[go: up one dir, main page]

WO2003091369A1 - Fluides lubrifiants a efficacite et durabilite ameliorees - Google Patents

Fluides lubrifiants a efficacite et durabilite ameliorees Download PDF

Info

Publication number
WO2003091369A1
WO2003091369A1 PCT/US2003/012915 US0312915W WO03091369A1 WO 2003091369 A1 WO2003091369 A1 WO 2003091369A1 US 0312915 W US0312915 W US 0312915W WO 03091369 A1 WO03091369 A1 WO 03091369A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating composition
equal
viscosity fluid
cst
fluid
Prior art date
Application number
PCT/US2003/012915
Other languages
English (en)
Inventor
William T. Sullivan
Thomas S. Coolbaugh
Original Assignee
Exxonmobil Chemical Patents Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Chemical Patents Inc. filed Critical Exxonmobil Chemical Patents Inc.
Priority to AU2003223738A priority Critical patent/AU2003223738A1/en
Publication of WO2003091369A1 publication Critical patent/WO2003091369A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives

Definitions

  • This invention belongs to the field of lubricating fluids and oils. More particularly, this invention relates to the use and preparation of very high viscosity index lubricating fluids and finished gear lubricants.
  • Viscosity Index is an empirical number which indicates the rate of change in the viscosity of an oil within a given temperature range. A high VI oil, for example, will thin out at elevated temperatures slower than a low VI oil. The advantage of VI rating is that it capsulizes the effects of temperature as a single number.
  • Viscosity index of a common paraffmic mineral oil is usually given a value of about 100. Viscosity index is determined according to ASTM Method D 2270-93 [1998] wherein the VI is related to kinematic viscosities measured at 40°C and 100°C using ASTM Method D 445-01.
  • Groups I, II and III are mineral oils classified by the amount of saturates and sulfur they contain and by their viscosity indices.
  • Group I base stocks are solvent refined mineral oils. They contain the most saturates and sulfur and have the lowest viscosity indices. They define the bottom tier of lubricant performance.
  • Group I stocks are the least expensive to produce, and they currently account for about 75 percent of all base stocks. These comprise the bulk of the "conventional" base stocks.
  • Groups II and III are the High Viscosity Index and Very High Viscosity Index base stocks. They are hydroprocessed mineral oils. The Group III oils contain less saturates and sulfur than the Group II oils and have higher viscosity indices than the Group II oils do. Groups II and III stocks perform better than the Group I base stocks do, particularly in measures of thermal and oxidative stability. Isodewaxed oils also belong to Groups II and III. Isodewaxing rids these mineral oils of a significant portion of their waxes, which improves their cold temperature performance greatly. Groups II and III stocks are more expensive to produce than Group I stocks are, and account for about 20 percent of all base stocks.
  • Group II and III stocks may be "conventional” or "unconventional.”
  • "unconventional" base stocks are mineral oils with unusually high viscosity indices and unusually low volatilities.
  • Group II and III solvent refined mineral base stocks are "conventional.” Compared to Group I solvent refined oils, hydroprocessed Group II and III oils offer lower volatility, and when properly additized, greater thermal and oxidative stability and lower pour points.
  • Group IV consists of polyalphaolefins.
  • Group IV base stocks offer superior volatility, thermal stability, oxidative stability and pour point characteristics to those of the Group II and III oils with less reliance on additives.
  • Group IV stocks, the PAOs make up about 3 percent of the base oil market.
  • Group V includes all other base stocks not included in Groups I, II, III and IV. Esters are Group V base stocks.
  • Polyalphaolefins comprise a class of hydrocarbons manufactured by the catalytic oligomerization (polymerization to low-molecular- weight products) of linear ⁇ -olefins typically ranging from 1-octene to 1- dodecene, with 1-decene being a preferred material, although polymers of lower olefins such as ethylene and propylene may also be used, including copolymers of ethylene with higher olefins, as described in U.S. Patent 4,956,122 and the patents referred to therein. PAO products have achieved importance in the lubricating oil market.
  • the PAO products typically produced may be obtained with a wide range of viscosities varying from highly mobile fluids of low- viscosity, about 2 cSt, at 100°C to higher molecular weight, viscous materials which have viscosities exceeding 100 cSt. at 100°C.
  • PAOs are commonly classified according to their approximate kinematic viscosity (KV) at 100° C.
  • KV kinematic viscosity
  • the kinematic viscosity of liquid is determined by measuring the time for a volume of liquid to flow a given distance under gravity. Dynamic viscosity can then be obtained by multiplying the measured kinematic viscosity by the density of the liquid.
  • PAOs may be produced by the polymerization of olefin feed in the presence of a catalyst such as A1C1 3 , BF 3 , or BF 3 complexes.
  • a catalyst such as A1C1 3 , BF 3 , or BF 3 complexes.
  • Processes for the production of PAOs are disclosed, for example, in the following patents: U.S. Patents 3,149,178; 3,382,291; 3,742,082; 3,769,363; 3,780,128; 4,172,855 and 4,956,122. PAOs are also discussed in Lubrication Fundamentals, J.G. PAO
  • the PAO lubricant range products are hydrogenated in order to reduce the residual unsaturation.
  • the amount of unsaturation is generally reduced by greater than 90%.
  • Hydrocarbons generally, and in particular synthetic PAOs, have found wide acceptability and commercial success in the lubricant field for their superiority to mineral based lubricants.
  • industrial research efforts on synthetic lubricants has led to PAO fluids exhibiting useful viscosities over a wide range of temperature, i.e., improved viscosity index, while also showing lubricity, thermal and oxidative stability and pour point equal to or better than mineral oil.
  • These relatively new synthetic lubricants lower mechanical friction, enhancing mechanical efficiency over the full spectrum of mechanical loads and do so over a wider range of operating conditions than mineral oil.
  • PAOs have been blended with a variety of additives such as functional chemicals, oligomers and polymers and other synthetic and mineral oil based lubricants to confer or improve upon lubricant properties necessary for applications, such as engine lubricants, hydraulic fluids, gear lubricants, etc. Blends and their additive components are described in Kirk-Othmer Encyclopedia of Chemical Technology, fourth edition, volume 15, pages 463-517.
  • a particular goal in the formulation of blends is the enhancement of viscosity index by the addition of VI improvers which are typically high molecular weight synthetic organic molecules.
  • VI improvers are typically high molecular weight synthetic organic molecules.
  • Such additives are commonly produced from polyisobutylenes, polymethacrylates and polyalkylstyrenes, and used in the molecular weight range of about 45,000 to about 1,700,000. While effective in improving viscosity index, these VI improvers have been found to be deficient because the very property of high molecular weight that makes them useful as VI improvers also confers upon the blend a vulnerability in shear stability during actual applications.
  • Temporary shear results from the non- Newtonian viscometrics associated with solutions of high molecular weight polymers and is caused by an alignment of the polymer chains with the shear field under high shear rates with a resultant decrease in viscosity.
  • the decreased viscosity reduces the wear protection associated with viscous oils. (Newtonian fluids, in contrast, maintain their viscosity regardless of shear rate.)
  • This deficiency in shear stability dramatically reduces the range of useful applications for many VI improver additives. Accordingly, workers in the lubricant arts continue to search for better lubricant blends with high viscosity indices.
  • the present invention comprises novel lubricating compositions, automotive gear lubricating compositions, and fluids useful in the preparation of finished automotive gear lubricants.
  • the novel lubricating compositions of the present invention comprise a high viscosity fluid blended with a lower viscosity fluid, wherein the final blend has a viscosity index greater than or equal to 175.
  • the novel lubricating compositions of the present invention comprise a major amount of a blend of a high viscosity fluid blended with a lower viscosity fluid, wherein the final blend has a viscosity index greater than or equal to 175.
  • the blend of the high viscosity fluid and the lower viscosity fluid is generally in a major amount when present in an amount about 70wt.% or greater by weight of the total composition, preferably about 90% or greater by weight of the total composition.
  • the high viscosity fluid comprises a polyalphaolefin and/or the lower viscosity fluid comprises a synthetic hydrocarbon.
  • the novel lubricating compositions of the present invention further comprise one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • novel lubricating compositions of the present invention comprise finished gear oil.
  • the present invention comprises a method of preparing lubricating compositions, having the properties discussed herein, comprising blending a high viscosity fluid with a lower viscosity fluid, wherein the final blend has a viscosity index greater than or equal to 175.
  • the method may also further comprise the addition of one or more of an ester, mineral oil and/or hydroprocessed mineral oil, optionally in the percentages by weight discussed herein.
  • the novel lubricating compositions of the present invention comprise: a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, blended with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to 175.
  • the present invention comprises an automotive gear lubricating composition
  • an automotive gear lubricating composition comprising: a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, blended with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to 175.
  • the present invention comprises an automotive gear lubricating composition
  • a blend of components (A) and (B) wherein: component (A) comprises a high viscosity fluid, said high viscosity fluid having (i) a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C and, (ii) a viscosity index greater than or equal to 180; and component (B) comprises a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C; wherein the final blend of components (A) and (B) has a viscosity index greater than or equal to 175.
  • the present invention comprises a method of preparing a lubricating composition comprising blending a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, blended with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to
  • the present invention comprises an automotive gear lubricating composition
  • an automotive gear lubricating composition comprising: a major amount of a blend of a high viscosity fluid blended with a lower viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to
  • the present invention comprises an automotive gear lubricating composition
  • a high viscosity fluid said high viscosity fluid having a viscosity of greater than or equal to 80 cSt. at 100°C and less than or equal to 300 cSt. at 100°C, blended with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 6 cSt. at 100°C and greater than or equal to 1.5 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to 190.
  • Figure 1 presents graphically test results in accordance with embodiments of the present invention relative to currently available commercial gear oils.
  • Figure 2 presents graphically test results in accordance with embodiments of the present invention relative to currently available commercial gear oils.
  • the present invention comprises novel lubricating compositions useful in the preparation of finished gear lubricants and automotive gear lubricants.
  • the novel lubricating compositions of the present invention comprise a high viscosity fluid blended with a lower viscosity fluid, wherein the final blend of the high viscosity fluid and the lower viscosity fluid has a viscosity index greater than or equal to 175.
  • the novel lubricating compositions of the present invention comprise a major amount of a blend of a high viscosity fluid blended with a lower viscosity fluid, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to
  • compositions of the present invention exhibit very high stability to permanent shear and, because of their Newtonian nature, very little, if any, temporary shear thereby maintaining the viscosity required for proper wear protection.
  • the novel lubricating compositions of the present invention comprise: a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt.
  • the high viscosity fluid has a viscosity of greater than or equal to 60 cSt. at 100°C. In another embodiment of the novel lubricating compositions of the present invention, the high viscosity fluid has a viscosity of less than or equal to 1,000 cSt. at 100°C. In another embodiment of the novel lubricating compositions of the present invention, the high viscosity fluid has a viscosity of greater than or equal to 60 cSt. at 100°C and less than or equal to 1,000 cSt. at
  • the high viscosity fluid has a viscosity of greater than or equal to 80 cSt. at 100°C. In another embodiment of the novel lubricating compositions of the present invention, the high viscosity fluid has a viscosity of less than or equal to 300 cSt. at 100°C. In another embodiment of the novel lubricating compositions of the present invention, the high viscosity fluid has a viscosity of greater than or equal to 80 cSt. at 100°C and less than or equal to 300 cSt. at 100°C.
  • the lower viscosity fluid has a viscosity of less than or equal to 10 cSt. at 100°C. In another embodiment of the novel lubricating compositions of the present invention, the lower viscosity fluid has a viscosity of less than or equal to 6 cSt. at 100°C. In another embodiment of the novel lubricating compositions of the present invention, the lower viscosity fluid has a viscosity of greater than or equal to 1.5 cSt. at 100°C and less than or equal to 10 cSt. at 100°C.
  • the lower viscosity fluid has a viscosity of greater than or equal to 1.5 cSt. at 100°C and less than or equal to 6 cSt. at 100°C.
  • the viscosity index of the final blend of the high viscosity fluid and the lower viscosity fluid is greater than or equal to 190.
  • the high viscosity fluid and the lower viscosity fluid comprise base stocks.
  • the novel lubricating compositions of the present invention further comprise an ester.
  • the high viscosity fluid comprises a polyalphaolefin.
  • the high viscosity fluid and the lower viscosity fluid comprise polyalphaolefins.
  • the lower viscosity fluid comprises a synthetic hydrocarbon.
  • the novel lubricating compositions of the present invention further comprise one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • the high viscosity fluid comprises a polyalphaolefin in an amount of from about 30% to about 60% by weight of the total composition.
  • the lower viscosity fluid comprises 0% to about 70% by weight of the total composition of a synthetic hydrocarbon.
  • the novel lubricating compositions of the present invention further comprise 0% to about 20% by weight of the total composition of an ester.
  • the novel lubricating compositions of the present invention further comprise 0% to about 20% by weight of the total composition of one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • novel lubricating compositions of the present invention further comprise one or more of: thickeners, antioxidants, inhibitor packages, and/or anti-rust additives; and/or further comprise one or more of: dispersants, detergents, friction modifiers, traction improving additives, demulsifiers, defoamants, chromophores (dyes), and/or haze inhibitors.
  • the novel lubricating compositions of the present invention comprise a finished gear oil.
  • the blend of the high viscosity fluid blended with the lower viscosity fluid comprises a major amount of said finished gear oil.
  • novel lubricating compositions of the present invention further comprise extreme pressure protection and anti-wear additives.
  • the novel lubricating compositions of the present invention comprises an automatic transmission fluid, manual transmission fluid, transaxle lubricant, gear lubricant, open gear lubricant, enclosed gear lubricant, and/or tractor lubricant.
  • the novel lubricating compositions of the present invention comprises a contact surface comprising at least a portion of an automatic transmission, manual transmission, transaxle, gear, open gear, enclosed gear, and/or tractor.
  • the present invention comprises an automotive gear lubricating composition
  • an automotive gear lubricating composition comprising: a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, blended with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to 175.
  • the high viscosity fluid has a viscosity of greater than or equal to 60 cSt. at 100°C. In another embodiment of the novel automotive gear lubricating compositions of the present invention, the high viscosity fluid has a viscosity of less than or equal to 1,000 cSt. at 100°C. In another embodiment of the novel automotive gear lubricating compositions of the present invention, the high viscosity fluid has a viscosity of greater than or equal to 60 cSt. at 100°C and less than or equal to 1,000 cSt. at 100°C.
  • the high viscosity fluid has a viscosity of greater than or equal to 80 cSt. at 100°C. In another embodiment of the novel automotive gear lubricating compositions of the present invention, the high viscosity fluid has a viscosity of less than or equal to 300 cSt. at 100°C. In another embodiment of the novel automotive gear lubricating compositions of the present invention, the high viscosity fluid has a viscosity of greater than or equal to 80 cSt. at 100°C and less than or equal to 300 cSt. at 100°C.
  • the lower viscosity fluid has a viscosity of less than or equal to 10 cSt. at 100°C. In another embodiment of the novel automotive gear lubricating compositions of the present invention, the lower viscosity fluid has a viscosity of less than or equal to 6 cSt. at 100°C. In another embodiment of the novel automotive gear lubricating compositions of the present invention, the lower viscosity fluid has a viscosity of greater than or equal to 1.5 cSt. at 100°C and less than or equal to 10 cSt. at 100°C.
  • the lower viscosity fluid has a viscosity of greater than or equal to 1.5 cSt. at 100°C and less than or equal to 6 cSt. at 100°C.
  • the viscosity index of the final blend of the high viscosity fluid and the lower viscosity fluid is greater than or equal to 190.
  • the high viscosity fluid and the lower viscosity fluid comprise base stocks.
  • the novel automotive gear lubricating compositions of the present invention further comprise an ester.
  • the high viscosity fluid comprises a polyalphaolefin.
  • the high viscosity fluid and the lower viscosity fluid comprise polyalphaolefins.
  • the lower viscosity fluid comprises a synthetic hydrocarbon.
  • the novel automotive gear lubricating compositions of the present invention further comprise one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • the high viscosity fluid comprises a polyalphaolefin in an amount of from about 30% to about 60% by weight of the total composition.
  • the lower viscosity fluid comprises 0% to about 70% by weight of the total composition of a synthetic hydrocarbon.
  • the novel automotive gear lubricating compositions of the present invention further comprise 0% to about 20% by weight of the total composition of an ester.
  • the novel automotive gear lubricating compositions of the present invention further comprise 0% to about 20% by weight of the total composition of one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • novel automotive gear lubricating compositions of the present invention further comprise one or more of: thickeners, antioxidants, inhibitor packages, and/or anti-rust additives; and/or further comprise one or more of: dispersants, detergents, friction modifiers, traction improving additives, demulsifiers, defoamants, chromophores (dyes), and/or haze inhibitors.
  • the novel automotive gear lubricating compositions of the present invention comprise a finished gear oil.
  • the blend of the high viscosity fluid blended with the lower viscosity fluid comprises a major amount of said finished gear oil.
  • novel automotive gear lubricating compositions of the present invention further comprise extreme pressure protection and anti-wear additives.
  • the novel automotive gear lubricating compositions of the present invention comprises an automatic transmission fluid, manual transmission fluid, transaxle lubricant, gear lubricant, open gear lubricant, enclosed gear lubricant, and/or tractor lubricant.
  • the novel automotive gear lubricating compositions of the present invention comprises a contact surface comprising at least a portion of an automatic transmission, manual transmission, transaxle, gear, open gear, enclosed gear, and/or tractor.
  • the present invention comprises an automotive gear lubricating composition comprising a blend of components (A) and (B), wherein: component (A) comprises a high viscosity fluid, said high viscosity fluid having (i) a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt.
  • component (B) comprises a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C; wherein the final blend of components (A) and (B) has a viscosity index greater than or equal to 175.
  • the final blend of components (A) and (B) has a viscosity index greater than or equal to 190.
  • the viscosity index of component (A) is greater than or equal to 190.
  • component (A) and component (B) comprise base stocks.
  • novel automotive gear lubricating compositions of the present invention further comprise an ester.
  • novel automotive gear lubricating compositions of the present invention further comprise 0% to about 20% by weight of the total composition of an ester.
  • component (A) comprises a polyalphaolefin.
  • components (A) and (B) comprise polyalphaolefins.
  • novel automotive gear lubricating compositions of the present invention further comprise one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • novel automotive gear lubricating compositions of the present invention further comprise 0% to about 20% by weight of the total composition of one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • component (A) comprises a polyalphaolefin in an amount of from about 30% to about 60% by weight of the total composition.
  • novel automotive gear lubricating compositions of the present invention further comprise one or more of: thickeners, antioxidants, inhibitor packages, and/or anti-rust additives; and/or further comprise one or more of: dispersants, detergents, friction modifiers, traction improving additives, demulsifiers, defoamants, chromophores (dyes), and/or haze inhibitors.
  • novel automotive gear lubricating compositions of the present invention comprise a finished gear oil.
  • novel automotive gear lubricating compositions of the present invention further comprise extreme pressure protection and anti-wear additives.
  • novel automotive gear lubricating compositions of the present invention comprises an automatic transmission fluid, manual transmission fluid, transaxle lubricant, gear lubricant, open gear lubricant, enclosed gear lubricant, and/or tractor lubricant.
  • novel automotive gear lubricating compositions of the present invention comprise a contact surface comprising at least a portion of an automatic transmission, manual transmission, transaxle, gear, open gear, enclosed gear, and/or tractor.
  • the present invention comprises a method of preparing a lubricating composition comprising blending a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at
  • the high viscosity fluid has a viscosity index of 180 or greater.
  • the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to 190.
  • the high viscosity fluid and the lower viscosity fluid comprise base stocks.
  • the blend of the high viscosity fluid blended with the lower viscosity fluid comprises a major amount of the lubricating composition.
  • the high viscosity fluid comprises a polyalphaolefin.
  • the lower viscosity fluid comprises a synthetic hydrocarbon.
  • the method of preparing a lubricating composition of the present invention further comprises the step of adding 0% to about 20% by weight of the total composition of an ester.
  • the method of preparing a lubricating composition of the present invention further comprises the step of adding 0% to about 20% by weight of the total composition of one or more of an ester, mineral oil and/or hydroprocessed mineral oil.
  • the method of preparing a lubricating composition of the present invention further comprises the step of adding one or more of: thickeners, antioxidants, inhibitor packages, and/or anti-rust additives; and/or further comprises the step of adding one or more of: dispersants, detergents, friction modifiers, traction improving additives, demulsifiers, defoamants, chromophores (dyes), and/or haze inhibitors.
  • the method of preparing a lubricating composition of the present invention further comprises the step of adding extreme pressure protection and anti-wear additives.
  • the product of the method of preparing a lubricating composition of the present invention comprises an automatic transmission fluid, manual transmission fluid, transaxle lubricant, gear lubricant, open gear lubricant, enclosed gear lubricant, and/or tractor lubricant.
  • the product of the method of preparing a lubricating composition of the present invention comprises a contact surface comprising at least a portion of an automatic transmission, manual transmission, transaxle, gear, open gear, enclosed gear, and/or tractor.
  • the present invention comprises the product of the aforementioned method of preparing a lubricating composition.
  • the present invention comprises an automotive gear lubricating composition
  • an automotive gear lubricating composition comprising: a major amount of a blend of a high viscosity fluid blended with a lower viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, said lower viscosity fluid having a viscosity of less than or equal to 40 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to
  • novel automotive gear lubricating composition of the present invention comprising a major amount of a blend of a high viscosity fluid blended with a lower viscosity fluid, said high viscosity fluid and said lower viscosity fluid comprise base stocks.
  • the present invention comprises an automotive gear lubricating composition
  • an automotive gear lubricating composition comprising: a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 80 cSt. at 100°C and less than or equal to 300 cSt. at 100°C, blended with a lower viscosity fluid, said lower viscosity fluid having a viscosity of less than or equal to 6 cSt. at 100°C and greater than or equal to 1.5 cSt. at 100°C, wherein the final blend of said high viscosity fluid and said lower viscosity fluid has a viscosity index greater than or equal to 190.
  • a preferred embodiment of the present invention comprises a high viscosity fluid, said high viscosity fluid having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, more preferably greater than or equal to 60 cSt. at 100°C and less than or equal to 1,000 cSt. at 100°C, most preferably greater than or equal to 80 cSt. at 100°C and less than or equal to 300 cSt. at 100°C, blended with a lower viscosity fluid, the lower viscosity fluid having a viscosity of less than or equal to 40 cSt.
  • the final blend of the high viscosity fluid and the lower viscosity fluid has a viscosity index greater than or equal to 175, more preferably greater than or equal to 190.
  • the novel automotive gear lubricating compositions comprise: (i) a major amount of a blend
  • High viscosity fluids suitable for the present invention are fluids having a viscosity of greater than or equal to 40 cSt. at 100°C and less than or equal to 3,000 cSt. at 100°C, preferably greater than or equal to 60 cSt. at 100°C and less than or equal to 1,000 cSt. at 100°C, more preferably greater than or equal to 80 cSt. at 100°C and less than or equal to 300 cSt. at 100°C.
  • Lower viscosity fluids suitable for the present invention are fluids having a viscosity of less than or equal to 40 cSt. at 100°C, preferably less than or equal to 10 cSt. at 100°C and greater than or equal to 1.5 cSt. at 100°C, more preferably less than or equal to 6 cSt. at
  • Lower viscosity fluids suitable for the present invention may be synthetic, or of mineral oil, origin although the synthetic materials are preferred.
  • Suitable mineral oil stocks are characterized by a predominantly saturated (paraffinic) composition, relative freedom from sulfur and a high viscosity index (ASTM D 2270), greater than 110. Saturates (ASTM D 2007) are at least 90 weight percent and the controlled sulfur content is not more than 0.03 weight percent (ASTM D 2622, D 4294, D 4927, D 3120).
  • Lower viscosity fluids of mineral oil origin include the hydroprocessed stocks, especially hydrotreated and catalytically hydrodewaxed distillate stocks, catalytically hydrodewaxed raffinates, hydrocracked and hydroisomerized petroleum waxes, including the lubricating oils referred to as XHVI oils, as well as other oils of mineral origin generally classified as API Group III base stocks.
  • Exemplary streams of mineral origin which may be converted into suitable high quality base stocks by hydroprocessing techniques include waxy distillate stocks such as gas oils, slack waxes, deoiled waxes and microcrystalline waxes, and fuels hydrocracker bottoms fractions. Processes for the hydroisomerization of petroleum waxes and other feeds to produce high quality lube stocks are described in U.S. Patents 5,885,438;
  • Preferred Group V hydrocarbon components suitable for the present invention also include the oils of lubricating viscosity which are hydrocarbon substituted aromatic compounds, such as the long chain alkyl substituted aromatics, including the alkylated naphthalenes, alkylated benzenes, alkylated diphenyl compounds and alkylated diphenyl methanes.
  • oils of lubricating viscosity which are hydrocarbon substituted aromatic compounds, such as the long chain alkyl substituted aromatics, including the alkylated naphthalenes, alkylated benzenes, alkylated diphenyl compounds and alkylated diphenyl methanes.
  • Synthetic lower viscosity fluids suitable for the present invention include the polyalphaolefins (PAOs) and the synthetic oils from the hydrocracking or hydroisomerization of Fischer Tropsch high boiling fractions including waxes. These are both stocks comprised of saturates with low impurity levels consistent with their synthetic origin.
  • the hydroisomerized Fischer Tropsch waxes are highly suitable base stocks, comprising saturated components of iso-paraffmic character (resulting from the isomerization of the predominantly n-paraffms of the Fischer Tropsch waxes) which give a good blend of high viscosity index and low pour point. Processes for the hydroisomerization of Fischer Tropsch waxes are described in U.S. Patents 5,362,378; 5,565,086; 5,246,566 and 5,135,638, as well as in EP 710710, EP 321302 and EP 321304.
  • PAOs POLYALPHAOLEFINS
  • Polyalphaolefins suitable for the present invention include known PAO materials which typically comprise relatively low molecular weight hydrogenated polymers or oligomers of alphaolefms which include but are not limited to C 2 to about C 32 alphaolefms with the C 8 to about C ⁇ 6 alphaolefms, such as 1-octene, 1-decene, 1-dodecene and the like being preferred.
  • the preferred polyalphaolefins are poly- 1-octene, poly- 1-decene, and poly- 1-dodecene, although the dimers of higher olefins in the range of 4 to C 18 provide low viscosity base stocks.
  • PAO fluids suitable for the present invention may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • Patents 4,149,178 or 3,382,291 may be conveniently used herein.
  • Other descriptions of PAO synthesis are found in the following U.S. Patents: 3,742,082 (Brennan); 3,769,363 (Brennan); 3,876,720 (Heilman); 4,239,930 (Allphin); 4,367,352 (Watts); 4,413,156 (Watts); 4,434,408 (Larkin); 4,910,355 (Shubkin); 4,956,122 (Watts); and 5,068,487 (Theriot).
  • High viscosity PAOs suitable for the present invention may be prepared by the action of a reduced chromium catalyst with the alphaolefin, such PAOs are described in U.S. Patents 4,827,073 (Wu); 4,827,064 (Wu); 4,967,032 (Ho et al.); 4,926,004 (Pelrine et al); and, 4,914,254 (Pelrine).
  • the dimers of the C 14 to C ⁇ 8 olefins are described in U.S. Patent 4,218,330.
  • Commercially available high viscosity PAOs include SuperSynTM 2150, SuperSynTM 2300, SuperSynTM 21000, SyperSynTM 23000, (ExxonMobil Chemical Company).
  • Esters suitable for the present invention include the esters of mono and polybasic acids with monoalkanols (simple esters) or with mixtures of mono and polyalkanols (complex esters), and the polyol esters of monocarboxylic acids (simple esters), or mixtures of mono and polycarboxylic acids (complex esters).
  • Esters of the mono/polybasic type include, for example, the esters of monocarboxylic acids such as heptanoic acid, and dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, or mixtures thereof with polyalkanols, etc.
  • monocarboxylic acids such as heptanoic acid
  • dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid,
  • esters include nonyl heptanoate, dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, dibutyl -TMP- adipate, etc.
  • Commercially available examples include EsterexTM Ml 1, A32, A51 and C3211 esters from ExxonMobil Chemical Company.
  • esters such as those obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols such as the neopentyl polyols, e.g,. neopentyl glycol, trimethylol ethane, 2-methyl-2- propyl- 1 ,3-propanediol, trimethylol propane, trimethylol butane, pentaerythritol and dipentaerythritol with monocarboxylic acids containing at least 4 carbons, normally the C 5 to C 30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures thereof, with polycarboxylic acids.
  • the hindered polyols such as the neopenty
  • the novel lubricating compositions of the present invention further comprise extreme pressure protection and anti-wear additives.
  • extreme pressure protection and anti-wear additives such as mixtures of MobiladTM C-100, MobiladTM C-175 (sulfur); MobiladTM C-420, MobiladTM C-421, MobiladTM C-423
  • Lubricants containing these combinations have improved properties such as those relating to odor, yellow metal protection, thermal stability wear, scuffing, oxidation, surface fatigue, seal compatibility, corrosion resistance, and thermal durability. Other extreme pressure protection and anti-wear additives known in the art may also be used.
  • compositions of the present invention include, but are not limited to, thickeners, antioxidants, inhibitor packages and/or anti-rust additives.
  • other conventional additives may be included in the novel compositions of the present invention as necessary for particular service requirements, for example, dispersants, detergents, friction modifiers, traction improving additives, demulsifiers, defoamants, chromophores (dyes), and/or haze inhibitors, according to application, all of which may be blended according to conventional methods using commercially available materials.
  • the viscosity of the lubricating compositions of the present invention may be brought to a desired grade by the use of polymeric thickeners.
  • Suitable thickeners that may be used. in the present invention include the polyisobutylenes, as well as ethylene-propylene polymers, polymethacrylates and various diene block polymers and copolymers, poly olefins and polyalkylstyrenes. These components may be blended according to commercial market requirement, equipment builder specifications to produce products of the final desired viscosity grade.
  • Typical commercially available thickeners also appropriate for use in lubricating compositions of the present invention include polyisobutylenes, polymerized and co-polymerized alkyl methacrylates, and mixed esters of styrene maleic anhydride interpolymers reacted with nitrogen containing compounds, for example, the ShellvisTM products (in particular, ShellvisTM 40, ShellvisTM 50, ShellvisTM 90, ShellvisTM 200, ShellvisTM 260 and ShellvisTM 300) by Infmeum International Ltd., AcryloidTM1263 and 1265 by Rohm and Haas, ViscoplexTM 5151 and 5089 by Rohm-GmbH, and LubrizolTM 3702 and 3715 by Lubrizol Corp.
  • ShellvisTM products in particular, ShellvisTM 40, ShellvisTM 50, ShellvisTM 90, ShellvisTM 200, ShellvisTM 260 and ShellvisTM 300
  • Infmeum International Ltd. AcryloidTM1263 and 1265 by Rohm and Haas
  • Oxidation stability may be enhanced in the lubricating compositions of the present invention by the use of antioxidants and for this purpose a wide range of commercially available materials is suitable.
  • the most common types of antioxidants suitable for use in the present invention are the phenolic antioxidants, the amine type antioxidants, the alkyl aromatic sulfides, phosphorus compounds such as the phosphites and phosphonic acid esters and the sulfur-phosphorus compounds such as the dithiophosphates and other types such as the dialkyl dithiocarbamates, e.g., methylene bis(di-n-butyl) dithiocarbamate. They may be used individually by type or in combination with one another.
  • the total amount of antioxidant will not exceed 10% by weight of the total composition and preferably will be less, for example below 5% by weight of the total composition. Usually, from 0.5 to 2% by weight of the total composition of an antioxidant is suitable, although for certain applications more may be used if desired.
  • An inhibitor package may be used to provide the desired balance of anti- wear and anti-rust/anti-corrosion properties in the lubricating compositions of the present invention.
  • Suitable inhibitor packages include those comprising a substituted benzotriazoleamine phosphate adduct and a tri-substituted phosphate, especially a triaryl phosphate such as cresyl diphenylphosphate, a known material which is commercially available. This component is typically present in minor amounts up to 5% by weight of the composition. Normally less than 3% by weight of the total composition (e.g., from 0.5 to 2%) is adequate to provide the desired anti-wear performance.
  • inhibitor packages comprising an adduct of benzotriazole or a substituted benzotriazole with an amine phosphate adduct which also provides antiwear and antioxidation performance.
  • Certain multifunctional adducts of this kind are described in U.S. Patent 4,511,481 to which reference is made for a description of these adducts together with the method by which they may be prepared.
  • Anti-rust additives suitable for use in the present invention include metal deactivators which are commercially available and typically include, for example, the N,N-disubstituted aminomethyl-l,2,4-triazoles, and the N,N-disubstituted amino methyl-benzotriazoles, the succinimide derivatives such as the higher alkyl substituted amides of dodecylene succinic acid, which are also commercially available, the higher alkyl substituted amides of dodecenyl succinic acid, such as the tetrapropenylsuccinic monoesters (commercially available), and imidazoline succinic anhydride derivatives, e.g., the imidazoline derivatives of tetrapropenyl succinic anhydride.
  • these additional rust inhibitors will be used in relatively small amounts below 2% by weight of the total composition; although for certain applications amounts up to about 5% may be employed if necessary.
  • the lubricating compositions of the present invention may be prepared using standard commercial lube oil blending facilities consisting of blend tanks and/or inline mixers where heat is used only to facilitate pumping and complete mixing.
  • Examples A-H hereafter, illustrate properties of embodiments of finished gear oils comprising the lubricating compositions of the present invention.
  • the following tables, charts, and attached Figures summarize the benefits that were observed for embodiments of the present invention.
  • Finished gear oils comprising the lubricating compositions of the present invention possess previously unseen benefits with respect to vehicle fuel economy and hardware durability and demonstrate significantly enhanced lubricant performance. For instance, when finished gear oils comprising the lubricating compositions of the present invention are tested in truck axles, resultant oil sump temperatures are lower than with current commercially available lubricant fluids across a wide range of operating conditions. These lowered axle sump temperatures are a consequence of reduced friction within the drive train. The reduced friction leads directly to efficiency improvements. The lowered sump temperatures have the effect of enhancing hardware durability. Thus, the lubricant temperature reduction seen in the finished gear oils comprising the lubricating compositions of the present invention yields increased fuel efficiency and hardware durability.
  • the performance enhancements of the finished gear oils comprising the lubricating compositions of the present invention can be demonstrated using automotive drive axles on laboratory test stands where defined loads are applied to the test axles at constant axle speeds and constant cooling.
  • the test stages are defined to include the range of actual commercial operating conditions of load and speed. Oil sump temperatures can then be measured to demonstrate indirectly the improved efficiency and hardware durability protection in the field.
  • the test stand can be instrumented with torque meters to estimate efficiencies more explicitly.
  • One such test uses a light truck axle mounted in a "T-bar" type test configuration similar to ASTM D 6121-01 (the L-37 gear durability test), with the exception that in this test, the power source is from a 250 hp electric motor and constant heat removal is provided by air fans directed at the axle carrier.
  • the axle carrier is filled with test oil and then run through stages of torques and rpms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

L'invention concerne des compositions lubrifiantes, des compositions lubrifiantes d'engrenages automobiles, et des fluides utiles dans la préparation de lubrifiants complets d'engrenages automobiles et d'huiles complètes pour engrenages, ainsi que des procédés de préparation de ces compositions et fluides. Les compositions lubrifiantes de l'invention comprennent un fluide de viscosité élevée mélangé avec un fluide de viscosité plus faible, le mélange final possédant un indice de viscosité supérieur ou égal à 175. Dans un autre mode de réalisation, les compositions lubrifiantes de l'invention comprennent une quantité majeure d'un mélange de fluide de viscosité élevée et de fluide de viscosité plus faible, le mélange final possédant un indice de viscosité supérieur ou égal à 175. De préférence, le fluide de viscosité élevée comprend une polyalphaoléfine et/ou le fluide de plus faible viscosité comprend un hydrocarbone synthétique. Dans un autre mode de réalisation, les compositions lubrifiantes de l'invention comprennent un ou plusieurs composés parmi un ester, une huile minérale et/ou une huile minérale hydrotraitée.
PCT/US2003/012915 2002-04-26 2003-04-25 Fluides lubrifiants a efficacite et durabilite ameliorees WO2003091369A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003223738A AU2003223738A1 (en) 2002-04-26 2003-04-25 Lubricating fluids with enhanced energy efficiency and durability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/133,522 2002-04-26
US10/133,522 US20030207775A1 (en) 2002-04-26 2002-04-26 Lubricating fluids with enhanced energy efficiency and durability

Publications (1)

Publication Number Publication Date
WO2003091369A1 true WO2003091369A1 (fr) 2003-11-06

Family

ID=29268779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/012915 WO2003091369A1 (fr) 2002-04-26 2003-04-25 Fluides lubrifiants a efficacite et durabilite ameliorees

Country Status (3)

Country Link
US (1) US20030207775A1 (fr)
AU (1) AU2003223738A1 (fr)
WO (1) WO2003091369A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028599A1 (fr) * 2003-09-13 2005-03-31 Exxonmobil Chemical Patents Inc. Compositions lubrifiantes pour engrenages automobiles
WO2005111178A1 (fr) * 2004-04-29 2005-11-24 Chevron U.S.A Inc. Methode de fonctionnement d'un entrainement de vis sans fin a efficacite d'energie elevee
WO2008081287A3 (fr) * 2006-12-27 2008-08-28 Shell Int Research Composition d'huile lubrifiante
WO2009024610A1 (fr) * 2007-08-23 2009-02-26 Shell Internationale Research Maatschappij B.V. Utilisation d'une composition d'huile lubrifiante
US7732389B2 (en) 2005-02-04 2010-06-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with low traction characteristics
US8071514B2 (en) 2008-03-07 2011-12-06 Exxonmobil Chemical Patents Inc. Silicone functionalized fluids with low traction characteristics
WO2012166575A1 (fr) * 2011-05-27 2012-12-06 Exxonmobil Research And Engineering Company Compositions d'huile dans de l'huile et leurs procédés de fabrication
CN104194876A (zh) * 2014-08-30 2014-12-10 广西大学 一种开式齿轮跑合润滑脂的组合物

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066318A2 (fr) * 2003-12-31 2005-07-21 Aximo Automotive Technologies Une composition stable thermiquement, pour reduire la friction l'usure et la degradation utilisee dans les systemes de transmission de force hautement sollicites
US20050272614A1 (en) * 2004-06-07 2005-12-08 Walker Johnny B Novel multi-purpose rust preventative and penetrant
US20060003654A1 (en) * 2004-06-30 2006-01-05 Lostocco Michael R Dispersible alcohol/cleaning wipes via topical or wet-end application of acrylamide or vinylamide/amine polymers
US7482312B2 (en) * 2005-04-01 2009-01-27 Shell Oil Company Engine oils for racing applications and method of making same
KR101114778B1 (ko) * 2005-06-07 2012-03-05 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 개선된 미세피팅 보호를 위한 신규 기본원료 윤활제 블렌드
JP5062650B2 (ja) * 2005-07-29 2012-10-31 東燃ゼネラル石油株式会社 ギヤ油組成物
US20070289897A1 (en) * 2006-06-06 2007-12-20 Carey James T Novel base stock lubricant blends
US20080207475A1 (en) * 2006-06-06 2008-08-28 Haigh Heather M High viscosity novel base stock lubricant viscosity blends
US8535514B2 (en) 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US20080248983A1 (en) 2006-07-21 2008-10-09 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
WO2009064494A1 (fr) * 2007-11-16 2009-05-22 Exxonmobil Research And Engineering Company Procédé pour atténuer le trouble et améliorer la capacité à être filtrées d'huiles de base de transformation de gaz en liquide hydro-isomérisées
US8394746B2 (en) 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
US8247358B2 (en) 2008-10-03 2012-08-21 Exxonmobil Research And Engineering Company HVI-PAO bi-modal lubricant compositions
US8800678B2 (en) * 2008-12-01 2014-08-12 Keith Donald Norman Klayh Oil lubricant
US8716201B2 (en) 2009-10-02 2014-05-06 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
US8394256B2 (en) * 2009-10-13 2013-03-12 Exxonmobil Research And Engineering Company Method for haze mitigation and filterability improvement for base stocks
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
CN103980994A (zh) * 2014-04-17 2014-08-13 天长市润达金属防锈助剂有限公司 一种高抗湿热防锈油
CN103992845A (zh) * 2014-04-17 2014-08-20 天长市润达金属防锈助剂有限公司 一种耐腐蚀防锈油
CN103980993A (zh) * 2014-04-17 2014-08-13 天长市润达金属防锈助剂有限公司 一种普碳钢冷轧板防锈油
CN104673459A (zh) * 2015-01-13 2015-06-03 新疆福克油品股份有限公司 一种利用再生油生产的车辆齿轮油组合物
CN104673460A (zh) * 2015-01-16 2015-06-03 新疆福克油品股份有限公司 一种利用再生油生产的工业闭式齿轮油组合物
US10774287B2 (en) 2018-03-06 2020-09-15 Valvoline Licensing And Intellectual Property Llc Traction fluid composition
CN109266424A (zh) * 2018-09-07 2019-01-25 苏州安美润滑科技有限公司 一种越野车减震器液压系统用润滑油及其制备方法
CN113692438B (zh) 2019-03-13 2022-10-18 胜牌许可和知识产权有限公司 具有改进的低温性能的牵引流体
EP4069808B1 (fr) 2019-12-04 2023-08-23 The Lubrizol Corporation Huiles de base d'ester pour améliorer l'indice de viscosité et l'efficacité dans des fluides de transmission et de lubrification d'engrenage industriel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088453A1 (fr) * 1982-03-10 1983-09-14 UNIROYAL CHEMICAL COMPANY, Inc. Composition lubrifiante
US4912272A (en) * 1988-06-23 1990-03-27 Mobil Oil Corporation Lubricant blends having high viscosity indices
US4990711A (en) * 1988-06-23 1991-02-05 Mobil Oil Corporation Synthetic polyolefin lubricant blends having high viscosity indices
US5146021A (en) * 1991-04-17 1992-09-08 Mobil Oil Corporation VI enhancing compositions and Newtonian lube blends
US5151205A (en) * 1991-05-13 1992-09-29 Texaco Inc. Chain and drive gear lubricant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088453A1 (fr) * 1982-03-10 1983-09-14 UNIROYAL CHEMICAL COMPANY, Inc. Composition lubrifiante
US4912272A (en) * 1988-06-23 1990-03-27 Mobil Oil Corporation Lubricant blends having high viscosity indices
US4990711A (en) * 1988-06-23 1991-02-05 Mobil Oil Corporation Synthetic polyolefin lubricant blends having high viscosity indices
US5146021A (en) * 1991-04-17 1992-09-08 Mobil Oil Corporation VI enhancing compositions and Newtonian lube blends
US5151205A (en) * 1991-05-13 1992-09-29 Texaco Inc. Chain and drive gear lubricant

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505191A (ja) * 2003-09-13 2007-03-08 エクソンモービル・ケミカル・パテンツ・インク 自動車用ギアのための潤滑組成物
WO2005028599A1 (fr) * 2003-09-13 2005-03-31 Exxonmobil Chemical Patents Inc. Compositions lubrifiantes pour engrenages automobiles
US7585823B2 (en) 2003-09-13 2009-09-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with enhanced energy efficiency and durability
AU2005243233B2 (en) * 2004-04-29 2010-05-13 Chevron U.S.A Inc. Method of operating a wormgear drive at high energy efficiency
JP2007534826A (ja) * 2004-04-29 2007-11-29 シェブロン ユー.エス.エー. インコーポレイテッド ウオームギア・ドライブを高エネルギー効率で運転する方法
US7045055B2 (en) 2004-04-29 2006-05-16 Chevron U.S.A. Inc. Method of operating a wormgear drive at high energy efficiency
WO2005111178A1 (fr) * 2004-04-29 2005-11-24 Chevron U.S.A Inc. Methode de fonctionnement d'un entrainement de vis sans fin a efficacite d'energie elevee
US7732389B2 (en) 2005-02-04 2010-06-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with low traction characteristics
WO2008081287A3 (fr) * 2006-12-27 2008-08-28 Shell Int Research Composition d'huile lubrifiante
US8168573B2 (en) 2006-12-27 2012-05-01 Shell Oil Company Lubricating oil composition
CN101802152A (zh) * 2007-08-23 2010-08-11 国际壳牌研究有限公司 润滑油组合物的用途
WO2009024610A1 (fr) * 2007-08-23 2009-02-26 Shell Internationale Research Maatschappij B.V. Utilisation d'une composition d'huile lubrifiante
RU2486233C2 (ru) * 2007-08-23 2013-06-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Применение композиции смазочного масла
US8071514B2 (en) 2008-03-07 2011-12-06 Exxonmobil Chemical Patents Inc. Silicone functionalized fluids with low traction characteristics
WO2012166575A1 (fr) * 2011-05-27 2012-12-06 Exxonmobil Research And Engineering Company Compositions d'huile dans de l'huile et leurs procédés de fabrication
US8623796B2 (en) 2011-05-27 2014-01-07 Exxonmobil Research And Engineering Company Oil-in-oil compositions and methods of making
CN104194876A (zh) * 2014-08-30 2014-12-10 广西大学 一种开式齿轮跑合润滑脂的组合物

Also Published As

Publication number Publication date
US20030207775A1 (en) 2003-11-06
AU2003223738A1 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
US20030207775A1 (en) Lubricating fluids with enhanced energy efficiency and durability
CA2537311C (fr) Compositions lubrifiantes pour engrenages automobiles
US7732389B2 (en) Lubricating fluids with low traction characteristics
AU2006266482B2 (en) HVI-PAO in industrial lubricant and grease compositions
US8476205B2 (en) Chromium HVI-PAO bi-modal lubricant compositions
US8394746B2 (en) Low sulfur and low metal additive formulations for high performance industrial oils
JP2009500489A5 (fr)
US20100105585A1 (en) Low sulfur and ashless formulations for high performance industrial oils
WO2008104745A2 (fr) Lubrifiants pour moteurs
JP2004292818A (ja) 二頂のギア潤滑剤配合物
JP6729866B2 (ja) 潤滑油組成物
US8623796B2 (en) Oil-in-oil compositions and methods of making
US10808196B2 (en) Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
CN110573596B (zh) 冷起动模拟机粘度降低基料和含有它们的润滑油制剂
US20180282647A1 (en) Cold Cranking Simulator Viscosity Reducing Base Stocks and Lubricating Oil Formulations Containing the Same
WO2018183032A1 (fr) Huiles de base réduisant la viscosité d'un simulateur de démarrage à froid et formulations d'huile lubrifiante les contenant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP