[go: up one dir, main page]

WO2003001666A1 - Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method - Google Patents

Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method Download PDF

Info

Publication number
WO2003001666A1
WO2003001666A1 PCT/JP2002/006041 JP0206041W WO03001666A1 WO 2003001666 A1 WO2003001666 A1 WO 2003001666A1 JP 0206041 W JP0206041 W JP 0206041W WO 03001666 A1 WO03001666 A1 WO 03001666A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
acoustic wave
surface acoustic
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2002/006041
Other languages
English (en)
French (fr)
Inventor
Kazuo Ikeda
Kazunori Nishimura
Yasumichi Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001307256A external-priority patent/JP2003115745A/ja
Priority claimed from JP2001358802A external-priority patent/JP2003078386A/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP02736147A priority Critical patent/EP1414151A4/en
Priority to US10/362,209 priority patent/US7064471B2/en
Publication of WO2003001666A1 publication Critical patent/WO2003001666A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • H03H9/6473Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes the electrodes being electrically interconnected
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02921Measures for preventing electric discharge due to pyroelectricity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders or supports
    • H03H9/058Holders or supports for surface acoustic wave devices
    • H03H9/059Holders or supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders or supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6459Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode
    • H03H9/6463Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode the tracks being electrically cascaded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02913Measures for shielding against electromagnetic fields

Definitions

  • the present invention relates to a surface acoustic wave device used for communication equipment, a method for manufacturing the same, and an electronic component using the same.
  • Conventional surface acoustic wave devices form a metal thin film on the entire surface of a piezoelectric substrate, apply a resist on the thin film, expose it, develop it, and then etch it to form a desired interdigital electrode (Interdigital).
  • Transformers grating reflector electrodes (Grating Reflectors), dicing lines surrounding them, and thin wires connecting them are formed to form the desired electrode patterns, and cut on the dicing lines to form individual pieces.
  • Manufactures surface acoustic wave devices In this method, once the surface acoustic wave device is separated from the substrate having piezoelectricity, the interdigital electrodes and the grating reflector electrodes are electrically separated from each other.
  • Electrodes are generated due to the pyroelectric effect of the substrate having a characteristic, and if the charge between the electrodes becomes uneven, the electrodes between the facing digital electrodes, between the grating reflector electrodes, and between the digital electrodes and the grating reflector electrodes The discharge between the electrodes may damage the electrodes or degrade the characteristics of the surface acoustic wave device.
  • JP-A-11-298289 As a means for solving this problem, a method described in JP-A-11-298289 is known. That is, a thin metal wire short wire surrounding the periphery of the interdigital electrode or the grating reflector electrode is provided inside the dicing line, and a plurality of thin wires for electrically connecting these short metal wires and the interdigital electrode are formed.
  • the arrangement has been used to electrically uniform the generated charges and prevent damage due to electrostatic discharge and deterioration of electric characteristics.
  • an interdigital electrode and a thin metal thin film surrounding the periphery of the grating reflector electrode were provided inside the dicing line.
  • the connected electrodes are separated. Or the line connecting the short metal thin wire and the interdigital electrode is thin!
  • the present invention has been made to solve the above-mentioned problem, and efficiently equalizes the electric charge generated by the strain-heat treatment on the piezoelectric substrate, and maintains the electric potential even after being separated into individual surface acoustic wave devices. It is an object of the present invention to provide a surface acoustic wave device that is uniform and prevents damage to electrodes and deterioration of electrical characteristics, a method of manufacturing the same, and an electronic component using the same.
  • the present invention has the following configuration.
  • the invention described in claim 1 of the present invention is directed to a surface acoustic wave device in which a plurality of auxiliary electrodes that are electrically independent of each other and have different widths depending on locations are provided around a comb electrode and a reflector electrode.
  • the invention according to claim 2 of the present invention has a configuration in which a plurality of auxiliary electrodes that are electrically independent of each other and have different widths depending on locations are used as ground electrodes, thereby mounting a surface acoustic wave device.
  • the invention described in claim 3 of the present invention has a configuration in which a plurality of auxiliary electrodes that are electrically independent of each other and have different widths depending on locations are arranged substantially evenly. Since the electric uniformity can be equalized, nonuniformity due to the location of the generated potential can be reduced, and the stone skin of the element due to electrostatic discharge can be eliminated. The effect of being able to obtain is obtained.
  • the invention according to claim 4 of the present invention provides a strip-shaped input terminal lead electrode and an output terminal lead electrode connected to a comb-shaped electrode, and connected to the input terminal lead electrode and the output terminal lead electrode. Since the input terminal electrode and the output terminal electrode are provided, the charge generated at the input terminal lead electrode, the output terminal lead electrode, the input terminal electrode, and the output terminal electrode can be made uniform. This has the effect of reducing non-uniformity due to the location of the generated potential and eliminating element rupture due to electrostatic discharge or the like.
  • the invention described in claim 5 of the present invention has a configuration in which a strip-shaped input terminal lead electrode and an output terminal lead electrode, and an input terminal electrode and an output terminal electrode are provided to face each other, and their areas are substantially equal. This makes it possible to make the electric charges generated in the input terminal lead-out electrode part and the output terminal lead-out electrode part substantially equal and electrically uniform. The operation and effect of eliminating rupture of the element due to discharge or the like can be obtained.
  • the invention according to claim 6 of the present invention has a configuration in which at least a part of the reflector electrode and a plurality of auxiliary electrodes that are electrically independent of each other and have different widths depending on locations are electrically connected.
  • the electric charges generated in the reflector electrodes can be made electrically independent of each other and can be made uniform across the electrodes through a plurality of auxiliary electrodes with different widths depending on the location. This reduces non-uniformity due to the generated potential and reduces static electricity. The effect of being able to eliminate rupture of the element due to discharge or the like is obtained.
  • the invention according to claim 7 of the present invention has a configuration in which a reflector electrode and a plurality of auxiliary electrodes that are electrically independent of each other and have different widths depending on locations are electrically connected by a plurality of wire or strip electrodes.
  • the invention according to claim 8 of the present invention has a configuration in which a plurality of auxiliary electrodes that are electrically independent from each other and have different widths depending on locations are electrically opened, In addition, multiple trapping electrodes that are electrically independent of each other and have different widths at different locations are less likely to be affected by potential changes. This has the effect of reducing damage and eliminating destruction of elements due to electrostatic discharge or the like.
  • the invention according to claim 9 of the present invention has a configuration in which the reflector electrode is constituted by meander lines, and the reflector electrode and the comb-shaped electrode are electrically connected. Since the device electrode and the comb-shaped electrode can be made to have the same potential, it is possible to reduce the non-uniformity of the generated potential depending on the location and to eliminate the destruction of the element due to electrostatic discharge or the like.
  • the invention according to claim 10 of the present invention is characterized in that a comb-shaped electrode, a reflector electrode, and a comb-shaped electrode and a reflector electrode that are electrically independent from each other and located around a substrate having piezoelectricity.
  • a plurality of auxiliary electrodes having different widths, an input terminal electrode and an input terminal lead electrode, a step of providing at least one set of an output terminal electrode and an output terminal lead electrode, and a step of cutting between adjacent auxiliary electrodes.
  • the invention according to claim 11 of the present invention is a method in which the input terminal electrode, the output terminal electrode, and the plurality of auxiliary electrodes form at least the uppermost layer electrode by vapor deposition, whereby the connection state with the external terminal is established. Can be obtained.
  • the invention according to claim 12 of the present invention is a method in which the uppermost layer electrode is made of a soft material, whereby an operational effect of stabilizing a connection state with an external terminal can be obtained.
  • the invention according to claim 13 of the present invention is a method in which the soft material is aluminum or an aluminum alloy, whereby an operational effect of stabilizing a connection state with an external terminal can be obtained.
  • the invention according to claim 14 of the present invention is characterized in that a comb-shaped electrode, a reflector electrode, an input terminal electrode and an input terminal lead electrode, an output terminal electrode and an output terminal lead electrode, A plurality of auxiliary electrodes that are independent and have different widths depending on the location are a method in which one or more types of metal are stacked, and this has the effect of improving the power resistance to the generated charges. can get.
  • the invention according to claim 15 of the present invention is characterized in that a plurality of auxiliary electrodes which are electrically independent from each other and have different widths depending on locations around a comb electrode and a reflector electrode, and a band-shaped input connected to the comb electrode.
  • a terminal lead electrode and an input terminal electrode and an output terminal lead electrode and an output terminal electrode are provided, electrically connected and disposed on a base member, and have a structure of sealed electronic parts, thereby providing electrostatic discharge. This has the effect of suppressing damage to the element due to, for example, and obtaining a stable electronic component with little characteristic deterioration.
  • the invention according to claim 16 of the present invention is directed to a dicing line on a substrate having piezoelectricity, a comb-shaped electrode inside the substrate, a reflector electrode, and an electrical connection between the comb-shaped electrode and the reflector electrode.
  • the method comprises the steps of providing a plurality of auxiliary electrodes that are independent of each other and having different widths depending on the location, input and output terminals, extraction electrode and input and output terminal electrodes, and cutting the dicing line.
  • the effect is that the potential generated on the substrate having the uniformity can be made uniform, the position of the dicing line can be easily confirmed, and the cutting can be easily performed.
  • the invention according to claim 17 of the present invention is characterized in that at least one of the plurality of auxiliary electrodes that are electrically independent of the input and output terminal lead-out electrodes and the input and output terminal electrodes and have different widths depending on the location is at least
  • This is a method in which the uppermost layer electrode is formed by vapor deposition. By this, a stabilizing state of the connection with the external terminal can provide a laser effect.
  • the invention according to claim 18 of the present invention is a method in which the uppermost layer electrode is formed of a soft material, whereby the effect of stabilizing the connection state with the external terminal can be obtained.
  • the invention according to claim 19 of the present invention is a method in which aluminum or an aluminum alloy is used as a soft material, whereby an operational effect of stabilizing a connection state with an external terminal can be obtained.
  • the invention according to claim 20 of the present invention is characterized in that a plurality of comb-shaped electrodes, a reflector electrode, an input terminal lead electrode, and an output terminal lead electrode are electrically independent from each other and have different widths depending on locations.
  • the auxiliary electrode is formed by laminating one or more kinds of metals, and the operation and effect of improving the power durability of the electrode against generated charges can be obtained.
  • FIG. 1 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing a configuration in which a plurality of electrode patterns of the surface acoustic wave device of FIG. 1 are formed on a wafer.
  • FIG. 3 is a cross-sectional view of an electronic component using the elastic surface acoustic wave device of FIG.
  • FIG. 4 is a plan view showing a configuration of an electrode pattern of the surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 5 is a plan view showing a configuration of an electrode pattern of the surface acoustic wave device according to Embodiment 3 of the present invention.
  • FIG. 6 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 4 of the present invention.
  • FIG. 7 is a plan view showing a configuration in which a plurality of electrode patterns of the surface acoustic wave device of FIG. 6 are formed on a wafer.
  • FIG. 8 is a cross-sectional view of an electronic component using the surface acoustic wave device of FIG.
  • FIG. 9 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 5 of the present invention.
  • FIG. 10 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 11 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 7 of the present invention.
  • FIG. 12 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device according to Embodiment 8 of the present invention.
  • FIG. 1 is a plan view showing a configuration of an electrode pattern of the surface acoustic wave device 10 A according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing a plurality of electrode patterns of FIG. It is a top view which shows the structure formed.
  • FIG. 3 is a cross-sectional view of an electronic component 40A in which the surface acoustic wave device 10A is sealed in a package or the like.
  • 1 is a substrate having piezoelectricity
  • 2 is a comb electrode
  • 3 is a reflector electrode
  • 4a is an input terminal lead electrode
  • 4b is an input terminal electrode
  • 5a is an output terminal lead electrode
  • 5b is an output terminal.
  • Sub-electrodes, 6a and 6b are auxiliary electrodes that are electrically independent of each other and have different widths depending on location
  • 7 is a bump
  • 8 is an auxiliary electrode that is electrically independent and has different width depending on location.
  • Reference numeral 18 denotes a strip-shaped electrode.
  • 1 to 3 schematically show the configuration of the first embodiment, and do not show the relative relationship between the dimensions.
  • Piezoelectric substances generate charge due to pyroelectricity when heat is applied or strain is applied, and a potential difference is generated when the charge varies depending on the location, causing an electrostatic discharge and the like, causing device breakage and electrical characteristics. Degradation occurs.
  • a low impedance portion should be formed in the circuit pattern of the surface acoustic wave device 1 OA as much as possible. They found that it was effective to provide them widely.
  • the electrode pattern of the surface acoustic wave device 1 OA is composed of a comb-shaped electrode 2 on a piezoelectric substrate 1, and a comb-shaped electrode in close proximity to the propagation direction of the surface wave generated from the comb-shaped electrode 2.
  • a reflector electrode 3 is arranged on both sides of the electrode 2, and the periphery of the comb-shaped electrode 2 and the reflector electrode 3 is surrounded by a plurality of auxiliary electrodes 6a and 6 which are electrically independent from each other and have different widths depending on locations.
  • the plurality of auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on locations, are connected to a duland of an external circuit such as a substrate on which the surface acoustic wave device 10A is mounted.
  • a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent of each other and have different widths depending on locations are substantially equal, for example, substantially point symmetric, substantially plane symmetric, substantially line symmetric, etc.
  • the arrangement is made so that the bias is reduced in the surface acoustic wave device 10 A, and the strip-shaped input terminal lead-out electrode 4 a connected to the comb electrode 2, the input terminal The electrode 4 b, the strip-shaped output terminal lead-out electrode 5 a, and the output terminal electrode 5 b are provided, and the opposing band-shaped input terminal lead-out electrode 4 a and output terminal lead-out electrode 5 a, input terminal electrode 4 b and the output are provided.
  • the area of the terminal electrode 5 b is made substantially equal, and the plurality of trapping electrodes 6 a and 6 b which are electrically independent of each other and have a different width depending on the location are electrically opened from the reflector electrode 3, and are comb-shaped.
  • the electrode configuration is such that the electrodes 2 are connected by strip-shaped electrodes.
  • the band-shaped input terminal lead-out electrode 4a and the band-shaped output terminal lead-out electrode 5a are connected to them to provide an input terminal electrode 4b and an output terminal electrode 5b.
  • the input terminal lead electrode 4a and the output terminal lead electrode 5a and the input terminal electrode 4b and the output terminal electrode 5b are opposed to each other, and the electric charges generated by making their areas substantially equal are balanced. Effective to make the potential uniform because it becomes easier
  • these electrodes should be arranged as evenly as possible by a method such as substantially line symmetry or substantially point symmetry, so that the same The effect is obtained.
  • Auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on the location, have as small an impedance as possible and have a wider electrode as much as possible in circuit design to make the potential uniform. It is clearly different from the thin line in that the width differs depending on the location and the area is widened.
  • the line width is smaller than that of the fine line. Since the impedance between lines and in-plane can be reduced widely, the potential generated by accumulating the charge generated by the pyroelectricity of the piezoelectric substrate 1 can be made faster and more uniform, and it can be more uniform than thin wires. It is possible to make the electric potential in a wide area uniform, and it is possible to obtain a surface acoustic wave device 10A that is stable in electric potential.
  • auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on places are connected to a durand of an external circuit such as a substrate on which the surface acoustic wave device 10 A is mounted, and are electrically independent from each other.
  • a plurality of auxiliary electrodes 6a and 6b having different widths depending on the location as the ground electrode of the surface acoustic wave device 1OA a ground that is electrically common to the ground of a larger external circuit can be obtained. Change in potential As a result, the effect of the charge generated by the pyroelectricity of the piezoelectric substrate 1 can be reduced.
  • the reason why the surface acoustic wave device 1 OA generates a potential difference is that electric charges are generated from the pyroelectricity of the piezoelectric substrate 1 due to the application of heat or distortion to the surface acoustic wave device 1 OA. However, in a normal manufacturing state, electric charges are not generated locally but are generated from the entire surface acoustic wave device 10A.
  • the largest surface area of a surface acoustic wave device is an input / output electrode portion connected to a bump or the like, from which charge is most easily generated.
  • FIGS. 1 and 2 schematically show the configuration of the surface acoustic wave device 10A, and do not show the relative relationship between the sizes of the constituent members. Therefore, by surrounding the functional parts such as the comb-shaped electrode 2 and the reflector electrode 3 and providing a common electrode part with the widest possible area and area around the input / output terminal electrode part, the generated charges can be efficiently used. The potential can be equalized well, and the occurrence of electrostatic discharge and the like can be suppressed.
  • a portion with a narrow electrode interval is provided in advance between adjacent electrodes, and when a certain amount of charge is accumulated, the device is partially electrostatically discharged within a range that does not damage the device.
  • a plurality of electrodes that are electrically independent of the comb-shaped electrode 2 and the reflector electrode 3 and have different widths depending on the location are different from the method of intentionally generating electrostatic discharge by controlling the electrode interval.
  • a plurality of auxiliary powers that are electrically independent of each other and have It is desirable that the number of divisions of the poles 6a and 6b be originally small.
  • the generated charge can be reduced by using the configuration of the present invention. Efficient uniformization can suppress generation of electrostatic discharge and the like.
  • the areas of the strip-shaped input terminal lead-out electrode 4a and the output terminal lead-out electrode 5a, the input terminal electrode 4b and the output terminal electrode 5b are made approximately equal in area, or
  • the auxiliary electrodes 6a and 6b which are electrically independent of each other and short-circuited in a plane, are arranged in a well-balanced and even manner as a whole. Can be made more uniform.
  • the auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on the location, are arranged in a well-balanced and even manner throughout the entire device, for example, so that the reflector electrodes 3 are electrically independent from each other. Even if the auxiliary electrodes 6a and 6b have different widths and are electrically open, the electric charge generated in the reflector electrode 3 can be made uniform, so that there is no local potential difference. The device can be prevented from being destroyed or the electrical characteristics degraded.
  • the same effect can be obtained even if a plurality of sets of the comb-shaped electrode 2 and / or the reflector electrode 3 are provided.
  • the surface acoustic wave device 10A of the present invention is manufactured as follows.
  • the material of the metal thin film formed by sputtering may be other metals or alloys depending on the purpose other than A 1 -S c -Cu, Ti, and the metal thin film may be composed of one or more layers. If so, any number of layers may be laminated according to the purpose, and the lamination order may be changed according to the purpose.
  • a resist is applied on the metal thin film, a desired photomask is aligned, and exposure is performed using a stepper device (not shown) or the like.
  • the exposed portion of the resist is developed using a developing device (not shown) to remove the unnecessary portion of the resist.
  • a desired electrode pattern is formed on the metal thin film using a dry etching device (not shown) or the like.
  • a resist is applied again on the electrode pattern, a desired photomask is aligned, and exposure is performed using a stepper device (not shown) or the like.
  • the exposed portion of the resist is developed using a developing device (not shown) to remove the unnecessary portion of the resist.
  • a metal thin film such as A1 is formed using a vapor deposition device (not shown), a vapor deposited film of A1 is formed on the input terminal electrode 4b and the output terminal electrode 5b, and the remaining resist is removed. I do.
  • a method for forming a desired electrode pattern other methods such as forming a desired metal thin film layer first, and then using a dry etching apparatus (not shown) or the like to form a desired electrode pattern on the metal thin film are used. May be formed at once.
  • the surface of the dicing line is cut by using a dicing device (not shown) or the like to obtain a surface acoustic wave device 10A of individual pieces.
  • the widths of the auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on places, are determined by the wavelength of the operating frequency of the surface acoustic wave device 10A.
  • L has a width in the range of LZ4 to 100 ⁇ , but the width may be in a range other than these.
  • FIG. 3 is a cross-sectional view of an electronic component 40A using the surface acoustic wave device 10A.
  • 9 is a base member, 10 A is a surface acoustic wave device, 1 1 is a bump, 1 2 is a pad, 1
  • 3 is a lead electrode
  • 14 is a terminal electrode
  • 15 is a lid
  • 16 is an adhesive member.
  • a bump 11 made of gold or the like is formed on a pad 12 of the surface acoustic wave device 1OA.
  • a surface acoustic wave device 1 OA on which the bumps 11 are formed is disposed on the base member 9 on which the extraction electrodes 13 and the terminal electrodes 14 are previously provided so that the bumps 11 contact the extraction electrodes 13.
  • the bumps 11 are bonded and mounted by ultrasonic waves or the like.
  • the electronic component 40A is obtained by arranging such that the 6 side faces the base member 9 and heating and sealing.
  • other configurations such as wire bonding may be used as necessary.
  • gold or a brazing material containing gold is used as the adhesive member 16. It may be used.
  • bump bonding can increase the area of contact with the electrodes to be bonded, compared to wire bonding, so that the reliability of the bonding can be increased.However, the bump bonding occurs at the time of bump bonding to the electrodes in contact with the bumps If the distortion remains, the reliability of the bonding may be reduced due to peeling between the electrodes or the like.
  • the distortion in the case of forming a metal thin film by vapor deposition also in the case of sputtering and the distortion, electric corrosion, and corrosion at the time of cutting hardly occur at the time of bump bonding.
  • the reason for this is that sputtering only physically stacks metal particles, whereas evaporation forms a thin film with the same orientation as the underlying crystal orientation, which results in stronger bonding between metal particles. it is conceivable that. Therefore, at the time of bump bonding, by forming at least the uppermost layer of the electrode in contact with the bump by vapor deposition, the occurrence of distortion due to bonding is suppressed, the reliability of the bonding is improved, and the electrical corrosion associated with dissimilar metal bonding is prevented. Can be suppressed.
  • a soft metal has better bondability with the bump, and for example, aluminum or aluminum-copper alloy is preferable.
  • the same effect can be obtained by forming another layer by vapor deposition in addition to the uppermost layer of the electrode in contact with the bump.
  • the power durability can be increased by stacking one or more types of metal such as A1, Ti, Cu, Cr, Ni, or an alloy thereof on the electrode, a plurality of types of metal are stacked.
  • a plurality of types of metal are stacked.
  • the auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on the location are divided into two, but the number of divisions may be any number as long as it is plural.
  • the position where the bump is formed may be other than the position described in the first embodiment.
  • the strip-shaped input terminal lead-out electrode 4a and output terminal lead-out electrode 5a The width of the poles can be constant or different.
  • the comb-shaped electrode 2 of the surface acoustic wave device 10 A obtained in this manner has an input terminal extraction electrode 4 a, an input terminal electrode 4 b, an output terminal extraction electrode 5 a, an output terminal electrode 5 b, and a comb-type electrode. Since there is no connection other than the strip-shaped electrode 18 that connects the electrodes 2, the electrical characteristics of the surface acoustic wave device 10A can be measured in advance by making electrical connections using the necessary terminals as appropriate. it can. In other words, by measuring the electrical characteristics of the surface acoustic wave device 10A in the wafer state in advance, it is possible to select the characteristics before cutting the surface acoustic wave device 1OA into individual pieces and use only good products in the subsequent process. it can.
  • the periphery of the comb-shaped electrode 2 and the reflector electrode 3 is surrounded by a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on locations, and at least contact with the bumps
  • auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on locations, and at least contact with the bumps
  • FIG. 4 is a plan view showing a configuration of an electrode pattern of the surface acoustic wave device 10B according to Embodiment 2 of the present invention.
  • the same components as those described in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
  • FIG. 4 schematically shows the configuration of the second embodiment, and does not show the relative relationship between the dimensions.
  • FIG. 4 of the second embodiment The difference between FIG. 4 of the second embodiment and FIG. 1 of the first embodiment is that a plurality of reflector electrodes 3 and auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on locations are provided.
  • a plurality of reflector electrodes 3 and auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on locations are provided.
  • three comb-shaped electrodes 2 are provided, and the comb-shaped electrodes 2 at both ends are connected to each other by strip-shaped electrodes 18, and are electrically independent from each other.
  • a plurality of auxiliary electrodes 6 a and 6 b having different widths depending on locations are connected by a strip-shaped electrode 20.
  • the reflector electrode 3 and the plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on positions are electrically open.
  • the comb-shaped electrode 2 and the reflector electrode 3 are electrically independent of each other, and the plurality of auxiliary electrodes 6 a and 6 b having different widths depending on the location are formed of a plurality of strip-shaped electrodes 17, 18 and 2.
  • the surface acoustic wave device 10B and the electronic component 40B (FIG. 3) were manufactured in the same manner as in the first embodiment except that the electrical connection was made at 0.
  • the comb-shaped electrode 2 and the reflector electrode 3 are electrically independent of each other, and the plurality of auxiliary electrodes 6 a and 6 b having different widths depending on the location are electrically connected by the plurality of strip-shaped electrodes 17 and 20.
  • the charges generated in the comb-shaped electrodes 2 and the reflector electrodes 3 and the like can be electrically connected to the plurality of strip-shaped electrodes 17. , 18 and 20, the electric potential can be made uniform over a wide electrode including a plurality of trapping electrodes 6 a and 6 b which are electrically independent of each other and have different widths depending on locations.
  • the comb-shaped electrode 2 and the reflector electrode 3 are electrically independent of each other, and the plurality of auxiliary electrodes 6 a and 6 b having different widths depending on the location are connected by the plurality of strip-shaped electrodes 17, so that the comb-shaped electrode 2
  • a wider electrode including the reflector electrode 3 can be used as a common electrode, so that the generated charges can be made uniform over a wider area and the potentials can be equalized, and these electrodes can be connected with a wider electrode.
  • the impedance can be reduced as compared with the case where the electric connection is opened.
  • auxiliary electrodes 6a and 6b which are electrically independent of the reflector electrode 3 and have a different width depending on the location, differs depending on the design of the electrode pattern. As long as they can be connected with low impedance, they may be linear or planar, and the number of them may be any. However, it is more effective to have a planar and large number of connections.
  • auxiliary electrodes 6a and 6b which are electrically independent of each other and have different widths depending on places are electrically connected to each other by a wire, a high impedance is present in the connected path. Since it is not preferable to have a portion, it is desirable that the line width is the same or the width becomes narrower toward the outer periphery.
  • the comb electrode 2 and the reflector electrode 3 are electrically connected to each other.
  • a plurality of auxiliary electrodes 6 a, 6 b that are independent of each other and vary in width depending on the location with a plurality of strip-shaped electrodes 17, 18, 20, the comb electrodes 2 and reflector electrodes 3 Since a wide electrode can be used as a common electrode, the generated charges can be made uniform over a wider area and the potential can be equalized. An advantageous effect is obtained that an excellent surface acoustic wave device 10B without destruction of the device or deterioration of characteristics can be easily manufactured.
  • 21 a indicates a ground terminal lead electrode
  • 21 b indicates a ground terminal electrode
  • FIG. 5 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 1 OC according to Embodiment 3 of the present invention.
  • the same components as those described in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
  • the difference between FIG. 5 of the third embodiment and FIG. 1 of the first embodiment is that the reflector electrode 3 is made of meandering, and the reflector electrode 3 and the comb electrode 2 are electrically connected. is there.
  • FIG. 5 schematically shows the configuration of the third embodiment, and does not show the relative relationship between the dimensions.
  • the comb-shaped electrode 2 and the reflector electrode 3 are configured to be electrically open, but in the third embodiment, the comb-shaped electrode 2 and the reflector electrode 3 are electrically disconnected.
  • the configuration was such that the reflector electrode 3 was electrically connected.
  • the surface acoustic wave device 10C and the electronic component 40C (FIG. 3) were manufactured in the same manner as in the first embodiment.
  • the reflector electrode 19 composed of a meander line is electrically connected to the comb electrode 2 and the signal used is conducted at a low DC frequency, but the surface acoustic wave device In the operating high frequency band, the meander line has a high impedance, which is substantially similar to the open state.
  • a common electrode portion can be enlarged by electrically connecting the reflector electrode 19 and the comb-shaped electrode 2 made of meandering, so that the piezoelectric substrate
  • the charge generated by the pyroelectricity can be made uniform over a wider electrode and a longer electrode, and the potential difference generated at each part can be reduced.
  • the potential difference generated in each part including the comb-shaped electrode 2 and the reflector electrode 19 can be further reduced, and the device is excellent without destruction of the device due to electrostatic discharge or the like and deterioration in characteristics.
  • the operation and effect that the surface acoustic wave device 10 C can be easily manufactured can be obtained.
  • FIG. 6 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 10D according to Embodiment 4 of the present invention.
  • FIG. 7 is a configuration in which a plurality of the electrode patterns of FIG. 6 are formed on a wafer.
  • FIG. FIG. 8 is a sectional view of an electronic component 40D in which the elastic surface acoustic wave device 10D is sealed in a package or the like.
  • FIG. 6 of the fourth embodiment The difference between FIG. 6 of the fourth embodiment and FIG. 1 of the first embodiment is that a dicing line 28 is provided on the piezoelectric substrate 1 in the surface acoustic wave device 10D.
  • 6 to 8 schematically show the configuration of the fourth embodiment, and do not show the relative relationship between the dimensions.
  • Piezoelectric substances generate electric charge due to pyroelectricity when heat or strain is applied, and a potential difference is generated when the charge differs depending on the location, causing an electrostatic discharge and the like, causing device destruction and electrical characteristics. Degradation occurs.
  • a low impedance is included in the circuit pattern of the surface acoustic wave device 1OD. It has been found that it is effective to provide the widest possible part of the impedance.
  • the electrode pattern of the surface acoustic wave device 1 OD of the present invention comprises a dicing line 28 provided on a piezoelectric substrate 1, a comb electrode 2 inside the dicing line 28, and a surface wave generated by the comb electrode 2.
  • the reflector electrodes 3 are arranged on both sides of the comb-shaped electrode 2 in the vicinity of the propagation direction of the comb-shaped electrode 2, and the periphery of the comb-shaped electrode 2 and the reflector electrode 3 is electrically independent from each other and has a plurality of auxiliary electrodes 6 having different widths depending on the location. a, 6b.
  • the plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on places are used as ground electrodes, and are electrically connected to each other in the individual surface acoustic wave device 10 D.
  • a plurality of auxiliary electrodes 6a and 6b that are independent and vary in width depending on the location are substantially equal, and are arranged so as not to be biased in the surface acoustic wave device, for example, substantially point-symmetric or substantially plane-symmetric, and a comb-shaped electrode
  • the area of the strip-shaped input terminal lead-out electrode 4a and output terminal lead-out electrode 5a connected to 2 is made approximately equal, and the input and output terminal lead-out electrodes 4a and 5a are connected to the input terminal electrode 4b and the output terminal.
  • the electrodes 5b are provided to face each other, the input terminal electrodes 4b and the output terminal electrodes 5b have substantially the same area, and are electrically independent of the reflector electrode 3 and have different widths depending on the location.
  • Auxiliary electrodes 6a and 6b are electrically open, and strip between comb electrodes 2 And the electrode structure connected by the electrode 1 8.
  • the input terminal lead electrode 4a and the output terminal lead electrode 5a and the input terminal electrode 4b and the output terminal electrode 5b are opposed to each other, and by making their areas substantially equal, it is easy to balance the generated charges. Therefore, it is effective to make the potential uniform.
  • an effect similar to the case of facing each other can be obtained by arranging the electrodes as evenly as possible by a method such as a substantially line symmetry or a substantially point symmetry.
  • the plurality of auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on the location, have the impedance as small as possible, and the electrode width is widened as much as possible in the circuit design in order to make the potential uniform. This is clearly different from the thin line in that the width differs depending on the location and the area is widened.
  • the line is thinner than the thin line. Since the width is wide and the impedance between lines and in-plane can be reduced, the potential generated by accumulating the charges generated by the pyroelectricity of the piezoelectric substrate 1 can be made uniform quickly, and the fine wire can be formed. This makes it possible to make the potential in a wider area uniform.
  • auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on places are connected to a durand of an external circuit such as a substrate on which the surface acoustic wave device 10D is mounted.
  • a plurality of auxiliary electrodes 6a and 6b that are electrically independent of each other and vary in width depending on the location, as the ground electrode of the surface acoustic wave device 10D, they are electrically common to the larger external circuit Durand.
  • the effect of charges generated by the pyroelectricity of the piezoelectric substrate 1 can be reduced because the potential change can be made faster and more uniform because .
  • the cause of the potential difference generated by the surface acoustic wave device 1 OD is that electric charges are generated by the pyroelectricity of the piezoelectric substrate 1 due to the application of heat or distortion to the surface acoustic wave device 1 OD. However, in a normal manufacturing state, charges are not generated locally but are generated from the entire surface acoustic wave device 10D.
  • the largest area of the surface acoustic wave device is an input / output terminal electrode portion for connection with a bump or the like, and the largest charge is generated from this portion.
  • 6 and 7 schematically show the configuration of the surface acoustic wave device 10D, and do not show the relative relationship between the sizes of the constituent members.
  • the generated charges are efficiently and uniformly distributed by surrounding the functional parts such as the comb-shaped electrode 2 and the reflector electrode 3 and providing a common electrode part with the largest possible area around the input and output terminal electrode parts. And the potential can be equalized, and the occurrence of electrostatic discharge and the like can be suppressed.
  • a method of preventing damage to the device due to electrostatic discharge for example, a method of providing a narrow portion between adjacent electrodes in advance and partially discharging the device within a range that does not damage the device when a certain amount of charge is accumulated. Then, there is a method of suppressing the non-uniformity of the potential itself which causes static electricity.
  • auxiliary electrodes 6a and 6b that are electrically independent of each other and have different widths at different locations should be originally smaller, but the electrodes must be divided due to the arrangement of external terminals. Even in the case where it is necessary to use the configuration of the present invention, the generated charge can be efficiently uniformized and the occurrence of electrostatic discharge or the like can be suppressed.
  • the area of the strip-shaped input terminal lead electrode 4a and the output terminal lead electrode 5a, and the area of the input terminal electrode 4b and the output terminal electrode 5b are made substantially equal in advance,
  • the electrodes 6a and 6b which are electrically independent from each other and short-circuited in a planar shape, are arranged in a well-balanced and even manner over the entire area, a place where a large amount of electric charge is stored can be eliminated, and the potential is reduced. It can be more uniform.
  • the plurality of auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on the locations, are disposed in a well-balanced and even manner, so that, for example, the reflector electrodes 3 are electrically independent from each other. Even when the plurality of auxiliary electrodes 6a and 6b having different widths depending on the location are electrically open, the dicing line 23 and the reflector electrode 3 are electrically open. In addition, since the electric charge generated in the surface acoustic wave device 10D can be uniformed, a local difference in electric potential does not occur, and the breakdown electric characteristics of the device can be prevented from deteriorating.
  • the alignment work accompanying the cutting can be easily performed, and the electrically shorted dicing line 28 is provided on the outer peripheral portion of the surface acoustic wave element 1OD.
  • the generated charges can be effectively acted to make the charges uniform.
  • the surface acoustic wave device 10D of the present invention is manufactured as follows.
  • the material of the metal thin film formed by sputtering may be other metals and alloys other than A1-Sc_Cu and Ti according to the purpose, and the metal thin film may have one or more layers.
  • the metal thin film may have one or more layers.
  • any number of layers may be laminated according to the purpose, and the order of lamination may be changed according to the purpose.
  • a resist is applied on the metal thin film, a desired photomask is aligned, and exposure is performed using a stepper device (not shown) or the like.
  • the exposed portion of the resist is developed using a developing device (not shown) to remove the unnecessary portion of the resist.
  • a desired electrode pattern is formed on the thin metal plate using a dry etching device (not shown) or the like.
  • a resist is applied again on the electrode pattern, a desired photomask is aligned, and exposure is performed using a stepper device (not shown) or the like.
  • the exposed portion of the resist is developed using a developing device (not shown), and the unnecessary portion of the resist is removed.
  • a metal thin film such as A1 is formed using a vapor deposition device (not shown), a vapor deposited film of A1 is formed on the input terminal electrode 4b and the output terminal electrode 5b, and the remaining resist is removed. Remove.
  • the part where the vapor deposition film of A1 is provided is other than the input and output terminal electrodes 4b and 5b. If necessary, other parts such as input and output terminal lead electrodes 4a and 5a, auxiliary electrodes short-circuited in a frame shape
  • a method for forming a desired electrode pattern other methods such as forming a desired metal thin film layer first, and then using a dry etching apparatus (not shown) or the like to form a desired electrode pattern on the metal thin film are used. May be formed at once! / ,. Next, the surface of the dicing line 28 is cut using a dicing device (not shown) or the like to obtain a surface acoustic wave device 10D as an individual piece.
  • the widths of the plurality of auxiliary electrodes 6a and 6b which are electrically independent from each other and have different widths depending on locations are different from the operating frequency of the surface acoustic wave device 10D.
  • the width has a range of ⁇ 4 to 100 ⁇ , but the width may be in a range other than these.
  • an electronic component 40D is assembled as shown in FIG. Similarly to FIG. 3, the electronic component 40D in FIG. 8 is composed of the base member 9, the surface acoustic wave device 10D, the bumps 11, the nodes 12, the lead electrodes 13, the terminal electrodes 14, the lid. 15 and an adhesive member 16 are provided.
  • a bump 11 made of gold or the like is formed on a pad 12 of the surface acoustic wave device 10D.
  • the surface acoustic wave device 10 D having the bump 11 formed thereon is placed on the base member 9 provided with the lead electrode 13 and the terminal electrode 14 in advance so that the bump 11 contacts the lead electrode 13. Arrange and bond and mount the bumps 11 with ultrasonic waves.
  • the base member 9 on which the surface acoustic wave device 1 OD is mounted and the lid 15 on which an adhesive member 16 such as solder is previously held are bonded to the adhesive member.
  • the electronic component 40D is obtained by disposing the substrate 16 so that the 16 side faces the base member 9 and heating and sealing.
  • the bonding member 16 includes, for example, gold or gold. Brazing material or the like may be used.
  • bump bonding can increase the area in contact with the electrodes to be bonded, so that the bonding reliability can be increased.
  • the strain generated during bump bonding on the electrodes in contact with the bumps If the residuals are left, peeling between the electrodes may occur, and conversely, the reliability of the bonding may decrease.
  • a soft metal has better bondability with the bump.
  • aluminum or an aluminum-copper alloy is desirable!
  • the same effect can be obtained by forming another layer by vapor deposition in addition to the uppermost layer of the electrode in contact with the bump.
  • the power durability can be increased by stacking the electrode with one or more kinds of metals, such as A1, Ti, Cu, Cr, Ni, or an alloy thereof, a plurality of kinds of metals are stacked.
  • metals such as A1, Ti, Cu, Cr, Ni, or an alloy thereof.
  • the plurality of auxiliary electrodes 6a and 6b that are electrically independent of each other and have different widths depending on the location are divided into two, but the number of divisions may be any number as long as it is plural.
  • the position where the bump is formed may be other than the position shown in the fourth embodiment.
  • the band-shaped input terminal lead-out electrode 4a and output terminal lead-out electrode 5a may have a constant width or different widths.
  • the hot terminals of the surface acoustic wave device 10D obtained in this way for example, input and output terminal extraction electrodes 4a, 5a, input and output terminal electrodes 4b, 5b, and strip-shaped electrodes 18 are diced. Since they are not connected to a line, they are electrically independent of each other.The electrical characteristics of the surface acoustic wave device 10D must be measured in advance by connecting the necessary electrodes to the terminals, etc., as needed. Can be.
  • a plurality of traps which are electrically independent from each other around the comb-shaped electrode 2 and the reflector electrode 3 inside the dicing line 28 and have different widths depending on locations, are provided.
  • the electrodes 6a and 6b By enclosing the electrodes 6a and 6b and forming at least the uppermost layer of the electrodes that are in contact with the bumps by vapor deposition, the potential generated by the pyroelectricity of the piezoelectric substrate 1 can be more quickly and easily.
  • Excellent surface acoustic waves that can be made uniform, improve electrode bonding, suppress corrosion due to dissimilar metal bonding, increase power handling capability, and prevent device destruction and characteristic deterioration due to electrostatic discharge.
  • the device 10D can be easily manufactured. '
  • FIG. 9 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 10E according to Embodiment 5 of the present invention.
  • FIG. 9 schematically shows the configuration of the fifth embodiment, and does not show the relative relationship between the dimensions.
  • the difference between FIG. 9 of the fifth embodiment and FIG. 6 of the fourth embodiment is that the reflector electrode 3 and a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent of each other and have different widths depending on locations are provided. Electrically open, three comb electrodes 2 are provided, and the comb electrodes 2 at both ends are strip electrodes.
  • a plurality of auxiliary electrodes 6a and 6b which are mutually connected at 18 and are electrically independent of each other and have different widths depending on places are electrically connected by a plurality of strip-shaped electrodes 20. That is, in the fourth embodiment, the comb-shaped electrode 2 and the plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on locations are electrically open.
  • three comb-shaped electrodes 2 are provided, and a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other at both ends and have different widths depending on locations are formed by a plurality of strip-shaped electrodes 20.
  • the comb-shaped electrodes 2 at both ends are connected to each other via a strip-shaped electrode 18.
  • the surface acoustic wave device 1 OE and the electronic The part 40E (FIG. 8) was manufactured.
  • a plurality of trapping electrodes 6 a and 6 b which are electrically independent of each other and have different widths depending on locations are electrically connected to the comb-shaped electrode 2 by a plurality of strip-shaped electrodes 20, and a plurality of sets are arranged.
  • the electric charges generated in the comb-shaped electrodes 2 and the like are electrically independent from each other via the strip-shaped electrodes 20, and the width is varied depending on the place.
  • auxiliary electrodes 6a and 6b which are electrically independent of each other and have different widths depending on places, with the comb-shaped electrodes 2 at both ends by the strip-shaped electrodes 20, a wider electrode is used as a common electrode.
  • the generated charges can be equalized over a wider area including the comb-shaped electrode 2 to equalize the potential, and when they are electrically opened by connecting them with a wide electrode Since the impedance can be reduced as compared with the above, electrostatic discharge can be suppressed.
  • the effect of electrically connecting the auxiliary electrodes 6a and 6b, which are electrically independent of each other and have a different width depending on the location, differs depending on the design of the electrode pattern, but the potential can be made uniform.
  • the electrodes may be linear or planar, and the number of electrodes may be any number. Preferably, the larger the number of planar electrodes, the more effective. .
  • the impedance is high in the middle of the connected path. Since it is not preferable that there is a portion, it is desirable that the line width is the same or the width becomes narrower toward the outer peripheral portion.
  • the dicing line is made as thin as possible. Therefore, it is desirable to connect at least a line that is the same as or larger than the dicing line.
  • a wider electrode including the comb-shaped electrode 2 can be used as the common electrode, so that the generated charges can be made uniform over a wider area and the potentials can be equalized.
  • An excellent surface acoustic wave device 10E free from device rupture due to electric discharge or deterioration of characteristics can be easily manufactured.
  • 31a indicates a ground extraction electrode
  • 31b indicates a ground electrode
  • FIG. 10 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 10 F according to Embodiment 6 of the present invention.
  • the same components as those described in FIG. 6 of the fourth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 10 schematically shows the configuration of the sixth embodiment. It does not indicate a relationship.
  • FIG. 10 of the sixth embodiment is that the reflector electrode 3 and a plurality of auxiliary electrodes 6 a and 6 b that are electrically independent of each other and have different widths depending on locations.
  • the reflector electrode 3 and a plurality of auxiliary electrodes 6 a and 6 b that are electrically independent of each other and have different widths depending on locations.
  • three comb-shaped electrodes 2 are provided, and the comb-shaped electrodes 2 at both ends are connected to each other by band-shaped electrodes 18, and are electrically independent of each other and have different widths depending on locations.
  • the auxiliary electrodes 6a, 6b are electrically connected by a plurality of strip-shaped electrodes 20, and the plurality of auxiliary electrodes 6a, 6b, which are electrically independent from one another and have different widths depending on locations, are connected to a dicing line 28. That is, they were electrically connected by the strip-shaped electrodes 22.
  • the comb-shaped electrode 2 and the plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on locations are electrically open.
  • three comb-shaped electrodes 2 are provided, and a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other at both ends and have different widths depending on locations are formed by a plurality of strip-shaped electrodes 20. They are electrically connected to each other, and the comb-shaped electrodes 2 at both ends are connected to each other by a strip-shaped electrode 18.
  • the surface acoustic wave device 10F and the electronic component 40F (FIG. 8) were manufactured in the same manner as in the fourth embodiment except that they were electrically connected by the strip-shaped electrodes 22. .
  • a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent of each other and have different widths depending on locations are electrically connected to the dicing line 28 via the strip-shaped electrode 22, thereby having piezoelectricity. Since a wider electrode including the dicing line 28 can be used as the common electrode for the charges generated on the substrate 1, the generated charges can be made uniform over a wider area including the comb electrodes 2 to equalize the potential. In addition, by connecting them with a wide electrode, the impedance can be reduced and the electrostatic discharge can be made less likely to occur as compared with the case where the electrodes are electrically opened.
  • auxiliary electrodes 6a and 6b that are electrically independent of the dicing line 28 and have different widths depending on the location is an electrode that can equalize different force potentials by designing the electrode pattern. As long as they can be connected with low impedance, they may be in the shape of a spring or a plane, and the number of them may be as many as possible. is there.
  • the impedance is high in the middle of the connected path. Since it is not preferable that there is a portion, it is desirable that the portion becomes thinner toward the outer peripheral portion.
  • comb electrodes 2 are provided, and the plurality of auxiliary electrodes 6 a and 6 b which are electrically independent of the comb electrodes 2 at both ends and have different widths depending on locations are provided with the dicing line.
  • a wider electrode can be used as a common electrode. It is possible to easily manufacture an excellent surface acoustic wave device 10F, which can be made smaller and does not break down the device due to electrostatic discharge or the like and does not deteriorate its characteristics.
  • FIG. 11 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 10 G according to Embodiment 7 of the present invention.
  • the same components as those described in FIG. 6 of the fourth embodiment are denoted by the same reference numerals, and detailed description is omitted.
  • FIG. 11 schematically shows the configuration of the seventh embodiment, and does not show the relative relationship between the dimensions.
  • FIG. 11 of the seventh embodiment and FIG. 6 of the fourth embodiment are provided, which are electrically independent from the comb-shaped electrodes at both ends and have different widths depending on locations.
  • the plurality of auxiliary electrodes 6a and 6b are electrically connected by the strip-shaped electrode 20 and the comb electrodes at both ends are mutually connected by the strip-shaped electrode 18 to be electrically independent from the reflector electrode 3.
  • Place A plurality of auxiliary electrodes 6 a and 6 b having different widths are electrically connected by band-shaped electrodes 17, and a dicing line 28 is provided on the outer periphery of the comb electrode 2 and the reflector electrode 3, and a dicing line is provided.
  • 28 and a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent from each other and have different widths depending on places, are electrically connected by a strip-shaped electrode 22.
  • the comb-shaped electrode 2, the reflector electrode 3, and the dicing line 28 are configured to be electrically open, but in the seventh embodiment, the dicing line 2 8, a plurality of auxiliary electrodes 6 a and 6 b that are electrically independent of each other and have different widths depending on the location, and a comb-shaped electrode 2 and a reflector electrode 3 at both ends are strip-shaped electrodes 17, 18, 20, and 2.
  • the surface acoustic wave device 1 OG and the electronic component 4 OG (FIG. 8) were manufactured in the same manner as in Embodiment 4 except that they were electrically connected by the second embodiment.
  • a dicing line 28 a plurality of auxiliary electrodes 6 a and 6 b which are electrically independent of each other and have different widths depending on locations, a comb-shaped electrode 2 at both ends, and a reflector electrode 3 are strip-shaped electrodes 1.
  • electric charges generated on the substrate 1 having piezoelectricity can be exchanged between the comb electrodes 2 at both ends and the reflector electrode 3.
  • the plurality of auxiliary electrodes 6a and 6b, which are electrically independent and have different widths depending on the location, and the entire electrode including the dicing line 28 can be made uniform and have the same potential.
  • the dicing line 28, the plurality of auxiliary electrodes 6a, 6 which are electrically independent of each other and have different widths depending on the location, the comb-shaped electrodes at both ends, and the reflector electrodes 3 are strip-shaped electrodes 17, 1, 1.
  • a plurality of auxiliary electrodes 6a and 6b which are electrically independent of each other and have different widths depending on the location, and a comb type at both ends It is possible to equalize the charge and reduce the potential difference across the electrode and the wider electrode including the reflector electrode 3, and to connect them with the strip electrodes 17, 18, 20, and 22 for electrical connection.
  • the impedance between the shared electrodes can be reduced as compared to the case where the electrodes are opened to the outside.
  • the effect of electrically connecting the dicing line 28, the plurality of auxiliary electrodes 6a, 6 that are electrically independent of each other and have different widths depending on the location, the comb electrodes at both ends, and the reflector electrode 3 is an effect of the electrode pattern.
  • the electrodes may be linear or planar as long as the electrodes that can make the potential uniform can be connected with low impedance. Any number is acceptable, but desirably the larger the number of planar connections, the more effective.
  • a wider electrode can be used as a common electrode, so that the potential difference generated at each part can be made smaller, and the device does not break down due to electrostatic discharge or the like, and it has excellent characteristics.
  • the surface acoustic wave device 10 G can be easily manufactured.
  • FIG. 12 is a plan view showing a configuration of an electrode pattern of a surface acoustic wave device 10H according to Embodiment 8 of the present invention.
  • the same components as those described in FIG. 6 of the fourth embodiment are denoted by the same reference numerals, and detailed description is omitted.
  • FIG. 12 schematically shows the configuration of the eighth embodiment, and does not show the relative relationship between the dimensions.
  • FIG. 12 of the eighth embodiment is made of meandering, and the reflector electrode and the comb electrode are electrically connected. . '
  • the comb-shaped electrode 2 and the reflector electrode 3 are configured to be electrically open.
  • the comb-shaped electrode 2 and the reflector A configuration in which a reflector electrode 19 composed of a meander line is electrically connected, and a die sine line 28 is provided on the outer periphery of a plurality of auxiliary electrodes 6 a and 6 b that are electrically independent of each other and have different widths depending on locations.
  • the surface acoustic wave device 1 OH and the electronic component 4 OH (FIG. 8) were manufactured in the same manner as in the fourth embodiment.
  • a reflector electrode 19 constituted by a meander line is electrically connected to the comb-shaped electrode 2, and a signal to be used is conducted at a low DC frequency.
  • the meander line In the operating high frequency band, the meander line has a high impedance, which is substantially similar to the open state.
  • a common electrode portion can be enlarged by electrically connecting the reflector electrode 19 and the comb-shaped electrode 2 made of meandering, so that the piezoelectric substrate
  • the charge generated by the pyroelectricity can be made uniform over a wider electrode and a longer electrode, and the potential difference generated at each part can be reduced.
  • the operating frequency is substantially open, eliminating operational problems, and the electrical connection.
  • electric charges generated on the substrate 1 having piezoelectricity can be equalized and made equipotential throughout the electrodes including the reflector electrode 19 and the comb-shaped electrode 2.
  • a plurality of auxiliary electrodes 6a and 6b which are electrically independent of each other and have different widths depending on the location, are electrically connected to the dicing line 28 as necessary, using at least one or more wire or strip electrodes.
  • the common electrode for making the generated potential uniform may be further expanded.
  • the operating frequency is substantially opened, thereby eliminating operational problems.
  • the charges generated on the substrate 1 having piezoelectricity can be made uniform across the electrodes including the reflector electrode 19 and the comb-shaped electrode 2 so as to be at the same potential.
  • the potential difference generated in each part can be made smaller, and an excellent surface acoustic wave device 10H free from device rupture due to electrostatic discharge or the like and characteristic deterioration can be easily manufactured.
  • the comb electrode and the reflector electrode are individually surrounded by a plurality of auxiliary electrodes that are electrically independent from each other and have different widths depending on locations. Even after being cut into pieces, the potential generated by the pyroelectricity of the piezoelectric substrate can be uniformed more quickly and more easily, and excellent elasticity without destruction of the device due to electrostatic discharge or deterioration of characteristics A surface acoustic wave device can be easily manufactured.
  • the inside of the dicing line is surrounded by a plurality of auxiliary electrodes, which are electrically independent of each other and have different widths depending on locations, around the comb electrode and the reflector electrode.
  • auxiliary electrodes which are electrically independent of each other and have different widths depending on locations, around the comb electrode and the reflector electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

明 細 書 弾性表面波装置およびその製造方法とこれを用いた電子部品 技術分野
本発明は通信機器に用いられる弾性表面波装置およびその製造方法とこれを用 いた電子部品に関するものである。
背景技術
従来弾性表面波装置は、 圧電性を有する基板上の全面に金属薄膜を形成し、 そ の上にレジストを塗布し、 露光、 現像後、 エッチングすることにより所望のイン ターデジタノレ電極 (I n t e r D i g i t a l Tr a n s d uc e r) 、 グ レーティング反射器電極 (Gr a t i n g Re f l e c t o r) 、 それらの周 囲を囲むダイシングラインおよびこれらを接続する細線など所望の電極パターン を形成し、 ダイシングライン上を切断して個片の弹性表面波装置を製造している。 この方法では、 一旦圧電性を有する基板から切り離された弾性表面波装置は、 ィンターデジタル電極やグレーティング反射器電極が電気的に分離されるため、 弾性表面波装置に熱や歪みが加わると圧電性を有する基板の持つ焦電効果により 電荷が発生し、 各電極間の電荷が不均一になると対向するィンターデジタル電極 間やグレーティング反射器電極間およびィンターデジタル電極とグレーティング 反射器電極の電極間で放電することにより電極が破損したり、 弾性表面波装置の 特性が劣化したりする。
—方この問題を解決する手段として特開平 1 1一 298289号公報に記載の 方法が知られている。 すなわち、 ダイシングラインの内側にインターデジタル電 極やグレーティング反射器電極の周囲を囲む金属薄膜の短絡細線を設け、 これら の金属薄膜の短絡細線とインターデジタル電極とを電気的に接続する複数の細線 を配設することにより、 発生した電荷を電気的に均一化し、 静電気放電による破 損および電気特性の劣化を防止する構成が用レヽられていた。
し力 しながら、 従来のようにダイシングラインの内側にインターデジタル電極 ゃグレーティング反射器電極の周囲を囲む金属薄膜の短絡細線を設け、 これらの 金属薄膜の短絡細線とインターデジタル電極とを電気的に接続する複数の細線を 配設する構成では、 発生する電荷が大きい場合や、 電極間距離が狭い場合、 接続 された電極間が離れている場合や、 金属薄膜の短絡細線とインターデジタル電極 とを接続した線が細!/、場合や、 接続した線がミァンダラインゃ線の一部が他の部 分よりも細い場合などには、 線間のィンピーダンスが高くなるため、 発生した電 荷を十分に中和、 均一化することができず、 電極間で静電気放電が発生し、 電極 が破損したり電気特性が劣化したりするという課題を有していた。
発明の開示
本発明は上記の課題を解決するものであり、 圧電性を有する基板に歪みゃ熱処 理によって発生した電荷を効率よく均一化するとともに、 個片の弾性表面波装置 に分離した後でも電位を均一化し、 電極が破損したり電気特性が劣化したりする のを防止する弾性表面波装置およびその製造方法とこれを用いた電子部品を提供 することを目的とするものである。
上記目的を達成するために、 本発明は以下の構成を有するものである。
本発明の請求項 1に記載の発明は、 櫛型電極および反射器電極の周囲に互レヽに 電気的に独立し場所により幅が異なる複数の補助電極を設けた弾性表面波装置と いう構成を有しており、 これにより熱処理などで発生した電荷を効率よく電気的 に均一化できるため、 発生した電位の場所による不均一性を低減し静電気放電な どによる素子の破壊をなくすことができるという作用効果が得られる。
本発明の請求項 2に記載の発明は、 互いに電気的に独立し場所により幅が異な る複数の補助電極はグランド電極として用いるという構成を有しており、 これに より弾性表面波装置を実装した基板などのグランドと接続することにより、 より 広い面積の電気的に均一化したグランドを得ることができるため、 発生した電位 の場所による不均一性を低減し静電気放電などによる素子の破壌をなくすこと力 S できるという作用効果が得られる。
本発明の請求項 3に記載の発明は、 互いに電気的に独立し場所により幅が異な る複数の補助電極は略均等に配置したという構成を有しており、 これにより各部 発生する電荷を略等しく電気的に均一化することができるため、 発生した電位の 場所による不均一性を低減し静電気放電などによる素子の石皮壌をなくすことがで きるという作用効果が得られる。
本発明の請求項 4に記載の発明は、 櫛型電極に接続して帯状の入力端子引き出 し電極と出力端子引き出し電極を設けると共に、 入力端子引き出し電極と出力端 子引き出し電極に接続して入力端子電極と出力端子電極を設けたという構成を有 しており、 これにより入力端子引き出し電極、 出力端子引き出し電極および入力 端子電極、 出力端子電極で発生した電荷を均一化することができるため、 発生し た電位の場所による不均一性を低減し静電気放電などによる素子の破壌をなくす ことができるという作用効果が得られる。
本発明の請求項 5に記載の発明は、 帯状の入力端子引き出し電極と出力端子引 き出し電極および入力端子電極と出力端子電極は相対向して設け、 それらの面積 は略等しくしたという構成を有しており、 これにより入力端子引き出し電極部お よび出力端子引き出し電極部で発生した電荷を略等しくし電気的に均一化するこ とができるため、 発生した電位の不均一性を低減し静電気放電などによる素子の 破壌をなくすことができるという作用効果が得られる。
本発明の請求項 6に記載の発明は、 少なくとも反射器電極の一部と、 互いに電 気的に独立し場所により幅が異なる複数の補助電極を電気的に接続したという構 成を有しており、 これにより反射器電極に発生した電荷を互いに電気的に独立し 場所により幅が異なる複数の補助電極を通して電極全体で均一化できるため、 発 生した電位の場所による不均一性を低減し静電気放電などによる素子の破壌をな くすことができるという作用効果が得られる。
本発明の請求項 7に記載の発明は、 反射器電極と互いに電気的に独立し場所に より幅が異なる複数の補助電極を、 複数の線または帯状の電極で電気的に接続し たという構成を有しており、 これにより発生した電荷を効率よく均一化できるた め、 発生した電位の場所による不均一性を低減し静電気放電などによる素子の破 壌をなくすことができるという作用効果が得られる。
本発明の請求項 8に記載の発明は、 反射器電極と互いに電気的に独立し場所に より幅が異なる複数の補助電極を電気的に開放状態にしたという構成を有してお り、 これにより互いに電気的に独立し場所により幅が異なる複数の捕助電極が電 位の変化による影響を受けにくくなるため、 発生した電位の場所による不均一性 を低減し静電気放電などによる素子の破壊をなくすことができるという作用効果 が得られる。
本発明の請求項 9に記載の発明は、 反射器電極をミアンダラインで構成し、 前 記反射器電極と櫛型電極を電気的に接続したという構成を有しており、 これによ り反射器電極と櫛型電極を等電位にすることができるため、 発生した電位の場所 による不均一性を低減し静電気放電などによる素子の破壊をなくすことができる という作用効果が得られる。
本発明の請求項 1 0に記載の発明は、 圧電性を有する基板上に櫛型電極と、 反 射器電極と、 櫛型電極および反射器電極の周囲に互いに電気的に独立し場所によ り幅が異なる複数の補助電極と、 入力端子電極および入力端子引き出し電極と、 出力端子電極および出力端子引き出し電極を少なくとも一組設ける工程と、 隣接 する補助電極の間を切断する工程を含むという方法であり、 これにより圧電性を 有する基板上に発生した電位を均一にすることができるため、 発生した電位の場 所による不均一性を低減し静電気放電などによる素子の破壌をなくすことができ るという作用効果が得られる。
本発明の請求項 1 1に記載の発明は、 入力端子電極と出力端子電極および複数 の前記補助電極は少なくとも最上層の電極を蒸着で形成するという方法であり、 これにより外部端子との接続状態を安定化できるという作用効果が得られる。 本発明の請求項 1 2に記載の発明は、 最上層の電極は柔らかい材質であるとい う方法であり、 これにより外部端子との接続状態を安定化できるという作用効果 が得られる。
本発明の請求項 1 3に記載の発明は、 柔らかい材質はアルミェゥムまたはアル ミニゥム合金であるという方法であり、 これにより外部端子との接続状態を安定 化できるという作用効果が得られる。
本発明の請求項 1 4に記載の発明は、 櫛型電極と、 反射器電極と、 入力端子電 極およぴ入力端子引き出し電極と、 出力端子電極および出力端子引き出し電極と、 互いに電気的に独立し場所により幅が異なる複数の補助電極は、 1種類または複 数種類の金属を重ねたものであるという方法であり、 これにより発生した電荷に 対する耐電力を向上させることができるという作用効果が得られる。 本発明の請求項 1 5に記載の発明は、 櫛型電極および反射器電極の周囲に互い に電気的に独立し場所により幅が異なる複数の補助電極と、 櫛型電極に接続した 帯状の入力端子引き出し電極および入力端子電極と出力端子引き出し電極および 出力端子電極を設け、 電気的に接続すると共にベース部材に配設し、 封止した電 子部品という構成を有しており、 これにより静電気放電などによる素子の損傷を 抑制し、 また特性劣化の少ない安定した電子部品が得られるという作用効果が得 られる。
本発明の請求項 1 6に記載の発明は、 圧電性を有する基板上にダイシングライ ンと、 その内側に櫛型電極と、 反射器電極と、 櫛型電極および反射器電極の周囲 に互いに電気的に独立し場所により幅が異なる複数の補助電極と、 入、 出力端子 引き出し電極と入、 出力端子電極を設ける工程と、 ダイシングライン上を切断す る工程を含むという方法であり、 これにより圧電性を有する基板上に発生した電 位を均一にすると共にダイシングライン位置を容易に確認することができると共 に容易に切断できるという作用効果が得られる。
本発明の請求項 1 7に記載の発明は、 少なくとも入、 出力端子引き出し電極と 入、 出力端子電極と互いに電気的に独立し場所により幅が異なる複数の補助電極 のうち一つの電極は、 少なくとも最上層の電極を蒸着で形成するという方法であ り、 これにより外部端子との接続状態を安定化できるとレヽぅ作用効果が得られる。 本発明の請求項 1 8に記載の発明は、 最上層の電極を軟らかい材質で形成する という方法であり、 これにより外部端子との接続状態を安定ィ匕できるという作用 効果が得られる。
本発明の請求項 1 9に記載の発明は、 軟らかい材質としてアルミニウムまたは アルミニゥム合金を用いるという方法であり、 これにより外部端子との接続状態 を安定化できるという作用効果が得られる。
本発明の請求項 2 0に記載の発明は、 櫛型電極と、 反射器電極と、 入力端子引 き出し電極と、 出力端子引き出し電極と、 互いに電気的に独立し場所により幅が 異なる複数の補助電極は、 1種類または複数種類の金属を重ねたもので形成する という方法であり、 これにより発生した電荷に対する電極の耐電力を向上させる ことができるという作用効果が得られる。 図面の簡単な説明
図 1は、 本発明の実施の形態 1における弾性表面波装置の電極パターンの構成 を示す平面図である。
図 2は、 図 1の弾性表面波装置の電極パターンをウェハ上に複数個形成した構 成を示す平面図である。
図 3は、 図 1の弾'性表面波装置を用いた電子部品の断面図である。
図 4は、 本発明の実施の形態 2における弾性表面波装置の電極パターンの構成 を示す平面図である。
図 5は、 本 明の実施の形態 3における弾性表面波装置の電極パターンの構成 を示す平面図である。
図 6は、 本発明の実施の形態 4における弾性表面波装置の電極パターンの構成 を示す平面図である。
図 7は、 図 6の弾性表面波装置の電極パターンをウェハ上に複数個形成した構 成を示す平面図である。
図 8は、 図 6の弾性表面波装置を用いた電子部品の断面図である。
図 9は、 本発明の実施の形態 5における弾性表面波装置の電極パターンの構成 を示す平面図である。
図 1 0は、 本発明の実施の形態 6における弾性表面波装置の電極パターンの構 成を示す平面図である。
図 1 1は、 本発明の実施の形態 7における弾性表面波装置の電極パターンの構 成を示す平面図である。
図 1 2は、 本発明の実施の形態 8における弾性表面波装置の電極パターンの構 成を示す平面図である。
発明を実施するための最良の形態
(実施の形態 1 )
以下に本発明の実施の形態 1を用いて、 本発明の請求項 1〜 5、 8 , 1 0〜 1 5について説明する。
図 1は、 本発明の実施の形態 1における弹性表面波装置 1 0 Aの電極パターン の構成を示す平面図であり、 図 2は、 図 1の電極パターンをウェハ上に複数個形 成した構成を示す平面図である。 また、 図 3は、 弾性表面波装置 1 0 Aをパッケ ージなどに封止した電子部品 4 0 Aの断面図である。
1は圧電性を有する基板、 2は櫛型電極、 3は反射器電極、 4 aは入力端子引 き出し電極、 4 bは入力端子電極、 5 aは出力端子引き出し電極、 5 bは出力端 子電極、 6 a, 6 bは互いに電気的に独立し場所により幅が異なる捕助電極、 7 はバンプ、 8は互いに電気的に独立し場所により幅が異なる補助電極 6 a, 6 b の間、 1 8は帯状の電極である。
なお、 図 1乃至図 3は、 本実施の形態 1の構成を模式的に示したものであり、 それぞれの寸法の相対的な関係を示したものではない。
圧電性を有する物質は熱が加わる力 \ または歪みが加わると焦電性により電荷 が発生し、 場所により電荷に差異が生じると電位差が発生し、 静電気放電などを 引き起こしデバイスの破壌や電気特性の劣化が起こる。
これを防止するためには、 発生した電位差をできるだけ早く、 同じ電位にする ことが有効である。
本発明では、 発生した電位をできるだけ等しくし、 弾性表面波装置 1 0 Aの中 で電位のバランスを取るためには、 弾性表面波装置 1 O Aの回路パターンの中に 低ィンピーダンスの部分をできるだけ広く設けることが有効であることを見出し たものである。
すなわち本発明の弾性表面波装置 1 O Aの電極パターンは、 圧電性を有する基 板 1上に櫛型電極 2と、 この櫛型電極 2より発生する表面波の伝搬方向に近接し て櫛型電極 2の両側に反射器電極 3を配置し、 櫛型電極 2および反射器電極 3の 周囲を互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a , 6 で 囲んでいる。
ここで、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a , 6 bは弾性表面波装置 1 0 Aが実装された基板などの外部回路のダランドに接続さ れており、 個片の弾性表面波装置 1 O Aの中で、 互いに電気的に独立し場所によ り幅が異なる複数の補助電極 6 a, 6 bは略均等例えば略点対称や略面対称、 略 線対称などのように弾性表面波装置 1 0 Aの中で偏りが少なくなるように配置す るとともに、 櫛型電極 2に接続した帯状の入力端子引き出し電極 4 a、 入力端子 電極 4 b、 帯状の出力端子引き出し電極 5 a、 出力端子電極 5 bを設けるととも に、 相対向する帯状の入力端子引き出し電極 4 aと出力端子引き出し電極 5 a、 入力端子電極 4 bと出力 ¾子電極 5 bの面積を略等しくし、 反射器電極 3と互い に電気的に独立し場所により幅が異なる複数の捕助電極 6 a , 6 bを電気的に開 放状態にし、 櫛型電極 2間は帯状の電極で接続した電極構成にしている。
なお、 帯状の入力端子引き出し電極 4 aおよび帯状の出力端子引き出し電極 5 aはそれらに接続して入力端子電極 4 bおよび出力端子電極 5 bを設けた構成に なっている。
また、 入力端子引き出し電極 4 aと出力端子引き出し電極 5 aおよび入力端子 電極 4 bと出力端子電極 5 bは相対向し、 それらの面積は略等しくすることによ り発生する電荷のバランスをとり易くなるため電位を均一にするのに有効である
1 電極パターン配置の関係で例えばこれらの電極を相対向して設けられない場 合は、 略線対称、 略点対称などの方法によりできるだけ均等に配置することによ り相対向した場合と同様の効果が得られる。
互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a , 6 bはイン ピーダンスをできるだけ小さくし、 電位を均一にするために回路設計上可能な範 囲で電極の幅を広くしたもので、 場所によつて幅が異なり、 面積的に広がりを持 つ点で細線とは明らかに異なるものである。
このように、 櫛型電極 2および反射器電極 3の周囲を互 ヽに電気的に独立し場 所により幅が異なる複数の補助電極 6 a , 6 bで囲むことにより、 細線に比べ線 幅が広く、 線間、 面内のインピーダンスを小さくできるため、 圧電性を有する基 板 1の焦電性によって発生した電荷が貯まって生じる電位を早く、 均一にするこ とができるとともに、 細線に比べより広い領域の電位を均一にすることができ、 電位的に安定した弾性表面波装置 1 0 Aを得ることが可能となる。
また、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a , 6 b を弾性表面波装置 1 0 Aが実装された基板などの外部回路のダランドに接続し、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a , 6 bを弾性表 面波装置 1 O Aのグランド電極として用いることにより、 より大きい外部回路の グランドと電気的に共通したグランドにすることができるため、 電位の変化をよ り早く、 より均一にすることができるため圧電性を有する基板 1の焦電性によつ て発生した電荷の影響を小さくすることができる。
弾性表面波装置 1 O Aが電位差を発生する原因は弾性表面波装置 1 O Aに熱が 加わったり、 歪みが加わることにより圧電性を有する基板 1の持つ焦電性から電 荷が発生するものであり、 通常の製造状態では局部的に電荷が発生するのではな く、 弾性表面波装置 1 0 A全体から電荷が発生する。
ところで一般的に弾性表面波装置の中で最も面積が広いのはバンプなどと接続 される入出力電極部であり、 この部分から最も電荷が発生し易い。
なお、 図 1と図 2は、 弾性表面波装置 1 0 Aの構成を模式的に示したものであ り、 構成部材の大きさの相対的な関係を示すものではない。 従って、 櫛型電極 2、 反射器電極 3などの機能部を取り囲み、 入出力端子電極部を中心とする部位にで きるだけ広レ、面積の共通電極部を設けることにより、 発生した電荷を効率よく均 一化し電位を等しくすることができ、 静電気放電などの発生を抑制することがで きる。
また、 静電気放電によるデバイスの損傷を防止する方法としては、 例えば隣接 する電極間に予め電極間隔の狭い部分を設けておき、 ある程度電荷が貯まるとデ バイスを損傷させない範囲で部分的に静電気放電させる方法と、 静電気の原因に なる電位の不均一性自体を抑制する方法がある。
部分的に静電気放電させる方法では電荷が貯まる度に放電を繰り返すことにな り安定した状態を得にくいが、 電位の不均一性自体を抑制する方法ではできるだ け広い面積の共通電極部を設けることにより圧電性を有する基板 1から発生する 電荷が局部的に不均一にならず等電位にすることにより静電気放電の原因を恒久 的に除去することができる。
従って、 静電気放電を抑制するには、 電極間隔を制御して故意に静電気放電を 発生させる方法よりも、 櫛型電極 2や反射器電極 3と互いに電気的に独立し場所 により幅が異なる複数の補助電極 6 a , 6 bにより等電位の部分を広くするため にできるだけ広い面積の共通電極部を設けて静電気放電が起こらないようにする ことの方が有効である。
このようなことから互いに電気的に独立し場所により幅が異なる複数の補助電 極 6 a, 6 bの分割数は本来少ない方が望ましレ、が、 外部端子配置などとの関係 で電極を分割しなければならない場合でも、 本発明の構成を用いれば発生した電 荷を効率よく均一化し静電気放電などの発生を抑制することができる。
また、 予め弾性表面波装置 1 O Aの中で、 帯状の入力端子引き出し電極 4 aと 出力端子引き出し電極 5 a、 入力端子電極 4 bと出力端子電極 5 bの面積を略等 しくしたり、 また互いに電気的に独立し面状で短絡した補助電極 6 a , 6 bを全 体にバランス良く均等に配置して設けることにより、 局部的に大きな電荷が貯ま る場所をなくすことができるため、 電位をより均一にすることができる。
このように、 互いに電気的に独立し場所により幅が異なる補助電極 6 a , 6 b を全体にバランス良く均等に配置して設けたことにより、 例えば反射器電極 3が 互いに電気的に独立し場所により幅が異なる補助電極 6 a , 6 bと電気的に開放 された状態であっても、 反射器電極 3に発生する電荷を均一化できるため、 局部 的な電位の差異を生じることが無く、 デバイスの破壊や電気特性の劣化を起こら なくすることができる。
なお、 櫛型電極 2および/または反射器電極 3は複数組設けたものであっても、 同様の効果を得ることができる。
本発明の弾性表面波装置 1 0 Aは以下のようにして製造する。
L i T a 03などからなる圧電性を有する基板 1上に、 スパッタリング装置を 用いて (図示せず) T iの金属薄膜を形成し、 その上に A 1— S c— C u, T i の金属薄膜をスパッタリング装置 (図示せず) を用いて重ねて形成する。 さらに 入力端子引き出し電極 4 aおよび出力端子引き出し電極 5 aの上に蒸着装置 (図 示せず) を用いて A 1の金属薄膜を形成する。
ここで、 スパッタリングで形成する金属薄膜の材質は A 1 - S c - C u , T i 以外に目的に応じてその他の金属又は合金を用いてもかまわないし、 また金属薄 膜は 1層以上であれば目的に応じて何層積層してもかまわないし、 積層する順序 は目的に応じて変更してもかまわない。
次に金属薄膜の上にレジストを塗布し、 所望のフォトマスクを合わせ、 ステツ パー装置 (図示せず) などを用いて露光する。 次に、 現像装置 (図示せず) を用 いて露光された部分のレジストを現像して不要部分のレジストを除去する。 さら に、 ドライエッチング装置 (図示せず) などを用いて金属薄膜に所望の電極パタ ーンを形成する。
次に残ったレジストを除去した後、 電極パターン上に再度レジストを塗布し、 所望のフォトマスクを合わせ、 ステッパー装置 (図示せず) などを用いて露光す る。 次に、 現像装置 (図示せず) を用いて露光された部分のレジストを現像して 不要部分のレジストを除去する。 その後、 蒸着装置 (図示せず) を用いて A 1な どの金属薄膜を形成し、 入力端子電極 4 bおよび出力端子電極 5 bの上に A 1の 蒸着膜を形成し、 残ったレジストを除去する。
なお、 所望の電極パターンを形成する方法としては、 これ以外の方法例えば所 望の金属薄膜層を先に形成した後、 ドライエッチング装置 (図示せず) などを用 いて金属薄膜に所望の電極パターンを一度に形成してもかまわない。
次にダイシング装置 (図示せず) などを用いてダイシングライン上を切断し、 個片の弾性表面波装置 1 0 Aを得る。
なお、 本実施の形態 1で用いた電極パターンでは、 互いに電気的に独立し場所' により幅が異なる補助電極 6 a, 6 bの幅は、 弾性表面波装置 1 0 Aの動作周波 数の波長を; Iとした場合; L Z4〜1 0 0 λの範囲の幅を有していたが、 幅の大き さはこれら以外の範囲のものでもかまわない。
次にこうして得られた弾性表面波装置 1 O Aを用いて電子部品 4 O Aを組み立 てる。 図 3は、 弾性表面波装置 1 0 Aを用いた電子部品 4 0 Aの断面図である。
9はベース部材、 1 0 Aは弾性表面波装置、 1 1はバンプ、 1 2はパッド、 1
3は引き出し電極、 1 4は端子電極、 1 5は蓋体、 1 6は接着部材である。
弾性表面波装置 1 O Aのパッド 1 2に金などからなるバンプ 1 1を形成する。 次に、 予め引き出し電極 1 3、 端子電極 1 4を設けたベース部材 9に、 バンプ 1 1を形成した弾性表面波装置 1 O Aをバンプ 1 1が引き出し電極 1 3と接触す るように配設し、 超音波などでバンプ 1 1を接合、 実装する。
その後、 封止装置 (図示せず) を用いて、 弾性表面波装置 1 O Aを実装したベ 一ス部材 9と、 予め半田などの接着部材 1 6を担持させた蓋体 1 5を接着部材 1 6側がベース部材 9と対向するように配設して加熱、 封止し電子部品 4 0 Aを得 る。 なお、 電子部品 4 O Aの製造にあたっては上述した方法以外に、 必要に応じて 他の構成例えばワイヤーボンディングなどで実装してもかまわないし、 接着部材 1 6として例えば金又は金を含むろう材などを用いてもかまわない。
ところで、 バンプボンディングはワイヤーボンディングに比べ接合する電極な どとの接触する面積が大きくできるため、 接合の信頼性が高くできるが、 一方で バンプと接触する部分の電極にバンプボンディングの際に発生する歪みが残ると、 電極間で剥離したりして逆に接合の信頼性が低下する場合がある。
本発明では、 スパッタリングょりも蒸着によって金属薄膜を形成した場合の方 力 バンプボンディングの際に発生する歪みや電気腐食および切断時の腐食が起 こり難いことを見出した。 この理由は、 スパッタリングが物理的に金属粒子を積 み重ねるだけであるのに対し、 蒸着は下地の結晶配向性と同じ配向性の薄膜が形 成されるため金属粒子間の結合が強くなるためと考えられる。 従って、 バンプポ ンデイングする際に、 少なくともバンプと接触する電極の最上層を蒸着で形成す ることにより、 接合による歪みの発生を抑制し、 接合の信頼性を高め、 異種金属 接合に伴う電気腐食を抑制することができる。 蒸着で形成する金属薄膜は、 柔ら かい金属の方がバンプとの接合性が良く、 例えばアルミニウムまたはアルミニゥ ム一銅合金などが望ましい。
なお、 バンプと接触する電極の最上層に加えてその他の層を蒸着で形成しても 同様の効果が得られる。
また、 電極を 1種類以上の複数種類の金属例えば A 1, T i, C u , C r , N i又はこれらの合金などを重ねることにより耐電力が高められるため、 複数種類 の金属を重ねた上に最上層の電極を蒸着で形成することにより、 接合歪みの発生 を抑制し、 耐電力を高めた電極を得ることができる。
なお、 本実施の形態 1では互いに電気的に独立し場所により幅が異なる捕助電 極 6 a, 6 bは 2つに分割したが分割する数は複数個であればいくらでもかまわ ない。
またバンプを形成する位置は本実施の形態 1で示した位置以外であってもかま わない。
また、 帯状の入力端子引き出し電極 4 aおよび出力端子引き出し電極 5 aは電 極の幅が一定であつても、 異なるものであってもかまわない。
このようにして得られた弾性表面波装置 1 0 Aの櫛型電極 2は入力端子引き出 し電極 4 a、 入力端子電極 4 b、 出力端子引き出し電極 5 a、 出力端子電極 5 b、 櫛型電極 2間を接続する帯状の電極 1 8以外には接続していないため、 適宜必要 な端子を用いて電気的に接続することにより弾性表面波装置 1 0 Aの電気特性を 予め測定することができる。 すなわち、 ウェハ状態で弾性表面波装置 1 0 Aの電 気特性を予め測定することにより、 弾性表面波装置 1 O Aを個片に切断する前に 特性選別し良品のみを後工程で使用することができる。
以上のように本発明によれば、 櫛型電極 2および反射器電極 3の周囲を複数の 互いに電気的に独立し場所により幅が異なる補助電極 6 a , 6 bで囲み、 少なく ともバンプと接触する電極の最上層を蒸着で形成することにより、 圧電性を有す る基板 1の焦電性によって発生した電位をより早く、 より簡単に均一化すること ができるとともに、 電極の接合性を高め、 異種金属接合に伴う腐食を抑制し、 耐 電力を高められ、 静電気放電などによるデバイスの破壌や、 特性劣化のない優れ た弾性表面波装置 1 0 Aを簡単に製造することができるという作用効果が得られ る。
(実施の形態 2 )
以下に本発明の実施の形態 2を用いて、 本発明の請求項 1〜7、 1 0〜 1 5に ついて説明する。
図 4は、 本発明の実施の形態.2における弾性表面波装置 1 0 Bの電極パターン の構成を示す平面図である。 図 4において実施の形態 1の図 1で説明したものと 同一のものは同一番号を付与し、 詳細な説明は省略する。 なお、 図 4は、 本実施 の形態 2の構成を模式的に示したものであり、 それぞれの寸法の相対的な関係を 示したものではない。
本実施の形態 2の図 4と実施の形態 1の図 1とで相違する点は、 反射器電極 3 と、 互いに電気的に独立し場所により幅が異なる補助電極 6 a , 6 bを複数の帯 状の電極 1 7で電気的に接続すると共に、 櫛型電極 2を各 3個設け、 両端の櫛型 電極 2を相互に帯状電極 1 8で接続し、 カゝっ互いに電気的に独立し場所により幅 が異なる複数の補助電極 6 a , 6 bに帯状の電極 2 0で接続したことである。 すなわち、 実施の形態 1においては、 反射器電極 3と互いに電気的に独立し場 所により幅が異なる複数の補助電極 6 a , 6 bは電気的に開放された構成になつ ているが、 本実施の形態 2においては、 櫛型電極 2と反射器電極 3と互いに電気 的に独立し場所により幅が異なる複数の補助電極 6 a, 6 bを複数の帯状の電極 1 7, 1 8, 2 0で電気的に接続する構成にしたものであり、 それ以外は実施の 形態 1と同様にして弾性表面波装置 1 0 Bおよび電子部品 4 0 B (図 3 ) を製造 した。
図 4において、 櫛型電極 2と反射器電極 3と互いに電気的に独立し場所により 幅が異なる複数の補助電極 6 a , 6 bを複数の帯状の電極 1 7 , 2 0で電気的に 接続するとともに、 複数組構成された櫛型電極 2間を帯状の電極 1 8で電気的に 接続することにより、 櫛型電極 2および反射器電極 3などで発生した電荷を複数 の帯状の電極 1 7, 1 8 , 2 0を介して互いに電気的に独立し場所により幅が異 なる複数の捕助電極 6 a, 6 bを含む広い電極全体で電位を均一化できる。
すなわち、 櫛型電極 2と反射器電極 3と互いに電気的に独立し場所により幅が 異なる複数の補助電極 6 a , 6 bを複数の帯状の電極 1 7で接続することにより、 櫛型電極 2および反射器電極 3を含めたより広レヽ電極を共通電極とすることがで きるため発生した電荷をより広い面積で均一化し電位を等しくすることができる とともに、 幅の広い電極でこれらを接続することにより、 電気的に開放された場 合に比べィンピーダンスを小さくすることができる。
なお、 反射器電極 3と互いに電気的に独立し場所により幅が異なる複数の補助 電極 6 a, 6 bを電気的に接続した効果は電極パターンの設計により異なるが、 電位を均一化できる電極を低インピーダンスで接続できるものであれば線状でも、 面状でもかまわないし、 その本数もいくらであってもかまわないが、 望ましくは 面状で、 接続する本数が多い方がより効果的である。
また、 反射器電極 3と互いに電気的に独立し場所により幅が異なる複数の補助 電極 6 a, 6 bを線で電気的に接続する場合は、 接続された経路の途中にィンピ 一ダンスが高い部分があるのは好ましくないため例えば,線幅は同じかもしくは外 周部に行くに従って細くなることが望ましい。
従って、 実施の形態 1と比較すると櫛型電極 2と反射器電極 3と互いに電気的 に独立し場所により幅が異なる複数の補助電極 6 a , 6 bを複数の帯状の電極 1 7 , 1 8, 2 0で接続することにより、 櫛型電極 2および反射器電極 3を含めた より広い電極を共通電極とすることができるため発生した電荷をより広い面積で 均一化し電位を等しくすることができ、 発生する電荷による電位の影響をより小 さくすることができるため、 静電気放電などによるデバイスの破壊や、 特性劣化 のない優れた弾性表面波装置 1 0 Bを簡単に製造することができるという作用効 果が得られる。
なお、 図 4において、 2 1 aはグランド端子引き出し電極、 2 1 bはグランド 端子電極を示している。
(実施の形態 3 )
以下に本発明の実施の形態 3を用いて、 本発明の請求項 1〜5、 9〜1 5につ いて説明する。
図 5は、 本発明の実施の形態 3における弾性表面波装置 1 O Cの電極パターン の構成を示す平面図である。 図 5において実施の形態 1の図 1で説明したものと 同一のものは同一番号を付与し、 詳細な説明は省略する。 本実施の形態 3の図 5 と実施の形態 1の図 1とで相違する点は、 反射器電極 3をミアンダラィンで構成 し、 反射器電極 3と櫛型電極 2を電気的に接続したことである。 なお、 図 5は、 本実施の形態 3の構成を模式的に示したものであり、 それぞれの寸法の相対的な 関係を示したものではない。
すなわち、 実施の形態 1におレ、ては、 櫛型電極 2と反射器電極 3は電気的に開 放された構成になっているが、 本実施の形態 3においては、 櫛型電極 2と反射器 電極 3を電気的に接続する構成にしたものであり、 それ以外は実施の形態 1と同 様にして弾性表面波装置 1 0 Cおよび電子部品 4 0 C (図 3 ) を製造した。 図 5において、 ミアンダラインで構成した反射器電極 1 9は、 電気的に櫛型電 極 2と接続され、 使用する信号が直流おょぴ低周波数では導通しているが、 弾性 表面波装置が動作する高周波数帯域ではミアンダラインはィンピーダンスが高く なり、 実質的に開放状態と同様になる。
また、 一方でミアンダラィンで構成した反射器電極 1 9と櫛型電極 2を電気的 に接続することにより共通する電極部分を拡大できるため、 圧電性を有する基板 1の焦電性により発生した電荷をより広い電極、 より長い電極全体で均一化する ことができ、 各部で発生した電位差を小さくすることができる。
すなわち、 ミアンダラインで構成した反射器電極 1 9と櫛型電極 2を電気的に 接続することにより、 高周波数領域では櫛型電極 2と反射器電極; L 9を実質的に 開放状態にし動作上の不具合をなくすとともに、 電気的に接続された共通ベース を拡大することにより各部で発生する電位差を小さくし静電気放電などの発生を 抑制することができる。
従って、 実施の形態 1と比較すると櫛型電極 2および反射器電極 1 9を含めた 各部で発生する電位差をより小さくすることができ、 静電気放電などによるデバ イスの破壊や、 特性劣化のない優れた弾性表面波装置 1 0 Cを簡単に製造するこ とができるという作用効果が得られる。
(実施の形態 4 )
以下に本発明の実施の形態 4を用いて、 本宪明の請求項 1 6〜 2 0について説 明する。
図 6は、 本発明の実施の形態 4における弾性表面波装置 1 0 Dの電極パターン の構成を示す平面図であり、 図 7は、 図 6の電極パターンをウェハ上に複数個形 成した構成を示す平面図である。 また、 図 8は、 弾'性表面波装置 1 0 Dをパッケ ージなどに封止した電子部品 4 0 Dの断面図である。
本実施の形態 4の図 6と実施の形態 1の図 1とで相違する点は、 弾性表面波装 置 1 0 Dにおいてダイシングライン 2 8を圧電性基板 1上に設けたことである。 なお、 図 6乃至図 8は、 本実施の形態 4の構成を模式的に示したものであり、 それぞれの寸法の相対的な関係を示したものではない。
圧電性を有する物質は熱が加わるかまたは歪みが加わると焦電性により電荷が 発生し、 場所により電荷に差異が生じると電位差が発生し、 静電気放電などを引 き起こしデバイスの破壊や電気特性の劣化が起こる。
これを防止するためには、 発生した電位差をできるだけ早く、 同じ電位にする ことが有効である。
本発明では、 発生した電位をできるだけ等しくし、 弾性表面波装置の中で電位 のバランスを取るためには、 弾性表面波装置 1 O Dの回路パターンの中に低イン ピーダンスの部分をできるだけ広く設けることが有効であることを見出したもの である。
すなわち本発明の弾性表面波装置 1 O Dの電極パターンは、 圧電性を有する基 板 1上にダイシングライン 2 8を設け、 その内側に櫛型電極 2と、 櫛型電極 2よ り発生する表面波の伝搬方向に近接して櫛型電極 2の両側に反射器電極 3を配置 し、 櫛型電極 2および反射器電極 3の周囲を互いに電気的に独立し場所により幅 が異なる複数の補助電極 6 a、 6 bで囲んで構成されている。
ここで、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bはグランド電極として用いられており、 個片の弹性表面波装置 1 0 Dの中で、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bは略均等 例えば略点対称や略面対称などのように弾性表面波装置の中で偏りがないように 配置するとともに、 櫛型電極 2に接続した帯状の入力端子引き出し電極 4 a、 出 力端子引き出し電極 5 aの面積を略等しくし、 入、 出力端子引き出し電極 4 a、 5 aに接続して入力端子電極 4 b、 出力端子電極 5 bを相対向して設けるととも に入力端子電極 4 bと出力端子電極 5 bの面積を略等しくし、 反射器電極 3と互 いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを電気的に 開放状態にし、 櫛型電極 2間を帯状の電極 1 8で接続した電極構成にしている。 また、 入力端子引き出し電極 4 aと出力端子引き出し電極 5 a及び入力端子電 極 4 bと出力端子電極 5 bは相対向し、 それらの面積は略等しくすることにより 発生する電荷のパランスがとり易くなるため電位を均一にするのに有効である。 電極パターン配置の関係で例えばこれらの電極を相対向して設けられない場合 は、 略線対称、 略点対称などの方法によりできるだけ均等に配置することにより 相対向した場合に近い効果が得られる。
また、 互いに電気的に独立し場所により幅が異なる複数の捕助電極 6 a、 6 b はインピーダンスをできるだけ小さくし、 電位を均一にするために回路設計上可 能な範囲で電極の幅を広くしたもので、 場所によって幅が異なり、 面積的に広が りを持つ点で細線とは明らかに異なるものである。
このように、 櫛型電極 2および反射器電極 3の周囲を互いに電気的に独立し場 所により幅が異なる複数の補助電極 6 a、 6 bで囲むことにより、 細線に比べ線 幅が広く、 線間、 面内のインピーダンスを小さくできるため、 圧電性を有する基 板 1の焦電性によつて発生した電荷が貯まつて生じる電位を早く均一にすること ができるとともに、 細線に比べより広い領域の電位を均一にすることが可能とな る。
また、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 b を弾性表面波装置 1 0 Dが実装された基板などの外部回路のダランドに接続し、 互!/ヽに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを弾性表 面波装置 1 0 Dのグランド電極として用いることにより、 より大きい外部回路の ダランドと電気的に共通したダランドにすることができるため、 電位の変化をよ り早く、 より均一にすることができるため圧電性を有する基板 1の焦電性によつ て発生した電荷の影響を小さくすることができる。
弾性表面波装置 1 O Dが電位差を発生する原因は、 弾性表面波装置 1 O Dに熱 が加わったり、 歪みが加わることにより圧電性を有する基板 1の持つ焦電性から 電荷が発生するものであり、 通常の製造状態では局部的に電荷が発生するのでは なく、 弾性表面波装置 1 0 D全体から電荷が発生する。
ところで一般に弾性表面波装置の中で最も面積が広いのはバンプなどとの接続 用入、 出力端子電極部であり、 この部分から最も大きな電荷が発生する。
なお、 図 6と図 7は、 弾性表面波装置 1 0 Dの構成を模式的に示したものであ り、 構成部材の大きさの相対的な関係を示すものではない。
従って、 櫛型電極 2、 反射器電極 3などの機能部を取り囲み、 入、 出力端子電 極部を中心とする部位にできるだけ広い面積の共通電極部を設けることにより、 発生した電荷を効率よく均一化し電位を等しくすることができ、 静電気放電など の発生を抑制することができる。
ところで、 静電気放電によるデバイスの損傷を防止する方法としては、 例えば 隣接する電極間に予め電極間隔の狭い部分を設けておき、 ある程度電荷が貯まる とデバイスを損傷させない範囲で部分的に静電気放電させる方法と、 静電気の原 因になる電位の不均一'性自体を抑制する方法がある。
部分的に静電気放電させる方法では電荷が貯まる度に放電を繰り返すことにな り安定した状態を得にくいが、 電位の不均一性自体を抑制する方法ではできるだ け広い面積の共通電極部を設けることにより圧電性を有する基板 1から発生する 電荷が局部的に不均一にならず等電位にすることにより静電気放電の原因を恒久 的に除去することができる。
従って、 静電気放電を抑制するためには、 電極間距離を制御して故意に静電気 放電を発生させる方法よりも、 櫛型電極 2や反射器電極 3と互いに電気的に独立 し場所により幅が異なる複数の補助電極 6 a、 6 bにより等電位の部分を広くす るためにできるだけ広!/、面積の共通電極部を設けて静電気放電が発生しないよう にすることが最も有効である。
このようなことから互いに電気的に独立し場所により幅が異なる複数の補助電 極 6 a、 6 bの分割数は本来少ない方が望ましいが、 外部端子配置などとの関係 で電極を分割しなければならない場合でも、 本発明の構成を用いれば発生した電 荷を効率よく均一化し静電気放電などの発生を抑制することができる。
また、 予め弾性表面波装置 1 0 Dの中で、 帯状の入力端子引き出し電極 4 aと 出力端子引き出し電極 5 a、 および入力端子電極 4 bと出力端子電極 5 bの面積 を略等しくしたり、 また互いに電気的に独立し面状で短絡した電極 6 a、 6 bを 全体にバランス良く均等に配置して設けることにより、 局部的に大きな電荷が貯 まる場所をなくすことができるため、 電位をより均一にすることができる。
このように、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを全体にバランス良く均等に配置して設けたことにより、 例えば反射器電極 3が互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bと電 気的に開放された状態であっても、 またダイシングライン 2 3と反射器電極 3が 電気的に開放された状態であっても、 弾性表面波装匱 1 0 Dに発生する電荷を均 一化できるため、 局部的な電位の差異を生じることが無く、 デバイスの破壊ゃ電 気特性の劣化を起こらなくすることができる。
また、 ダイシングライン 2 8上を切断することにより切断に伴う位置合わせ作 業を容易に行うことができるとともに、 電気的に短絡したダイシングライン 2 8 を弾性表面波素子 1 O Dの外周部に設けることにより発生した電荷を均一ィヒする のに有効に作用させることができる。
なお、 櫛型電極 2および/または反射器電極 3は複数組設けたものであっても 同様の効果が得ることができる。
本発明の弾性表面波装置 1 0 Dは以下のようにして製造する。
L i T a〇3などからなる圧電性を有する基板 1上に、 スパッタリング装置を 用いて (図示せず) T iの金属薄膜を形成し、 その上に A 1 _ S C— C u、 T i の金属薄膜をスパッタリング装置 (図示せず) を用いて重ねて形成する。
ここで、 スパッタリングで形成する金属薄膜の材質は A 1— S c _ C u、 T i 以外に目的に応じてその他の金属および合金を用いてもかまわないし、 また金属 薄膜は 1層以上であれば目的に応じて何層積層してもかまわないし、 積層する順 序は目的に応じて変更してもかまわない。
次に金属薄膜の上にレジストを塗布し、 所望のフォトマスクを合わせ、 ステツ パー装置 (図示せず) などを用いて露光する。
次に、 現像装置 (図示せず) を用いて露光された部分のレジストを現像して不 要部分のレジストを除去する。
さらに、 ドライエッチング装置 (図示せず) などを用いて金属薄板に所望の電 極パターンを形成する。
次に残ったレジストを除去した後、 電極パターン上に再度レジストを塗布し、 所望のフォトマスクを合わせ、 ステッパー装置 (図示せず) などを用いて露光す る。
次に、 現像装置 (図示せず) を用いて露光された部分のレジストを現像し、 不 要部分のレジストを除去する。
その後、 蒸着装置 (図示せず) を用いて A 1などの金属薄膜を形成し、 入力端 子電極 4 b及び出力端子電極 5 bの上に A 1の蒸着膜を形成し、 残ったレジスト を除去する。
A 1の蒸着膜を設ける部分は入、 出力端子電極 4 b、 5 b以外に必要に応じて 他の部分例えば入、 出力端子引き出し電極 4 a、 5 a、 枠状で短絡した補助電極
6に設けてもかまわない。
なお、 所望の電極パターンを形成する方法としては、 これ以外の方法例えば所 望の金属薄膜層を先に形成した後、 ドライエッチング装置 (図示せず) などを用 いて金属薄膜に所望の電極パターンを一度に形成してもかまわな!/、。 次にダイシング装置 (図示せず) などを用いてダイシングライン 2 8上を切断 し、 個片の弾性表面波装置 1 0 Dを得る。
なお、 本実施の形態 1で用いた電極パターンでは、 互いに電気的に独立し場所 により幅が異なる複数の補助電極 6 a、 6 bの幅は、 弾性表面波装置 1 0 Dの動 作周波数の波長を λとした場合 λΖ4〜 1 0 0 λの範囲の幅を有していたが、 幅 の大きさはこれら以外の範囲のものでもかまわない。
次にこうして得られた弾性表面波装置 1 0 Dを用いて、 電子部品 4 0 Dが図 8 に示すように組み立てられる。 図 3と同様に、 図 8の電子部品 4 0 Dは、 ベース 部材 9、 弾性表面波装置 1 0 D、 バンプ 1 1、 ノ ッド 1 2、 引き出し電極 1 3、 端子電極 1 4、 蓋体 1 5と接着部材 1 6を備える。
弾性表面波装置 1 0 Dのパッド 1 2に金などからなるバンプ 1 1を形成する。 次に、 予め引き出し電極 1 3と、 端子電極 1 4を設けたベース部材 9に、 バン プ 1 1を形成した弾性表面波装置 1 0 Dをバンプ 1 1が引き出し電極 1 3と接触 するように配設し、 超音波などでバンプ 1 1を接合、 実装する。
その後、 封止装置 (図示せず) を用いて、 弾性表面波装置 1 O Dを実装したベ 一ス部材 9と、 予め半田などの接着部材 1 6を担持させた蓋体 1 5を、 接着部材 1 6側がベース部材 9と対向するように配設して加熱、 封止し電子部品 4 0 Dを 得る。
なお、 電子部品 4 0 Dの製造にあたっては上述した方法以外に、 必要に応じて 他の構成例えばワイヤーボンディングなどで外部端子と接続してもかまわないし、 接着部材 1 6として例えば金又は金を含むろう材などを用いてもかまわない。 ところで、 バンプボンディングはワイヤーボンディングに比べ接合する電極な どとの接触する面積が大きくできるため、 接合の信頼性が高くできる力 一方で バンプと接触する部分の電極にバンプボンディングの際に発生する歪みが残ると、 電極間で剥離したりして逆に接合の信頼性が低下する場合がある。
本発明では、 スパッタリングょりも蒸着によって金属薄膜を形成した場合の方 1 バンプボンディングの際に発生する歪みや電気腐食および切断時の腐食が起 こり難いことを見い出した。
この理由は、 スパッタリングが物理的に金属粒子を積み重ねるだけであるのに 対し、 蒸着は下地の結晶配向性と同じ配向性の薄膜が形成されるため金属粒子間 の結合が強くなるためと考えられる。
従って、 バンプボンディングする際に少なくともバンプと接触する電極の最上 層を蒸着で形成することにより、 接合による歪みの発生を抑制し、 接合の信頼性 を高め、 異種金属接合に伴う電気腐食を抑制することができる。
蒸着で形成する金属薄膜は、 軟らかい金属の方がバンプとの接合性が良く、 例 えばアルミニゥムまたはアルミニウム一銅合金などが望まし!/、。
なお、 バンプと接触する電極の最上層に加えてその他の層を蒸着で形成しても 同様の効果が得られる。
また、 電極を 1種類以上の複数種類の金属例えば A 1、 T i、 C u、 C r、 N i又はこれらの合金を重ねることにより耐電力が高められるため、 複数種類の金 属を重ねた上に最上層の電極を蒸着で形成することにより、 接合歪みの発生を抑 制し、 耐電力を高めた電極を得ることができる。
なお、 本実施の形態 4では互いに電気的に独立し場所により幅が異なる複数の 補助電極 6 a、 6 bは 2つに分割したが分割する数は複数個であればいくらでも かまわない。
また、 バンプを形成する位置は本実施の形態 4で示した位置以外であつてもか まわない。 また、 帯状の入力端子引き出し電極 4 aおよび出力端子引き出し電極 5 aは電極の幅が一定であっても、 異なるものであってもかまわない。
このようにして得られた弾性表面波装置 1 0 Dのホット端子例えば入、 出力端 子引き出し電極 4 a、 5 a、 入、 出力端子電極 4 b、 5 b、 帯状の電極 1 8はダ イシングラインに接続されていないため互レヽに電気的に独立しており、 適宜必要 な電極に端子などを当てて電気的接続することにより弾性表面波装置 1 0 Dの電 気特性を予め測定することができる。
すなわち、 ウェハ状態で弾性表面波装置 1 O Dの電気特性を予め測定すること ができるため、 ウェハを個片に切断する前に特性選別を行うことが可能で、 後ェ 程では良品のみを用いて電子部品 4 0 Dを &み立てることができる。
以上のように本発明によれば、 ダイシングライン 2 8の内側に櫛型電極 2およ び反射器電極 3の周囲を互いに電気的に独立し場所により幅が異なる複数の捕助 電極 6 a、 6 bで囲み、 少なくともバンプと接触する電極の最上層を蒸着で形成 することにより、 圧電性を有する基板 1の焦電性によつて発生した電位をより早 く、 より簡単に均一化することができるとともに、 電極の接合性を高め、 異種金 属接合に伴う腐食を抑制し、 耐電力を高められ、 静電気放電などによるデバイス の破壊や、 特性劣化のない優れた弾性表面波装置 1 0 Dを簡単に製造することが できる。 '
(実施の形態 5 )
図 9は、 本発明の実施の形態 5における弾性表面波装置 1 0 Eの電極パターン の構成を示す平面図である。
図 9において実施の形態 4の図 6で説明したものと同一のものは同一番号を付 与し、 詳細な説明は省略する。 なお、 図 9は、 本実施の形態 5の構成を模式的に 示したものであり、 それぞれの寸法の相対的な関係を示したものではない。 本実施の形態 5の図 9と実施の形態 4の図 6とで相違する点は、 反射器電極 3 と、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを電 気的に開放すると共に、 櫛型電極 2を 3個設け、 両端の櫛型電極 2を帯状の電極
1 8で相互に接続し、 かつ互いに電気的に独立し場所により幅が異なる複数の補 助電極 6 a、 6 bを複数の帯状の電極 2 0で電気的に接続したことである。 すなわち、 実施の形態 4においては、 櫛型電極 2と互いに電気的に独立し場所 により幅が異なる複数の補助電極 6 a、 6 bは電気的に開放された構成になって いる力 本実施の形態 5においては、 櫛型電極 2を 3個設け、 両端の櫛型電極 2 と互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを複数 の帯状の電極 2 0で電気的に接続すると共に、 両端の櫛型電極 2を帯状の電極 1 8で相互に接続する構成にしたものであり、 それ以外は実施の形態 4と同様にし て弾性表面波装置 1 O Eおよび電子部品 4 0 E (図 8 ) を製造した。
図 9において、 櫛型電極 2と互いに電気的に独立し場所により幅が異なる複数 の捕助電極 6 a、 6 bを複数の帯状の電極 2 0で電気的に接続するとともに、 複 数組配設された櫛型電極間を帯状の電極 1 8で電気的に接続することにより、 櫛 型電極 2などで発生した電荷を帯状の電極 2 0を介して互いに電気的に独立し場 所により幅が異なる複数の補助電極 6 a、 6 bを含むより広い電極全体で電位を 均一化することができる。
すなわち、 両端の櫛型電極 2と互いに電気的に独立し場所により幅が異なる複 数の補助電極 6 a、 6 bを帯状の電極 2 0で接続することにより、 より広い電極 を共通電極とすることができるため発生した電荷を櫛型電極 2を含むより広い面 積で均一化し電位を等しくすることができるとともに、 幅の広い電極で両者を接 続することにより、 電気的に開放された場合に比べィンピーダンスを小さくする ことができるため静電気放電を起りにくくすることができる。
なお、 櫛型電極 2と互いに電気的に独立し場所により幅が異なる複数の補助電 極 6 a、 6 bを電気的に接続した効果は電極パターンの設計により異なるが、 電 位を均一化できる電極を低インピーダンスで接続できるものであれば線状でも、 面状でもかまわないし、 その本数もいくらであってもかまわないが、 望ましくは 面状で接続する本数が多い方がより効果的である。
また、 櫛型電極 2と互いに電気的に独立し場所により幅が異なる複数の補助電 極 6 a、 6 bを線で電気的に接続する場合は、 接続された経路の途中にインピー ダンスが高い部分があるのは好ましくないため例えば線幅は同じかもしくは外周 部に行くに従って細くなることが望ましい。 一般に電極パターンの設計において はダイシングラインを最も細くすることから、 少なくともダイシングラインと同 じかそれより太い線で接続することが望ましい。
従って、 実施の形態 4と比較すると櫛型電極 2を含めたより広い電極を共通電 極とすることができるため、 発生した電荷をより広い面積で均一化し電位を等し くすることができ、 静電気放電などによるデバイスの破壌や、 特性劣化のない優 れた弾性表面波装置 1 0 Eを簡単に製造することができる。
なお、 図 9において、 3 1 aはグランド引き出し電極、 3 1 bはグランド電極 を示している。
(実施の形態 6 )
図 1 0は、 本発明の実施の形態 6における弾性表面波装置 1 0 Fの電極パター ンの構成を示す平面図である。 図 1 0において実施の形態 4の図 6で説明したも のと同一のものは同一番号を付与し、 詳細な説明は省略する。 なお、 図 1 0は、 本実施の形態 6の構成を模式的に示したものであり、 それぞれの寸法の相対的な 関係を示したものではない。
本実施の形態 6の図 1 0と実施の形態 4の図 6とで相違する点は、 反射器電極 3と、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを 電気的に開放すると共に、 櫛型電極 2を 3個設け、 両端の櫛型電極 2を帯状の電 極 1 8で相互に接続し、 かつ互いに電気的に独立し場所により幅が異なる複数の 補助電極 6 a、 6 bを複数の帯状の電極 2 0で電気的に接続するとともに、 互い に電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bとダイシング ライン 2 8を帯状の電極 2 2で電気的に接続したことである。
すなわち、 実施の形態 4においては、 櫛型電極 2と互いに電気的に独立し場所 により幅が異なる複数の補助電極 6 a、 6 bは電気的に開放された構成になって いる力 本実施の形態 6においては、 櫛型電極 2を 3個設け、 両端の櫛型電極 2 と互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bを複数 の帯状の電極 2 0で電気的に接続し、 両端の櫛型電極 2を帯状の電極 1 8で相互 に接続するとともに、 ダイシングライン 2 8と互いに電気的に独立し場所により 幅が異なる複数の補助電極 6 a、 6 bを帯状の電極 2 2により電気的に接続する 構成にしたものであり、 それ以外は実施の形態 4と同様にして弾性表面波装置 1 0 Fおよび電子部品 4 0 F (図 8 ) を製造した。
図 1 0において、 ダイシングライン 2 8と互いに電気的に独立し場所により幅 が異なる複数の補助電極 6 a、 6 bを帯状の電極 2 2を介して電気的に接続する ことにより、 圧電性を有する基板 1上で発生した電荷を互いに電気的に独立し場 所により幅が異なる複数の補助電極 6 a、 6 bおよびダイシングライン 2 8を含 む電極全体で均一化し等電位にすることができる。
すなわち、 ダイシングライン 2 8と互いに電気的に独立し場所により幅が異な る複数の補助電極 6 a、 6 bを帯状の電極 2 2を介して電気的に接続することに より、 圧電性を有する基板 1上で発生した電荷をダイシングライン 2 8を含むよ り広い電極を共通電極とすることができるため、 発生した電荷を櫛型電極 2を含 むより広い面積で均一化し電位を等しくすることができるとともに、 幅の広い電 極で両者を接続することにより、 電気的に開放された場合に比べィンピーダンス を小さくすることができ静電気放電を起りにくくすることができる。 なお、 ダイシングライン 2 8と互いに電気的に独立し場所により幅が異なる複 数の補助電極 6 a、 6 bを電気的に接続した効果は電極パターンの設計により異 なる力 電位を均一化できる電極を低インピーダンスで接続できるものであれば f泉状でも面状でもかまわないし、 その本数もいくらであってもかまわないが、 望 ましくは面状で接続する本数が多い方がより効果的である。
また、 ダイシングライン 2 8と互いに電気的に独立し場所により幅が異なる複 数の補助電極 6 a、 6 bを線で電気的に接続する場合は、 接続された経路の途中 にィンピーダンスが高い部分があるのは好ましくないため外周部に行くに従って 細くなることが望ましい。
一般に電極パターンの設計においてはダイシングライン 2 8を最も細くするこ と力 ら、 少なくともダイシングライン 2 8と同じかそれより太レ、線で接続するこ とが望ましい。
従って、 実施の形態 4と比較すると、 櫛型電極 2を 3個設け、 両端の櫛型電極 2と互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bとダ イシングライン 2 8を帯状の電極 1 8、 2 0、 2 2で電気的に接続することによ り、 より広い電極を共通電極とすることができるため、 各部で発生した電荷によ る電位の影響をより小さくすることができ、 静電気放電などによるデバイスの破 壊や、 特性劣化のない優れた弾性表面波装置 1 0 Fを簡単に製造することができ る。
(実施の形態 7 )
図 1 1は、 本発明の実施の形態 7における弾性表面波装置 1 0 Gの電極パター ンの構成を示す平面図である。 図 1 1において実施の形態 4の図 6で説明したも のと同一のものは同一番号を付与し、 詳細な説明は省略する。 なお、 図 1 1は、 本実施の形態 7の構成を模式的に示したものであり、 それぞれの寸法の相対的な 関係を示したものではない。
本実施の形態 7の図 1 1と実施の形態 4の図 6とで相違する点は、 櫛型電極 2 を 3個設け、 両端の櫛型電極と互いに電気的に独立し場所により幅が異なる複数 の補助電極 6 a、 6 bを帯状の電極 2 0で電気的に接続すると共に、 両端の櫛型 電極を帯状の電極 1 8で相互に接続し、 反射器電極 3と互いに電気的に独立し場 所により幅が異なる複数の補助電極 6 a、 6 bを帯状の電極 1 7により電気的に 接続し、 櫛型電極 2と反射器電極 3の外周部にダイシングライン 2 8を設け、 ダ イシングライン 2 8と互いに電気的に独立し場所により幅が異なる複数の補助電 極 6 a、 6 bを帯状の電極 2 2により電気的に接続したことである。
すなわち、 実施の形態 4においては、 櫛型電極 2と反射器電極 3およびダイシ ングライン 2 8は電気的に開放された構成になっているが、 本実施の形態 7にお いては、 ダイシングライン 2 8と、 互いに電気的に独立し場所により幅が異なる 複数の補助電極 6 a、 6 bと、 両端の櫛型電極 2と反射器電極 3を帯状の電極 1 7、 1 8、 2 0、 2 2により電気的に接続したものであり、 それ以外は実施の形 態 4と同様にして弾性表面波装置 1 O Gおよび電子部品 4 O G (図 8 ) を製造し た。
図 1 1において、 ダイシングライン 2 8と、 互いに電気的に独立し場所により 幅が異なる複数の補助電極 6 a、 6 bと、 両端の櫛型電極 2と、 反射器電極 3を 帯状の電極 1 7、 1 8、 2 0、 2 2を介して電気的に接続することにより、 圧電 性を有する基板 1上で発生した電荷を両端の櫛型電極 2と、 反射器電極 3と、 互 いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bと、 ダイシ ングライン 2 8を含む電極全体で均一化し等電位にすることができる。
すなわち、 ダイシングライン 2 8と、 互いに電気的に独立し場所により幅が異 なる複数の補助電極 6 a、 6 と、 両端の櫛型電極と、 反射器電極 3を帯状の電 極 1 7、 1 8、 2 0、 2 2を介して電気的に接続することにより、 ダイシンダラ イン 2 8と、 互いに電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bと、 両端の櫛型電極と、 反射器電極 3を含むより広い電極全体で電荷を均一 化し電位差を小さくすることができるとともに、 帯状の電極 1 7、 1 8、 2 0、 2 2でそれらを接続することにより電気的に開放された場合に比べ共通化された 電極間のィンピーダンスを小さくすることができる。
なお、 ダイシングライン 2 8と、 互いに電気的に独立し場所により幅が異なる 複数の補助電極 6 a、 6 と、 両端の櫛型電極と、 反射器電極 3を電気的に接続 した効果は電極パターンの設計により異なるが、 電位を均一化できる電極を低ィ ンピーダンスで接続できるものであれば線状でも面状でもかまわないし、 その本 数はいくらであってもかまわないが、 望ましくは面状で接続する本数が多い方が より効果的である。
従って、 実施の形態 4と比較すると、 両端の櫛型電極と、 反射器電極 3と互い に電気的に独立し場所により幅が異なる複数の補助電極 6 a、 6 bとダイシンク、' ライン 2 8を電気的に接続することにより、 より広い電極を共通電極とすること ができるため、 各部で発生する電位差をより小さくすることができ、 静電気放電 などによるデバイスの破壌や、 特性劣化のない優れた弾性表面波装置 1 0 Gを簡 単に製造することができる。
(実施の形態 8 )
図 1 2は、 本発明の実施の形態 8における弾性表面波装置 1 0 Hの電極パター ンの構成を示す平面図である。 図 1 2において実施の形態 4の図 6で説明したも のと同一のものは同一番号を付与し、 詳細な説明は省略する。 なお、 図 1 2は、 本実施の形態 8の構成を模式的に示したものであり、 それぞれの寸法の相対的な 関係を示したものではない。
本実施の形態 8の図 1 2と実施の形態 4の図 6とで相違する点は、 反射器電極 をミアンダラィンで構成し、 反射器電極と櫛型電極を電気的に接続したことであ る。 '
すなわち、 実施の形態 4においては、 櫛型電極 2と反射器電極 3は電気的に開 放された構成になっているが、 本実施の形態 8におレ、ては、 櫛型電極 2とミアン ダラインで構成した反射器電極 1 9を電気的に接続すると共に、 互いに電気的に 独立し場所により幅が異なる複数の補助電極 6 a、 6 bの外周部にダイシンダラ イン 2 8を設けた構成にしたものであり、 それ以外は実施の形態 4と同様にして 弾性表面波装置 1 O Hおよび電子部品 4 O H (図 8 ) を製造した。
図 1 2において、 ミァンダラインで構成した反射器電極 1 9は、 電気的に櫛型 電極 2と接続され、 使用する信号が直流おょぴ低周波数では導通しているが、 弾 性表面波装置が動作する高周波数帯域ではミアンダラインはィンピーダンスが高 くなり、 実質的に開放状態と同様になる。
また、 一方でミアンダラィンで構成した反射器電極 1 9と櫛型電極 2を電気的 に接続することにより共通する電極部分を拡大できるため、 圧電性を有する基板 1の焦電性により発生した電荷をより広い電極、 より長い電極全体で均一化する ことができ、 各部で発生した電位差を小さくすることができる。
すなわち、 ミアンダラインで構成した反射器電極 1 9と櫛型電極 2を電気的に 接続することにより、 動作周波数では実質的に開放状態にし動作上の不具合をな くすとともに、 電気的に接続された共通電極部分を拡大することにより圧電性を 有する基板 1で発生した電荷を反射器電極 1 9と櫛型電極 2を含む電極全体で均 一化し等電位にすることができる。
なお、 必要に応じて互いに電気的に独立し場所により幅が異なる複数の補助電 極 6 a、 6 bとダイシングライン 2 8を、 少なくとも 1本以上の線または帯状の 電極で電気的に接続することにより発生した電位を均一にするための共通電極を さらに広げてもかまわない。
従って、 実施の形態 4と比較するとミアンダラィンで構成した反射器電極 1 9 と櫛型電極 2を電気的に接続することにより、 動作周波数では実質的に開放状態 にし動作上の不具合をなくすとともに、 電気的に接続された共通電極部分を拡大 することにより圧電性を有する基板 1で発生した電荷を反射器電極 1 9と櫛型電 極 2を含む電極全体で均一化し等電位にすることができるため、 各部で発生する 電位差をより小さくすることができ、 静電気放電などによるデバイスの破壌や、 特性劣化のない優れた弾性表面波装置 1 0 Hを簡単に製造することができる。 以上のように本発明の実施の形態 1乃至 3によれば、 櫛型電極および反射器電 極の周囲を複数の互いに電気的に独立し場所により幅が異なる補助電極で囲むこ とにより、 個片に切断した後でも圧電性を有する基板の焦電性によって発生した 電位をより早く、 より簡単に均一化することができるとともに、 静電気放電など によるデバイスの破壊や、 特性劣化のない優れた弾性表面波装置を簡単に製造す ることができる。
又、 本発明の実施の形態 4乃至 8によれば、 ダイシングラインの内側に櫛型電 極および反射器電極の周囲を互いに電気的に独立し場所により幅が異なる複数の 補助電極で囲むことにより、 個片に切断した後でも圧電性を有する基板の焦電性 によって発生した電位をより早く、 より簡単に均一化することができるため、 静 電気放電などによるデバイスの破壌や、 特性劣化のない優れた弾性表面波装置を 簡単に製造することができる。

Claims

請 求 の 範 囲
1 . 圧電性を有する基板上に櫛型電極と、 この櫛型電極より発生する表面波の伝 搬方向に近接して反射器電極を配置してなる弾性表面波装置において、 前記櫛型 電極および反射器電極の周囲に互いに電気的に独立し場所により幅が異なる複数 の補助電極を設けた弾性表面波装置。
2. 互いに電気的に独立し場所により幅が異なる複数の捕助電極はダランド電極 として用いる請求項 1に記載の弾性表面波装置。
3 . 互いに電気的に独立し場所により幅が異なる複数の補助電極は略均等に配置 した請求項 1に記載の弾性表面波装置。
4. 櫛型電極に接続して帯状の入力端子引き出し電極と出力端子引き出し電極を 設けると共に、 入力端子引き出し電極と出力端子引き出し電極に接続して入力端 子電極と出力端子電極を設けた請求項 1に記載の弾性表面波装置。
5 · 帯状の入力端子引き出し電極と出力端子引き出し電極および入力端子電極と 出力端子電極は相対向して設け、 それらの面積は略等しくした請求項 4に記載の
6. 少なくとも反射器電極の一部と、 互いに電気的に独立し場所により幅が異な る複数の補助電極を電気的に接続した請求項 1に記載の弾性表面波装置。
7. 反射器電極と互いに電気的に独立し場所により幅が異なる複数の捕助電極を、 複数の線または帯状の電極で電気的に接続した請求項 6に記載の弾性表面波装置。
8 · 反射器電極と互いに電気的に独立し場所により幅が異なる複数の捕助電極を 電気的に開放状態にした請求項 1に記載の弾性表面波装置。
9 . 反射器電極をミアンダラインで構成し、 この反射器電極と櫛型電極を電気的 に接続した請求項 1に記載の弾性表面波装置。
1 0 . 圧電性を有する基板上に金属薄膜を被着し、 この金属薄膜をエッチングし て所定の電極パターンを複数組形成した後切断し、 個片の弾性表面波装置を得る 製造方法において、 前記圧電性を有する基板上に櫛型電極と、 反射器電極と、 櫛 型電極および反射器電極の周囲に互 ヽに電気的に独立し場所により幅が異なる複 数の補助電極と、 入力端子電極および入力端子引き出し電極と、 出力端子電極お よび出力端子引き出し電極を少なくとも一組設ける工程と、 隣接する前記補助電 極の間を切断する工程を含む弾性表面波装置の製造方法。
1 1 . 圧電性を有する基板上に金属薄膜を被着し、 この金属薄膜をエッチングし て所定の櫛型電極と、 反射器電極と、 入力端子電極および入力端子引き出し電極 と、 出力端子電極おょぴ出力端子引き出し電極と、 前記櫛型電極および反射器電 極の周囲に互いに電気的に独立し場所により幅が異なる複数の捕助電極を形成し た後、 隣接する前記補助電極の間を切断する弾性表面波装置の製造方法において、 入力端子電極と出力端子電極および複数の前記補助電極は少なくとも最上層の電 極を蒸着で形成する弾性表面波装置の製造方法。
1 2 . 最上層の電極は柔らかい材質である請求項 1 1に記載の弾性表面波装置の 製造方法。
1 3 . 柔らかい材質はアルミユウムまたはアルミニウム合金である請求項 1 2に 記載の弾性表面波装置の製造方法。
1 4 . 櫛型電極と、 反射器電極と、 入力端子電極および入力端子引き出し電極と、 出力端子電極おょぴ出力端子引き出し電極と、 互いに電気的に独立し場所により 幅が異なる複数の補助電極は、 1種類または複数種類の金属を重ねたものである 請求項 1 1に記載の弾性表面波装置の製造方法。
1 5 . 圧電性を有する基板上に櫛型電極と、 前記櫛型電極より発生する表面波の 伝搬方向に近接して反射器電極を配置してなる弾性表面波装置において、 前記櫛 型電極および反射器電極の周囲に互いに電気的に独立し場所により幅が異なる複 数の補助電極と、 前記櫛型電極に接続した帯状の入力端子引き出し電極および入 力端子電極と出力端子引き出し電極および出力端子電極を設けて電気的に接続す ると共にベース部材に配設し、 封止した電子部品。
1 6 . 圧電性を有する基板上に金属薄膜を被着し、 この金属薄膜をエッチングし て所定の電極パターンを複数組形成した後切断し、 個片の弾性表面波装置を得る 製造方法において、 前記圧電性を有する基板上にダイシングラインと、 その内側 に櫛型電極と、 反射器電極と、 前記櫛型電極および反射器電極の周囲に互いに電 気的に独立し場所により幅が異なる複数の補助電極と、 入、 出力端子引き出し電 極と入、 出力端子電極を設ける工程と、 ダイシングライン上を切断する工程を含 む弾性表面波装置の製造方法。
1 7 . 圧電性を有する基板上に金属薄膜を被着し、 この金属薄膜をエッチングし て所定のダイシングラインと櫛型電極と、 反射器電極と、 入、 出力端子引き出し 電極と、 入、 出力端子電極と、 前記櫛型電極および反射器電極の周囲に互いに電 気的に独立し場所により幅が異なる複数の補助電極を形成した後、 ダイシングラ イン上を切断する弾性表面波装置の製造方法において、 少なくとも入、 出力端子 引き出し電極と入、 出力端子電極と互 、に電気的に独立し場所により幅が異なる 複数の補助電極のうち一つの電極は、 少なくとも最上層の電極を蒸着で形成する 弹性表面波装置の製造方法。
1 8 . 最上層の電極を軟らかい材質で形成する請求項 1 7に記載の弾性表面波装 置の製造方法。
1 9 . 軟らかい材質としてアルミニウムまたはアルミニウム合金を用いる請求項 1 8に記載の弾†生表面波装置の製造方法。
2 0 . 櫛型電極と、 反射器電極と、 入力端子引き出し電極と、 出力端子引き出し 電極と、 互いに電気的に独立し場所により幅が異なる複数の補助電極は、 1種類 または複数種類の金属を重ねたもので形成する請求項 1 7に記載の弾性表面波装 置の製造方法。
PCT/JP2002/006041 2001-06-21 2002-06-18 Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method Ceased WO2003001666A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02736147A EP1414151A4 (en) 2001-06-21 2002-06-18 ACOUSTIC SURFACE WAVING DEVICE, METHOD FOR PRODUCING THE DEVICE AND ELECTRONIC CONSTRUCTION ELEMENT WITH THE SAME
US10/362,209 US7064471B2 (en) 2001-06-21 2002-06-18 Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001187714 2001-06-21
JP2001-187714 2001-06-21
JP2001-307256 2001-10-03
JP2001307256A JP2003115745A (ja) 2001-10-03 2001-10-03 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2001358802A JP2003078386A (ja) 2001-06-21 2001-11-26 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2001-358802 2001-11-26

Publications (1)

Publication Number Publication Date
WO2003001666A1 true WO2003001666A1 (en) 2003-01-03

Family

ID=27346991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006041 Ceased WO2003001666A1 (en) 2001-06-21 2002-06-18 Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method

Country Status (4)

Country Link
US (1) US7064471B2 (ja)
EP (1) EP1414151A4 (ja)
CN (1) CN1287516C (ja)
WO (1) WO2003001666A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454410B2 (ja) * 2004-06-28 2010-04-21 京セラ株式会社 弾性表面波装置およびその製造方法ならびに通信装置
JP2006060565A (ja) 2004-08-20 2006-03-02 Alps Electric Co Ltd Sawフィルタ、及びその製造方法
CN100518439C (zh) * 2004-12-24 2009-07-22 鸿富锦精密工业(深圳)有限公司 防止静电放电的印刷电路板
CN101965683B (zh) * 2008-03-19 2014-01-29 株式会社村田制作所 表面声波装置
DE102009017935A1 (de) * 2009-04-17 2010-10-21 Man Turbo Ag Turbomaschinenkomponente und damit ausgerüstete Turbomaschine
JP6167494B2 (ja) * 2012-09-26 2017-07-26 セイコーエプソン株式会社 電子デバイス用容器の製造方法、電子デバイスの製造方法、電子デバイス、電子機器及び移動体機器
WO2017065074A1 (ja) * 2015-10-16 2017-04-20 株式会社日立製作所 変形検知装置及び診断システム
CN106603035A (zh) * 2016-12-23 2017-04-26 北京中科飞鸿科技有限公司 一种提高声表面波滤波器耐受功率的方法
CN115021712A (zh) * 2022-06-13 2022-09-06 广东广纳芯科技有限公司 声表面波谐振器以及声表面波谐振器的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270114A (ja) * 1988-09-06 1990-03-09 Nec Corp 弾性表面波共振子
JPH0421205A (ja) * 1990-05-16 1992-01-24 Hitachi Denshi Ltd 弾性表面波デバイスの製造方法
JPH04288718A (ja) * 1991-02-22 1992-10-13 Seiko Epson Corp 弾性表面波素子の電極構造
JPH05160664A (ja) * 1991-12-04 1993-06-25 Fujitsu Ltd 弾性表面波素子及びその製造方法及び弾性表面波デバイス
JPH07303024A (ja) * 1994-04-22 1995-11-14 Siemens Matsushita Components Gmbh & Co Kg 音響表面波フィルタ
JP2000091872A (ja) * 1998-09-11 2000-03-31 Hitachi Media Electoronics Co Ltd 弾性表面波装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119509A (en) * 1981-01-19 1982-07-26 Toshiba Corp Surface acoustic wave resonator
JPS6288409A (ja) * 1985-10-15 1987-04-22 Matsushita Electric Ind Co Ltd 弾性表面波デバイス
US5459368A (en) * 1993-08-06 1995-10-17 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device mounted module
DE69424737T2 (de) * 1993-10-08 2000-09-28 Matsushita Electric Ind Co Ltd Akustisches Oberflächenwellenfilter
JPH11298289A (ja) 1998-04-13 1999-10-29 Toyo Commun Equip Co Ltd 弾性表面波装置
JP3289674B2 (ja) * 1998-05-21 2002-06-10 株式会社村田製作所 表面波フィルタ装置、共用器、通信機装置
JP2000013165A (ja) 1998-06-18 2000-01-14 Toshiba Corp 弾性表面波装置およびその製造方法
JP3382920B2 (ja) * 2000-06-30 2003-03-04 沖電気工業株式会社 共振器型弾性表面波フィルタ
CN1272904C (zh) * 2001-04-19 2006-08-30 松下电器产业株式会社 弹性表面波装置
JP3824499B2 (ja) * 2001-04-20 2006-09-20 富士通株式会社 弾性表面波共振子及び弾性表面波フィルタ
AU2003207197A1 (en) * 2002-02-12 2003-09-04 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270114A (ja) * 1988-09-06 1990-03-09 Nec Corp 弾性表面波共振子
JPH0421205A (ja) * 1990-05-16 1992-01-24 Hitachi Denshi Ltd 弾性表面波デバイスの製造方法
JPH04288718A (ja) * 1991-02-22 1992-10-13 Seiko Epson Corp 弾性表面波素子の電極構造
JPH05160664A (ja) * 1991-12-04 1993-06-25 Fujitsu Ltd 弾性表面波素子及びその製造方法及び弾性表面波デバイス
JPH07303024A (ja) * 1994-04-22 1995-11-14 Siemens Matsushita Components Gmbh & Co Kg 音響表面波フィルタ
JP2000091872A (ja) * 1998-09-11 2000-03-31 Hitachi Media Electoronics Co Ltd 弾性表面波装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1414151A4 *

Also Published As

Publication number Publication date
CN1287516C (zh) 2006-11-29
EP1414151A4 (en) 2005-01-26
CN1465132A (zh) 2003-12-31
EP1414151A1 (en) 2004-04-28
US7064471B2 (en) 2006-06-20
US20040012302A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US10804881B2 (en) Acoustic wave device
JP2717071B2 (ja) 誘電体基板上に金属化領域を備えた音波デバイスの製法
JP4203152B2 (ja) 弾性表面波装置
WO2003001666A1 (en) Surface acoustic wave device, method of manufacturing the device, and electronic component using the device and method
KR100766262B1 (ko) 탄성표면파 장치의 제조방법 및 탄성표면파 장치
WO2002087080A1 (en) Surface acoustic wave device and its manufacture method, and electronic part using it
JP6981772B2 (ja) 弾性波デバイス
KR100643112B1 (ko) 탄성파 장치
JP4370615B2 (ja) 圧電デバイスとその製造方法
JP2003008389A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2003017972A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JP2003078386A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
KR100484078B1 (ko) 탄성 표면파 장치 및 그 제조 방법과 이것을 이용한 전자부품
JP2003115745A (ja) 弾性表面波装置およびその製造方法とこれを用いた電子部品
JPH05160664A (ja) 弾性表面波素子及びその製造方法及び弾性表面波デバイス
JP3293578B2 (ja) 弾性表面波素子
JP3412621B2 (ja) 弾性表面波装置
JP2003046361A (ja) 弾性表面波装置
JPH08167826A (ja) 弾性表面波素子
JP2004350255A (ja) 弾性表面波素子
JP2024179587A (ja) 弾性波デバイス、フィルタ、マルチプレクサ、および電子部品
US20050179340A1 (en) Surface acoustic wave device and surface acoustic wave filter comprising the device
JPH11251860A (ja) 弾性表面波装置
WO2021100505A1 (ja) 電子部品および電子部品の製造方法
JPS6120409A (ja) 表面弾性波素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002736147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028021878

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10362209

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004107504

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2002736147

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002736147

Country of ref document: EP