WO2003010794A2 - Mass spectrometry device - Google Patents
Mass spectrometry device Download PDFInfo
- Publication number
- WO2003010794A2 WO2003010794A2 PCT/EP2002/007993 EP0207993W WO03010794A2 WO 2003010794 A2 WO2003010794 A2 WO 2003010794A2 EP 0207993 W EP0207993 W EP 0207993W WO 03010794 A2 WO03010794 A2 WO 03010794A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass spectrometry
- ions
- ion
- analysis
- deflection elements
- Prior art date
Links
- 238000004949 mass spectrometry Methods 0.000 title claims abstract description 30
- 150000002500 ions Chemical class 0.000 claims abstract description 95
- 238000004458 analytical method Methods 0.000 claims description 49
- 230000001133 acceleration Effects 0.000 claims description 14
- 230000005672 electromagnetic field Effects 0.000 claims description 9
- 239000012212 insulator Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000012491 analyte Substances 0.000 description 17
- 239000007921 spray Substances 0.000 description 12
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 150000001793 charged compounds Chemical class 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000005465 channeling Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- CDUQMGQIHYISOP-RMKNXTFCSA-N (e)-2-cyano-3-phenylprop-2-enoic acid Chemical compound OC(=O)C(\C#N)=C\C1=CC=CC=C1 CDUQMGQIHYISOP-RMKNXTFCSA-N 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000010833 quantitative mass spectrometry Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/062—Ion guides
- H01J49/065—Ion guides having stacked electrodes, e.g. ring stack, plate stack
- H01J49/066—Ion funnels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/161—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
- H01J49/164—Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
Definitions
- the invention relates to a mass spectrometry device for mass spectrometry (MS) of ions.
- mass spectrometry With the help of mass spectrometry it is possible to determine the m / z ratio, and thus the molar mass of element and molecular ions.
- mass spectrometry methods for example for protein or peptide analysis, use inter alia the ionization techniques ESI (electrospray ' ionization) or MALDI (matrix-assisted laser desorption ionization).
- a liquid that contains the analyte to be examined in ionized form is sprayed out of a capillary.
- the ions are accelerated by an acceleration device, such as an electric field, in the direction of an analysis device, by means of which the m / z ratio or the analyte ions are determined.
- the analysis can be carried out, for example, using a flight tube (time of flight “TOP”) or one or more quadrupoles in conjunction with a detector. Since the analysis device has a small inlet aperture and the spray mist has finely distributed, diverging droplets, only an extremely small part of the ions to be detected reaches the analysis device. In conventional analysis devices, only about 1% o of the ions present in the spray mist get into the analyzer. A quantitative mass spectrometry with in particular almost complete ion yield and detection is therefore not possible.
- the analyte solution is mixed with a large excess of a matrix solution (e.g. ⁇ -cyanocinnamic acid) on a metal plate or the like. crystallized.
- a matrix solution e.g. ⁇ -cyanocinnamic acid
- the analysis device which is usually a flight tube, also has a small aperture, since there is a vacuum inside the analysis device. Since the movement or trajectory of the molecular ions released from the sample by the laser runs in the most varied of directions and thus large scattering of generated molecular ions occurs, only a small proportion of the generated molecular ions is fed to the analysis device in this method.
- the object of the invention is to provide a mass spectrometry device in which the proportion of detectable analyte ions is increased.
- Mass spectrometry of ions has an ion delivery device.
- the ion delivery device is, for example, an ESI or a MALDI device.
- the ion delivery device is one
- Accelerator such as an electric field
- the ions are accelerated by the acceleration device in the direction of an analysis device, such as a flight tube or one or more quadrupoles.
- the analysis device is usually followed by a detection device for detecting the ions.
- the Detection device can be connected to an evaluation device, which in particular comprises a PC.
- an ion focusing device is connected upstream of the analysis device to increase the ion yield.
- the ions are directed in the direction of the analysis device by the ion focusing device. This is preferably done by generating suitable electrical fields by means of which, for example at ESI, the analyte ions contained in the spray are focused or channeled in the direction of the analysis device.
- a voltage is preferably present at the ion focusing device, so that the ion focusing device is electrically charged in such a way that the ions are directed in the direction of the analysis device. At least the ions of the ion focusing device, if this corresponds to the ions, repel the ions. Ions which, for example, do not move out of the spray in the direction of the analysis device or an aperture of the analysis device in the case of ESI are thus deflected in the direction of the analysis device.
- the ion focusing device preferably has a circular electromagnetic field.
- the ion focusing device is preferably designed such that it tapers in the direction of the analysis device.
- the diameter or cross section of the circular electromagnetic field thus decreases from the ion delivery device in the direction of the analysis device. This results in an increasing focus or channeling of the analyte ions.
- the direction and size of the electromagnetic field generated with the aid of the ion focusing device also make it possible, for example, to focus or deflect only ions of a certain mass or charge in such a way that they reach the analysis device. It is thus possible to achieve a sort of pre-sorting of the ions by adjusting the electromagnetic field.
- the ion focusing device has a plurality of deflection elements. Different voltages can be applied to the deflection elements. This makes it possible to predetermine or influence the trajectory of the individual ions, so that the pre-sorting can be improved.
- the deflection elements are preferably arranged essentially one behind the other in the direction of movement of the ions.
- the deflection elements are thus arranged one behind the other in the direction of the analysis device, starting from the ion delivery device. It is particularly preferred here to provide self-contained deflection elements, the cross-section of which preferably decreases in the direction of the analysis device. In the case of annular deflection elements, which are particularly preferred, this means that the diameter of deflection elements arranged one behind the other or successive in the direction of movement of the ions is reduced.
- the deflection elements are preferably connected to a control device by means of which the voltage applied to the individual deflection elements can be controlled individually or in groups. As a result, the strength and direction of the generated electromagnetic field or the generated electromagnetic fields can be varied in particular.
- analyte ions such as organic compounds, proteins and peptides from body fluids, tissue extracts etc.
- the device according to the invention the To evaluate the state of body or organ functions, the state of development and / or the state of human, animal or plant diseases or the function of organisms differentially and / or globally (proteomics and peptidomics).
- a particularly reliable analysis can be carried out, for example, to analyze the state of the bodily functions of persons, to evaluate the differential state of normal development and / or to analyze disease-specific markers in order to make a reliable diagnosis in the course of To receive diseases or as part of an integrated health care (ICH integrated health care) to optimize therapeutic interventions in medicine.
- ICH integrated health care integrated health care
- the use of the device according to the invention also improves the implementation of new binding assays for special proteins, peptides or other organic substances which are present in defined analyte concentrations on MALDI targets and / or in solutions to be used for the ESI-MS.
- the binding of covalently target-bound capture molecules on chips, such as specific antibodies, is quantitatively defined at MALDI, like the concentration of analytes in injectable solutions at ESI.
- the analyte concentration can be evaluated in defined standardized dilution series.
- Binding substances are preferably proteins which are covalently bound to the target, in particular monoclonal antibodies, which interact specifically with the analyte.
- 1 is a schematic side view of the device according to the invention using an ESI device, the spray direction of which points in the direction of the analysis device
- 2 shows a schematic side view of the device according to the invention using an ESI device, the spray direction of which is oriented perpendicular to the analysis device
- Fig. 3 is a schematic side view of the device according to the invention using a MALDI device.
- an analyte 12 is pressed out of a capillary 14.
- the generation of the spray can be supported by a gas stream (inert gas, for example N 2 ).
- a gas stream inert gas, for example N 2
- the capillary 14 is used, if appropriate in conjunction with a delivery device, such as a pump, to deliver the analyte 12 as an ion delivery device, the analyte being delivered through an outlet opening 18.
- the analyte ions present in the solution are distributed in the spray and are positively charged in the exemplary embodiment shown.
- the ions are accelerated in an accelerating device 20 in the direction of an ion focusing device 22 adjoining the accelerating device 20 and an adjoining analysis device, only one aperture 24 being shown by the analysis device, to which the analysis device is then attached, for example in the form of a flight tube or one or more quadrupoles.
- the ions are accelerated in the acceleration device 20 by generating an electric field.
- the capillary 14 is connected to the positive pole of a current source 26 and thus serves as an anode.
- a ring-shaped element in the illustrated embodiment, which is electrically conductive, is also connected to the power source and serves as a cathode.
- the element forming the aperture 24 is switched as a cathode.
- the ion focusing device provided between the acceleration device 20 and the analysis device points in the illustrated
- Embodiment several annular deflection elements 28.
- the ring-shaped deflection elements 28 are each connected to a power source via a control device.
- a potential is therefore present at the individual deflection elements 28. In the exemplary embodiment shown, this is positive, so that the ions located within the ion focusing device are repelled. This causes the ions in the spray 10 to be centered or channeled onto the aperture 24.
- Insulators 30 are provided between the individual deflection elements 28.
- the ion focusing device 22 is essentially funnel-shaped due to the plurality of deflection elements 28 provided, which have a different diameter in an annular configuration. This can be a funnel designed in a stepped manner through the individual deflection elements 28.
- the individual deflection elements 28 can be controlled differently so that ions can be accelerated and deflected in a targeted manner, for example depending on their mass or their charge. Appropriate switching of the individual deflection elements enables increasing acceleration and focusing as well as channeling of certain preselected ions.
- electromagnetic fields can be created that change in high-frequency and / or voltage-adapted modulation. Precisely predictable exclusion criteria are hereby possible, so that essentially only certain selected ions get into the analysis device. According to the invention, a large number of these selected ions reach the analysis device, so that in addition to a qualitative one, a quantitative determination with an almost complete one Ion yield is possible. Particles deflected too little or too strongly by the application of the electromagnetic fields hit the deflection elements 28 or insulators 30 outside the aperture 24.
- the cathode 31 of the acceleration device 20 is likewise designed in a ring shape corresponding to the deflection elements 28.
- the cathode 31 is separated from the first deflection element 28 by an insulator 30 and is in direct contact with the ion focusing device 22.
- the ion yield with the aid of the device according to the invention is extremely high, depending on the application it can be over 80%, in particular over 90%, it is possible with the device according to the invention to carry out a quantitative, highly sensitive and highly selective analysis which relates in particular to proteomics and Peptodomics with ESI or MALDI technology can be used, but can also be used in all other mass spectrometry techniques known to the person skilled in the art.
- Another advantage of the device according to the invention is that the concentration detection limit is considerably improved compared to known devices.
- an ESI device is also provided, but is rotated through 90 ° compared to the embodiment shown in FIG. 1, so that the spray direction of the ESI device is 90 ° to the direction of movement of the ions to be selected, ie of the positively charged particles in the illustrated embodiment is rotated.
- the same or similar components have the same reference numerals as in the embodiment shown in FIG. 1.
- the embodiment shown in FIG. 2 has the additional advantage that neutral substances, such as, for example, solvent molecules or negatively charged ions 32 cannot get into the ion focusing device 22 or the analysis device. This avoids disruptive influences caused by such ions or neutral substances.
- neutral substances such as, for example, solvent molecules or negatively charged ions 32 cannot get into the ion focusing device 22 or the analysis device. This avoids disruptive influences caused by such ions or neutral substances.
- the ions are provided with the aid of the MALDI method.
- the ion focusing device 22 and the type of acceleration device 25 correspond in principle to that based on FIGS. 1 and 2 described facilities. These are therefore identified by the same reference symbols.
- a sample that has crystallized out, for example, with matrix 36 is immobilized on a metal plate 34.
- particles are detached from sample 36 and the matrix molecules are ionized.
- the analyte ions generated by charge transfer from matrix ions to analyte molecules are in the
- Accelerating device 20 accelerates and then focused or channeled onto the aperture 24 in the ion focusing device.
- the device according to the invention is in particular for the analysis of markers, for the analysis of peptidomes, for the specific analysis of proteomes, for the analysis of disease-specific markers, for DPD evaluation (differential peptide display), for the discovery of new substances which are particularly relevant as drug targets Identification of markers, particularly at IHC (integrated health care), is suitable for identifying new substances and markers from animal and plant organisms.
- the device according to the invention can also be integrated into any other mass spectrometric concept known to the person skilled in the art.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
Massenspektrometrie-Vorrichtung Mass spectrometry device
Die Erfindung betrifft eine Massenspektrometrie-Vorrichtung zur Massenspektrometrie (MS) von Ionen.The invention relates to a mass spectrometry device for mass spectrometry (MS) of ions.
Mit Hilfe der Massenspektrometrie ist eine Bestimmung des m/z-Verhältnisses, und damit der Molmasse von Element- und Molekülionen, möglich. Bei bekannten Massenspektrometrie-Verfahren, z.B. für die Protein- oder Peptidanalytik, werden unter anderem die Ionisierungstechniken ESI (electrospray 'ionization) oder MALDI (matrix-assisted laser desorption ionization) verwendet.With the help of mass spectrometry it is possible to determine the m / z ratio, and thus the molar mass of element and molecular ions. Known mass spectrometry methods, for example for protein or peptide analysis, use inter alia the ionization techniques ESI (electrospray ' ionization) or MALDI (matrix-assisted laser desorption ionization).
Bei der ESI-Technologie wird eine Flüssigkeit, die den zu untersuchenden Analyten in ionisierter Form enthält, aus einer Kapillare gesprüht. Die Ionen werden durch eine Beschleunigungseinrichtung, wie ein elektrisches Feld, beschleunigt, in Richtung einer Analyseeinrichtung, durch die die Bestimmung des m/z-Verhältnisses oder der Analytionen erfolgt. Die Analyse kann beispielsweise mit Hilfe eines Flugrohres (Time of Flight „TOP) oder einem oder mehreren Quadrupolen in Verbindung mit einem Detektor erfolgen. Da die Analyseeinrichtung eine kleine Eintrittsblende aufweist und der Sprühnebel fein verteilte, auseinanderdivergierende Tröpfchen aufweist, gelangt nur ein äußerst geringer Teil der zu detektierenden Ionen in die Analyseeinrichtung. Bei herkömmlichen Analyseeinrichtungen gelangt nur etwa 1 %o der im Sprühnebel vorhandenen Ionen in den Analysator. Eine quantitative Massenspektrometrie mit insbesondere nahezu vollständiger Ionenausbeute und Detektion ist daher nicht möglich.With ESI technology, a liquid that contains the analyte to be examined in ionized form is sprayed out of a capillary. The ions are accelerated by an acceleration device, such as an electric field, in the direction of an analysis device, by means of which the m / z ratio or the analyte ions are determined. The analysis can be carried out, for example, using a flight tube (time of flight “TOP”) or one or more quadrupoles in conjunction with a detector. Since the analysis device has a small inlet aperture and the spray mist has finely distributed, diverging droplets, only an extremely small part of the ions to be detected reaches the analysis device. In conventional analysis devices, only about 1% o of the ions present in the spray mist get into the analyzer. A quantitative mass spectrometry with in particular almost complete ion yield and detection is therefore not possible.
Bei der MALDI-Technologie wird die Analytlösung mit einem grossen Überschuss einer Matrixlösung (z.B. α-Cyanozimtsäure) auf einer Metallplatte o.dgl. auskristallisiert. Mit Hilfe eines üblicherweise gepulsten Laserstrahls werden einzelne Moleküle der Probe desorbiert und durch die Matrixionen ionisiert. Diese Molekülionen werden wiederum durch ein elektrisches Feld in Richtung einer Analyseeinrichtung beschleunigt. Die Analyseeinrichtung, bei der es sich üblicherweise um ein Flugrohr handelt, weist ebenfalls eine kleine Blendenöffnung auf, da innerhalb der Analyseeinrichtung Vakuum herrscht. Da die Bewegungs- bzw. Flugbahn der aus der Probe durch den Laser herausgelösten Molekülionen in unterschiedlichste Richtungen verläuft und somit ein großes Streuen erzeugten Molekülionen auftritt, wird auch bei diesem Verfahren nur ein geringer Anteil der erzeugten Molekülionen der Analyseeinrichtung zugeführt.In the MALDI technology, the analyte solution is mixed with a large excess of a matrix solution (e.g. α-cyanocinnamic acid) on a metal plate or the like. crystallized. With the help of a usually pulsed laser beam, individual molecules of the sample are desorbed and ionized by the matrix ions. These molecular ions are in turn accelerated by an electric field in the direction of an analysis device. The analysis device, which is usually a flight tube, also has a small aperture, since there is a vacuum inside the analysis device. Since the movement or trajectory of the molecular ions released from the sample by the laser runs in the most varied of directions and thus large scattering of generated molecular ions occurs, only a small proportion of the generated molecular ions is fed to the analysis device in this method.
Aufgabe der Erfindung ist es, eine Massenspektrometrie-Vorrichtung zu schaffen, bei der der Anteil der detektierbaren Analytionen erhöht ist.The object of the invention is to provide a mass spectrometry device in which the proportion of detectable analyte ions is increased.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.According to the invention, the object is achieved by the features of claim 1.
Die erfindungsgemäße Massenspektrometrie-Vorrichtung zurThe mass spectrometry device according to the invention for
Massenspektrometrie von Ionen, weist eine Ionenabgabeeinrichtung auf. Bei der Ionenabgabeeinrichtung handelt es sich beispielsweise um eine ESI- oder eine MALDI-Einrichtung. Der Ionenabgabeeinrichtung ist eineMass spectrometry of ions, has an ion delivery device. The ion delivery device is, for example, an ESI or a MALDI device. The ion delivery device is one
Beschleunigungseinrichtung, wie ein elektrisches Feld, nachgeschaltet. Durch die Beschleunigungseinrichtung werden die Ionen in Richtung einer Analyseeinrichtung, wie einem Flugrohr oder einem oder mehreren Quadrupolen, beschleunigt. Der Analyseeinrichtung schliesst sich üblicherweise eine Detektionseinrichtung zur Detektion der Ionen an. Die Detektionseinrichtung kann mit einer Auswerteeinrichtung, die insbesondere einen PC umfasst, verbunden sein. Zur Erhöhung der Ionenausbeute ist erfindungsgemaß der Analyseeinrichtung eine Ionenfokussiereinrichtung vorgeschaltet. Durch die Ionenfokussiereinrichtung werden die Ionen in Richtung der Analyseeinrichtung gelenkt. Dies erfolgt vorzugsweise durch Erzeugen geeigneter elektrischer Felder, durch die beispielsweise bei ESI die im Sprühnebel • enthaltenen Analytionen in Richtung der Analyseeinrichtung fokussiert bzw. kanalisiert werden. Insbesondere bei Analyseeinrichtungen, die eine Blendenöffnung aufweisen, die in Richtung der Ionenfokussiereinrichtung weist, erfolgt somit ein Lenken der einzelnen Ionen in Richtung der Blendenöffnung. Dadurch ist es möglich, die Anzahl der detektierbaren Ionen erheblich zu erhöhen. Mit der erfindungsgemäßen Vorrichtung ist es somit möglich, nicht nur qualitative Bewertungen, sondern auch quantitative Bewertungen mit hoher, nahezu vollständiger Ionenausbeute durchzuführen.Accelerator, such as an electric field, connected downstream. The ions are accelerated by the acceleration device in the direction of an analysis device, such as a flight tube or one or more quadrupoles. The analysis device is usually followed by a detection device for detecting the ions. The Detection device can be connected to an evaluation device, which in particular comprises a PC. According to the invention, an ion focusing device is connected upstream of the analysis device to increase the ion yield. The ions are directed in the direction of the analysis device by the ion focusing device. This is preferably done by generating suitable electrical fields by means of which, for example at ESI, the analyte ions contained in the spray are focused or channeled in the direction of the analysis device. In particular in the case of analysis devices which have an aperture opening which points in the direction of the ion focusing device, the individual ions are thus steered in the direction of the aperture opening. This makes it possible to significantly increase the number of detectable ions. With the device according to the invention it is thus possible to carry out not only qualitative evaluations but also quantitative evaluations with a high, almost complete ion yield.
Vorzugsweise liegt an der Ionenfokussiereinrichtung eine Spannung an, so dass die Ionenfokussiereinrichtung derart elektrisch geladen ist, dass die Ionen in Richtung der Analyseeinrichtung gelenkt werden. Zumindest erfolgt durch die Ladung der Ionenfokussiereinrichtung, sofern diese der Ladung der Ionen entspricht, ein Abstoßen der Ionen. Ionen, die sich beispielsweise bei ESI aus dem Sprühnebel nicht in Richtung der Analyseeinrichtung bzw. einer Blendenöffnung der Analyseeinrichtung bewegen, werden somit in Richtung der Analyseeinrichtung umgelenkt. Hierbei weist die Ionenfokussiereinrichtung vorzugsweise ein zirkuläres elektromagnetisches Feld auf.A voltage is preferably present at the ion focusing device, so that the ion focusing device is electrically charged in such a way that the ions are directed in the direction of the analysis device. At least the ions of the ion focusing device, if this corresponds to the ions, repel the ions. Ions which, for example, do not move out of the spray in the direction of the analysis device or an aperture of the analysis device in the case of ESI are thus deflected in the direction of the analysis device. The ion focusing device preferably has a circular electromagnetic field.
Vorzugsweise ist die Ionenfokussiereinrichtung derart ausgebildet, dass sie sich in Richtung der Analyseeinrichtung verjüngt. Der Durchmesser bzw. der Querschnitt des zirkulären elektromagnetischen Feldes nimmt somit von der Ionenabgabeeinrichtung in Richtung der Analyseeinrichtung ab. Dies hat ein immer stärkeres Fokussieren bzw. Kanalisieren der Analytionen zur Folge. Durch Richtung und Größe des mit Hilfe der Ionenfokussiereinrichtung erzeugten elektromagnetischen Feldes ist es ferner möglich, beispielsweise nur Ionen bestimmter Masse oder Ladung zu fokussieren bzw. derart abzulenken, dass diese zur Analyseeinrichtung gelangen. Es ist somit durch Einstellen des elektromagnetischen Feldes möglich, eine Art Vorsortierung der Ionen zu erzielen.The ion focusing device is preferably designed such that it tapers in the direction of the analysis device. The diameter or cross section of the circular electromagnetic field thus decreases from the ion delivery device in the direction of the analysis device. This results in an increasing focus or channeling of the analyte ions. The direction and size of the electromagnetic field generated with the aid of the ion focusing device also make it possible, for example, to focus or deflect only ions of a certain mass or charge in such a way that they reach the analysis device. It is thus possible to achieve a sort of pre-sorting of the ions by adjusting the electromagnetic field.
Bei einer besonders bevorzugten Ausführungsform weist die Ionenfokussiereinrichtung mehrere Ablenkelemente auf. An die Ablenkelemente kann unterschiedliche Spannung angelegt werden. Hierdurch ist ein Vorbestimmen bzw. Beeinflussen der Flugbahn der einzelnen Ionen möglich, so dass die Vorsortierung verbessert werden kann. Die Ablenkelemente sind vorzugsweise in Bewegungsrichtung der Ionen im Wesentlichen hintereinander angeordnet. Die Ablenkelemente sind somit, ausgehend von der Ionenabgabeeinrichtung, in Richtung der Analyseeinrichtung hintereinander angeordnet. Besonders bevorzugt ist es hierbei, in sich geschlossene Ablenkelemente vorzusehen, deren Querschnitt sich vorzugsweise in Richtung der Analyseeinrichtung verringert. Dies bedeutet bei ringförmigen Ablenkelementen, die besonders bevorzugt sind, dass sich der Durchmesser hintereinander angeordneter bzw. in Bewegungsrichtung der Ionen aufeinanderfolgender Ablenkelemente verringert.In a particularly preferred embodiment, the ion focusing device has a plurality of deflection elements. Different voltages can be applied to the deflection elements. This makes it possible to predetermine or influence the trajectory of the individual ions, so that the pre-sorting can be improved. The deflection elements are preferably arranged essentially one behind the other in the direction of movement of the ions. The deflection elements are thus arranged one behind the other in the direction of the analysis device, starting from the ion delivery device. It is particularly preferred here to provide self-contained deflection elements, the cross-section of which preferably decreases in the direction of the analysis device. In the case of annular deflection elements, which are particularly preferred, this means that the diameter of deflection elements arranged one behind the other or successive in the direction of movement of the ions is reduced.
Vorzugsweise sind die Ablenkelemente mit einer Steuereinrichtung verbunden, durch die die an den einzelnen Ablenkelementen anliegende Spannung einzeln oder gruppenweise gesteuert werden kann. Hierdurch kann insbesondere die Stärke und Richtung des erzeugten elektromagnetischen Feldes bzw. der erzeugten elektromagnetischen Felder variiert werden.The deflection elements are preferably connected to a control device by means of which the voltage applied to the individual deflection elements can be controlled individually or in groups. As a result, the strength and direction of the generated electromagnetic field or the generated electromagnetic fields can be varied in particular.
Mit der erfindungsgemäßen Vorrichtung ist somit eine quantitative und hochwertige Analyse von Analytionen, wie organischen Verbindungen, Proteinen und Peptiden aus Körperflüssigkeiten, Gewebeextrakten etc., möglich. Insbesondere ist es mit der erfindungsgemäßen Vorrichtung möglich, den Zustand von Körper- oder Organfunktionen, den Entwicklungszustand und/oder den Zustand von humanen, Tier- oder Pflanzenkrankheiten oder die Funktion von Organismen differentiell und/oder global zu bewerten (Proteomik und Peptidomik). Durch den Einsatz der erfindungsgemäßen Vorrichtung kann eine besonders zuverlässige Analyse erfolgen, um beispielsweise den Zustand der Körperfunktionen von Personen, zu analysieren, um den differentiellen Zustand der normalen Entwicklung zu bewerten und/oder um krankheitsspezifische Marker zu analysieren, um eine zuverlässige Diagnose im Verlauf von Krankheiten oder im Rahmen einer integrierten Gesundheitsfürsorge (ICH integrated health care) zur Optimierung therapeutischer Eingriffe in der Medizin zu erhalten.A quantitative and high-quality analysis of analyte ions, such as organic compounds, proteins and peptides from body fluids, tissue extracts etc., is thus possible with the device according to the invention. In particular, it is possible with the device according to the invention, the To evaluate the state of body or organ functions, the state of development and / or the state of human, animal or plant diseases or the function of organisms differentially and / or globally (proteomics and peptidomics). By using the device according to the invention, a particularly reliable analysis can be carried out, for example, to analyze the state of the bodily functions of persons, to evaluate the differential state of normal development and / or to analyze disease-specific markers in order to make a reliable diagnosis in the course of To receive diseases or as part of an integrated health care (ICH integrated health care) to optimize therapeutic interventions in medicine.
Überraschender Weise verbessert die Verwendung der erfindungsgemäßen Vorrichtung auch die Durchführung neuer Bindungsassays für spezielle Proteine, Peptide oder andere organische Substanzen, die in definierten Analytkonzentrationen auf MALDI-Targets und/oder in für die ESI-MS zu verwendenden Lösungen vorhanden sind. Die Bindung von kovalent targetgebundenen Abfangmolekülen auf Chips, wie spezifischen Antikörpern, bei MALDI ist quantitativ definiert, wie die Konzentration von Analyten in injizierbaren Lösungen bei der ESI. Die Analytkonzentration kann in definierten standardisierten Verdünnungsreihen bewertet werden. Bindungsfähige Substanzen sind vorzugsweise Proteine, die kovalent an das Target gebunden sind, insbesondere monoklonale Antikörper, die spezifisch mit dem Analyten wechselwirken.Surprisingly, the use of the device according to the invention also improves the implementation of new binding assays for special proteins, peptides or other organic substances which are present in defined analyte concentrations on MALDI targets and / or in solutions to be used for the ESI-MS. The binding of covalently target-bound capture molecules on chips, such as specific antibodies, is quantitatively defined at MALDI, like the concentration of analytes in injectable solutions at ESI. The analyte concentration can be evaluated in defined standardized dilution series. Binding substances are preferably proteins which are covalently bound to the target, in particular monoclonal antibodies, which interact specifically with the analyte.
Nachfolgend wird die Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert. Es zeigen:The invention is explained in more detail below on the basis of preferred embodiments with reference to the accompanying drawings. Show it:
Fig. 1 eine schematische Seitenansicht der erfindungsgemäßen Vorrichtung unter Verwendung einer ESI-Einrichtung, deren Sprührichtung in Richtung der Analyseeinrichtung weist, Fig. 2 eine schematische Seitenansicht der erfindungsgemäßen Vorrichtung unter Verwendung einer ESI-Einrichtung, deren Sprührichtung senkrecht zur Analyseeinrichtung ausgerichtet ist, und1 is a schematic side view of the device according to the invention using an ESI device, the spray direction of which points in the direction of the analysis device, 2 shows a schematic side view of the device according to the invention using an ESI device, the spray direction of which is oriented perpendicular to the analysis device, and
Fig. 3 eine schematische Seitenansicht der erfindungsgemäßen Vorrichtung unter Verwendung einer MALDI-Einrichtung.Fig. 3 is a schematic side view of the device according to the invention using a MALDI device.
Zur Erzeugung eines Sprühnebels 10 wird ein Analyt 12 aus einer Kapillare 14 herausgedrückt. Bei höheren Flußraten kann die Erzeugung des Sprühnebels durch einen Gasstrom (Inertgas, z.B. N2) unterstützt werden. Hierbei entsteht beim Herausdrücken des Analyts 12 zunächst ein sogenannter Taylor-Konus 16, der sich sodann in den Sprühnebel 10 aufweitet. Die Kapillare 14 dient im dargestellten Ausführungsbeispiel (Fig. 1) ggf. in Verbindung mit einer Fördereinrichtung, wie einer Pumpe, zum Fördern des Analyten 12 als Ionenabgabeeinrichtung, wobei das Analyt durch eine Auslassöffnung 18 abgegeben wird. Die in der Lösung vorliegenden Analytionen verteilen sich im Sprühnebel und sind im dargestellten Ausführungsbeispiel positiv geladen.To generate a spray 10, an analyte 12 is pressed out of a capillary 14. At higher flow rates, the generation of the spray can be supported by a gas stream (inert gas, for example N 2 ). Here, when the analyte 12 is pushed out, a so-called Taylor cone 16 is initially formed, which then widens into the spray 10. In the exemplary embodiment shown (FIG. 1), the capillary 14 is used, if appropriate in conjunction with a delivery device, such as a pump, to deliver the analyte 12 as an ion delivery device, the analyte being delivered through an outlet opening 18. The analyte ions present in the solution are distributed in the spray and are positively charged in the exemplary embodiment shown.
Die Ionen werden in einer Beschleunigungseinrichtung 20 in Richtung einer sich an die Beschleunigungseinrichtung 20 anschließenden Ionenfokussiereinrichtung 22 sowie eine sich hieran anschließende Analyseeinrichtung beschleunigt, wobei von der Analyseeinrichtung nur eine Blendenöffnung 24 dargestellt ist, an die sich sodann die Analyseeinrichtung, beispielsweise in Form eines Flugrohres oder eines oder mehrerer Quadrupole, anschließt. Die Beschleunigung der Ionen erfolgt in der Beschleunigungseinrichtung 20 durch Erzeugen eines elektrischen Feldes. Hierzu wird die Kapillare 14 mit dem Pluspol einer Stromquelle 26 verbunden und dient somit als Anode. Ein im dargestellten Ausführungsbeispiel ringförmig ausgebildetes Element, das elektrisch leitend ist, wird ebenfalls mit der Stromquelle verbunden und dient als Kathode. Bei der herkömmlichen Massenspektrometrie-Vorrichtung wird das die Blendenöffnung 24 bildende Element als Kathode geschaltet. Durch die zwischen Anode und Kathode bestehende Potentialdifferenz wird eine Beschleunigung der Ionen in Fig. 1 von links nach rechts bewirkt.The ions are accelerated in an accelerating device 20 in the direction of an ion focusing device 22 adjoining the accelerating device 20 and an adjoining analysis device, only one aperture 24 being shown by the analysis device, to which the analysis device is then attached, for example in the form of a flight tube or one or more quadrupoles. The ions are accelerated in the acceleration device 20 by generating an electric field. For this purpose, the capillary 14 is connected to the positive pole of a current source 26 and thus serves as an anode. A ring-shaped element in the illustrated embodiment, which is electrically conductive, is also connected to the power source and serves as a cathode. In the conventional mass spectrometry device, the element forming the aperture 24 is switched as a cathode. By between the anode and cathode existing potential difference causes an acceleration of the ions in Fig. 1 from left to right.
Die zwischen der Beschleunigungseinrichtung 20 und der Analyseeinrichtung vorgesehene Ionenfokussiereinrichtung weist im dargestelltenThe ion focusing device provided between the acceleration device 20 and the analysis device points in the illustrated
Ausführungsbeispiel mehrere ringförmige Ablenkelemente 28 auf. Die ringförmigen Ablenkelemente 28 sind jeweils über eine Steuereinrichtung mit einer Stromquelle verbunden. An den einzelnen Ablenkelementen 28 liegt somit jeweils ein Potential an. Im dargestellten Ausführungsbeispiel ist dieses positiv, so dass die innerhalb der Ionenfokussiereinrichtung befindlichen Ionen abgestoßen werden. Hierdurch erfolgt ein Zentrieren bzw. Kanalisieren der Ionen im Sprühnebel 10 auf die Blendenöffnung 24. Zwischen den einzelnen Ablenkelementen 28 sind Isolatoren 30 vorgesehen.Embodiment several annular deflection elements 28. The ring-shaped deflection elements 28 are each connected to a power source via a control device. A potential is therefore present at the individual deflection elements 28. In the exemplary embodiment shown, this is positive, so that the ions located within the ion focusing device are repelled. This causes the ions in the spray 10 to be centered or channeled onto the aperture 24. Insulators 30 are provided between the individual deflection elements 28.
Die Ionenfokussiereinrichtung 22 ist auf Grund der vorgesehenen mehreren Ablenkelemente 28, die bei einer ringförmigen Ausgestaltung unterschiedlichen Durchmesser aufweisen, im Wesentlichen trichterförmig ausgebildet. Hierbei kann es sich um einen durch die einzelnen Ablenkelemente 28 stufenförmig ausgebildeten Trichter handeln.The ion focusing device 22 is essentially funnel-shaped due to the plurality of deflection elements 28 provided, which have a different diameter in an annular configuration. This can be a funnel designed in a stepped manner through the individual deflection elements 28.
Die einzelnen Ablenkelemente 28 können unterschiedlich gesteuert werden, so dass eine gezielte Beschleunigung und Ablenkung von Ionen, beispielsweise in Abhängigkeit ihrer Masse oder ihrer Ladung, erfolgen kann. Durch eine entsprechende Schaltung der einzelnen Ablenkelemente ist eine zunehmende Beschleunigung und Fokussierung sowie Kanalisierung bestimmter vorausgewählter Ionen möglich. Hierzu können elektromagnetische Felder angelegt werden, die sich in Hochfrequenz- und/oder spannungsadaptierter Modulation ändern. Hierdurch sind genau vorhersagbare Ausschlusskriterien möglich, so dass im Wesentlichen nur bestimmte ausgewählte Ionen in die Analyseeinrichtung gelangen. Von diesen ausgewählten Ionen gelangt erfindungsgemaß eine große Anzahl in die Analyseeinrichtung, so dass zusätzlich zu einer qualitativen eine quantitative Bestimmung mit nahezu vollständiger Ionenausbeute möglich ist. Von der Anlage der elektromagnetischen Felder zu gering oder zu stark abgelenkte Teilchen treffen außerhalb der Blendenöffnung 24 auf die Ablenkelemente 28 bzw. Isolatoren 30.The individual deflection elements 28 can be controlled differently so that ions can be accelerated and deflected in a targeted manner, for example depending on their mass or their charge. Appropriate switching of the individual deflection elements enables increasing acceleration and focusing as well as channeling of certain preselected ions. For this purpose, electromagnetic fields can be created that change in high-frequency and / or voltage-adapted modulation. Precisely predictable exclusion criteria are hereby possible, so that essentially only certain selected ions get into the analysis device. According to the invention, a large number of these selected ions reach the analysis device, so that in addition to a qualitative one, a quantitative determination with an almost complete one Ion yield is possible. Particles deflected too little or too strongly by the application of the electromagnetic fields hit the deflection elements 28 or insulators 30 outside the aperture 24.
Die Kathode 31 der Beschleunigungseinrichtung 20 ist im dargestellten Ausführungsbeispiel ebenfalls ringförmig entsprechend den Ablenkelementen 28 ausgebildet. Die Kathode 31 ist durch einen Isolator 30 vom dem ersten Ablenkelement 28 getrennt und liegt unmittelbar an der Ionenfokussiereinrichtung 22 an.In the exemplary embodiment shown, the cathode 31 of the acceleration device 20 is likewise designed in a ring shape corresponding to the deflection elements 28. The cathode 31 is separated from the first deflection element 28 by an insulator 30 and is in direct contact with the ion focusing device 22.
Da die Ionenausbeute mit Hilfe der erfindungsgemäßen Vorrichtung äußerst hoch ist, je nach Anwendung über 80 %, insbesondere über 90 % liegen kann, ist es mit der erfindungsgemäßen Vorrichtung möglich, eine quantitative, hochempfindliche und hochselektive Analyse durchzuführen, die sich insbesondere auf die Proteomik und Peptodomik mit ESI- oder MALDI-Technik anwenden lässt, aber auch in allen anderen dem Fachmann bekannten Massenspektrometrietechniken zur Anwendung gelangen kann. Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung besteht darin, dass die Konzentrationsnachweisgrenze gegenüber bekannten Vorrichtungen erheblich verbessert ist.Since the ion yield with the aid of the device according to the invention is extremely high, depending on the application it can be over 80%, in particular over 90%, it is possible with the device according to the invention to carry out a quantitative, highly sensitive and highly selective analysis which relates in particular to proteomics and Peptodomics with ESI or MALDI technology can be used, but can also be used in all other mass spectrometry techniques known to the person skilled in the art. Another advantage of the device according to the invention is that the concentration detection limit is considerably improved compared to known devices.
Bei der in Fig. 2 dargestellten Ausführungsform ist ebenfalls eine ESI-Einrichtung vorgesehen, die jedoch gegenüber der in Fig. 1 dargestellten Ausführungsform um 90° gedreht ist, so dass die Sprührichtung der ESI-Einrichtung um 90° zur Bewegungsrichtung der zu selektierenden Ionen, d.h. der im dargestellten Ausführungsbeispiel positiv geladenen Teilchen, gedreht ist. Bei der in Fig. 2 dargestellten Ausführungsform weisen dieselben oder ähnliche Bestandteile dieselben Bezugszeichen wie bei der in Fig. 1 dargestellten Ausführungsform auf.In the embodiment shown in FIG. 2, an ESI device is also provided, but is rotated through 90 ° compared to the embodiment shown in FIG. 1, so that the spray direction of the ESI device is 90 ° to the direction of movement of the ions to be selected, ie of the positively charged particles in the illustrated embodiment is rotated. In the embodiment shown in FIG. 2, the same or similar components have the same reference numerals as in the embodiment shown in FIG. 1.
Die in Fig. 2 dargestellte Ausführungsform hat zusätzlich den Vorteil, dass neutrale Substanzen, wie z.B. Solvensmoleküle oder negativ geladene Ionen 32 nicht in die Ionenfokussiereinrichtung 22 bzw. die Analyseeinrichtung gelangen können. Hierdurch sind durch derartige Ionen oder neutrale Substanzen hervorgerufene störende Einflüsse vermieden.The embodiment shown in FIG. 2 has the additional advantage that neutral substances, such as, for example, solvent molecules or negatively charged ions 32 cannot get into the ion focusing device 22 or the analysis device. This avoids disruptive influences caused by such ions or neutral substances.
Bei dem in Fig. 3 dargestellten Ausführungsbeispiel erfolgt die Bereitstellung der Ionen mit Hilfe des MALDI-Verfahrens. Die Ionenfokussiereinrichtung 22 sowie die Art der Beschleunigungseinrichtung 25 entsprechen prinzipiell der anhand von Fign. 1 und 2 beschriebenen Einrichtungen. Diese sind daher mit denselben Bezugszeichen gekennzeichnet.In the exemplary embodiment shown in FIG. 3, the ions are provided with the aid of the MALDI method. The ion focusing device 22 and the type of acceleration device 25 correspond in principle to that based on FIGS. 1 and 2 described facilities. These are therefore identified by the same reference symbols.
Bei dem MALDI-Verfahren ist auf einer Metallplatte 34 eine beispielsweise auskristallisierte Probe mit Matrix 36 immobilisiert. Durch einen in Fig. 3 durch den Pfeil 38 dargestellten Laser werden Partikel aus der Probe 36 herausgelöst und die Matrixmoleküle ionisiert. Die durch Ladungstransfer von Matrixionen zu Analytmolekülen erzeugten Analytionen werden in derIn the MALDI method, a sample that has crystallized out, for example, with matrix 36 is immobilized on a metal plate 34. Using a laser shown in FIG. 3 by arrow 38, particles are detached from sample 36 and the matrix molecules are ionized. The analyte ions generated by charge transfer from matrix ions to analyte molecules are in the
Beschleunigungseinrichtung 20 beschleunigt und anschließend in der Ionenfokussiereinrichtung auf die Blendenöffnung 24 fokussiert bzw. kanalisiert.Accelerating device 20 accelerates and then focused or channeled onto the aperture 24 in the ion focusing device.
Die erfindungsgemäße Vorrichtung ist insbesondere zur Analyse von Markern, zur Analyse von Peptidomen, zur spezifischen Analyse von Proteomen, zur Analyse von krankheitsspezifischen Markern, zur DPD-Bewertung (differential peptide display), zur Entdeckung neuer Substanzen, die insbesondere als Wirkstofftargets relevant sind, zur Identifizierung von Markern, insbesondere bei der IHC (integrated health care), zur Identifizierung neuer Substanzen und Markern aus tierischen und pflanzlichen Organismen, geeignet. Die erfindungsgemäße Vorrichtung kann prinzipiell auch in jedes andere, dem Fachmann bekannte massenspektrometrische Konzept integriert werden. The device according to the invention is in particular for the analysis of markers, for the analysis of peptidomes, for the specific analysis of proteomes, for the analysis of disease-specific markers, for DPD evaluation (differential peptide display), for the discovery of new substances which are particularly relevant as drug targets Identification of markers, particularly at IHC (integrated health care), is suitable for identifying new substances and markers from animal and plant organisms. In principle, the device according to the invention can also be integrated into any other mass spectrometric concept known to the person skilled in the art.
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2002321234A AU2002321234A1 (en) | 2001-07-20 | 2002-07-18 | Mass spectrometry device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10134652.2 | 2001-07-20 | ||
| DE10134652 | 2001-07-20 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2003010794A2 true WO2003010794A2 (en) | 2003-02-06 |
| WO2003010794A3 WO2003010794A3 (en) | 2003-09-18 |
Family
ID=7692030
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2002/007993 WO2003010794A2 (en) | 2001-07-20 | 2002-07-18 | Mass spectrometry device |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2002321234A1 (en) |
| WO (1) | WO2003010794A2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6818889B1 (en) | 2002-06-01 | 2004-11-16 | Edward W. Sheehan | Laminated lens for focusing ions from atmospheric pressure |
| WO2004110583A2 (en) | 2003-06-07 | 2004-12-23 | Sheehan Edward W | Ion enrichment aperture arrays |
| US6943347B1 (en) | 2002-10-18 | 2005-09-13 | Ross Clark Willoughby | Laminated tube for the transport of charged particles contained in a gaseous medium |
| US6949740B1 (en) | 2002-09-13 | 2005-09-27 | Edward William Sheehan | Laminated lens for introducing gas-phase ions into the vacuum systems of mass spectrometers |
| US7081621B1 (en) | 2004-11-15 | 2006-07-25 | Ross Clark Willoughby | Laminated lens for focusing ions from atmospheric pressure |
| GB2457708A (en) * | 2008-02-22 | 2009-08-26 | Microsaic Systems Ltd | Ion source interface for a mass spectrometer |
| US7816646B1 (en) | 2003-06-07 | 2010-10-19 | Chem-Space Associates, Inc. | Laser desorption ion source |
| US7960711B1 (en) | 2007-01-22 | 2011-06-14 | Chem-Space Associates, Inc. | Field-free electrospray nebulizer |
| US8178833B2 (en) | 2007-06-02 | 2012-05-15 | Chem-Space Associates, Inc | High-flow tube for sampling ions from an atmospheric pressure ion source |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7095019B1 (en) | 2003-05-30 | 2006-08-22 | Chem-Space Associates, Inc. | Remote reagent chemical ionization source |
| US7138626B1 (en) | 2005-05-05 | 2006-11-21 | Eai Corporation | Method and device for non-contact sampling and detection |
| US7568401B1 (en) | 2005-06-20 | 2009-08-04 | Science Applications International Corporation | Sample tube holder |
| US7576322B2 (en) | 2005-11-08 | 2009-08-18 | Science Applications International Corporation | Non-contact detector system with plasma ion source |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8404683D0 (en) * | 1984-02-22 | 1984-03-28 | Vg Instr Group | Mass spectrometers |
| GB9110960D0 (en) * | 1991-05-21 | 1991-07-10 | Logicflit Limited | Mass spectrometer |
| US5663560A (en) * | 1993-09-20 | 1997-09-02 | Hitachi, Ltd. | Method and apparatus for mass analysis of solution sample |
| DE19635645C2 (en) * | 1996-09-03 | 2000-12-28 | Bruker Daltonik Gmbh | Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer |
-
2002
- 2002-07-18 AU AU2002321234A patent/AU2002321234A1/en not_active Abandoned
- 2002-07-18 WO PCT/EP2002/007993 patent/WO2003010794A2/en not_active Application Discontinuation
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6818889B1 (en) | 2002-06-01 | 2004-11-16 | Edward W. Sheehan | Laminated lens for focusing ions from atmospheric pressure |
| US6949740B1 (en) | 2002-09-13 | 2005-09-27 | Edward William Sheehan | Laminated lens for introducing gas-phase ions into the vacuum systems of mass spectrometers |
| US6943347B1 (en) | 2002-10-18 | 2005-09-13 | Ross Clark Willoughby | Laminated tube for the transport of charged particles contained in a gaseous medium |
| WO2004110583A2 (en) | 2003-06-07 | 2004-12-23 | Sheehan Edward W | Ion enrichment aperture arrays |
| US7816646B1 (en) | 2003-06-07 | 2010-10-19 | Chem-Space Associates, Inc. | Laser desorption ion source |
| US7081621B1 (en) | 2004-11-15 | 2006-07-25 | Ross Clark Willoughby | Laminated lens for focusing ions from atmospheric pressure |
| US7960711B1 (en) | 2007-01-22 | 2011-06-14 | Chem-Space Associates, Inc. | Field-free electrospray nebulizer |
| US8178833B2 (en) | 2007-06-02 | 2012-05-15 | Chem-Space Associates, Inc | High-flow tube for sampling ions from an atmospheric pressure ion source |
| GB2457708A (en) * | 2008-02-22 | 2009-08-26 | Microsaic Systems Ltd | Ion source interface for a mass spectrometer |
| GB2457708B (en) * | 2008-02-22 | 2010-04-14 | Microsaic Systems Ltd | Mass spectrometer system |
| US8269164B2 (en) | 2008-02-22 | 2012-09-18 | Microsaic Systems Plc | Mass spectrometer system |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2002321234A1 (en) | 2003-02-17 |
| WO2003010794A3 (en) | 2003-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE102004053064B4 (en) | Ionization by droplet impact | |
| DE69520331T2 (en) | Mass spectrometry of solutions and device therefor | |
| DE69936168T2 (en) | Mehrfachprobeninlassmassenspektrometer | |
| EP1481416B1 (en) | Mass spectrometry method for analysing mixtures of substances | |
| DE60210056T2 (en) | Mass spectrometric method with electron capture by ions and mass spectrometer for performing the method | |
| DE102004028419B4 (en) | Mass spectrometer and reaction cell for ion-ion reactions | |
| DE10236344B4 (en) | Ionize to atmospheric pressure for mass spectrometric analysis | |
| WO2003010794A2 (en) | Mass spectrometry device | |
| DE3913965A1 (en) | DIRECTLY IMAGING SECOND EDITION MASS SPECTROMETER WITH RUNTIME MASS SPECTROMETRIC MODE | |
| DE102006049638A1 (en) | Method and system for determining and quantifying specific trace elements in samples of complex matter | |
| AT502207B1 (en) | METHOD FOR CLASSIFYING AND DISCONNECTING PARTICLES AND DEVICE FOR CARRYING OUT THIS METHOD | |
| CH615532A5 (en) | ||
| DE19652021A1 (en) | Electrospray and ambient pressure chemical ionization mass spectrometer and ion source | |
| DE1798021B2 (en) | DEVICE FOR CONFIRMING A PRIMARY ION BEAM FROM A MICROANALYZER | |
| DE2837715A1 (en) | METHOD FOR ANALYZING ORGANIC SUBSTANCES | |
| DE102010052134A1 (en) | Method for chemical analysis and apparatus for chemical analysis | |
| WO2005029532A2 (en) | Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type | |
| DE60133548T2 (en) | A NORMAL PRESSURE LENS GENERATING A LARGER AND STABILIZED ION FLOW | |
| WO2008025174A2 (en) | Mass spectrometer | |
| DE69629536T2 (en) | Method and device for mass analysis of a dissolved sample | |
| DE69922235T2 (en) | MEHRFACHFLÜSSIGELEKTROSPRÜHSCHNITTSTELLE | |
| DE3887922T2 (en) | Discharge ionization source for analyzing the atmosphere. | |
| DE102004033993B4 (en) | Ion source for a mass spectrometer | |
| DE112014007155T5 (en) | mass spectrometry device | |
| DE19628093B4 (en) | Method and device for detecting sample molecules |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |