[go: up one dir, main page]

WO2003033960A1 - Reflector without ventilation apertures, method for the production thereof and use of the same - Google Patents

Reflector without ventilation apertures, method for the production thereof and use of the same Download PDF

Info

Publication number
WO2003033960A1
WO2003033960A1 PCT/EP2002/010111 EP0210111W WO03033960A1 WO 2003033960 A1 WO2003033960 A1 WO 2003033960A1 EP 0210111 W EP0210111 W EP 0210111W WO 03033960 A1 WO03033960 A1 WO 03033960A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
coated
polymer
transparent layer
layer
Prior art date
Application number
PCT/EP2002/010111
Other languages
German (de)
French (fr)
Inventor
Thomas Küpper
Rolf Meyer
Original Assignee
Schott Glas
Carl-Zeiss-Stiftung Trading As Schott Glas
Carl-Zeiss-Stiftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glas, Carl-Zeiss-Stiftung Trading As Schott Glas, Carl-Zeiss-Stiftung filed Critical Schott Glas
Priority to AU2002339547A priority Critical patent/AU2002339547A1/en
Publication of WO2003033960A1 publication Critical patent/WO2003033960A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V25/00Safety devices structurally associated with lighting devices
    • F21V25/02Safety devices structurally associated with lighting devices coming into action when lighting device is disturbed, dismounted, or broken
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V25/00Safety devices structurally associated with lighting devices
    • F21V25/12Flameproof or explosion-proof arrangements

Definitions

  • the invention relates to a reflector in which no light emerges from ventilation slots and in which the noise is greatly reduced, further to a method for its production and its use.
  • the reflectors generally have an elliptical, parabolic or conic-like basic contour. They can contain glass or glass-ceramic as a substrate. Gas discharge lamps are used as lamps; these are under a high internal pressure of up to 2 * 10 5 hPa. Although they have numerous technological advantages, their service life is limited by thermochemical influences. In general, the lifespan is on the order of 2000 hours. A serious disadvantage of such luminous bodies is that they are destroyed by an explosion at the end of their service life. The reflector is so badly damaged by the explosion of the filament that glass fragments fly around and cause considerable danger. The explosion can damage valuable optical components. To avoid splintering, reflectors with a large wall thickness have been manufactured. The wall thickness is more than 4 mm.
  • a reflector which has a sandwich structure as a mirror support.
  • the core consists of a flexible lightweight body on which plastic plates are attached to the front and back to create a dimensionally stable structure.
  • a hard and smooth substrate for example made of glass or metal, can also be attached to the inside as a flat base for a reflective film or film.
  • Such a mirror support is relatively complex and expensive to manufacture and its shape is rather unstable.
  • An outer coating to avoid splintering in the event of an explosion of the luminous element or an outer coating to avoid light transmission through the mirror carrier is not necessary here.
  • the object of the invention is to provide a reflector made of glass or glass ceramic, in which no light emerges from ventilation slots and no cooling by fans is required, furthermore the reflector remains stable in the event of an explosive destruction of the luminous element, furthermore a method for its production and indicate its use.
  • the object of the invention is achieved by a reflector according to claim 1, a method for producing the reflector is given by claim 8 and its use by claim 11.
  • a reflector of the type mentioned at the outset is provided with a coating.
  • the coating consists of a polymer that is resistant to high temperatures and that forms a coherent layer over the circumference of the reflector.
  • the entire outer surface of the reflector need not necessarily be covered by the polymer layer. It may also be sufficient to place a polymer layer ring around the reflector, which — viewed in the axial direction of the reflector — extends over the necessary part of the reflector surface.
  • the non-transparent layer prevents light from escaping through ventilation slots. Fewer or smaller fans are also required, which reduces noise.
  • the polymer layer contains in particular a fluoropolymer.
  • Fluoropolymers have proven to be particularly temperature-resistant. In the event of an explosion, the fluoropolymer prevents splinters from flying around. The fluoropolymer layer withstands the strongest explosion pressure.
  • the non-transparent layer contains at least one of the following components, such as lacquer, primer or polymer.
  • a non-transparent layer of approximately 5 ⁇ m to 30 ⁇ m is applied by spraying or dipping.
  • the layer has a density that prevents the light from escaping.
  • the fluoropolymer layer in no way affects the original function of the reflector, namely to guide the infrared rays out to the side.
  • the so-called because of this function Cold light reflector can be used as intended.
  • the externally coated cold light reflector is therefore of great economic importance.
  • the polymer layer thickness is from 5 ⁇ m to 200 ⁇ m, preferably from 50 ⁇ m to 180 ⁇ m and particularly preferably from 80 ⁇ m to 170 ⁇ m. In the non-hazardous areas, a layer thickness of preferably 35 ⁇ m to 50 ⁇ m is sufficient. In areas that are at risk of explosion, the layer thickness is preferably from 120 ⁇ m to 170 ⁇ m.
  • the neck of the reflector is preferably not coated.
  • a method for producing a coated reflector is provided, the reflector being coated with at least one non-transparent layer and then being powder-coated in layers and thermally aftertreated.
  • a method for producing a coated reflector is alternatively provided, the reflector being coated with at least one non-transparent layer and then being coated by dipping or spraying and thermally aftertreated.
  • a non-transparent layer is applied to the outer surface, which contains at least one of the following components, such as paint, primer or polymer. These components can be processed economically and in an environmentally friendly manner and lead to very good results in terms of non-transparency.
  • FIG. 1 shows a coated reflector (1).
  • Figure 2 shows a section parallel to the axis AA through the reflector (1).
  • the reflector (1) has glass or glass ceramic as the substrate (2).
  • the substrate (2) is coated with a non-transparent primer (3).
  • the primer (3) has the task of forming a non-transparent layer and acting as an adhesion promoter between the substrate (2) and the polymer (4).
  • the polymer (4) is applied to the primer (3).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a reflector for a lamp comprising a high pressure discharge luminous element, the outer surface of said reflector being coated with at least one polymer. Said coating contains at least one fluoropolymer. The thickness of the layer of the polymer is between 5 νm and 200 νm. The invention also relates to a method for producing a coated reflector, said reflector being coated with layers of powder or according to a dipping method or a spraying method, and then thermally aftertreated. Furthermore, the invention relates to the use of a reflector in projection appliances and in valuable optical devices, for data projection as a projector and for other illumination purposes.

Description

Reflektor ohne Belüftungsöffnungen, Verfahren zur Herstellung desselben und Verwendung des Reflektors Reflector without ventilation openings, method of manufacturing the same and use of the reflector
Beschreibungdescription
Die Erfindung betrifft einen Reflektor, bei dem kein Licht aus Belüftungsschlitzen austritt und bei dem die Geräuschentwicklung stark verringert wird, ferner ein Verfahren zu seiner Herstellung und seiner Verwendung.The invention relates to a reflector in which no light emerges from ventilation slots and in which the noise is greatly reduced, further to a method for its production and its use.
Die Reflektoren besitzen im Allgemeinen eine elliptische, parabolische oder kegelschnittähnliche Grundkontur. Sie können Glas oder Glas- Keramik als Substrat enthalten. Als Lampen werden Gasentladungsleuchtkörper verwendet; diese stehen unter einem hohen Innendruck von bis zu 2*105 hPa. Sie haben zwar zahlreiche technologische Vorteile, jedoch ist ihre Lebensdauer durch thermochemische Einflüsse begrenzt. Im allgemeinen liegt die Lebensdauer in der Größenordnung von 2000 Stunden. Ein gravierender Nachteil solcher Leuchtkörper besteht darin, dass am Ende ihrer Lebensdauer ihre Zerstörung durch eine Explosion eintritt. Durch die Explosion des Leuchtkörpers wird der Reflektor so stark beschädigt, dass Glassplitter umherfliegen und eine erhebliche Gefahr verursachen. Durch die Explosion können wertvolle optische Komponenten und Bauteile beschädigt werden. Zur Vermeidung der Splitterbildung sind Reflektoren mit großer Wandstärke hergestellt worden. Die Wandstärke beträgt mehr als 4 mm. Durch die hohen thermischen Belastungen treten bei diesen Reflektoren Wärmespannungen auf, die wiederum zu Bruch führen. Die Erhöhung der Wandstärke bringt keine befriedigende Lösung. Bei herkömmlichen Reflektoren tritt Licht aus Belüftungsschlitzen, was sich störend auswirkt. Um die Belüftungsschlitze klein zu halten, müssen Ventilatoren bereitgestellt werden. Das Betreiben der Ventilatoren ist mit Geräuschbelästigung verbunden.The reflectors generally have an elliptical, parabolic or conic-like basic contour. They can contain glass or glass-ceramic as a substrate. Gas discharge lamps are used as lamps; these are under a high internal pressure of up to 2 * 10 5 hPa. Although they have numerous technological advantages, their service life is limited by thermochemical influences. In general, the lifespan is on the order of 2000 hours. A serious disadvantage of such luminous bodies is that they are destroyed by an explosion at the end of their service life. The reflector is so badly damaged by the explosion of the filament that glass fragments fly around and cause considerable danger. The explosion can damage valuable optical components. To avoid splintering, reflectors with a large wall thickness have been manufactured. The wall thickness is more than 4 mm. Due to the high thermal loads, thermal stresses occur in these reflectors, which in turn lead to breakage. Increasing the wall thickness does not bring a satisfactory solution. With conventional reflectors, light emerges from ventilation slots, which has a disruptive effect. To keep the ventilation slots small, fans must be provided. The operation of the fans is associated with noise pollution.
Aus der DE 37 23 245 C2 ist ein Reflektor bekannt, welcher als Spiegelträger einen Sandwichaufbau aufweist. Der Kern besteht aus einem flexiblen Leichtbaukörper auf welchen, um eine formstabile Struktur zu schaffen, auf der Vorder- und Rückseite Kunststoffplatten befestigt sind. Auf der Innenseite kann weiterhin als ebene Unterlage für einen reflektierenden Film oder eine reflektierende Folie ein hartes und glattes Substrat beispielsweise aus Glas oder Metall angebracht werden. Ein solcher Spiegelträger ist in seiner Herstellung relativ aufwendig und kostenintensiv und von der Form her eher instabil. Eine Außenbe- schichtung zur Vermeidung der Splitterbildung bei einer Explosion des Leuchtkörpers oder auch einer Außenbeschichtung zur Vermeidung von Lichttransmission durch den Spiegelträger ist hier nicht erforderlich.From DE 37 23 245 C2 a reflector is known which has a sandwich structure as a mirror support. The core consists of a flexible lightweight body on which plastic plates are attached to the front and back to create a dimensionally stable structure. A hard and smooth substrate, for example made of glass or metal, can also be attached to the inside as a flat base for a reflective film or film. Such a mirror support is relatively complex and expensive to manufacture and its shape is rather unstable. An outer coating to avoid splintering in the event of an explosion of the luminous element or an outer coating to avoid light transmission through the mirror carrier is not necessary here.
Aus der DE 44 26 843 A1 ist die Verwendung von Fluorpolymer als Werkstoff bekannt. Aufgabe ist hier die Bereitstellung eines elektrischen Substratmaterials mit hoher Dieelektrizitätskonstante und niedrigem Wärmekoeffizient der Elektrizitätskonstante als Träger von Mikrowellenschaltungen. Hierzu wird das Fluorpolymer als Matrix neben verschiedenen möglichen Keramikpulvern auch mit Hartglaspulver zu einem Fluorpolymer-Keramikverbundwerkstoff vermischt.DE 44 26 843 A1 discloses the use of fluoropolymer as a material. The task here is to provide an electrical substrate material with a high dielectric constant and a low heat coefficient of the electricity constant as a carrier for microwave circuits. For this purpose, the fluoropolymer is mixed as a matrix in addition to various possible ceramic powders and also with hard glass powder to form a fluoropolymer-ceramic composite material.
Die Aufgabe der Erfindung besteht darin, einen Reflektor aus Glas oder Glaskeramik bereitzustellen, bei dem kein Licht aus Belüftungsschlitzen austritt und keine Kühlung durch Ventilatoren erforderlich ist, femer der Reflektor stabil bleibt bei einer explosiven Zerstörung des Leuchtkörpers, ferner ein Verfahren zu seiner Herstellung und zu seiner Verwendung anzugeben. Die Aufgabe der Erfindung wird durch einen Reflektor gemäß Anspruch 1 gelöst, ein Verfahren zur Herstellung des Reflektor ist durch Anspruch 8 gegeben und seine Verwendung durch den Anspruch 11.The object of the invention is to provide a reflector made of glass or glass ceramic, in which no light emerges from ventilation slots and no cooling by fans is required, furthermore the reflector remains stable in the event of an explosive destruction of the luminous element, furthermore a method for its production and indicate its use. The object of the invention is achieved by a reflector according to claim 1, a method for producing the reflector is given by claim 8 and its use by claim 11.
Gemäß der Erfindung wird ein Reflektor der eingangs genannten Art mit einer Beschichtung versehen. Die Beschichtung besteht aus einem Polymer, das hochtemperaturbeständig ist und das eine über den Reflektorumfang zusammenhängende Schicht bildet. Dabei braucht nicht unbedingt die gesamte Reflektoraußenfläche von der Polymerschicht bedeckt zu sein. Es kann auch genügen, einen Polymerschichtring um den Reflektor zu legen, der sich - in axialer Richtung des Reflektors gesehen - über den notwendigen Teil der Reflektorfläche hinweg erstreckt. Durch die nichttransparente Schicht wird verhindert, daß Licht durch Belüftungsschlitze austritt. Es werden auch weniger oder kleine Ventilatoren benötigt, wodurch die Geräuschentwicklung verringert wird.According to the invention, a reflector of the type mentioned at the outset is provided with a coating. The coating consists of a polymer that is resistant to high temperatures and that forms a coherent layer over the circumference of the reflector. The entire outer surface of the reflector need not necessarily be covered by the polymer layer. It may also be sufficient to place a polymer layer ring around the reflector, which — viewed in the axial direction of the reflector — extends over the necessary part of the reflector surface. The non-transparent layer prevents light from escaping through ventilation slots. Fewer or smaller fans are also required, which reduces noise.
Die Polymerschicht enthält insbesondere ein Fluorpolymer. Fluorpolymere haben sich als besonders temperaturbeständig erwiesen. Bei einer Explosion wird durch das Fluorpolymer das Herumfliegen von Splitter vermieden. Die Fluorpolymerschicht hält dem stärksten Explosionsdruck stand.The polymer layer contains in particular a fluoropolymer. Fluoropolymers have proven to be particularly temperature-resistant. In the event of an explosion, the fluoropolymer prevents splinters from flying around. The fluoropolymer layer withstands the strongest explosion pressure.
Die nichttransparente Schicht enthält mindestens einen der nachfolgenden Bestandteile, wie Lack, Primer oder Polymer. Durch Spritzen oder Tauchen wird eine nichttransparente Schicht von etwa 5 μm bis 30 μm aufgebracht. Die Schicht hat eine Dichte, die Austreten des Lichtes verhindert.The non-transparent layer contains at least one of the following components, such as lacquer, primer or polymer. A non-transparent layer of approximately 5 μm to 30 μm is applied by spraying or dipping. The layer has a density that prevents the light from escaping.
Die ursprüngliche Funktion des Reflektors, nämlich die Infraroten Strahlen seitlich herauszuführen, wird durch die Fluorpolymerschicht in keiner Weise beeinträchtigt. Der aufgrund dieser Funktion so genannte Kaltlichtreflektor kann wie vorgesehen verwendet werden. Der außenbeschichtete Kaltlichtreflektor hat somit eine große wirtschaftliche Bedeutung.The fluoropolymer layer in no way affects the original function of the reflector, namely to guide the infrared rays out to the side. The so-called because of this function Cold light reflector can be used as intended. The externally coated cold light reflector is therefore of great economic importance.
Die Polymerschichtdicke beträgt von 5 μm bis 200 μm, bevorzugt von 50 μm bis 180 μm und besonders bevorzugt von 80 μm bis 170 μm. Bei den nicht explosionsgefährdeten Bereichen genügt eine Schichtdicke bevorzugt von 35 μm bis 50 μm. In Bereichen, die explosionsgefährdet sind, beträgt die Schichtdicke bevorzugt von 120 μm bis 170 μm. Der Hals des Reflektors ist vorzugsweise nicht beschichtet.The polymer layer thickness is from 5 μm to 200 μm, preferably from 50 μm to 180 μm and particularly preferably from 80 μm to 170 μm. In the non-hazardous areas, a layer thickness of preferably 35 μm to 50 μm is sufficient. In areas that are at risk of explosion, the layer thickness is preferably from 120 μm to 170 μm. The neck of the reflector is preferably not coated.
Erfindungsgemäß ist ein Verfahren zur Herstellung eines beschichteten Reflektors vorgesehen, wobei der Reflektor mit mindestens einer nichttransparenten Schicht beschichtet und anschließend schichtweise pulverbeschichtet und thermisch nachbehandelt wird.According to the invention, a method for producing a coated reflector is provided, the reflector being coated with at least one non-transparent layer and then being powder-coated in layers and thermally aftertreated.
Erfindungsgemäß ist alternativ ein Verfahren zur Herstellung eines beschichteten Reflektors vorgesehen, wobei der Reflektor mit mindestens einer nichttransparenten Schicht beschichtet und anschließend im Tauch- oder Spritzverfahren beschichtet und thermisch nachbehandelt wird.According to the invention, a method for producing a coated reflector is alternatively provided, the reflector being coated with at least one non-transparent layer and then being coated by dipping or spraying and thermally aftertreated.
Bei dem Verfahren nach Anspruch 10 wird eine nichttransparente Schicht auf die Außenfläche aufgetragen.die mindestens einen der folgenden Bestandteile enthält.wie Lack, Primer oder Polymer.Diese Bestandteile lassen sich wirtschaftlich und umweltschonend verarbeiten und führen im Hinblick auf die Nichttransparenz zu sehr guten Ergebnissen.In the method according to claim 10, a non-transparent layer is applied to the outer surface, which contains at least one of the following components, such as paint, primer or polymer. These components can be processed economically and in an environmentally friendly manner and lead to very good results in terms of non-transparency.
Erfindungsgemäß ist die Verwendung eines Reflektors zum Einsatz in Projektionsgeräten und in wertvollen optischen Einrichtungen zur Datenprojektion als Scheinwerfer und anderen Beleuchtungszwecken vorgesehen. Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Die Zeichnung besteht aus Figur 1 und Figur 2. Figur 1 zeigt einen beschichteten Reflektor (1). Figur 2 zeigt einen Schnitt parallel zur Achse A-A durch den Reflektor (1). Der Reflektor (1) weist als Substrat (2) Glas oder Glaskeramik auf. Das Substrat (2) ist mit einem nichttransparenten Primer (3) beschichtet. Der Primer (3) hat die Aufgabe eine nichttransparente Schicht zu bilden und als Haftvermittler zwischen dem Substrat (2) und dem Polymer (4) zu wirken. Das Polymer (4) wird auf den Primer (3) aufgebracht. According to the invention, the use of a reflector is provided for use in projection devices and in valuable optical devices for data projection as headlights and other lighting purposes. An embodiment of the invention is explained in more detail with reference to a drawing. The drawing consists of Figure 1 and Figure 2. Figure 1 shows a coated reflector (1). Figure 2 shows a section parallel to the axis AA through the reflector (1). The reflector (1) has glass or glass ceramic as the substrate (2). The substrate (2) is coated with a non-transparent primer (3). The primer (3) has the task of forming a non-transparent layer and acting as an adhesion promoter between the substrate (2) and the polymer (4). The polymer (4) is applied to the primer (3).

Claims

Patentansprüche claims
1. Reflektor aus Glas (2) oder Glaskeramik für eine Lampe, wobei die Außenfläche des Reflektors (1 ) mit mindestens einer nichttransparenten Schicht (3) und mindestens einem Polymer (4) beschichtet ist.1. reflector made of glass (2) or glass ceramic for a lamp, the outer surface of the reflector (1) being coated with at least one non-transparent layer (3) and at least one polymer (4).
2. Reflektor nach Anspruch 1 , wobei das Polymer (4) ein Fluorpolymer enthält.2. The reflector of claim 1, wherein the polymer (4) contains a fluoropolymer.
3. Reflektor nach Anspruch 1 oder 2, wobei die nichttransparente Schicht (3), ein oder mehrere der nachfolgenden Bestandteile aufweist, wie Lack, Primer oder Polymer enthält.3. A reflector according to claim 1 or 2, wherein the non-transparent layer (3) has one or more of the following components, such as lacquer, primer or polymer.
4. Reflektor nach einem der Ansprüche 1 bis 3, wobei die Schichtdicke des Polymers (4) 5 μm bis 200 μm beträgt.4. Reflector according to one of claims 1 to 3, wherein the layer thickness of the polymer (4) is 5 microns to 200 microns.
5. Reflektor nach Anspruch 4, wobei die Schichtdicke des Polymers (4) 50 μm bis 180 μm beträgt.5. The reflector according to claim 4, wherein the layer thickness of the polymer (4) is 50 μm to 180 μm.
6. Reflektor nach Anspruch 4 oder 5, wobei die Schichtdicke des Polymers (4) 80 μm bis 170 μm beträgt.6. The reflector according to claim 4 or 5, wherein the layer thickness of the polymer (4) is 80 μm to 170 μm.
7. Reflektor nach einem der Ansprüche 1 bis 6, wobei der Hals des Reflektors (1 ) nicht beschichtet ist.7. Reflector according to one of claims 1 to 6, wherein the neck of the reflector (1) is not coated.
8. Verfahren zur Herstellung eines beschichteten Reflektors nach einem der Ansprüche 1 bis 7, wobei der Reflektor (1 ) mit mindestens einer nichttransparenten Schicht (3) beschichtet und anschließend schichtweise pulverbeschichtet und thermisch nachbehandelt wird. 8. A method for producing a coated reflector according to one of claims 1 to 7, wherein the reflector (1) is coated with at least one non-transparent layer (3) and then powder-coated in layers and thermally aftertreated.
9. Verfahren zur Herstellung eines beschichteten Reflektors nach einem der Ansprüche 1 bis 7, wobei der Reflektor (1) mit mindestens einer nichttransparenten Schicht (3) beschichtet und anschließend im Tauch- oder Spritzverfahren beschichtet und thermisch nachbehandelt wird.9. A method for producing a coated reflector according to any one of claims 1 to 7, wherein the reflector (1) is coated with at least one non-transparent layer (3) and then coated by dipping or spraying and thermally treated.
10. Verfahren nach Anspruch 8 oder 9, wobei die nichttransparente Schicht (3), einen oder mehrere der nachfolgenden Bestandteile enthält, wie Lack, Primer oder Polymer.10. The method according to claim 8 or 9, wherein the non-transparent layer (3) contains one or more of the following components, such as lacquer, primer or polymer.
11. Verwendung eines Reflektors nach einem der Ansprüche 1 bis 7 zum Einsatz in Projektionsgeräten und in optischen Einrichtungen zur Datenprojektion als Scheinwerfer und anderen Beleuchtungszwecken. 11. Use of a reflector according to one of claims 1 to 7 for use in projection devices and in optical devices for data projection as headlights and other lighting purposes.
PCT/EP2002/010111 2001-10-13 2002-09-10 Reflector without ventilation apertures, method for the production thereof and use of the same WO2003033960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002339547A AU2002339547A1 (en) 2001-10-13 2002-09-10 Reflector without ventilation apertures, method for the production thereof and use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10150755.0 2001-10-13
DE10150755A DE10150755C1 (en) 2001-10-13 2001-10-13 Lamp reflector, used in projector or other illumination equipment, consists of glass or vitreous ceramic (partly) coated on the outside with opaque layer and polymer

Publications (1)

Publication Number Publication Date
WO2003033960A1 true WO2003033960A1 (en) 2003-04-24

Family

ID=7702514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010111 WO2003033960A1 (en) 2001-10-13 2002-09-10 Reflector without ventilation apertures, method for the production thereof and use of the same

Country Status (3)

Country Link
AU (1) AU2002339547A1 (en)
DE (1) DE10150755C1 (en)
WO (1) WO2003033960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091141B2 (en) 2003-04-01 2006-08-15 Corning Incorporated Lamp reflector substrate, glass, glass-ceramic materials and process for making the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1348606A (en) * 1962-11-30 1964-01-10 Holophane Glass reflector with safety coating
US4837668A (en) * 1988-01-28 1989-06-06 Koehler Joseph P Reflector for dental or medical light
DE3723245C2 (en) 1986-07-18 1995-01-19 Mitsubishi Electric Corp reflector
DE4426843A1 (en) 1993-07-29 1995-02-02 Rogers Corp Electrical fluoropolymer substrate material with low thermal coefficient of dielectric constant
JP2000047327A (en) * 1998-07-31 2000-02-18 Iwasaki Electric Co Ltd Light source for projector
JP2001005099A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Light source device and projector using the same
JP2001176302A (en) * 1999-12-16 2001-06-29 Ushio Inc Optical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1348606A (en) * 1962-11-30 1964-01-10 Holophane Glass reflector with safety coating
DE3723245C2 (en) 1986-07-18 1995-01-19 Mitsubishi Electric Corp reflector
US4837668A (en) * 1988-01-28 1989-06-06 Koehler Joseph P Reflector for dental or medical light
DE4426843A1 (en) 1993-07-29 1995-02-02 Rogers Corp Electrical fluoropolymer substrate material with low thermal coefficient of dielectric constant
JP2000047327A (en) * 1998-07-31 2000-02-18 Iwasaki Electric Co Ltd Light source for projector
JP2001005099A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Light source device and projector using the same
JP2001176302A (en) * 1999-12-16 2001-06-29 Ushio Inc Optical device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 05 14 September 2000 (2000-09-14) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 23 10 February 2001 (2001-02-10) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091141B2 (en) 2003-04-01 2006-08-15 Corning Incorporated Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
US7199066B2 (en) 2003-04-01 2007-04-03 Corning Incorporated Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
US7285506B2 (en) 2003-04-01 2007-10-23 Corning Incorporated Lamp reflector substrate, glass, glass-ceramic materials and process for making the same

Also Published As

Publication number Publication date
DE10150755C1 (en) 2003-02-27
AU2002339547A1 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
DE10150656C2 (en) Reflector for a high pressure gas discharge lamp
DE102004051846A1 (en) Component with a reflector layer and method for its production
WO1999026088A1 (en) Composite material, especially for reflectors
DE10150755C1 (en) Lamp reflector, used in projector or other illumination equipment, consists of glass or vitreous ceramic (partly) coated on the outside with opaque layer and polymer
WO2001023915A1 (en) Process for production of a dielectric multi-layered reflecting coating
DE10245622A1 (en) Reflector for a high powered lamp comprises a base member made of glass or a glass ceramic, a lamp holder, a mirrored inner surface and an outer surface with a mat type sleeve
DE69621978T2 (en) Cold cathode lamp suitable for motor vehicles
DE3300449A1 (en) METHOD FOR PRODUCING AN ELECTRODE FOR A HIGH PRESSURE GAS DISCHARGE LAMP
DE102015208569A1 (en) Lamp with LEDs
EP2191494B1 (en) High-pressure discharge lamp with partial coating and vehicle headlight comprising said lamp
DE10024469C2 (en) Reflector for a high pressure gas discharge lamp
DE19540414C1 (en) Economical, lightweight, heat-resistant cold light reflector that does not break easily
EP1307688B1 (en) Lamp
DE102014222501A1 (en) Process for producing a halogen lamp and halogen lamp
EP0930459B1 (en) Reflector for a light source, in particular for space illumination
EP0287706B1 (en) Hydrogen discharge lamp and method of manufacturing it
DE602005003931T2 (en) HIGH PRESSURE DISCHARGE LAMP
EP1051720B1 (en) Electrical lamp for a headlight of a vehicle
EP1158566A1 (en) Luminous body for a lamp, in particular a discharge lamp
EP2481079B1 (en) Lamp
DE102010017710A1 (en) Carrier element for LED module
EP1859473B1 (en) Lamp with screening device
EP1755144A2 (en) Compact reflector lamp and manufacturing method thereof
DE3921726A1 (en) ELECTRIC BULB
EP1817616A1 (en) Incandescent lamp with an absorption and interference filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP