフローチャート図である。
図 3は、 本発明による処理装置の他の実施の形態の全体構成を示す図である。 図 4は、 本発明による処理装置の他の実施の形態の全体構成を示す図である。 図 5は、 本発明による処理装置の他の実施の形態の全体構成を示す図である。 図 6は、 本発明による処理装置の他の実施の形態の要部構成を示す図である。 図 7は、 本発明による処理装置の他の実施の形態の要部構成を示す図である。 図 8は、 マスフローコントローラの設定流量とバルブ開度制御電圧との関係を 概略液に示すグラフ図である。
図 9は、 本発明による処理装置の他の実施の形態の全体構成を示す図である。 図 1 0は、 図 9の処理装置における液体ソース供給路の洗浄工程を示すフロー チヤ一卜図である。 図 11は、 本発明による処理装置の他の実施の形態の全体構成を示す図である。 図 12は、 本発明による処理装置の他の実施の形態の全体構成を示す図である。 好適な実施形態の説明
図 1は、 本発明による処理装置の一実施形態としての、 半導体ウェハ (以下ゥ ェハと略す) Wの表面に酸化タンタル (Ta25) 膜の成膜を行う基板処理装置 を示す図である。 図 1において、 符号 11は成膜ガスの原料となる液体ソースで あるペンタエトキシタンタル [T a (OC2H5) 5 :以下 「PE T」 と略す] が貯 留される液体ソースタンク (液体ソース供給源) である。 液体ソースタンク 1 1 は、 配管からなる液体ソース供給路 12を介し、 ウェハ Wに対する成膜処理 (ガ ス処理) が行われる処理容器 2と接続されている。
液体ソースタンク 1 1はガス管 13及びバルブ V 0を介して H eガス供給部 14に接続されており、 Heガス供給部 14から液体ソースタンク 11内に供給 された H eガスは液体ソースタンク 11内の PE Tを液体ソース供給路 12に送 り出す。 H eガスは PE Tに対する溶解量が小さい。 このため、 気化器 16内で PETを気化する際に、 ヒー夕の熱により P E T中に溶解した H eガスが気化し それが急激に膨張することにより、 PETの流量制御が乱されることはない。 こ のような観点から H eガスを使用することが好ましいが、 H eガス以外のガスを 用いることも可能である。
液体ソース供給路 12には、 バルブ VI 0、 V9、 VI、 液体流量制御機器で あるマスフ口一コントロ一ラ (以下 「MF C」 と略す) 15、 気化器 16及びバ ルプ V 2が上流側からこの順に介設されている。
MFC 15は、 流量調節バルブ、 流量センサ (流量計) 及びコントローラ (図 1にはいずれも図示せず) を含む一体型ユニットであり、 コントローラが設定流 量 (すなわち、 MFC 15に設定された目標流量) 及び流量センサの検出値に基 づいて流量調節バルブの開度を調節するものである。 酸化タンタル膜を成膜する ときの PETの流量は 0. 2cc/分程度とかなり少量であり、 このため MFC 15は0. l Occ/分〜 0. 5 Occ/分の範囲で流量調節可能なものが用いられ る。 一体型ユニッ トとしての M F C 1 5を設ける代わりに、 流量調節バルブ、 流量 センサ及びコントローラを別々に設けて流量制御機器を構成してもよい。 例えば、 コントローラを具備したマスフローメーターを M F C 1 5の代わりに設けて、 該 コントローラにより開度が制御される流量調節バルブを気化器 1 6の中に組み込 むこともできる。
気化器 1 6には、 H eガスなどのキヤリァガスを供給するためのキヤリァガス 供給源 1 7が接続されている。 気化器 1 6内で、 図示しない内蔵ヒー夕にて 1 6 0 °C程度にキャリアガスが加熱される。 P E Tは、 加熱されたキャリアガス と共に気化器 1 6内の図示しないァクチユエ一夕に供給されてそこで気化され、 成膜ガスとして処理容器 2に向けて送り出される。
処理容器 2の内部には、 ウェハ Wを載置するための載置台 2 1が設けられてい る。 載置台 2 1内には、 成膜処理時にウェハ Wを裏面側から加熱する図示しない ヒー夕が埋設されている。 処理容器 2の天井部には、 図示しない多数の孔がその 下部に形成されたシャワーへッド 2 2が設けられている。 シャワーへヅド 2 2は、 既述の液体ソース供給路 1 2を介して供給される成膜ガスと、 酸素ガス供給部 2 3から供給される酸素 (0 ガスとの両方を、 載置台 2 1に載置されたウェハ Wに向けて供給する。
処理容器 2の底部には排気口 2 4が設けられており、 そこには配管からなる排 気路 2 5が接続されている。 排気路 2 5の他端は真空ポンプ 2 6 (排気手段) に 接続されている。 排気路 2 5にはバルブ V 3が介設されており、 排気路 2 5のバ ルプ V 3と真空ポンプ 2 6との間には、 気化器 1 6とバルブ V 2との間の分岐点 P 1で液体ソース供給路 1 2から分岐したバイパス路 1 8が接続されている。 ノ ィパス路 1 8は、 液体ソース供給路 1 2の洗浄の際に用いられる。
バイパス路 1 8にはバルブ V 4が介設されており、 バルブ V 2, V 4を連動さ せて切り替えることにより、 分岐点 P 1の下流側の流体の通流経路を切り替える ことができる。
次いで、 液体ソース供給路 1 2の洗浄及び M F C 1 5の検査のために用いられ る部位について説明する。
図 1において、 符号 3 1は洗浄液タンク (洗浄液供給源) であり、 その内部に は液体ソース供給路 1 2内にある P E Tを洗い流すための洗浄液例えばェ夕ノ一 ル (C 2 H 5 O H ) が貯留されている。 エタノールは親水性であるため、 新しい配 管あるいはメンテナンス後に接続された配管の中を通すことにより配管の内壁に 付着している水分を除去できる。 エタノールはそれ自身が水分を含みやすいため、 エタノールの含水量は 1 0 0 O p p m以下に維持することが好ましい。 洗浄液は、 エタノールに限られず、 他のアルコールあるいはァセトンなどの有機溶剤であつ てもよい。 洗浄液は必ずしも親水性のものに限られるものではなく、 P E Tを洗 浄できる疎水性薬液例えばへキサンあるいはオクタンであってもよい。
洗浄液タンク 3 1から洗浄液供給路 3 2が延びており、 洗浄液供給路 3 2はバ ルブ V 1及び V 9の間の位置 (接続点 P 2 ) で液体ソース供給路 1 2に接続され ている。 洗浄液タンク 3 1には、 ガス供給路 3 3を介して窒素 (N 2) ガス供給源 3 4が接続されている。 ガス供給路 3 3に介設されるバルブ V 5を開けることに より、 窒素ガスの圧力により洗浄液タンク 3 1内の洗浄液が洗浄液供給路 3 2に 送り出され、 液体ソース供給路 1 2に向かう。
洗浄液供給路 3 2には、 洗浄液タンク 3 1側から順に、 洗浄液の流量調節機器 である二一ドルバルブ 3 5、 バルブ V 6及びバルブ V 7が介設されている。 また 液体ソース供給路 1 2のバルブ V 9及び V I 0の間から、 排出路 3 0が分岐して いる。 排出路 3 0はバルブ V 1 1を介して図示しないドレインタンクに接続され ている。 排出路 3 0は、 液体ソース供給路 1 2の洗浄時に用いられる。
洗浄液供給路 3 2には、 洗浄液供給路 3 2のニードルバルブ 3 5及びバルブ V 6が設けられた部分を迂回するバイパス路 4 1が接続されている。 パイパス路 4 1には、 上流側から順に、 検査用機器としてのマスフ口一メータ (以下 M F M と略す) 4 2とバルブ V 8とが介設されている。 バルブ V 6及びバルブ V 8を切 り替えることにより、 洗浄液供給路 3 2の二一ドルバルブ 3 5が設けられている 部分または M F M 4 2が設けられているバイパス路 4 1のいずれか一方のみに、 選択的に洗浄液を流すことができる。 すなわち、 処理装置には、 洗浄液タンク 3 1から二一ドルバルブ 3 5を経て液体ソース供給路 1 2に接続される第 1の洗 浄液供給路と、 前記第 1の洗浄液供給路と一部を共有するとともに洗浄液タンク 3 1から M F M 4 2を経て液体ソース供給路 1 2に接続される第 2の洗浄液供給 路が設けられていることになる。
ニードルバルブ 35は、 液体ソース供給路 12および/または液体ソース供給 路 12に設けられた MFC 15等の機器を洗浄する際に、 洗浄液の流量を調節す るために用いられる。 ニードルバルブ 35は、 5 cc/分程度の流量で洗浄液を通 すように調節される。 洗浄時には、 精密な流量調整は必要ないため、 洗浄液の流 量調節機器は、 そこを通って流れる流体の流量をモニタしつつ自動制御する機能 を持っている必要は無く、 手動で大まかな流量調節ができれば十分である。 本実 施形態では、 このような要求を満足する廉価な流量調節機器としてニードルバル ブ 35を用いているが、 他の形式の流量調節機器を用いることもできる。
MFM42は、 MF C 15を検査するための機器として設けられるものである から、 MF C 15の既述の流量調整範囲に対応した測定範囲、 例えば 0. l Occ /分〜 0. 5 Occ/分を持つものが用いられる。 MFM 42の流量検出精度は、 MF C 15の流量制御精度と概ね同等か、 それ以上であることが望ましい。 なお、 このような流量検出精度を持つものであれば、 MFM42に代えてマスフ口一メ —夕とは異なる形式の流量計測機器を用いることもできる。
上述した 0. 10 /分〜0. 5 Occ/分を測定範囲とする MFM 42を通し て流すことができる最大洗浄液流量は、 洗浄時における好ましい洗浄液流量 (本 例では 5 cc/分程度) より小さい。 従って、 洗浄時に望まれる大流量で洗浄液を 流すことができるように、 MFM42を迂回するバイパス路 41が設けられてい る。
MF C 15及び流量計 42は、 コンピュータ 5と接続されている。 コンビュ一 夕 5は、 好適には、 この処理装置全体の動作を制御するシステムコントローラ
(図示せず) の一部として構成される。 コンピュータ 5は、 バイパス路 41を介 して MF C 15に洗浄液を流したときに、 MFC 15の設定流量あるいは MF C
15内蔵の流量センサにより検出された流量と、 M F M 42により測定された流 量と、 に基づいて MF C 15が正常に動作しているか否かを判定する機能を有す る。 コンピュータ 5はさらに、 MF C 15の動作状態が正常であると判定したと きには、 図示しない表示部に MFC 15が正常である旨の表示を行う一方、 MFC 15の動作状態が異常であると判定したときには、 図示しない表示部に MFC 15が異常である旨の表示を行う機能を備えている。 また、 コンピュータ 5は、 MFC 15が異常であると判断したときにアラームを発する機能を備えて いてもよいし、 成膜処理の開始を禁止する信号を発信する機能を備えていてもよ い。
次に作用について説明する。 まず成膜処理に関して簡単に述べる。 処理容器 2 の側部に設けられる図示しないゲ一トバルブを介して、 載置台 21へとウェハ W が搬入される。 真空ポンプ 26が作動し、 バルブ V3の開度の調節により処理容 器 2内が所定の真空度に維持される。 載置台 21に埋設された図示しないヒー夕 により、 ウェハ Wが加熱されてその表面温度が所定のプロセス温度とされる。 こ の状態で、 PE T蒸気及び酸素ガスがシャワーへッ ド 22を介してウェハ Wに供 給されると、 化学的気相反応によりウェハ Wの表面全体に酸化タンタル(T a25) の薄膜が形成される。 このとき前述した図示しないシステムコントローラは、 MF C 15により液体ソース供給路 12内を流れる PE Tの流量を所定流量例え ば 0. 12 cc/分に調節しており、 また図示しないガスマスフ口一コントローラ により酸素ガスの供給流量を所定流量に調節している。
成膜処理を繰り返し行うことにより液体ソースタンク 11内の PETが消費さ れタンク 11が空になると、 タンク 11が交換される。 この交換作業は、 液体ソ —ス供給路 12のバルブ VI 0から下流側の配管を取り外し、 新しいタンク 1 1 に取り付けられた配管をバルブ V 10に接続することにより行われる。 この交換 作業の前に、 バルブ VI 0の下流側の配管内を洗浄して PETを除去しておく。
この洗浄作業を行うときには、 バルブ V 8を閉じ、 バルブ V 6を開いて、 二一 ドルバルブ 35を洗浄液流量が 5 cc/分程度となるように調節して洗浄液の供給 を行う。 このとき、 バルブ VI、 VI 0を閉じ、 バルブ V7、 V9、 VI Iを開 いておくことにより、 洗浄液は、 液体ソース供給路 12のバルブ V 1と V 10と の間の領域を洗浄してそこにある PE Tを除去し、 PE Tとともに排出路 30を 通って図示しないドレインタンクに排出される。 なお、 前述したように洗浄時の 洗浄液の流量は厳密に管理する必要はないため、 洗浄液の流量調整は、 ニードル バルブ 35の閧度を経験に基づいて手動調節することにより行われる。
次に、 MFC 15の検査を次のようにして行う。 まず、 バルブ V6、 V9、 V2を閉じ、 バルブ V8, V7, VI, V 4を開いた状態にする (図 2のステツ プ S 1) 。 しかる後、 バルブ V 5を開いて洗浄液タンク 31内の洗浄液を洗浄液 供給路 32内に送り出し、 該洗浄液を MFM42を介して MFC 15に通流し、 気化器 16で気化してバイパス路 18を通じて排気する (ステップ S 2) 。 この ときの洗浄液の流量は、 MFC15を用いて、 MFC 15により制御可能な範囲 内の流量、 例えば成膜時の PETの流量に対応する流量 (0. 12cc/分) に設 定する。 コンピュータ 5は、 MFC 15の設定流量 (MFC 15にプリセヅトさ れた目標流量) と MFM42により測定された流量との比較を行い、 両者が一致 しているか否かの判定、 例えばその差が許容範囲 (例えば、 装置に許容される測 定誤差の範囲) 内にあるか否かの判定を行う (ステップ S3) 。 許容範囲内であ れば MFC 15には設定流量通りの流量で洗浄液が流れているので、 MFC 15 は正常に動作しており、 この場合、 図示しないモニタなどの表示部に正常である 旨の表示が行われる (ステヅプ S 4) 。 しかし許容範囲を外れていれば、 MFC 15には設定流量通りの流量で洗浄液が流れていないことになるので、 コンビュ —夕 5は異常がある旨の表示を行い (ステップ S 5)、 かつ例えばアラームが発 せられる。
異常の表示がなされた場合には、 MFC 15内に固化した PETが付着してい る可能性が大きいので、 MFC 15を新たなものと交換する。
MFC 15を交換するときには、 液体ソース供給路 12を分解するため、 供給 路 12の各パーヅが外気に触れて、 既述のように外気に含まれる水分とパーヅ上 の P E Tとが反応して固化するおそれがある。 このためこの分解作業の前後には 液体ソース供給路 12内の洗浄が行われる。 このとき、 バルブ V8、 V6を切り 替えて、 ニードルバルブ 35を介して液体ソース供給路 12に洗浄液を供給する。 また、 このとき、 MFC 15に対して、 MF C 15に内蔵された流量調節バルブ の開度を全開にする信号を与える。 これにより、 MFC 15の通常動作時の流量 制御範囲を越えた大きな流量で洗浄液を MF C 15内に流すことができる。
上述の実施形態では、 洗浄液供給路 32に MFM42を設けて、 液体ソースの 流量制御用の MF C 15に洗浄液を流し、 MF C 15の設定流量と MFM42の 流量測定値とを比較することにより MFC 15の検査を行っている。 このため、 MFC 15を取り外すことなく MFC 15の検査を行うことができる。 このため、 MFC 15の脱着の際に大気中の水分と PETとが反応するリスクを回避するこ とができる。
また、 上述の実施形態では、 洗浄液供給路 32に、 MFC 15の検査時に用い る MFM 42を介設したパイパス路 41を接続している。 このため、 洗浄時には 大流量で洗浄液を流して速やかに洗浄を行うことができ、 MF C 15の検査時に は成膜時の液体ソースの流量に見合った小さな流量で洗浄液を流すことができる。 なお、 バイパス路の配置形態は図 1に示すものに限定されるものではなく、 図 3に示すようにバイパス路を配置してもよい。 図 3に示す実施形態では、 バイパ ス路 41 ' の一端が洗浄液供給路 32のバルブ V 7の上流側に接続され、 バイパ ス路 41' の他端が液体ソース供給路 12のバルブ VIと MFC 15の間の接続 点 P 3に接続されている。 この場合、 処理装置には、 洗浄液タンク 31からニー ドルバルブ 35を経て液体ソース供給路 12に接続点 P 2で接続される第 1の洗 浄液供給路と、 前記第 1の洗浄液供給路と一部を共有するとともに洗浄液タンク 31からニードルバルブ 35および MFM42を経て液体ソース供給路 12に接 続点 P 3で接続される第 2の洗浄液供給路が設けられていることになる。 この場 合、 バルブ V7、 V8、 V 1を適宜切り替えることにより、 第 1の洗浄液供給路 または第 2の洗浄液供給路のいずれかにより洗浄液を供給することができる。 また、 図 4に示すようにバイパス路を配置してもよい。 図 4に示す実施形態で は、 バイパス路 41, , の一端が洗浄液供給路 32のバルブ V 6と二一ドルバル ブ 35との間に接続され、 バイパス路 415 ' の他端が液体ソース供給路 12の バルブ V 1と MF C 15の間の接続点 P 3に接続されている。 この場合、 処理装 置には、 洗浄液タンク 3 1からニードルバルブ 35を経て液体ソース供給路 1 2 に接続点 P 2で接続される第 1の洗浄液供給路と、 前記第 1の洗浄液供給路と一 部を共有するとともに洗浄液タンク 3 1から二一ドルバルブ 35および MFM4 2を経て液体ソース供給路 12に接続点 P 3で接続される第 2の洗浄液供給路が 設けられていることになる。 この場合、 バルブ V6、 V7、 V8、 V Iを適宜切 り替えることにより、 第 1の洗浄液供給路または第 2の洗浄液供給路により選択 的に洗浄液を供給することができる。 また、 図 11に示すように、 2つの洗浄液タンク 31、 31, を設けてもよい。 この場合、 処理装置には、 洗浄液タンク 31からニードルバルブ 35を経て液体 ソース供給路 12に接続点 P 2で接続される第 1の洗浄液供給路 (32) と、 洗 浄液タンク 315 から MFM42を絰て液体ソース供給路 12に接続点 P4で接 続されるとともに前記第 1の洗浄液供給路と共用される部分を持たない第 2の洗 浄液供給路 (32, ) が設けられていることになる。
また、 図 12に示すように、 2つの洗浄液タンク 31、 31' を設けてもよい。 この場合、 処理装置には、 洗浄液タンク 31から二一ドルバルブ 35を経て液体 ソース供給路 12に接続点 P 2で接続される第 1の洗浄液供給路と、 前記第 1の 洗浄液供給路と一部を共有するとともに洗浄液タンク 31' から MFM42を経 て液体ソース供給路 12に接続点 P 2で接続される第 2の洗浄液供給路が設けら れていることになる。
上述した構成は、 図 5に示すように複数の処理容器に対して共通の液体ソース タンク 11及び洗浄液タンク 31が設けられている処理装置に対しても適用でき る。 図 5に示す実施形態は、 図 1に示す処理装置の構成を基礎として、 バルブ V 9の上流側で液体ソース供給路 12を 3系統に分岐すると共に、 バルブ V 7の 上流側で洗浄液供給路 32を 3系統に分岐した構成に相当する。 図 5に示す実施 形態においては、 校正対象の MF C 15に対応するバルブ V 7を開くことにより、 共通の検査用機器である MFM 42を用いて所望の MF C 15の校正を行うこと ができる。 なお、 図 5においては、 図面の簡略化のため、 バルブ VIより下流側 の部材 (バイパス路 18、 排気路 25, バルブ V3、 真空ポンプ 26 ) がー部省 略されているが、 これらの部材も実際には各処理容器ごとに図 1に示すように配 置されている。
検査用機器として、 上記実施形態で用いた MFM42 (流量計測機機器) の代 わりに流量制御機器を用いてもよい。 この場合流量制御機器としては、 流量制御 範囲が液体ソース用の MF C 15の流量制御範囲と重複するもの、 例えば MFC 15と同じマスフ口一コントローラを用いることができる。 MF C 15内蔵の流 量センサの検出値が検査用の MF Cの設定流量と一致しているかを調べることに より、 あるいは逆に検査用の MF C内蔵の流量センサの検出値が MF C 15の設 定流量と一致しているかを調べることにより、 MFC 15の検査を行うことがで きる。
この場合、 バイパス路 (41, 41' , 41" ) を設けることなく、 図 6に示 すように、 洗浄液供給路 32の二一ドルバルブ 35の上流側に検査用の MFC 6 1を設けてもよい。 洗浄作業の効率向上の観点から、 MFC61は、 それに内蔵 された流量調整バルブを全開にしておくことで通常動作時の制御可能範囲を越え た大流量の洗浄液を流すことができるものが好ましい。 通常動作時の制御可能範 囲を越えた大流量の洗浄液を流すことのできない MF Cを用いる場合には、 該制 御可能範囲の流量で洗浄を行うことになる。 図 6に示す配置の場合、 MFC 61 の代わりにマスフローメ一夕等の流量計測機器を用いることも可能ではあるが、 その場合の洗浄液流量は該流量計測機器に許容される最大流量により制限されて しょつ。
なお、 図 6に示す構成からニードルバルブ 35を除くこともできる。 この場合、 MFC 61は、 洗浄時の洗浄液流量を調節するための機器、 並びに検査用機器と して兼用することができる。
次に、 図 7および図 8を参照して本発明の他の実施形態について説明する。 図 7に示すように、 MFC 15は、 流量検出部 (流量センサ) 71と、 この流量検 出部 71で検出された流量と設定流量とを比較しその偏差に基づいて操作信号を 出力するコントローラ 72と、 前記操作信号によりァクチユエ一夕 73を介して 開度が調節される流量調節バルブ 74と、 を備えている。 符号 8はコンピュータ であり、 記憶部 81及び判定手段 82を備えている。 記憶部 81には、 正常に動 作している MF C 15に対して洗浄液を通流したときに、 MF C 15の設定流量 に対応するデ一夕 (例えば、 MF C 15の設定流量を示すデータ、 または前述し たシステムコントローラから MFC 15に送られる MFC 15の設定流量をセヅ トするための指令信号に相当するデ一夕) と前記設定流量に対応するバルブ開度 に対応するデータ (例えば、 ァクチユエ一夕 73の変位を示す信号に対応するデ —夕、 またはァクチユエ一夕 73の制御電圧を示すデータ) が記憶されている。 図 7に示す実施形態では、 処理装置全体の構成はバイパス路 41、 MFM42お よびバルブ V 8を設けない他は、 図 1の構成と同じでよい。 MFC 15を検査する場合には、 MFC 15の設定流量を記憶部 81に記憶さ れている設定流量と同じ値に設定して MF C 15に洗浄液を流す。 コンピュータ 8は、 そのときの実際のバルブ開度に対応するデ一夕 (ここではァクチユエ一夕 73の変位を示す信号) を取り込み、 記憶部 81に記憶されているバルブ開度に 対応するデ一夕と一致しているかを判定手段 82にて比較し、 この比較に基づい て MF C 15が正常に動作しているか否かを判定する。
図 8は、 MFM15の設定流量とバルブ開度に対応するバルブ制御電圧との関 係を示したグラフであり、 実線 aは M F M 15が正常に動作している場合の関係 を示す。 PETが MFC 15の流量検出に関わる部位に付着すると、 流量検出感 度が鈍くなる。 もし洗浄液が 0. 2cc流れているのに 0. Iceの検出値しか得ら れないとすると、 同じ設定流量でもバルブの開度が大きくなつて実線 bのように 傾きが大きくなる。 従って、 上述のように実際のバルブ開度と記憶されているバ ルブ開度を比較することにより、 MFC 15が正常に動作しているか否かを判定 することができる。 この手法を実施するにあたり、 予め設定流量とバルブの開度 信号との関係を示す関数 (例えば図 8で示す直線 aで示されるもの) を求めてお き、 検査時の設定流量および実際のバルブ開度が前記関数に適合するか否かによ り、 判定を行うこともできる。
図 7に示す実施形態によれば、 洗浄液供給路 32に検査用機器を設けなくとも、 MFC 15を取り外すことなしにその校正を行うことができる。 次に、 図 9を参照して、 本発明の更に他の実施形態について説明する。 図 9に 示す処理装置は、 図 1に示す記載した処理装置に対して次の点が異る。
(1) 洗浄液タンク 31内に窒素ガスを供給して洗浄液を送り出すためのガス 供給路 33に分岐路 33' を接続し、 この分岐路 33' を洗浄液供給路 32のバ ルプ V 6の下流側に接続すると共に、 この分岐路 33' にバルブ VI 2を設けて いる。
(2) ガス供給路 33の分岐路 33' が接続される位置より下流側にバルブ V 13を設け、 バルブ VI 2、 VI 3を切り替えることにより、 窒素ガスを洗浄液 タンク 31側に供給して洗浄液を洗浄液供給路 32に送るモードと窒素ガスを洗 浄液タンク 31をバイパスして直接洗浄液供給路 32に送るモードとを選択でき るようになっている。
(3)窒素ガス供給源 34とバルブ V 5との間に圧力調整器 36が設けられて いる。
(4)液体ソース供給路 12のバルブ V9、 V 10の間から分岐された排出路 30はドレインタンク 9を経由してさらに延び、 処理容器 2の排気を行うための 排気路 25に接続されている。 ドレインタンク 9は密閉容器で構成され、 その上 面には液体ソース供給路 12側の排出路 30 ( 30 a) 及び真空ポンプ 26側の 排出路 30 (30 b) が夫々バルブ V 14及び V 15を介して接続されている。 次に、 図 9に示す処理装置において液体ソース供給路 12を洗浄する手法につ いて図 9および図 10を参照しながら述べる。 以下の説明は、 配管あるいは MF C 15などの機器の交換や液体ソ一スタンク 11の交換等のメンテナンスを行う 際に、 液体ソース供給路 12を大気に開放する前に液体ソース供給路 12を洗浄 しょうとする場合を想定している。 まず、 液体ソース供給路 12のパルプ V 2及 ぴバルブ VI 0を閉じる。 そして、 バルブ V2, V 10間にあるバルブ V 9、 V 1及びバイパス路 18のバルブ V 4を開き、 バルブ VI 3、 V6、 V8を閉じ、 バルブ V5、 VI 2、 V 7及び排出路 30のバルブ V 11、 VI 4、 VI 5を閧 いた状態にする。
これにより、 窒素ガス供給源 34から液体ソース供給路 12およびバイパス路 18を順次絰て真空ポンプ 26に至る流路と、 窒素ガス供給源 34から液体ソー ス供給路 12および排出路 30を順次経て真空ポンプ 26に至る流路が形成され、 窒素ガス供給源 34からの窒素が洗浄液供給路 32を通って液体ソース供給路 12に流入する。 この結果 PETが真空ポンプ 26側に圧送され、 配管内が窒素 ガスにより置換される (ステップ S 1) 。 この場合、 点 P 2から下流側に存在す る PETは気化器 16で気化されてバイパス路 18を介して排気される。 また、 点 P 2とバルブ V 10との間に存在する PETは排気路 30 ( 30 a) を通って 一旦ドレインタンク 9に溜められ、 窒素ガスは排気路 30 ( 30 b) を介してお^ < れる
ドレインタンク 9を設けない場合には、 PETは排気路 30から排気路 25に 流出したときに一気に気化するので真空ポンプ 2 6の負荷が大きくなつてしまう。 しかし、 図 9の実施形態のようにドレインタンク 9を設けることにより、 P E T を一旦溜めるバッファが存在することになるので、 真空ポンプ 2 6の負荷を小さ くできる利点がある。
次に、 ガス供給路 3 3のバルブ V 5を閉じて窒素ガスの供給を止め、 バルブ V 5の下流側の配管、 即ち洗浄液供給路 3 2、 液体ソース供給路 1 2及び排出路 3 0内を真空ポンプ 2 6により排気する (ステヅプ S 2 ) 。 その後、 分岐路 3 3 , のバルブ V 1 2と排出路 3 0のバルブ V 1 1とバイパス路 1 8のバルブ V 4を 閉じ、 ノ レブ V I 3、 V 6を開く。 これにより窒素ガスが洗浄液タンク 3 1内に 供給されてここから洗浄液が圧送される。 このとき、 洗浄液供給路 3 2及び液体 ソース供給路 1 2は減圧雰囲気とされているので、 この中に洗浄液が流入して満 たされる (ステップ S 3 ) 。 そして 5秒〜 3 0分後にステップ S 1と同様のバル プ操作を行って、 窒素ガス供給源 3 4から、 液体ソース供給路 1 2およびバイパ ス路 1 8を順次経て真空ポンプ 2 6に至る第 1の流体流路と、 窒素ガス供給源 3 4から、 液体ソース供給路 1 2、 排出路 3 0を順次経て真空ポンプ 2 6に至る 第 2の流体流路を形成し、 窒素ガスにより洗浄液供給路 3 2及び液体ソース供給 路 1 2内の洗浄液を圧送して排出する (ステップ S 4 ) 。 その後引き続き窒素ガ スを流し続け、 配管内を窒素ガスで置換する (ステップ S 5 ) 。
しかる後、 ステップ S 2と同様に窒素ガス供給源 3 4側のバルブ V 5を閉じて 窒素ガスの供給を止めて、 洗浄液供給路 3 2、 液体ソース供給路 1 2及び排出路 3 0内を真空ポンプ 2 6により排気する (ステップ S 6 ) 。 続いてバルブ V 5を 開くと共に圧力調整部 3 6により窒素ガスの圧力を調整して、 配管内を大気圧の 窒素ガスで満たす (ステップ S 7 ) 。 その後バルブ V 5を閉じる。 このようなに して配管の洗浄が終了した後、 液体供給路 1 2を分解して大気に開放し、 配管あ るいは M F C 1 5などの機器の交換や液体ソースタンク 1 1の交換といったメン テナンス作業が行われる。
そしてメンテナンス作業が終了して液体ソ一ス供給路 1 2を接続した後は、 図 1 0に示すステップ S 2〜S 6と同様の工程を行う。 即ち配管内を真空引きした 後洗浄液で満たし、 その後窒素ガスを供給して洗浄液を排出し、 更に真空引きす る。 洗浄液としては既述のようにエタノールを用いることができる。 エタノール を真空排気するときに配管内に水分が微量に存在していたとしても、 またェ夕ノ —ル中に微量に水分が存在していたとしても、 エタノールと水との混合物の沸点 がエタノールの沸点よりも低いため当該混合物が先に蒸発し (共沸現象)、 この ため配管内には実質的に水分は残らない。 またメンテナンス前後に行われるこれ ら洗浄工程において、 ステップ S 5およびステップ S 6を複数回繰り返して行え ば、 配管内に微量な液体が残留していても効率よくこれを排除することができる。 その後バルブ V 7、 V I I、 V 4を閉じ、 液体ソースタンク 1 1の入り口側のバ ルブ V 0及び出口側のバルブ V 1 0を開くことにより、 ヘリウムガスにより液体 ソースタンク 1 1内の P E Tが押し出されて真空雰囲気の液体ソース供給路 1 2 内に流入し、 この中が P E Tで満たされる。 このような洗浄工程は、 例えば装置 の新規設置時に配管を施工した後においても行われ、 この後酸化タンタルの成膜 工程が実施される。
メンテナンス前後に行われる上述の洗浄工程は、 処理装置全体の動作を制御す るシステムコントローラのメモリ内に格納されているプログラムに基づいて各バ ルブの開閉制御を行うことにより実施される。
上記洗浄方法によれば、 配管内に存在する P E Tおよび/または洗浄液を窒素 ガスにより追い出しているので、 それら液体を速やかに除去することができ、 残 存する液体の量を極めて微量に抑えることができる。 そして前記液体と置き換え られた窒素ガスを真空引きしているため、 配管内に液体が微量に残っていても窒 素ガスとともに排出され、 結果として迅速かつ確実に P E Tあるいは洗浄液を除 去することができる。 また、 配管内に存在する空気も排出される。 従って、 洗浄 後に、 水分に非常に敏感な原料ガスである P E Tを供給しても P E Tの固化等の 問題は発生しない。
なお、 本発明は液体ソースを気化器で気化して処理容器に供給するように構成 された処理装置に限らず、 液体ソースを処理容器に液体状態のまま供給して処理 容器内で気化するように構成された処理装置にも適用できる。

Claims

請 求 の 範 囲
1 . 処理装置において、
内部で液体ソースを用いて被処理体に処理が行われる処理容器と、
液体ソース供給源から前記処理容器に液体ソースを供給するように設けられた 液体ソース供給路と、
前記液体ソース供給路に設けられ、 前記液体ソース供給路を流れる液体ソース の流量を所定の目標流量となるように制御する流量制御機器と、
洗浄液供給源から前記液体ソース供給路の前記流量制御機器の上流側に洗浄液 を供給するように設けられた洗浄液供給路と、
前記洗浄液供給路に設けられ、 前記洗浄液供給路を流れる洗浄液の流量を計測 する機能および前記洗浄液供給路を流れる洗浄液の流量を所定の目標流量となる ように制御する機能の少なくとも一方の機能を有する検査用機器と、
を備え、
洗浄液を前記検査用機器を通して前記流量制御機器に通流させることができる ように構成されている処理装置。
2 . 請求項 1に記載の処理装置において、
洗浄液を前記検査用機器を通して前記流量制御機器に通流させた場合における、 前記流量制御機器に設定された洗浄液の目標流量と前記検査用機器により測定さ れた洗浄液の実際の流量との比較、 または
洗浄液を前記検査用機器を通して前記流量制御機器に通流させた場合における、 前記流量制御機器に設けられた流量センサにより測定された洗浄液の実際の流量 と前記検査用機器に設定された目標流量との比較、
に基づいて前記流量制御機器が正常に動作しているか否かを判定する判定部を更 に備えている、
ことを特徴とする処理装置。
3 . 処理装置において、
内部で液体ソースを用いて被処理体に処理が行われる処理容器と、 液体ソース供給源から前記処理容器に液体ソースを供給するように設けられた 液体ソース供給路と、
前記液体ソース供給路に設けられ、 前記液体ソース供給路を流れる液体ソース の流量を所定の目標流量となるように制御する流量制御機器と、
洗浄液供給源から前記液体ソース供給路の前記流量制御機器の上流側に洗浄液 を供給するように設けられた洗浄液供給路と、
前記洗浄液供給路に一端が接続されるとともに前記洗浄液供給路または前記液 体ソース供給路に他端が接続され、 洗浄液供給路の一部をパイパスするバイパス 路と、
前記バイパス路に設けられ、 前記バイパス路を流れる洗浄液の流量を計測する 機能および前記バイパス路を流れる洗浄液の流量を所定の目標流量となるように 制御する機能の少なくとも一方の機能を有する検査用機器と、
洗浄液が前記バイパス路を通して前記液体ソース供給路に供給される第 1の状 態と、 洗浄液が前記バイパス路を通らずに前記液体ソース供給路に供給される第 2の状態とを切り替えることができるバルブと、
を備え、
洗浄液を前記バイパス路に設けられた検査用機器を通して前記流量制御機器に 通流させることができるように構成されている処理装置。
4 . 請求項 3に記載の処理装置において、
前記洗浄液供給路の前記一部に設けられ、 前記洗浄液供給路の前記一部を通つ て前記液体ソース供給路に供給される洗浄液の流量を調節する流量調節機器を更 に備えている、
ことを特徴とする処理装置。
5 . 請求項 3に記載の処理装置において、
前記洗浄液供給路の前記一部より上流側に設けられ、 少なくとも前記洗浄液供 給路の前記一部を通って前記液体ソース供給路に供給される洗浄液の流量を調節 する流量調節機器を更に備えている、 ことを特徴とする処理装置。
6 . 処理装置において、
内部で液体ソースを用いて被処理体に処理が行われる処理容器と、
液体ソ―ス供給源から前記処理容器に液体ソースを供給するように設けられた 液体ソース供給路と、
前記液体ソース供給路に設けられ、 前記液体ソース供給路を流れる液体ソース の流量を所定の目標流量となるように制御する流量制御機器と、
検査用機器であって、 該検査用機器を通って流れる洗浄液の流量を計測する機 能および該検査用機器を通って流れる洗浄液の流量を所定の目標流量となるよう に制御する機能の少なくとも一方の機能を有する検査用機器と、
前記液体ソース供給路に接続され、 前記検査用機器を通さないで洗浄液を前記 液体ソース供給路の流量制御機器の上流側に供給するように設けられた第 1の洗 浄液供給路と、
前記液体ソース供給路に接続されるとともに前記検査用機器が配置された部分 を有し、 前記検査用機器を通して洗浄液を前記液体ソース供給路の流量制御機器 の上流側に供給するように設けられた第 2の洗浄液供給路と、
を備えた処理装置。
7 . 請求項 6に記載の処理装置において、
前記第 1の洗浄液供給路の少なくとも一部分が、 第 2の洗浄液供給路の少なく とも一部分と共有されている
ことを特徴とする処理装置。
8 . 請求項 7に記載の処理装置において、
前記第 1の洗浄液供給路のうちの前記第 2の洗浄液供給路と共有されていない 部分に設けられた流量調節機器を更に備えている
ことを特徴とする処理装置。 Z3
9 . 請求項 Ίに記載の処理装置において、
前記第 1の洗浄液供給路のうちの前記第 2の洗浄液供給路と共有されている前 記少なくとも一部分であって、 かつ、 前記検査用機器の上流側に設けられた流量 調節機器を更に備えている
ことを特徴とする処理装置。
1 0 . 請求項 6に記載の処理装置において、
前記第 1の洗浄液流路および前記第 2の洗浄液流路に洗浄液を供給する共通の 洗浄液供給源を更に備えている
ことを特徴とする処理装置。
1 1 . 処理装置において、
内部で液体ソースを用いて被処理体に処理が行われる処理容器と、
前記処理容器に液体ソースを供給する液体ソース供給路と、
前記液体ソース供給路を流れる液体ソースの流量を制御する流量制御機器であ つて、 流量検出部と、 流量調節バルブと、 流量検出部により検出された流体の流 量が目標流量となるように前記流量調節バルブの閧度を調整するコントローラと、 を有する流量制御機器と、
前記流量制御機器が正常に動作している場合における前記目標流量に関連する デ一夕と前記流量調節バルブの閧度に関連するデ一夕との関係を記憶した記憶部 と、
前記流量制御機器が実際に動作している場合における目標流量に関連するデー 夕と前記流量調節バルブの開度に関連するデ一夕との関係と、 前記記憶部に記憶 されている前記関係との比較結果に基づいて前記流量制御機器が正常に動作して いるかを判定する判定部と、
を備えた処理装置。
1 2 . 処理装置の保守方法であって、 前記処理装置が、 液体ソースが液体ソ ース供給路に設けられた流量制御機器を介して処理容器に供給されるように構成 されているものにおいて、
洗浄液を、 該洗浄液の流量を計測する機能おょぴ該洗浄液の流量を目標流量と なるように制御する機能の少なくとも一方の機能を有する検査用機器を介して、 前記流量制御機器に通流させる工程と、
洗浄液を前記検査用機器を通して前記流量制御機器に通流させた場合における、 前記流量制御機器に設定された洗浄液の目標流量と前記検査用機器により測定さ れた洗浄液の実際の流量との比較、 または、 洗浄液を前記検査用機器を通して前 記流量制御機器に通流させた場合における、 前記流量制御機器に設けられた流量 センサにより測定された洗浄液の実際の流量と前記検査用機器に設定された目標 流量との比較を行う工程と、
前記比較に基づいて前記流量制御機器が正常に動作しているか否かを判定する 工程と、
を備えたことを特徴とする方法。
1 3 . 処理装置の保守方法であって、 前記処理装置が、 液体ソースが液体ソ —ス供給路に設けられた流量制御機器を介して処理容器に供給されるように構成 されているものにおいて、
洗浄液を、 第 1の流量で前記液体ソース供給路に通流して、 前記液体ソース供 給路を洗浄する洗浄工程と、
洗浄液を、 第 2の流量で前記流量制御機器に通流して、 前記流量制御機器を校 正する検査工程と、 を備え
前記検査行程は、
洗浄液を、 該洗浄液の流量を計測する機能および該洗浄液の流量を目標流量と なるように制御する機能の少なくとも一方の機能を有する検査用機器を介して、 前記流量制御機器に通流させる工程と、
洗浄液を前記検査用機器を通して前記流量制御機器に通流させた場合における、 前記流量制御機器に設定された洗浄液の目標流量と前記検査用機器により測定さ れた洗浄液の実際の流量との比較、 または、 洗浄液を前記検査用機器を通して前 記流量制御機器に通流させた場合における、 前記流量制御機器に設けられた流量 センサにより測定された洗浄液の実際の流量と前記検査用機器に設定された目標 流量との比較を行う工程と、
前記比較に基づいて前記流量制御機器が正常に動作しているか否かを判定する 工程と、
を含むことを特徴とする方法。
PCT/JP2003/001337 2002-02-07 2003-02-07 Dispositif de traitement et procede d'entretien dudit dispositif WO2003067353A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020047012091A KR100633891B1 (ko) 2002-02-07 2003-02-07 처리 장치 및 그 보수 방법
US10/503,126 US7367350B2 (en) 2002-02-07 2003-02-07 Processing device and method of maintaining the device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-31055 2002-02-07
JP2002031055 2002-02-07
JP2002-279181 2002-09-25
JP2002279181A JP2003303023A (ja) 2002-02-07 2002-09-25 処理装置及び処理装置の保守方法

Publications (1)

Publication Number Publication Date
WO2003067353A1 true WO2003067353A1 (fr) 2003-08-14

Family

ID=27736457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001337 WO2003067353A1 (fr) 2002-02-07 2003-02-07 Dispositif de traitement et procede d'entretien dudit dispositif

Country Status (4)

Country Link
US (1) US7367350B2 (ja)
JP (1) JP2003303023A (ja)
KR (1) KR100633891B1 (ja)
WO (1) WO2003067353A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556685A (zh) * 2017-09-26 2019-04-02 中国石油化工股份有限公司 一种浮筒式液位变送器校准装置及其校准方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682862B2 (ja) * 2005-03-31 2011-05-11 セイコーエプソン株式会社 液体収容体及びその液体充填方法
JP2007109865A (ja) * 2005-10-13 2007-04-26 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
FR2894165B1 (fr) * 2005-12-01 2008-06-06 Sidel Sas Installation d'alimentation en gaz pour machines de depot d'une couche barriere sur recipients
JP5137366B2 (ja) * 2006-01-24 2013-02-06 株式会社日立国際電気 基板処理システム及び液体材料供給装置
KR100745372B1 (ko) * 2006-02-06 2007-08-02 삼성전자주식회사 반도체 제조설비의 개스플로우량 감시장치 및 그 방법
JP2007218586A (ja) * 2006-02-14 2007-08-30 Yokogawa Electric Corp マルチバリアブル質量流量伝送器
DE102007062977B4 (de) * 2007-12-21 2018-07-19 Schott Ag Verfahren zur Herstellung von Prozessgasen für die Dampfphasenabscheidung
WO2009107239A1 (ja) * 2008-02-29 2009-09-03 株式会社日立国際電気 半導体製造装置及び半導体製造装置の配管パージ方法
JP2011054938A (ja) * 2009-08-07 2011-03-17 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法及び液体流量制御装置の動作確認方法
KR101773038B1 (ko) * 2010-07-29 2017-08-31 주성엔지니어링(주) 기화기를 갖는 증착장치 및 증착방법
KR101689148B1 (ko) * 2010-12-01 2017-01-02 주성엔지니어링(주) 소스 공급 장치 및 소스 공급 장치의 배관 내부를 퍼지하는 방법
JP5949586B2 (ja) * 2013-01-31 2016-07-06 東京エレクトロン株式会社 原料ガス供給装置、成膜装置、原料の供給方法及び記憶媒体
US10100407B2 (en) * 2014-12-19 2018-10-16 Lam Research Corporation Hardware and process for film uniformity improvement
JP6560924B2 (ja) * 2015-07-29 2019-08-14 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
US20190047840A1 (en) * 2016-02-23 2019-02-14 Electro Controles Del Noroeste S.A. De C.V. Modular fluid-dosing system and its processes
JP7144213B2 (ja) * 2018-06-27 2022-09-29 アズビル株式会社 マスフローコントローラの診断装置および診断方法
JP7094172B2 (ja) * 2018-07-20 2022-07-01 東京エレクトロン株式会社 成膜装置、原料供給装置及び成膜方法
JP7429699B2 (ja) * 2019-04-10 2024-02-08 ピーブイティーイー カンパニー リミテッド 液体流量計のための較正方法
WO2021193406A1 (ja) * 2020-03-26 2021-09-30 株式会社Kokusai Electric 基板処理装置、ガス供給装置、原料供給管の洗浄方法、半導体装置の製造方法およびプログラム
US11487304B2 (en) * 2021-01-08 2022-11-01 Applied Materials, Inc. Process fluid path switching in recipe operations
CN116200724A (zh) * 2021-12-01 2023-06-02 成都高真科技有限公司 一种改善半导体工艺中液源凝结的装置、方法及半导体设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653103A (ja) * 1992-08-03 1994-02-25 Hitachi Ltd 半導体製造装置
JPH06102068A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 流量異常チェックシステム
US5690743A (en) * 1994-06-29 1997-11-25 Tokyo Electron Limited Liquid material supply apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9216892U1 (de) 1992-12-11 1994-04-14 Fischerwerke Artur Fischer Gmbh & Co Kg, 72178 Waldachtal In ein Fahrzeug einbaubarer Behälter mit Aufnahmefach
US5660201A (en) * 1993-12-21 1997-08-26 Lockheed Martin Idaho Technologies Company Multiple source/multiple target fluid transfer apparatus
US6953047B2 (en) * 2002-01-14 2005-10-11 Air Products And Chemicals, Inc. Cabinet for chemical delivery with solvent purging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653103A (ja) * 1992-08-03 1994-02-25 Hitachi Ltd 半導体製造装置
JPH06102068A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 流量異常チェックシステム
US5690743A (en) * 1994-06-29 1997-11-25 Tokyo Electron Limited Liquid material supply apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556685A (zh) * 2017-09-26 2019-04-02 中国石油化工股份有限公司 一种浮筒式液位变送器校准装置及其校准方法
CN109556685B (zh) * 2017-09-26 2021-09-03 中国石油化工股份有限公司 一种浮筒式液位变送器校准装置及其校准方法

Also Published As

Publication number Publication date
US7367350B2 (en) 2008-05-06
KR100633891B1 (ko) 2006-10-13
JP2003303023A (ja) 2003-10-24
US20050115501A1 (en) 2005-06-02
KR20040074140A (ko) 2004-08-21

Similar Documents

Publication Publication Date Title
WO2003067353A1 (fr) Dispositif de traitement et procede d&#39;entretien dudit dispositif
JP6234494B2 (ja) 気体除去および検出能力を有する液体分配システム
KR101343275B1 (ko) 공정 유체 재순환을 위한 방법 및 장치
US9778571B2 (en) Processing liquid supplying apparatus, processing liquid supplying method and storage medium
JP6565645B2 (ja) 原料ガス供給装置、原料ガス供給方法及び記憶媒体
KR100745372B1 (ko) 반도체 제조설비의 개스플로우량 감시장치 및 그 방법
JP3872776B2 (ja) 半導体製造装置及び半導体製造方法
WO2007023614A1 (ja) 半導体製造装置,半導体製造装置の流量補正方法,プログラム
KR102773325B1 (ko) 농도 제어 장치, 및 제로점 조정 방법, 농도 제어 장치용 프로그램이 기록된 프로그램 기록 매체
JP2000513110A (ja) 密閉容器内における非圧縮性物質の量の測定
US20120241088A1 (en) Cylinder cabinet and semiconductor manufacturing system
CN114375347A (zh) 气体供给装置和气体供给方法
JP2012189169A (ja) シリンダーキャビネット
TW202002123A (zh) 用於供氣設備的具有高溫高壓氣沖能力的氣沖系統
JP2944611B2 (ja) ガス供給装置の制御方法
KR101415663B1 (ko) 액체소스 자동충진 시스템 및 그의 충진방법
TWI809498B (zh) 材料供應系統及使從氣體供應和分配系統分配的氣體的壓力變化實質上降低之方法
JP7722795B2 (ja) ガス管理方法及び基板処理システム
TWI855509B (zh) 固體材料之殘量測定方法、昇華氣體供給方法及昇華氣體供給系統
JP4138440B2 (ja) 薬液供給装置
JP2001155990A (ja) 液体供給装置及びそれを用いた基板処理装置
JP2834352B2 (ja) 化学気相成長装置
US10793432B2 (en) Output inspection method for ozone mass flow controller
KR20230097287A (ko) 반도체 장치의 성능 진단 시스템 및 그것의 구동 방법
KR20230080314A (ko) 원료 가스 공급 방법 및 원료 가스 공급 기구, 및 성막 시스템

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047012091

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10503126

Country of ref document: US