[go: up one dir, main page]

WO2003078135A1 - Multi-screw extruder comprising at least one elongated, separate discharge screw - Google Patents

Multi-screw extruder comprising at least one elongated, separate discharge screw Download PDF

Info

Publication number
WO2003078135A1
WO2003078135A1 PCT/CH2003/000141 CH0300141W WO03078135A1 WO 2003078135 A1 WO2003078135 A1 WO 2003078135A1 CH 0300141 W CH0300141 W CH 0300141W WO 03078135 A1 WO03078135 A1 WO 03078135A1
Authority
WO
WIPO (PCT)
Prior art keywords
process space
shaft
cylindrical
processing
shafts
Prior art date
Application number
PCT/CH2003/000141
Other languages
German (de)
French (fr)
Inventor
Federico Innerebner
Christoph NÄF
Bernhard Fritsche
Andreas Christel
Achim-Philipp Sturm
Original Assignee
Bühler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bühler AG filed Critical Bühler AG
Priority to AU2003205494A priority Critical patent/AU2003205494A1/en
Priority to DE10390957T priority patent/DE10390957B4/en
Publication of WO2003078135A1 publication Critical patent/WO2003078135A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • B29C48/43Ring extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2007/00Use of natural rubber as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Definitions

  • the invention relates to a multi-shaft extruder for processing an elastomer, in particular a thermoplastic elastomer, such as e.g. Natural rubber, synthetic rubber or rubber mixtures, the multi-shaft extruder having a multiplicity of processing shafts arranged in a housing and parallel to one another with processing elements which convey at least in axial partial areas.
  • processing elements which convey at least in axial partial areas.
  • These machining elements of adjacent machining shafts are arranged in an interlocking manner, and the inner walls of the process space on both sides of the machining shafts have parallel cylindrical recesses in which the machining shafts are mounted on both sides. In this way, a first sub-process space and a second sub-process space on the one side and the other side of the barrier formed by the mutually parallel machining shafts in the housing are determined.
  • Such multi-shaft extruders are particularly well suited for compounding tasks based on distributive and dispersive mixing, since in the process space both the thorough mixing and the shear of the processed material take place.
  • This advantage of the multi-shaft extruder is paid for by the disadvantage that it has a relatively weak pumping or conveying effect.
  • an elastomer in particular a thermoplastic elastomer, such as natural rubber, synthetic rubber or rubber mixtures
  • the product is subjected to particularly high mechanical and thermal stresses during its processing, which can lead to mechanical and / or thermal damage to the elastomer molecules of the product.
  • the object of the invention is therefore to prevent this compression and potential damage to the elastomer in the multi-screw extruder mentioned at the outset.
  • the process space of the multi-shaft extruder consists, at least in its outlet-side end region, of at least one cylindrical partial process space, in each of which a conveyor shaft is rotatably mounted, which has conveyor elements at least over an axial sub-region.
  • a pumping action is imparted to the outlet-side end region, which counteracts the compression mentioned and the associated impairments of the product.
  • the at least one cylindrical sub-process space with the conveyor shaft mounted therein is expediently arranged collinearly along the axial extension of at least one machining shaft of the plurality of mutually parallel machining shafts arranged in the housing.
  • This collinear arrangement is structurally relatively easy to implement.
  • a cylindrical partial process space with the conveyor shaft mounted therein is arranged collinearly along the axial extension of every second machining shaft of the plurality of mutually parallel machining shafts arranged in the housing.
  • the housing of the multi-shaft extruder according to the invention can then be formed by overlapping parallel bores to a certain depth, which form the process space in which the machining shafts with the intermeshing machining elements are rotatably supported.
  • the length of this process space along the axial product conveying direction then corresponds to the depth of the overlapping bores.
  • every second one of the overlapping parallel bores is simply made with a greater depth than the other of the overlapping parallel bores.
  • the difference in the drilling depths corresponds to the length of the cylindrical partial process rooms with pump effect.
  • the product conveyed through the processing space through the processing shafts thus travels along the machining shafts extended by the conveyor shafts either directly into the pumping cylindrical partial process spaces or at the end of the non-extended machining shafts it is introduced obliquely into the adjacent cylindrical partial process spaces.
  • the transition area between the end of the small depth holes to the wall area of the larger depth holes forming the cylindrical partial process spaces is preferred than contrary to the product Convex surface pointing in the direction of conveyance, in particular as a cone or truncated cone, so that the product is deflected by the convex surface, in particular the lateral surface of the cone or truncated cone.
  • a cylindrical sub-process space is arranged in the axial extension of each of the plurality of machining shafts, the radius of each cylindrical sub-process space and the conveyor shaft rotatably mounted in it being smaller than the radius of the cylindrical indentations of the process space inner walls that the cylindrical partial process spaces are separated from each other by housing material.
  • the housing of the multi-shaft extruder according to the invention can then also be formed by overlapping parallel bores to a certain depth with a certain drilling radius in order to form the process space in which the machining shafts with the intermeshing machining elements are rotatably mounted.
  • the length of this process space along the axial product conveying direction corresponds to the depth of the overlapping bores with the specific drilling radius.
  • each of the existing overlapping parallel bores, which have the specific depth and the specific drilling radius are extended to a greater depth with a smaller drilling radius.
  • the difference in drilling depths also corresponds to the length of the cylindrical partial process rooms with pumping action.
  • the transition between the bore areas of large radii to the wall areas of the bore areas forming small cylindrical radii is preferably beveled, here in particular a truncated cone surface is also possible.
  • the process space of the multi-shaft extruder in its outlet-side end area can also consist of a cylindrical partial process space with a conveyor shaft mounted therein, the partial process space and the conveyor shaft stored therein being assigned differently than collinearly to the plurality of mutually parallel processing shafts arranged in the housing are.
  • the multiplicity of machining shafts are arranged in a ring-like, in particular circular, manner, the first sub-process space being an inner process space arranged radially inside the shaft ring and the second sub-process space being an outer process space arranged radially outside the shaft ring, and the first housing part a core arranged radially inside the process space and the second housing part is a jacket arranged radially outside the process space, which surrounds the process space.
  • the process space of such a ring extruder preferably consists in its outlet-side end area of a cylindrical partial process space with a conveying shaft mounted therein, the axis of the partial process space and the conveying shaft mounted therein running parallel to the plurality of mutually parallel machining shafts arranged in the housing.
  • a common pump area is formed at the end of the process room.
  • the axis of the sub-process space and the conveyor shaft mounted therein are preferably arranged centrally with respect to the shaft ring consisting of the machining shafts. This geometry enables the bearing and the drive of the common conveyor shaft of the cylindrical subpro zessraumes in or through the core of the ring extruder.
  • a shaping nozzle can be arranged at the end of the at least one cylindrical partial process space with the respective conveying shaft mounted therein.
  • the respective conveyor shaft of the cylindrical sub-process space is expediently driven by the same drive as the plurality of machining shafts.
  • the respective delivery shaft of the cylindrical sub-process space is connected in a rotationally fixed manner to the respective processing shaft which is collinear with it and is driven by the same drive as the plurality of processing shafts.
  • FIG. 1A schematically shows a central longitudinal section of a first exemplary embodiment of the housing of the multi-shaft extruder according to the invention
  • Fig. 1B shows a cross section of the housing of Fig. 1A along the section plane I-I;
  • Fig. 1C shows a cross section of the housing of Fig. 1A along the section plane II-II;
  • FIG. 2A schematically shows a central longitudinal section of a second exemplary embodiment of the housing of the multi-shaft extruder according to the invention
  • Fig. 2B shows a cross section of the housing of Fig. 2A along the section plane III-III;
  • Fig. 2C shows a cross section of the housing of Fig. 2A along the section plane IV-IV;
  • FIG. 3A schematically shows a central longitudinal section of a third exemplary embodiment of the housing of the multi-shaft extruder according to the invention
  • Fig. 3B shows a cross section of the housing of Fig. 3A along the section plane V-V;
  • FIG. 3C shows a cross section of the housing of FIG. 3A along the sectional plane VI-VI.
  • the housing 1a schematically shows a central longitudinal section of a first embodiment of the housing of the multi-shaft extruder according to the invention.
  • the housing 1 surrounds a process space 2 and two cylindrical partial process spaces 3, 4.
  • the process space 2 of the multi-shaft extruder consists of several mutually parallel bores which partially overlap one another (see FIG. 2B). Machining shafts (not shown) are rotatably mounted in it.
  • the machining shafts and the machining elements attached to them (screw elements, kneading elements, etc.) and the partially overlapping bores of the process space 2 are designed in such a way that the machining shafts with their machining elements are arranged to interlock.
  • the process space 2 also has two cylindrical partial process spaces 3, 4, which are formed by the extension of the second or third bore of the five overlapping bores of the process space 2.
  • a truncated cone-shaped bevel 3a or 4a is formed in the entry area from the process space 2 into the cylindrical partial process space 3 or the cylindrical partial process space 4.
  • These bevels 3a and 4a facilitate the transition from process room 2, in which an intensive mechanical processing of the product predominantly takes place, to sub-process rooms 3 and 4, thereby reducing the transport resistance of the extruder and avoiding dead areas in the process room.
  • the second and third the five processing shafts (not shown) of the process space 2 extend from the process space 2 into the cylindrical sub-process space 3 or the cylindrical sub-process space 4. In their area projecting into the cylindrical sub-process spaces 3 and 4, the processing shafts have conveying areas (not shown), so that an excellent pumping effect is achieved in the operation of the multi-shaft extruder according to the invention in these cylindrical partial process rooms 3 and 4.
  • Fig. 1B shows schematically a cross section of the housing of Fig. 1A along the section plane l-l.
  • the housing 1 surrounds the process space 2, which has mutually opposite indentations on its process space inner walls.
  • the lower process chamber inner wall comprises five cylindrical indentations 2a, 2b, 2c, 2d and 2e, while the upper process chamber inner wall comprises five cylindrical indentations 2a ', 2b', 2c ', 2d', 2e '.
  • a first sub-process space (bottom) and a second sub-process space (top) are formed by the mutually intermeshing machining shafts (not shown) which are rotatably supported between these cylindrical indentations of the process space inner walls. Between these two sub-process areas, the interlocking machining shafts (not shown) form a more or less permeable barrier depending on the nature of the machining elements.
  • Fig. 1 C shows schematically a cross section of the housing of Fig. 1A along the section plane II-II.
  • Fig. 1 C shows schematically a cross section of the housing of Fig. 1A along the section plane II-II.
  • the housing area 1a which separates the two sub-process spaces 3 and 4 from one another.
  • FIG. 2A schematically shows a central longitudinal section of a second exemplary embodiment of the housing of the multi-shaft extruder according to the invention.
  • the left half of the extruder is identical to the left half of the extruder of Fig. 1A.
  • a housing 1 surrounds a process space 2 and five further cylindrical partial process spaces 5, 6, 7, 8 and 9. These five cylindrical partial process spaces 5, 6, 7, 8 and 9 are separated from one another by four separating housing areas 1a, 1b, 1c, 1d Cut.
  • the transition from the process space 2 into the five cylindrical partial process spaces 5, 6, 7, 8 and 9 are each formed as a truncated cone-shaped bevel 5a, 6a, 7a, 8a and 9a.
  • FIG. 2B shows a cross section of the housing of FIG. 2A along the section plane III-III and is identical to FIG. 1 B.
  • Fig. 2C shows a cross section of the housing of Fig. 2A along the section plane IV-IV.
  • FIG. 3A schematically shows a central longitudinal section of a third exemplary embodiment of the housing of the multi-shaft extruder according to the invention.
  • the housing consists of a core 10 and a casing 11, between which an essentially circular process space 2 extends, which merges into a coreless partial process space 3 surrounded only by the casing 11.
  • the process space 2 of this third exemplary embodiment consists of several parallel bores, which partially overlap one another and are arranged on a circular line. In the present case, there are eight partially overlapping holes, which are arranged on a circular line.
  • cylindrical indentations 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h are formed on the radially outer process space inner wall on the inside of the jacket 11, while on the radially inner process space inner wall on the outer surface corresponding cylindrical indentations 2a ', 2b', 2c ', 2d ⁇ 2e', 2f, 2g ', 2h' are formed for the core 10 (see FIG. 3B).
  • An axial bore 10a extends in the interior of the core 10 and is formed collinearly or coaxially with the cylindrical partial process space 3.
  • a shaft (also not shown) extends through the bore 10a of the core 10 over the process space into the cylindrical partial process space 3.
  • FIG. 3B schematically shows a cross section of the housing from FIG. 3A along the section plane VV.
  • the pro- gram extends between the core 10 and the jacket 11.
  • Zessraum 2 wherein the entirety of the outer cylindrical indentations 2a to 2h and the entirety of the inner cylindrical indentations 2a 'to 2h' appear as an outer or inner "flower", between which the propagation waves (not shown) are rotatably mounted.
  • the bore 10a can be seen in the interior of the core 10.
  • FIG. 3C schematically shows a cross section of the housing from FIG. 3A along the sectional plane VI-VI.
  • a conveyor shaft equipped with conveying elements, at least in axial subregions, extends into the cylindrical subprocess spaces.
  • conveying waves help to make the pressure increase of the product mentioned at the beginning in the end region of the intermeshing machining waves less than in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a multi-screw extruder for processing/treating an elastomer, in particular a thermoplastic elastomer, such as e.g. natural rubber, synthetic rubber or rubber blends. Said multi-screw extruder comprises a plurality of parallel processing screws, arranged in a housing, with processing elements, at least in subsections, that transport the material. Said processing elements of adjacent processing screws are arranged so that they intermesh and the inner walls of the processing chamber on both sides of the processing screws have cylindrical recesses running parallel to said processing screws and to each other, in which the processing screws are mounted on both sides. The processing chamber of the multi-screw extruder, at least in the vicinity of its exit-side end, consists of at least one cylindrical processing sub-chamber, in which a respective transport screw, equipped with transport elements at least in one axial subsection, is rotatably mounted.

Description

MEHRWELLEN- EXTRUDER MIT MINDESTEN EINER VERLÄNGERTEN, SEPARATEN AUSTRAGSSCHNECKE MULTI-SHAFT EXTRUDER WITH AT LEAST ONE EXTENDED, SEPARATE DISCHARGE SCREW
Die Erfindung bezieht sich auf einen Mehrwellen-Extruder zum Bearbeiten/Verarbeiten eines Elastomers, insbesondere eines thermoplastischen Elastomers, wie z.B. Naturkautschuk, synthetischer Kautschuk oder Kautschukgemische, wobei der Mehrwellen- Extruder eine Vielzahl in einem Gehäuse angeordneter, zueinander paralleler Bearbeitungswellen mit zumindest in axialen Teilbereichen fördernden Bearbeitungselementen aufweist. Diese Bearbeitungselemente benachbarter Bearbeitungswellen sind ineinandergreifend angeordnet, und die Prozessraum-Innenwände beiderseits der Bearbeitungswellen weisen zu den Bearbeitungswellen sowie zueinander parallele zylinderartige Einbuchtungen auf, in denen die Bearbeitungswellen beiderseits gelagert sind. Auf diese Weise wird ein erster Teilprozessraum und ein zweiter Teilprozessraum auf der einen Seite bzw. der anderen Seite der durch die zueinander parallelen Bearbeitungswellen gebildeten Barriere in dem Gehäuse bestimmt.The invention relates to a multi-shaft extruder for processing an elastomer, in particular a thermoplastic elastomer, such as e.g. Natural rubber, synthetic rubber or rubber mixtures, the multi-shaft extruder having a multiplicity of processing shafts arranged in a housing and parallel to one another with processing elements which convey at least in axial partial areas. These machining elements of adjacent machining shafts are arranged in an interlocking manner, and the inner walls of the process space on both sides of the machining shafts have parallel cylindrical recesses in which the machining shafts are mounted on both sides. In this way, a first sub-process space and a second sub-process space on the one side and the other side of the barrier formed by the mutually parallel machining shafts in the housing are determined.
Derartige Mehrwellen-Extruder, insbesondere auch Ringextruder, eignen sich besonders gut für Compoundier-Aufgaben basierend auf distributivem sowie dispersivem Mischen, da im Prozessraum sowohl eine starke Durchmischung als auch eine starke Scherung des bearbeiteten Materials erfolgt. Dieser Vorteil des Mehrwellen-Extruders wird durch den Nachteil erkauft, dass er eine relativ schwache Pump- bzw. Förderwirkung besitzt. Beim Bearbeiten/Verarbeiten eines Elastomers, insbesondere eines thermoplastischen Elastomers, wie z.B. Naturkautschuk, synthetischer Kautschuk oder Kautschukgemische, findet daher eine zunehmende Verdichtung des Produktes zu dem austrittsseitigen Endbereich hin statt. Dies ist mit einem Anstieg des mechanischen Widerstands verbunden. In diesen verdichteten Bereichen wird daher das Produkt bei seiner Bearbeitung/Verarbeitung besonders stark mechanisch und thermisch beansprucht, was zu einer mechanischen und/oder thermischen Schädigung der Elastomermoleküle des Produktes führen kann. Der Erfindung liegt daher die Aufgabe zugrunde, bei dem eingangs genannten Mehrwellen-Extruder diese Verdichtung und potentielle Schädigung des Elastomers zu verhindern.Such multi-shaft extruders, especially ring extruders, are particularly well suited for compounding tasks based on distributive and dispersive mixing, since in the process space both the thorough mixing and the shear of the processed material take place. This advantage of the multi-shaft extruder is paid for by the disadvantage that it has a relatively weak pumping or conveying effect. When processing / processing an elastomer, in particular a thermoplastic elastomer, such as natural rubber, synthetic rubber or rubber mixtures, there is therefore an increasing compression of the product towards the outlet-side end region. This is associated with an increase in mechanical resistance. In these densified areas, the product is subjected to particularly high mechanical and thermal stresses during its processing, which can lead to mechanical and / or thermal damage to the elastomer molecules of the product. The object of the invention is therefore to prevent this compression and potential damage to the elastomer in the multi-screw extruder mentioned at the outset.
Diese Aufgabe wird bei dem eingangs genannten Mehrwellen-Extruder dadurch gelöst, dass der Prozessraum des Mehrwellen-Extruders zumindest in seinem austrittsseitigen Endbereich aus mindestens einem zylinderförmigen Teilprozessraum besteht, in welchem jeweils eine Förderwelle drehbar gelagert ist, die zumindest über einen axialen Teilbereich Förderelemente aufweist. Auf diese Weise wird dem austrittsseitigen Endbereich eine Pumpwirkung verliehen, die der genannten Verdichtung und den damit verbundenen Beeinträchtigungen des Produktes entgegenwirkt.This object is achieved in the multi-shaft extruder mentioned at the outset in that the process space of the multi-shaft extruder consists, at least in its outlet-side end region, of at least one cylindrical partial process space, in each of which a conveyor shaft is rotatably mounted, which has conveyor elements at least over an axial sub-region. In this way, a pumping action is imparted to the outlet-side end region, which counteracts the compression mentioned and the associated impairments of the product.
Zweckmässigerweise ist der mindestens eine zylinderförmige Teilprozessraum mit der jeweils darin gelagerten Förderwelle kollinear entlang der axialen Verlängerung mindestens einer Bearbeitungswelle der Vielzahl in dem Gehäuse angeordneter, zueinander paralleler Bearbeitungswellen angeordnet. Diese kollineare Anordnung lässt sich konstruktiv relativ einfach verwirklichen.The at least one cylindrical sub-process space with the conveyor shaft mounted therein is expediently arranged collinearly along the axial extension of at least one machining shaft of the plurality of mutually parallel machining shafts arranged in the housing. This collinear arrangement is structurally relatively easy to implement.
Besonders vorteilhaft ist es, wenn jeweils ein zylinderförmiger Teilprozessraum mit der jeweils darin gelagerten Förderwelle kollinear entlang der axialen Verlängerung jeder zweiten Bearbeitungswelle der Vielzahl in dem Gehäuse angeordneter, zueinander paralleler Bearbeitungswellen angeordnet ist. Dies ist fertigungstechnisch besonders einfach. Das Gehäuse des erfindungsgemässen Mehrwellen-Extruders kann dann durch überlappende parallele Bohrungen bis zu einer bestimmten Tiefe gebildet werden, die den Prozessraum bilden, in dem die Bearbeitungswellen mit den ineinandergreifenden Bearbeitungselementen drehbar gelagert sind. Die Länge dieses Prozessraums entlang der axialen Produkt-Förderrichtung entspricht dann der Tiefe der überlappenden Bohrungen. Um den zylinderförmigen Teilprozessraum für die in ihm gelagerte, die Pumpwirkung ermöglichende Förderwelle zu bilden, wird jede zweite der überlappenden parallelen Bohrungen einfach mit einer grösseren Tiefe als die anderen der überlappenden parallelen Bohrungen ausgeführt. Die Differenz der Bohrtiefen entspricht der Länge der zylinderförmigen Teil-Prozessräume mit Pumpwirkung. Das durch die Bearbeitungswellen durch den Prozessraum beförderte Produkt gelangt somit entlang der durch die Förderwellen verlängerten Bearbeitungswellen entweder direkt in die pumpend wirkenden zylinderförmigen Teil-Prozessräume oder wird am Ende der nicht verlängerten Bearbeitungswellen schräg in die jeweils benachbarten zylinderförmigen Teil- Prozessräume eingeleitet. Um im Betrieb diese schräge Einleitung des Produktes zu erleichtern und somit den Widerstand gering zu halten und Totbereiche zu vermeiden, ist der Übergangsbereich zwischen dem Ende der Bohrungen kleiner Tiefe zu dem Wandbereich der die zylindrischen Teil-Prozessräume bildenden Bohrungen grösserer Tiefe vorzugsweise als entgegen der Produkt-Förderrichtung weisendende konvexe Fläche, insbesondere als Kegel oder Kegelstumpf, ausgebildet, so dass die Ablenkung des Produktes durch die konvexe Fläche, insbesondere die Mantelfläche des Kegels bzw. Kegelstumpfes, erfolgt.It is particularly advantageous if a cylindrical partial process space with the conveyor shaft mounted therein is arranged collinearly along the axial extension of every second machining shaft of the plurality of mutually parallel machining shafts arranged in the housing. This is particularly simple in terms of production technology. The housing of the multi-shaft extruder according to the invention can then be formed by overlapping parallel bores to a certain depth, which form the process space in which the machining shafts with the intermeshing machining elements are rotatably supported. The length of this process space along the axial product conveying direction then corresponds to the depth of the overlapping bores. In order to form the cylindrical sub-process space for the pumping shaft that supports the pumping action, every second one of the overlapping parallel bores is simply made with a greater depth than the other of the overlapping parallel bores. The difference in the drilling depths corresponds to the length of the cylindrical partial process rooms with pump effect. The product conveyed through the processing space through the processing shafts thus travels along the machining shafts extended by the conveyor shafts either directly into the pumping cylindrical partial process spaces or at the end of the non-extended machining shafts it is introduced obliquely into the adjacent cylindrical partial process spaces. In order to facilitate this oblique introduction of the product during operation and thus to keep the resistance low and to avoid dead areas, the transition area between the end of the small depth holes to the wall area of the larger depth holes forming the cylindrical partial process spaces is preferred than contrary to the product Convex surface pointing in the direction of conveyance, in particular as a cone or truncated cone, so that the product is deflected by the convex surface, in particular the lateral surface of the cone or truncated cone.
Gemäss einer weiteren vorteilhaften Ausgestaltung ist in der axialen Verlängerung jeder der Vielzahl der Bearbeitungswellen ein zylinderförmiger Teilprozessraum angeordnet, wobei der Radius jedes zylinderförmigen Teilprozessraumes und der in ihm jeweils drehbar gelagerten Förderwelle um einen derartigen Betrag kleiner als der Radius der zylinderartigen Einbuchtungen der Prozessraum-Innenwände ist, dass die zylinderförmigen Teil-Prozessräume durch Gehäusematerial voneinander getrennt sind. Auch dies ist fertigungstechnisch einfach. Das Gehäuse des erfindungsgemässen Mehrwellen- Extruders kann dann ebenfalls durch überlappende parallele Bohrungen bis zu einer bestimmten Tiefe mit einem bestimmten Bohrradius gebildet werden, um den Prozessraum zu bilden, in welchem die Bearbeitungswellen mit den ineinandergreifenden Bearbeitungselementen drehbar gelagert sind. Die Länge dieses Prozessraums entlang der axialen Produkt-Förderrichtung entspricht dann der Tiefe der überlappenden Bohrungen mit dem bestimmten Bohrradius. Um sämtliche zylinderförmigen Teil-Prozessräume für die in ihnen jeweils gelagerte, die Pumpwirkung ermöglichende Förderwelle zu bilden, wird jede der vorhandenen überlappenden parallelen Bohrungen, welche die bestimmte Tiefe und den bestimmten Bohrradius aufweisen, mit einem kleineren Bohrradius auf eine grössere Tiefe verlängert. Die Differenz der Bohrtiefen entspricht auch hier der Länge der zylinderförmigen Teil-Prozessräume mit Pumpwirkung. Das durch die Bearbeitungswellen durch den Prozessraum beförderte Produkt gelangt somit entlang der durch die Förderwellen verlängerten Bearbeitungswellen stets direkt in die pumpend wirkenden zylinderförmigen Teil-Prozessräume. Um im Betrieb an den Übergängen von den ersten bestimmten Bohrradien des Prozessraumes zu den kleineren Bohrradien der zylindrischen Teil-Prozessräume den Widerstand zu verringern und Totbereiche zu vermeiden, ist auch hier der Übergang zwischen den Bohrungsbereichen grosser Radien zu den Wandbereichen der die zylindrischen Teil-Prozessräume bildenden Bohrungsbereiche kleiner Radien vorzugsweise abgeschrägt, wobei auch hier insbesondere eine Kegelstumpffläche in Frage kommt.According to a further advantageous embodiment, a cylindrical sub-process space is arranged in the axial extension of each of the plurality of machining shafts, the radius of each cylindrical sub-process space and the conveyor shaft rotatably mounted in it being smaller than the radius of the cylindrical indentations of the process space inner walls that the cylindrical partial process spaces are separated from each other by housing material. This is also easy to manufacture. The housing of the multi-shaft extruder according to the invention can then also be formed by overlapping parallel bores to a certain depth with a certain drilling radius in order to form the process space in which the machining shafts with the intermeshing machining elements are rotatably mounted. The length of this process space along the axial product conveying direction then corresponds to the depth of the overlapping bores with the specific drilling radius. In order to form all the cylindrical partial process spaces for the pumping shaft that enables the pumping action to be carried out, each of the existing overlapping parallel bores, which have the specific depth and the specific drilling radius, are extended to a greater depth with a smaller drilling radius. The difference in drilling depths also corresponds to the length of the cylindrical partial process rooms with pumping action. The product conveyed through the processing shafts by the machining shafts thus always goes directly along the machining shafts extended by the conveying shafts into the pumping, cylindrical partial process chambers. To operate at the transitions from the resistance to the first determined drilling radii of the process space to the smaller drilling radii of the cylindrical partial process spaces and to avoid dead areas, here too the transition between the bore areas of large radii to the wall areas of the bore areas forming small cylindrical radii is preferably beveled, here in particular a truncated cone surface is also possible.
Anstelle der genannten kollinearen Ausführungen kann der Prozessraum des Mehrwellen-Extruders in seinem austrittsseitigen Endbereich auch aus einem zylinderförmigen Teilprozessraum mit einer darin gelagerten Förderwelle bestehen, wobei der Teilprozessraum und die darin gelagerte Förderwelle der Vielzahl in dem Gehäuse angeordneter, zueinander paralleler Bearbeitungswellen anders als kollinear zugeordnet sind.Instead of the above-mentioned collinear designs, the process space of the multi-shaft extruder in its outlet-side end area can also consist of a cylindrical partial process space with a conveyor shaft mounted therein, the partial process space and the conveyor shaft stored therein being assigned differently than collinearly to the plurality of mutually parallel processing shafts arranged in the housing are.
Bei einer besonders bevorzugten Ausgestaltung sind die Vielzahl der Bearbeitungswellen kranzartig, insbesondere kreisförmig, angeordnet, wobei der erste Teilprozessraum ein radial innerhalb des Wellenkranzes angeordneter innerer Prozessraum ist und der zweite Teilprozessraum ein radial ausserhalb des Wellenkranzes angeordneter äusse- rer Prozessraum ist und wobei der erste Gehäuseteil ein radial innerhalb des Prozessraums angeordneter Kern und der zweite Gehäuseteil ein radial ausserhalb des Prozessraums angeordneter Mantel ist, der den Prozessraum umschliesst. Bei dieser Anordnung der Bearbeitungswellen gibt es ebenso viel Zwickelbereiche wie Wellen, was eine intensive und möglichst gleichförmige Bearbeitung des Produktes auch bei relativ kurzen Prozessraum-Längen bzw. kleinen UD-Verhältnissen des Extruders ermöglicht.In a particularly preferred embodiment, the multiplicity of machining shafts are arranged in a ring-like, in particular circular, manner, the first sub-process space being an inner process space arranged radially inside the shaft ring and the second sub-process space being an outer process space arranged radially outside the shaft ring, and the first housing part a core arranged radially inside the process space and the second housing part is a jacket arranged radially outside the process space, which surrounds the process space. With this arrangement of the processing shafts there are as many gusset areas as there are shafts, which enables intensive and as uniform as possible processing of the product even with relatively short process space lengths or small UD ratios of the extruder.
Der Prozessraum eines derartigen Ringextruders besteht in seinem austrittsseitigen Endbereich vorzugsweise aus einem zylinderförmigen Teilprozessraum mit einer darin gelagerten Förderwelle, wobei die Achse des Teilprozessraums und der darin gelagerten Förderwelle parallel zu der Vielzahl der in dem Gehäuse angeordneten, zueinander parallelen Bearbeitungswellen verläuft. Auf diese Weise wird ein gemeinsamer Pumpbereich am Ende des Prozessraumes gebildet. Vorzugsweise ist die Achse des Teilprozessraums und der darin gelagerten Förderwelle bezüglich des aus den Bearbeitungswellen bestehenden Wellenkranzes mittig angeordnet. Diese Geometrie ermöglicht die Lagerung und den Antrieb der gemeinsamen Förderwelle des zylinderförmigen Teilpro- zessraumes im bzw. durch den Kern des Ringextruders. Auch hier ist eine, insbesondere kegelstumpfartige, Abschrägung von der äusseren Prozessraum-Innenfläche mit ihren zylindrischen Einbuchtungen (äussere "Blume") zu der zylindrischen Innenfläche des Teilprozessraumes vorhanden, um den Widerstand gering zu halten und Totbereiche zu vermeiden.The process space of such a ring extruder preferably consists in its outlet-side end area of a cylindrical partial process space with a conveying shaft mounted therein, the axis of the partial process space and the conveying shaft mounted therein running parallel to the plurality of mutually parallel machining shafts arranged in the housing. In this way, a common pump area is formed at the end of the process room. The axis of the sub-process space and the conveyor shaft mounted therein are preferably arranged centrally with respect to the shaft ring consisting of the machining shafts. This geometry enables the bearing and the drive of the common conveyor shaft of the cylindrical subpro zessraumes in or through the core of the ring extruder. Here too, there is a bevel, in particular a truncated cone, from the outer process area inner surface with its cylindrical indentations (outer "flower") to the cylindrical inner surface of the partial process room in order to keep the resistance low and to avoid dead areas.
Bei allen weiter oben genannten Ausgestaltungen kann am förderabseitigen Ende des mindestens einen zylinderförmigen Teilprozessraums mit der darin gelagerten jeweiligen Förderwelle eine Ausformungsdüse angeordnet sein.In all of the configurations mentioned above, a shaping nozzle can be arranged at the end of the at least one cylindrical partial process space with the respective conveying shaft mounted therein.
Zweckmässigerweise wird die jeweilige Förderwelle des zylindrischen Teilprozessraums durch denselben Antrieb wie die Vielzahl der Bearbeitungswellen angetrieben. Bei den kollinearen Anordnungen ist insbesondere die jeweilige Förderwelle des zylindrischen Teilprozessraums mit der zu ihr kollinearen jeweiligen Bearbeitungswelle drehfest verbunden und wird durch denselben Antrieb wie die Vielzahl der Bearbeitungswellen angetrieben.The respective conveyor shaft of the cylindrical sub-process space is expediently driven by the same drive as the plurality of machining shafts. In the case of the collinear arrangements, in particular the respective delivery shaft of the cylindrical sub-process space is connected in a rotationally fixed manner to the respective processing shaft which is collinear with it and is driven by the same drive as the plurality of processing shafts.
Weitere Merkmale, Vorteile, Aufgaben und Anwendungsmöglichkeiten der Erfindung ergeben sich aus der nun folgenden Beschreibung bevorzugter Ausführungsbeispieie anhand der Zeichnung, wobei:Further features, advantages, tasks and possible uses of the invention result from the following description of preferred exemplary embodiments with reference to the drawing, in which:
Fig. 1A einen mittigen Längsschnitt eines ersten Ausführungsbeispiels des Gehäuses des erfindungsgemässen Mehrwellen-Extruders schematisch zeigt;1A schematically shows a central longitudinal section of a first exemplary embodiment of the housing of the multi-shaft extruder according to the invention;
Fig. 1 B einen Querschnitt des Gehäuses von Fig. 1 A entlang der Schnittebene l-l zeigt;Fig. 1B shows a cross section of the housing of Fig. 1A along the section plane I-I;
Fig. 1C einen Querschnitt des Gehäuses von Fig. 1A entlang der Schnittebene ll-ll zeigt;Fig. 1C shows a cross section of the housing of Fig. 1A along the section plane II-II;
Fig. 2A einen mittigen Längsschnitt eines zweiten Ausführungsbeispiels des Gehäuses des erfindungsgemässen Mehrwellen-Extruders schematisch zeigt; Fig. 2B einen Querschnitt des Gehäuses von Fig. 2A entlang der Schnittebene III-III zeigt;2A schematically shows a central longitudinal section of a second exemplary embodiment of the housing of the multi-shaft extruder according to the invention; Fig. 2B shows a cross section of the housing of Fig. 2A along the section plane III-III;
Fig. 2C einen Querschnitt des Gehäuses von Fig. 2A entlang der Schnittebene IV-IV zeigt;Fig. 2C shows a cross section of the housing of Fig. 2A along the section plane IV-IV;
Fig. 3A einen mittigen Längsschnitt eines dritten Ausführungsbeispiels des Gehäuses des erfindungsgemässen Mehrwellen-Extruders schematisch zeigt;3A schematically shows a central longitudinal section of a third exemplary embodiment of the housing of the multi-shaft extruder according to the invention;
Fig. 3B einen Querschnitt des Gehäuses von Fig. 3A entlang der Schnittebene V-V zeigt; undFig. 3B shows a cross section of the housing of Fig. 3A along the section plane V-V; and
Fig. 3C einen Querschnitt des Gehäuses von Fig. 3A entlang der Schnittebene Vl-Vl zeigt.FIG. 3C shows a cross section of the housing of FIG. 3A along the sectional plane VI-VI.
Fig. 1a zeigt schematisch einen mittigen Längsschnitt eines ersten Ausführungsbeispiels des Gehäuses des erfindungsgemässen Mehrwellen-Extruders. Das Gehäuse 1 umgibt einen Prozessraum 2 sowie zwei zylinderförmige Teilprozessräume 3, 4. Der Prozessraum 2 des Mehrwellen-Extruders besteht aus mehreren zueinander parallelen Bohrungen, die einander teilweise überlappen (siehe Fig. 2B). In ihm sind (nicht gezeigte) Bearbeitungswellen drehbar gelagert. Die Bearbeitungswellen und die an ihnen befestigten Bearbeitungselemente (Schneckenelemente, Knetelemente etc.) sowie die teilweise überlappenden Bohrungen des Prozessraums 2 sind so ausgelegt, dass die Bearbeitungswellen mit ihren Bearbeitungselementen ineinander greifend angeordnet sind. Der Prozessraum 2 weist ausserdem zwei zylinderförmige Teilprozessräume 3, 4 auf, die durch die Verlängerung der zweiten bzw. dritten Bohrung der insgesamt fünf überlappenden Bohrungen des Prozessraums 2 gebildet sind. Im Eintrittsbereich vom Prozessraum 2 in den zylinderförmigen Teiiprozessraum 3 bzw. den zylinderförmigen Teilprozessraum 4 ist eine kegelstumpfförmige Abschrägung 3a bzw. 4a ausgebildet. Durch diese Abschrägungen 3a bzw. 4a wird der Übergang vom Prozessraum 2, in dem vorwiegend eine intensive mechanische Bearbeitung des Produkts erfolgt, in die Teilprozessräume 3 bzw. 4 erleichtert, wodurch der Transportwiderstand des Extruders verringert und Totbereiche im Prozessraum vermieden werden. Die zweite und dritte der fünf Bearbeitungswellen (nicht gezeigt) des Prozessraums 2 erstrecken sich von dem Prozessraum 2 in den zylinderförmigen Teilprozessraum 3 bzw. den zylinderförmigen Teilprozessraum 4. In ihrem in die zylinderförmigen Teilprozessräume 3 und 4 ragenden Bereich weisen die Bearbeitungswellen fördernde Bereiche (nicht gezeigt) auf, so dass im Betrieb des erfindungsgemässen Mehrwellen-Extruders in diesen zylinderförmigen Teilprozessräumen 3 und 4 eine ausgezeichnete Pumpwirkung erzielt wird.1a schematically shows a central longitudinal section of a first embodiment of the housing of the multi-shaft extruder according to the invention. The housing 1 surrounds a process space 2 and two cylindrical partial process spaces 3, 4. The process space 2 of the multi-shaft extruder consists of several mutually parallel bores which partially overlap one another (see FIG. 2B). Machining shafts (not shown) are rotatably mounted in it. The machining shafts and the machining elements attached to them (screw elements, kneading elements, etc.) and the partially overlapping bores of the process space 2 are designed in such a way that the machining shafts with their machining elements are arranged to interlock. The process space 2 also has two cylindrical partial process spaces 3, 4, which are formed by the extension of the second or third bore of the five overlapping bores of the process space 2. In the entry area from the process space 2 into the cylindrical partial process space 3 or the cylindrical partial process space 4, a truncated cone-shaped bevel 3a or 4a is formed. These bevels 3a and 4a facilitate the transition from process room 2, in which an intensive mechanical processing of the product predominantly takes place, to sub-process rooms 3 and 4, thereby reducing the transport resistance of the extruder and avoiding dead areas in the process room. The second and third the five processing shafts (not shown) of the process space 2 extend from the process space 2 into the cylindrical sub-process space 3 or the cylindrical sub-process space 4. In their area projecting into the cylindrical sub-process spaces 3 and 4, the processing shafts have conveying areas (not shown), so that an excellent pumping effect is achieved in the operation of the multi-shaft extruder according to the invention in these cylindrical partial process rooms 3 and 4.
Fig. 1 B zeigt schematisch einen Querschnitt des Gehäuses von Fig. 1 A entlang der Schnittebene l-l. Das Gehäuse 1 umgibt den Prozessraum 2, der einander gegenüberliegende Einbuchtungen an seinen Prozessraum-Innenwänden aufweist. Die untere Prozessraum-Innenwand umfasst fünf zylindrische Einbuchtungen 2a, 2b, 2c, 2d und 2e, währen die obere Prozessraum-Innenwand fünf zylindrische Einbuchtungen 2a', 2b', 2c', 2d', 2e' umfasst. Durch die miteinander kämmenden (nicht gezeigten) Bearbeitungswellen, die zwischen diesen zylindrischen Einbuchtungen der Prozessraum- Innenwände drehbar gelagert sind, wird ein erster Teilprozessraum (unten) sowie ein zweiter Teilprozessraum (oben) gebildet. Zwischen diesen beiden Teilprozessräumen bilden die (nicht gezeigten) ineinander greifenden Bearbeitungswellen eine je nach Beschaffenheit der Bearbeitungselemente mehr oder weniger durchlässige Barriere.Fig. 1B shows schematically a cross section of the housing of Fig. 1A along the section plane l-l. The housing 1 surrounds the process space 2, which has mutually opposite indentations on its process space inner walls. The lower process chamber inner wall comprises five cylindrical indentations 2a, 2b, 2c, 2d and 2e, while the upper process chamber inner wall comprises five cylindrical indentations 2a ', 2b', 2c ', 2d', 2e '. A first sub-process space (bottom) and a second sub-process space (top) are formed by the mutually intermeshing machining shafts (not shown) which are rotatably supported between these cylindrical indentations of the process space inner walls. Between these two sub-process areas, the interlocking machining shafts (not shown) form a more or less permeable barrier depending on the nature of the machining elements.
Fig. 1 C zeigt schematisch einen Querschnitt des Gehäuses von Fig. 1A entlang der Schnittebene ll-ll. Man erkennt die beiden zylinderförmigen Teilprozessräume 3 und 4, die von dem Gehäuse 1 vollständig umgeben sind. In der axialen Verlängerung der durch die zylindrischen Einbuchtungen 2c und 2c' gelagerten dritten Bearbeitungswelle (nicht gezeigt) befindet sich ein Gehäusebereich 1a, der die beiden Teilprozessräume 3 und 4 voneinander trennt.Fig. 1 C shows schematically a cross section of the housing of Fig. 1A along the section plane II-II. One can see the two cylindrical partial process spaces 3 and 4, which are completely surrounded by the housing 1. In the axial extension of the third machining shaft (not shown) supported by the cylindrical indentations 2c and 2c 'there is a housing area 1a which separates the two sub-process spaces 3 and 4 from one another.
Fig. 2A zeigt schematisch einen mittigen Längsschnitt eines zweiten Ausführungsbeispiels des Gehäuses des erfindungsgemässen Mehrwellen-Extruders. Die linke Hälfte des Extruders ist identisch zur linken Hälfte des Extruders von Fig. 1A. Auch hier umgibt ein Gehäuse 1 einen Prozessraum 2 sowie fünf weitere zylinderförmige Teilprozessräume 5, 6, 7, 8 und 9. Diese fünf zylinderförmigen Teilprozessräume 5, 6, 7, 8 und 9 sind durch vier trennende Gehäusebereiche 1a, 1b, 1c, 1d voneinander getrennt. Der Übergang von dem Prozessraum 2 in die fünf zylinderförmigen Teilprozessräume 5, 6, 7, 8 und 9 ist jeweils als kegelstumpfförmige Abschrägung 5a, 6a, 7a, 8a bzw. 9a ausgebildet.2A schematically shows a central longitudinal section of a second exemplary embodiment of the housing of the multi-shaft extruder according to the invention. The left half of the extruder is identical to the left half of the extruder of Fig. 1A. Here, too, a housing 1 surrounds a process space 2 and five further cylindrical partial process spaces 5, 6, 7, 8 and 9. These five cylindrical partial process spaces 5, 6, 7, 8 and 9 are separated from one another by four separating housing areas 1a, 1b, 1c, 1d Cut. The transition from the process space 2 into the five cylindrical partial process spaces 5, 6, 7, 8 and 9 are each formed as a truncated cone-shaped bevel 5a, 6a, 7a, 8a and 9a.
Fig. 2B zeigt einen Querschnitt des Gehäuses von Fig. 2A entlang der Schnittebene III- III und ist identisch zu Fig. 1 B.FIG. 2B shows a cross section of the housing of FIG. 2A along the section plane III-III and is identical to FIG. 1 B.
Fig. 2C zeigt einen Querschnitt des Gehäuses von Fig. 2A entlang der Schnittebene IV- IV. Man erkennt die fünf zylinderförmigen Teilprozessräume 5, 6, 7, 8 und 9, die von dem Gehäuse 1 vollständig umgeben sind, wobei sich auch hier zwischen benachbarten zylinderförmigen Teilprozessräumen jeweils ein trennender des Gehäusebereich 1 a, 1a, 1c und 1d befindet.Fig. 2C shows a cross section of the housing of Fig. 2A along the section plane IV-IV. One can see the five cylindrical partial process spaces 5, 6, 7, 8 and 9, which are completely surrounded by the housing 1, here also between neighboring ones cylindrical sub-process rooms each a separating of the housing area 1 a, 1a, 1c and 1d.
Fig. 3A zeigt schematisch einen mittigen Längsschnitt eines dritten Ausführungsbeispiels des Gehäuses des erfindungsgemässen Mehrwellen-Extruders. Das Gehäuse besteht aus einem Kern 10 und einem Mantel 11 , zwischen denen sich ein im wesentlichen kreisringförmiger Prozessraum 2 erstreckt, der in einen kernlosen, nur von dem Mantel 11 umgebenen zylinderförmigen Teilprozessraum 3 übergeht. Ähnlich wie der Prozessraum 2 des ersten und des zweiten Ausführungsbeispiels besteht der Prozessraum 2 dieses dritten Ausführungsbeispiels aus mehreren parallelen Bohrungen, die einander teilweise überlappen und auf einer Kreislinie angeordnet sind. Im vorliegenden Fall handelt es sich um acht einander teilweise überlappende Bohrungen, die auf einer Kreislinie angeordnet sind. Auf diese Weise sind an der radial aussen liegenden Prozessraum-Innenwand an der Innenseite des Mantels 11 acht zylindrische Einbuchtungen 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h ausgebildet, während an der radial innen liegenden Prozessraum-Innenwand an der Aussenfläche des Kerns 10 entsprechende zylindrische Einbuchtungen 2a', 2b', 2c', 2d\ 2e', 2f , 2g', 2h' ausgebildet sind (siehe Fig. 3B). Im Innern des Kerns 10 erstreckt sich eine axiale Bohrung 10a, die kollinear bzw. koaxial zu dem zylinderförmigen Teilprozessraum 3 ausgebildet ist. Eine (ebenfalls nicht gezeigte) Welle erstreckt sich durch die Bohrung 10a des Kerns 10 über den Prozessraum in den zylinderförmigen Teilprozessraum 3.3A schematically shows a central longitudinal section of a third exemplary embodiment of the housing of the multi-shaft extruder according to the invention. The housing consists of a core 10 and a casing 11, between which an essentially circular process space 2 extends, which merges into a coreless partial process space 3 surrounded only by the casing 11. Similar to the process space 2 of the first and the second exemplary embodiment, the process space 2 of this third exemplary embodiment consists of several parallel bores, which partially overlap one another and are arranged on a circular line. In the present case, there are eight partially overlapping holes, which are arranged on a circular line. In this way, eight cylindrical indentations 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h are formed on the radially outer process space inner wall on the inside of the jacket 11, while on the radially inner process space inner wall on the outer surface corresponding cylindrical indentations 2a ', 2b', 2c ', 2d \ 2e', 2f, 2g ', 2h' are formed for the core 10 (see FIG. 3B). An axial bore 10a extends in the interior of the core 10 and is formed collinearly or coaxially with the cylindrical partial process space 3. A shaft (also not shown) extends through the bore 10a of the core 10 over the process space into the cylindrical partial process space 3.
Fig. 3B zeigt schematisch einen Querschnitt des Gehäuses von Fig. 3A entlang der Schnittebene V-V. Zwischen dem Kern 10 und dem Mantel 11 erstreckt sich der Pro- zessraum 2, wobei die Gesamtheit der äusseren zylindrischen Einbuchtungen 2a bis 2h und die Gesamtheit der inneren zylindrischen Einbuchtungen 2a' bis 2h' als äussere bzw. innere "Blume" erscheinen, zwischen denen die (nicht gezeigten) Beareitungswel- len drehbar gelagert sind. Im Innern des Kerns 10 erkennt man die Bohrung 10a.FIG. 3B schematically shows a cross section of the housing from FIG. 3A along the section plane VV. The pro- gram extends between the core 10 and the jacket 11. Zessraum 2, wherein the entirety of the outer cylindrical indentations 2a to 2h and the entirety of the inner cylindrical indentations 2a 'to 2h' appear as an outer or inner "flower", between which the propagation waves (not shown) are rotatably mounted. The bore 10a can be seen in the interior of the core 10.
Fig. 3C zeigt schematisch einen Querschnitt des Gehäuses von Fig. 3A entlang der Schnittebene Vl-Vl. Man erkennt den von dem Gehäuse 1 umgebenen zylinderförmigen Teilprozessraum 3.FIG. 3C schematically shows a cross section of the housing from FIG. 3A along the sectional plane VI-VI. One recognizes the cylindrical partial process space 3 surrounded by the housing 1.
Bei allen drei Ausführungsbeispielen erstreckt sich eine zumindest in axialen Teilbereichen mit fördernden Elementen ausgestattete Förderwelle in die zylindrischen Teilprozessräume. Im Betrieb tragen diese Förderwellen dazu bei, den eingangs genannten Druckanstieg des Produktes im Endbereich der ineinander greifenden Bearbeitungswellen geringer als beim Stand der Technik zu machen. In all three exemplary embodiments, a conveyor shaft equipped with conveying elements, at least in axial subregions, extends into the cylindrical subprocess spaces. In operation, these conveying waves help to make the pressure increase of the product mentioned at the beginning in the end region of the intermeshing machining waves less than in the prior art.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Gehäusecasing
Prozessraum zylinderförmiger Teilprozessraum zylinderförmiger Teilprozessraum a, 4a Abschrägung a, 1 b, 1c, 1d trennender Gehäusebereich , 6, 7, 8, 9 zylinderförmiger Prozessraum a, 6a, 7a, 8a, 9a Abschrägung 0 Kern 0a Bohrung im Kern 1 Mantel a bis 2h zylindrische Einbuchtungen der Prozessraum-Innenwand (äussere Blume) a' bis 2h' Einbuchtungen der Prozessraum-Innenwand (innere Blume) Process space cylindrical sub-process space cylindrical sub-process space a, 4a bevel a, 1 b, 1c, 1d separating housing area, 6, 7, 8, 9 cylindrical process space a, 6a, 7a, 8a, 9a bevel 0 core 0a hole in core 1 jacket a to 2h cylindrical indentations of the process room inner wall (outer flower) a 'to 2h' indentations of the process room inner wall (inner flower)

Claims

Patentansprüche claims
1. Mehrwellen-Extruder zum Bearbeiten/Verarbeiten eines Produktes, z.B. thermoplastisches Polymer oder Elastomer, insbesondere Polyester oder Naturkautschuk, synthetischer Kautschuk, wobei der Mehrwellen-Extruder eine Vielzahl in einem Gehäuse angeordneter, zueinander paralleler Bearbeitungswellen mit zumindest in axialen Teilbereichen fördernden Bearbeitungselementen aufweist, wobei die Bearbeitungselemente benachbarter Bearbeitungswellen ineinandergreifend angeordnet sind und die Prozessraum-Innenwände beiderseits der Bearbeitungswellen zu den Bearbeitungswellen sowie zueinander parallele zylinderartige Einbuchtungen aufweisen, in denen die Bearbeitungswellen beiderseits gelagert sind, wodurch ein erster Teilprozessraum und ein zweiter Teilprozessraum auf der einen Seite bzw. der anderen Seite der durch die zueinander parallelen Bearbeitungswellen gebildeten Barriere in dem Gehäuse bestimmt werden, dadurch gekennzeichnet, dass der Prozessraum (2, 3, 4; 2, 5, 6, 7, 8, 9; 2, 3) des Mehrwellen-Extruders zumindest in seinem austrittsseitigen Endbereich aus mindestens einem zylinderförmigen Teilprozessraum (3, 4; 5, 6, 7, 8, 9; 3) besteht, in welchem jeweils eine Förderwelle drehbar gelagert ist, die zumindest über einen axialen Teilbereich Förderelemente aufweist.1.Multi-shaft extruder for processing / processing a product, e.g. thermoplastic polymer or elastomer, in particular polyester or natural rubber, synthetic rubber, the multi-shaft extruder having a multiplicity of processing shafts arranged in a housing and parallel to one another with processing elements which convey at least in axial partial areas, the processing elements of adjacent processing shafts being arranged in an interlocking manner and the process space inner walls have on both sides of the machining shafts to the machining shafts and mutually parallel cylindrical recesses in which the machining shafts are mounted on both sides, as a result of which a first sub-process space and a second sub-process space on one side and on the other side determine the barrier formed in the housing by the mutually parallel machining shafts are characterized in that the process space (2, 3, 4; 2, 5, 6, 7, 8, 9; 2, 3) of the multi-shaft extruder at least in its outlet-side end region a us at least one cylindrical partial process space (3, 4; 5, 6, 7, 8, 9; 3), in which in each case a conveyor shaft is rotatably mounted, which has conveyor elements at least over an axial partial region.
2. Mehrwellen-Extruder nach Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine zylinderförmige Teilprozessraum (3, 4; 5, 6, 7, 8, 9) mit der jeweils darin gelagerten Förderwelle kollinear entlang der axialen Verlängerung mindestens einer Bearbeitungswelle der Vielzahl in dem Gehäuse (1) angeordneter, zueinander paralleler Bearbeitungswellen angeordnet ist.2. Multi-shaft extruder according to claim 1, characterized in that the at least one cylindrical sub-process space (3, 4; 5, 6, 7, 8, 9) with the conveyor shaft stored therein collinearly along the axial extension of at least one machining shaft of the plurality in the housing (1) arranged, mutually parallel machining shafts.
3. Mehrwellen-Extruder nach Anspruch 2, dadurch gekennzeichnet, dass jeweils ein zylinderförmiger Teilprozessraum (3, 4) mit der jeweils darin gelagerten Förderwelle kollinear entlang der axialen Verlängerung jeder zweiten Bearbeitungswelle der Vielzahl in dem Gehäuse (1) angeordneter, zueinander paralleler Bearbeitungswellen angeordnet ist.3. Multi-shaft extruder according to claim 2, characterized in that in each case a cylindrical sub-process space (3, 4) with the conveyor shaft mounted therein collinearly along the axial extension of every second machining shaft A plurality of processing shafts arranged parallel to one another is arranged in the housing (1).
4. Mehrwellen-Extruder nach Anspruch 2, dadurch gekennzeichnet, dass in der axialen Verlängerung jeder der Vielzahl der Bearbeitungswellen ein zylinderförmiger Teilprozessraum (5, 6, 7, 8, 9) angeordnet ist, wobei der Radius jedes zylinderförmigen Teilprozessraumes und der in ihm jeweils drehbar gelagerten Förderwelle um einen derartigen Betrag kleiner als der Radius der zylinderartigen Einbuchtungen der Prozessraum-Innenwände ist, dass die zylinderförmigen Teil- Prozessräume durch Gehäusematerial voneinander getrennt sind.4. Multi-shaft extruder according to claim 2, characterized in that in the axial extension of each of the plurality of machining shafts a cylindrical part process space (5, 6, 7, 8, 9) is arranged, the radius of each cylindrical part process space and that in it rotatably mounted conveyor shaft is such an amount smaller than the radius of the cylindrical indentations of the process space inner walls that the cylindrical partial process spaces are separated from one another by housing material.
5. Mehrwellen-Extruder nach Anspruch 1 , dadurch gekennzeichnet, dass der Prozessraum des Mehrwellen-Extruders in seinem austrittsseitigen Endbereich aus einem zylinderförmigen Teilprozessraum (3) mit einer darin gelagerten Förderwelle besteht, wobei der Teilprozessraum (3) und die darin gelagerte Förderwelle der Vielzahl in dem Gehäuse (1) angeordneter, zueinander paralleler Bearbeitungswellen zugeordnet sind.5. Multi-shaft extruder according to claim 1, characterized in that the process space of the multi-shaft extruder in its outlet-side end area consists of a cylindrical partial process space (3) with a conveyor shaft mounted therein, the partial process space (3) and the conveyor shaft mounted therein of the plurality in the housing (1) arranged, mutually parallel processing shafts are assigned.
6. Mehrwellen-Extruder nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Vielzahl der Bearbeitungswellen kranzartig angeordnet sind, wobei der erste Teiiprozessraum ein radial innerhalb des Wellenkranzes angeordneter innerer Prozessraum ist und der zweite Teilprozessraum ein radial ausserhalb des Wellenkranzes angeordneter äusserer Prozessraum ist und wobei der erste Gehäuseteil ein radial innerhalb des Prozessraums angeordneter Kern (10) und der zweite Gehäuseteil ein radial ausserhalb des Prozessraums angeordneter Mantel (11 ) ist, der den Prozessraum umschliesst.6. Multi-shaft extruder according to one of claims 1 to 5, characterized in that the plurality of machining shafts are arranged in a ring-like manner, the first partial process chamber being an inner process chamber arranged radially inside the shaft ring and the second partial process chamber being an outer process chamber arranged radially outside the shaft ring and the first housing part is a core (10) arranged radially inside the process space and the second housing part is a jacket (11) arranged radially outside the process space, which surrounds the process space.
7. Mehrwellen-Extruder nach Anspruch 6, dadurch gekennzeichnet, dass der Prozessraum des Mehrwellen-Extruders in seinem austrittsseitigen Endbereich aus einem zylinderförmigen Teilprozessraum (3) mit einer darin gelagerten Förderwelle besteht, wobei die Achse des Teilprozessraums und der darin gelagerten Förderwelle parallel zu der Vielzahl der in dem Gehäuse (1) angeordneten, zueinander parallelen Bearbeitungswellen verläuft. 7. Multi-shaft extruder according to claim 6, characterized in that the process space of the multi-shaft extruder in its outlet-side end region consists of a cylindrical partial process space (3) with a conveyor shaft mounted therein, the axis of the partial process space and the conveyor shaft mounted therein parallel to that A large number of processing shafts arranged in the housing (1) run parallel to one another.
8. Mehrwellen-Extruder nach Anspruch 7, dadurch gekennzeichnet, dass die Achse des Teilprozessraums (3) und der darin gelagerten Förderwelle bezüglich des aus den Bearbeitungswellen bestehenden Wellenkranzes mittig angeordnet ist.8. Multi-shaft extruder according to claim 7, characterized in that the axis of the sub-process space (3) and the conveyor shaft mounted therein is arranged centrally with respect to the shaft ring consisting of the machining shafts.
9. Mehrwellen-Extruder nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass am förderabseitigen Ende des mindestens einen zylinderförmigen Teilprozessraums mit der darin gelagerten jeweiligen Förderwelle eine Ausformungsdüse angeordnet ist.9. Multi-shaft extruder according to one of claims 1 to 8, characterized in that a shaping nozzle is arranged at the downstream end of the at least one cylindrical partial process chamber with the respective conveyor shaft mounted therein.
10. Mehrwellen-Extruder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die jeweilige Förderwelle des zylindrischen Teilprozessraums durch denselben Antrieb wie die Vielzahl der Bearbeitungswellen angetrieben wird.10. Multi-shaft extruder according to one of claims 1 to 9, characterized in that the respective conveyor shaft of the cylindrical sub-process space is driven by the same drive as the plurality of machining shafts.
11. Mehrwellen-Extruder nach Anspruch 2 bis 6, dadurch gekennzeichnet, dass die jeweilige Förderwelle des zylindrischen Teilprozessraums (3, 4; 5, 6, 7, 8, 9) mit der zu ihr kollinearen jeweiligen Bearbeitungswelle drehfest verbunden ist und durch denselben Antrieb wie die Vielzahl der Bearbeitungswellen angetrieben wird. 11. Multi-shaft extruder according to claim 2 to 6, characterized in that the respective conveyor shaft of the cylindrical sub-process space (3, 4; 5, 6, 7, 8, 9) is rotatably connected to the respective processing shaft, which is collinear with it, and by the same drive how the multitude of machining shafts is driven.
PCT/CH2003/000141 2002-03-15 2003-02-25 Multi-screw extruder comprising at least one elongated, separate discharge screw WO2003078135A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003205494A AU2003205494A1 (en) 2002-03-15 2003-02-25 Multi-screw extruder comprising at least one elongated, separate discharge screw
DE10390957T DE10390957B4 (en) 2002-03-15 2003-02-25 Multi-shaft extruder with discharge screw

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10211673.3 2002-03-15
DE10211673A DE10211673A1 (en) 2002-03-15 2002-03-15 Multi-shaft extruder for thermoplastics or elastomers comprises process chamber formed by parallel recesses with outlet end of cylindrical part chambers in which conveying screws are located

Publications (1)

Publication Number Publication Date
WO2003078135A1 true WO2003078135A1 (en) 2003-09-25

Family

ID=27771373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000141 WO2003078135A1 (en) 2002-03-15 2003-02-25 Multi-screw extruder comprising at least one elongated, separate discharge screw

Country Status (3)

Country Link
AU (1) AU2003205494A1 (en)
DE (2) DE10211673A1 (en)
WO (1) WO2003078135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338660B1 (en) * 2009-12-23 2017-09-06 The Goodyear Tire & Rubber Company Apparatus and method for applying rubber mixture on a core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317357B4 (en) 2003-04-15 2006-10-26 3+Extruder Gmbh extruder
DE10356332A1 (en) * 2003-11-28 2005-06-23 Bühler AG Multi-shaft extruder, comprises a number of parallel crown type shafts, an extruder core inside the shafts, and radial connections

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563396A (en) * 1939-02-06 1951-08-07 Method and apparatus fob manufac
DE962746C (en) * 1953-08-01 1957-04-25 Dynamit Nobel Ag Device for the production of foils, webs, pipes or profiles from thermoplastics
DE1200517B (en) * 1957-04-30 1965-09-09 Ankerwerk Gebr Goller Screw extrusion press for processing plastics
US3640669A (en) * 1968-11-18 1972-02-08 Dorplastex Ag Multiple-screw extruder
US5106198A (en) * 1990-01-24 1992-04-21 Hermann Berstorff Maschinenbau Gmbh Apparatus for treating molten material
WO1997031766A2 (en) * 1996-02-29 1997-09-04 Fritsch, Rosemarie, I. Worm machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL67209C (en) * 1943-04-30 1900-01-01
DE3908415A1 (en) * 1989-03-15 1990-09-20 Rust & Mitschke Entex Processing of rubber mixtures
DE4231232C1 (en) * 1992-09-18 1993-08-19 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De High efficiency degassing process for e.g. thermoplastic melts - mixes melt with injected liq. under pressure in extruder, releases pressure to form foam breaks up foam, degasses and spreads into thin film
DE19607663C2 (en) * 1996-02-29 1999-01-21 Fritsch Rosemarie I Compounding machine
DE10050295A1 (en) * 2000-10-10 2002-04-11 Buehler Ag Multi-shaft extruder for processing rubber compounds with fillers and additives has a specified gap between the shaft kneading blocks and barrel wall
DE10150627A1 (en) * 2001-10-12 2003-05-15 Gneuss Kunststofftechnik Gmbh Extruder for the extraction of plastic melts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563396A (en) * 1939-02-06 1951-08-07 Method and apparatus fob manufac
DE962746C (en) * 1953-08-01 1957-04-25 Dynamit Nobel Ag Device for the production of foils, webs, pipes or profiles from thermoplastics
DE1200517B (en) * 1957-04-30 1965-09-09 Ankerwerk Gebr Goller Screw extrusion press for processing plastics
US3640669A (en) * 1968-11-18 1972-02-08 Dorplastex Ag Multiple-screw extruder
US5106198A (en) * 1990-01-24 1992-04-21 Hermann Berstorff Maschinenbau Gmbh Apparatus for treating molten material
WO1997031766A2 (en) * 1996-02-29 1997-09-04 Fritsch, Rosemarie, I. Worm machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338660B1 (en) * 2009-12-23 2017-09-06 The Goodyear Tire & Rubber Company Apparatus and method for applying rubber mixture on a core

Also Published As

Publication number Publication date
DE10211673A1 (en) 2003-09-25
DE10390957B4 (en) 2006-11-09
AU2003205494A1 (en) 2003-09-29
DE10390957D2 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP3630444B1 (en) Extruder screw for a multi-screw extruder for plastics extrusion
EP0624124B1 (en) Multi-shaft continuously operating mixing and kneading machine for plasticisable compounds
EP1390189B1 (en) Homogenizing and/or dispersing device comprising endless screws
AT509710B1 (en) EXTRUDER
EP3913187B1 (en) Screw spindle pump
DE102008016862B4 (en) extruder
DE10233213B4 (en) extruder
EP2404061A2 (en) Eccentric screw pump
EP2454078B1 (en) Extruder
EP3473396A1 (en) Two-blade worm gear for mixing and kneading machine
EP1775099A2 (en) Extruder screw with mixing pins
DE102006001171A1 (en) Planet roller extruder comprises a side arm extruder to which a vacuum can be applied for degassing
WO2003078135A1 (en) Multi-screw extruder comprising at least one elongated, separate discharge screw
DE69704289T2 (en) Method and device for mixing with continuous rolls of thermoplastic material
EP0955101B1 (en) Screening apparatus
EP0490362A1 (en) High capacity extruder with a constant number of threads in the inlet and the outlet area of a transfer shear element
EP1637301A2 (en) screw extruder and vacuum pump arrangement
DE907994C (en) Kneading pump
DE102005048847A1 (en) conveyor
DE4114610C2 (en) Pen transfer extruder
DE102021214449B3 (en) twin screw conveyor
DE102004010553A1 (en) Worm extruder, comprises a housing with parallel bores, concentric shafts, shaft elements, a core, and at least one comb
DE102004037349B4 (en) Thread for a screw of a screw extruder
DE202005005212U1 (en) Extruder advancing worm comprises at least two worm sections with a hub and a screw shaped spiral
DE19706134A1 (en) Mixing and kneading component of a plastics processing machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 10390957

Country of ref document: DE

Date of ref document: 20050519

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10390957

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607