[go: up one dir, main page]

WO2003036190A1 - Refrigerateur a tube pulse comportant une gaine d'isolation - Google Patents

Refrigerateur a tube pulse comportant une gaine d'isolation Download PDF

Info

Publication number
WO2003036190A1
WO2003036190A1 PCT/EP2002/011882 EP0211882W WO03036190A1 WO 2003036190 A1 WO2003036190 A1 WO 2003036190A1 EP 0211882 W EP0211882 W EP 0211882W WO 03036190 A1 WO03036190 A1 WO 03036190A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
ptr
sleeve
pulse
sock
Prior art date
Application number
PCT/EP2002/011882
Other languages
English (en)
Inventor
Peter Derek Daniels
Francis John Davies
Wolfgang Ernst Stautner
Florian Steinmeyer
Original Assignee
Oxford Magnet Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxford Magnet Technology Ltd. filed Critical Oxford Magnet Technology Ltd.
Publication of WO2003036190A1 publication Critical patent/WO2003036190A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1414Pulse-tube cycles characterised by pulse tube details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1415Pulse-tube cycles characterised by regenerator details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • the present invention relates to pulse tube refrigerators for recondensing cryogenic liquids.
  • the present invention relates to the same for magnetic resonance imaging systems.
  • components e.g. superconducting coils for magnetic resonance imaging (MRI), superconducting transformers, generators, electronics
  • MRI magnetic resonance imaging
  • a volume of liquefied gases e.g. Helium, Neon, Nitrogen, Argon, Methane.
  • Any dissipation in the components or heat getting into the system causes the volume to part boil off.
  • replenishment is required. This service operation is considered to be problematic by many users and great efforts have been made over the years to introduce refrigerators that recondense any lost liquid right back into the bath.
  • FIG. 1 An embodiment of a two stage Gifford McMahon (GM) coldhead recondenser of an MRI magnet is shown in Figure 1.
  • GM coldhead indicated generally by 10
  • a sock which connects the outside face of a vacuum vessel 16 (at room temperature) to a helium bath 18 at 4K.
  • MRI magnets are indicated at 20.
  • the sock is made of thin walled stainless steel tubes forming a first stage sleeve 12, and a second stage sleeve 14 in order to minimise heat conduction from room temperature to the cold end of the sock operating at cryogenic temperatures.
  • the sock is filled with helium gas 30, which is at about 4.2K at the cold end and at room temperature at the warm end.
  • the first stage sleeve 12 of the coldhead is connected to an intermediate heat station of the sock 22, in order to extract heat at an intermediate temperature, e.g. 40K-80K, and to which sleeve 14 is also connected.
  • the second stage of the coldhead 24 is connected to a helium gas recondenser 26.
  • a radiation shield 42 is placed intermediate the helium bath and the wall of the outer vacuum vessel.
  • the second stage of the coldhead is acting as a reconde ⁇ sor at about 4.2K.
  • gas is condensed on the surface (which can be equipped with fins to increase surface area) and is dripped back into the liquid reservoir. Condensation locally reduces pressure, which pulls more gas towards the second stage. It has been calculated that there are hardly any losses due to natural convection of Helium, which has been verified experimentally provided that the coldhead and the sock are vertically oriented (defined as the warm end pointing upwards). Any small differences in the temperature profiles of the Gifford McMahon cooler and the walls would set up gravity assisted gas convection, as the density change of gas with temperature is great (e.g. at 4.2.
  • FIG. 1A shows a corresponding view without coldhead 32, 34 in place.
  • the intermediate section 22 shows a passage 38 to enable helium gas to flow from the volume encircled by sleeve 14.
  • the latter volume is also in fluid connection with the main bath 36 in which the magnet 20 is placed.
  • a flange 40 associated with sleeve 12 to assist in attaching the sock to the vacuum vessel 16.
  • Pulse Tube Refrigerators can achieve useful cooling at temperatures of 4.2K (the boiling point of liquid helium at normal pressure) and below (C. Wang and P.E. Gifford, Advances in Cryogenic Engineering, 45, Edited by Shu et a., Kluwer Academic/Plenum Publishers,2000, pp.1-7). Pulse tube refrigerators are attractive, because they avoid any moving parts in the cold part of the refrigerator, thus reducing vibrations and wear of the refrigerator.
  • a PTR 50 comprising an arrangement of separate tubes, which are joined together at heat stations.
  • regenerator tube 52, 54 per stage, which is filled with solid materials in different forms (e.g.
  • the PTR Physical Retention Tube
  • the second stage pulse tube 56 usually links the second stage 60 with the warm end 62 at room temperature, the first stage pulse tube 58 linking the first stage 64 with the warm end.
  • FIG. 4 Another prior art pulse tube refrigerator arrangement is shown in Figure 4 wherein a pulse tube is inserted into a sock, and is exposed to a helium atmosphere wherein gravity induced convection currents 70, 72 are set up in the first and second stages.
  • the PTR unit 50 is provided with a cold stages 31, 33 which are set in a recess in an outer vacuum container 16.
  • a radiation shield 42 is provided which is in thermal contact with first sleeve end 22.
  • a recondenser 26 is shown on the end wall of second stage 33. If at a given height the temperatures of the different components are not equal, the warmer components will heat the surrounding helium, giving it buoyancy to rise, while at the colder components the gas is cooled and drops down.
  • the resulting thermal losses are huge, as the density difference of helium gas at 1 bar changes by a factor of about 100 between 4.2 K and 300 K.
  • the net cooling power of a PTR might be e.g. 40 W at 50 K, and 0.5W to 1 W at 4.2K.
  • the losses have been calculated to be of the order of 5-20W.
  • the internal working process of a pulse tube will, in general, be affected although this is not encountered in GM refrigerators.
  • the optimum temperature profile in the tubes which is a basis for optimum performance, arises through a delicate process balancing the influences of many parameters, e.g. geometries of all tubes, flow resistivities, velocities, heat transfer coefficients, valve settings etc. (A description can be found in Ray Radebaugh, proceedings of the 6 International Cryogenic Engineering Conference, Kitakkyushu, Japan, 20-24 May, 1996, ⁇ 22-44).
  • a thermal contact resistance of 0.5 K/W can be achieved at 4 K (see e.g. US-A -5,918,470 to GE.). If a cryocooler can absorb 1W at 4.2K (e.g. the model RDK 408 by Sumitomo Heavy Industries) then the temperature of the recondensor would rise to 4.7K, which would reduce the current carrying capability of the superconducting wire drastically. Alternatively, a stronger cryocooler would be required to produce 1 W at 3.7 K initially to make the cooling power available on the far side of the joint.
  • FIG. 5 shows an example of such a PTR arrangement 76.
  • the component features are substantially the same as shown in Figure 4.
  • Thermal washer 78 is provided between the second stage of the PTR coldhead and a finned heat sink 80.
  • a helium-tight wall is provided between the thermal washer and the heat sink.
  • the present invention seeks to provide an improved pulse tube refrigerator.
  • a PTR in a sock which connects room temperature to a cryogenic reservoir; . characterised in that each of one or more pulse tubes and regenerator tubes of the PTR is covered with an insulating sleeve, whereby to reduce heat transfer between the tubes and between the tubes and the surrounding sock.
  • the sleeve may completely cover the pulse tubes and regenerator tubes or just in part.
  • the PTR can be helium filled.
  • Figure 1 shows a two stage Gifford McMahon coldhead recondenser in a MRI magnet
  • Figure 1A shows the coldhead of Figure 1 without the recondenser tubes
  • Figure 2 shows a PTR consisting of an arrangement of separate tubes, which are joined together at the heat stations;
  • Figure 3 shows a temperature profile in a sock;
  • Figure 4 shows a pulse tube is inserted into a sock;
  • Figure 5 shows a prior art example of a pulse tube with a removable thermal contact;
  • Figure 6 shows a first embodiment of the invention
  • Figure 6A shows a cross-section of the first embodiment
  • Figure 7 shows an open path of the vacuum space of the tubes
  • Figure 8 details wall tube sleeving
  • Figure 9A-F show different mechanical forms of the vacuum sleeve
  • Figures 10A - D show further embodiments of the invention
  • Figure 11 shows an arrangement with only pulse tubes insulated
  • Figure 12 shows only the second stage tubes (pulse tube and regenerator ) with insulation
  • Figure 13 shows an example where only the second stage pulse tube is insulated.
  • FIG. 6 there is shown a first embodiment of the invention, wherein a 2-stage PTR arrangement 90 is shown.
  • An outer sleeve (not shown) is provided over the whole arrangement of tubes.
  • Regenerator tubes 92, 94 and pulse tubes 96, 98 are provided with insulating sleeves identified 102, 104 and 106, 108 respectively.
  • Figure 6A shows a cross-section through the PTR arrangement.
  • An inner wall, the tube wall 96 is surrounded by a sleeve 106.
  • the tube inner wall and the sleeve are manufactured simultaneously, preferably from the same material, such as stainless steel or titanium.
  • the space inside may be evacuated or partially evacuated with getter materials inserted therein to enhance the removal of gaseous elements within the tube wall-sleeves.
  • getter materials are preferably placed at the cold end and can comprise activated charcoal, carbon paper - which can be wound around the tubes, and zeolithes, for example.
  • the insulation quality can be further enhanced by wrapping Superinsulation TM foil into a vacuum gap, if present.
  • FIG. 8 shows detailed view of an insulated tube comprising a pulse tube 96 with a sleeve 106 which are connected in a vacuum tight fashion by brazed/welded connection 100.
  • the double walled tubes can be evacuated during manufacture by joining them in a vacuum process, for example by vacuum brazing or electron beam welding. The insulating gap between the tubes need not be evacuated during manufacture and can initially have air present.
  • FIGs 9A-F different mechanical forms of the vacuum sleeve are shown.
  • the oversleeve comprises a straight tube with reference number 120 indicating the presence of 40
  • the tube wall is thick enough to withstand the surrounding helium pressure during evacuation without any buckling.
  • FIG. 10A A further variation is shown in Figure 10A, wherein, for manufacturing convenience, the sleeve and wall 122 are unitary, of a low conductivity material and there is no vacuum space.
  • the tube has an epoxy oversleeve, or an inner epoxy liner is placed inside a stainless steel tube. All usual production processes can be applied like winding layers and subsequent curing.
  • Insulating tape can be applied on the outside of the tube, e.g. foamed PTFE tape 124, or different types of insulating foams, felts, superinsulation etc can be applied to the outside of the tubes as shown in Figure 10B.
  • spheres 128, which can be internally evacuated or even covered with a reflective film, say of sputtered aluminium to reduce radiation.
  • the insulation for individual tube can differ among each other, any combination of insulation and partial insulation can be applied.
  • the first stage can be covered with a vacuum insulation, the second with free-standing foam insulation.
  • it can be sufficient to insulate just the first stage or the second stage only.
  • Figure 11 shows only the pulse tubes 101, 103 with sleeves;
  • Figure 12 shows pulse tubes 101 and regenerated tube 105 with sleeves and
  • Figure 13 shows only pulse tube 101 with a sleeve.
  • cryogenic temperatures e.g. at or around 4K for MRI apparatus operate with two stage coolers
  • the same technology can also be applied to single stage coolers or three and more stage coolers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

La présente invention concerne des réfrigérateurs à tube pulsé destinés à recondenser des liquides cryogéniques, notamment dans des systèmes d'imagerie par résonance magnétique. Dans de nombreuses applications, les composants tels que des bobines supraconductrices d'imagerie par résonance magnétique (IRM), des transformateurs supraconducteurs, des générateurs, et d'autres éléments électroniques sont refroidis par mise en contact avec un volume de gaz liquéfié (par ex. hélium, néon, azote, argon, méthane). Toute dissipation dans les composants ou de la chaleur parvenant dans le système provoque une évaporation partielle dudit gaz, nécessitant ainsi un remise à niveau de ce dernier. L'invention vise à résoudre le problème de convection survenant dans un réfrigérateur à tube pulsé. Dans un premier mode de réalisation, le réfrigérateur à tube pulsé est logé dans une douille reliée à un réservoir cryogénique, chaque tube pulsé ou tube de régénération du réfrigérateur à tube pulsé étant recouvert d'une gaine d'isolation de manière à réduire le transfert thermique entre les tubes ainsi qu'entre les tubes et la douille. Ainsi, il est possible de réduire la convection et les problèmes qui en découlent.
PCT/EP2002/011882 2001-10-19 2002-10-21 Refrigerateur a tube pulse comportant une gaine d'isolation WO2003036190A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0125189.1 2001-10-19
GB0125189A GB0125189D0 (en) 2001-10-19 2001-10-19 A pulse tube refrigerator

Publications (1)

Publication Number Publication Date
WO2003036190A1 true WO2003036190A1 (fr) 2003-05-01

Family

ID=9924206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/011882 WO2003036190A1 (fr) 2001-10-19 2002-10-21 Refrigerateur a tube pulse comportant une gaine d'isolation

Country Status (2)

Country Link
GB (2) GB0125189D0 (fr)
WO (1) WO2003036190A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037173B3 (de) * 2004-07-30 2005-12-15 Bruker Biospin Ag Vorrichtung zur kryogenverlustfreien Kühlung einer Kryostatanordnung
EP1617157A2 (fr) 2004-07-17 2006-01-18 Bruker BioSpin AG Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas
EP1628109A2 (fr) 2004-07-30 2006-02-22 Bruker BioSpin AG Dispositif de cryostat
DE102005002011B3 (de) * 2005-01-15 2006-04-20 Bruker Biospin Ag Quenchverschluß
JP2006189245A (ja) * 2005-01-04 2006-07-20 Sumitomo Heavy Ind Ltd ヘリウム再凝縮用の同軸多段パルス管
JP2007024490A (ja) * 2005-06-23 2007-02-01 Bruker Biospin Ag 低温冷凍機を備えたクライオスタット構造
US7568351B2 (en) 2005-02-04 2009-08-04 Shi-Apd Cryogenics, Inc. Multi-stage pulse tube with matched temperature profiles
WO2012127255A2 (fr) 2011-03-22 2012-09-27 Institut Za Fiziku Cryostat à refroidissement ptr et thermalisation en deux étages du porte-échantillon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395252B (en) * 2002-11-07 2005-12-14 Oxford Magnet Tech A pulse tube refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412952A (en) * 1992-05-25 1995-05-09 Kabushiki Kaisha Toshiba Pulse tube refrigerator
US5583472A (en) * 1992-07-30 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet
EP0781956A2 (fr) * 1995-12-29 1997-07-02 General Electric Company Refroidissement par convection des convolutions d'un soufflet en utilisant un tube de pénétration avec manchion
FR2743871A1 (fr) * 1996-01-24 1997-07-25 Hughes Aircraft Co Detendeur pour refroidisseur concentrique a tube a pulsion, ce refroidisseur et systeme de refroidissement l'utilisant
EP0905524A1 (fr) * 1997-09-30 1999-03-31 Oxford Magnet Technology Limited Agencement d'aimants pour la RMN avec un col logeant un cryogénérateurr du type à tube pulsé
JP2000018744A (ja) * 1998-06-23 2000-01-18 Kanazawa Institute Of Technology パルス管式冷凍器および磁気遮蔽型冷凍システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704485C2 (de) * 1997-02-07 1998-11-19 Siemens Ag Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
GB2329701B (en) * 1997-09-30 2001-09-19 Oxford Magnet Tech Load bearing means in nmr cryostat systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412952A (en) * 1992-05-25 1995-05-09 Kabushiki Kaisha Toshiba Pulse tube refrigerator
US5583472A (en) * 1992-07-30 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet
EP0781956A2 (fr) * 1995-12-29 1997-07-02 General Electric Company Refroidissement par convection des convolutions d'un soufflet en utilisant un tube de pénétration avec manchion
FR2743871A1 (fr) * 1996-01-24 1997-07-25 Hughes Aircraft Co Detendeur pour refroidisseur concentrique a tube a pulsion, ce refroidisseur et systeme de refroidissement l'utilisant
EP0905524A1 (fr) * 1997-09-30 1999-03-31 Oxford Magnet Technology Limited Agencement d'aimants pour la RMN avec un col logeant un cryogénérateurr du type à tube pulsé
JP2000018744A (ja) * 1998-06-23 2000-01-18 Kanazawa Institute Of Technology パルス管式冷凍器および磁気遮蔽型冷凍システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 04 31 August 2000 (2000-08-31) *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1617157A2 (fr) 2004-07-17 2006-01-18 Bruker BioSpin AG Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas
DE102004034729A1 (de) * 2004-07-17 2006-02-16 Bruker Biospin Ag Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager
DE102004034729B4 (de) * 2004-07-17 2006-12-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager
DE102004037173B3 (de) * 2004-07-30 2005-12-15 Bruker Biospin Ag Vorrichtung zur kryogenverlustfreien Kühlung einer Kryostatanordnung
EP1628089A2 (fr) 2004-07-30 2006-02-22 Bruker BioSpin AG Dispositif pour le réfrigération d'un dispositif cryostat
EP1628109A2 (fr) 2004-07-30 2006-02-22 Bruker BioSpin AG Dispositif de cryostat
DE102004037172A1 (de) * 2004-07-30 2006-03-23 Bruker Biospin Ag Kryostatanordnung
DE102004037172B4 (de) * 2004-07-30 2006-08-24 Bruker Biospin Ag Kryostatanordnung
JP2006189245A (ja) * 2005-01-04 2006-07-20 Sumitomo Heavy Ind Ltd ヘリウム再凝縮用の同軸多段パルス管
US7497084B2 (en) 2005-01-04 2009-03-03 Sumitomo Heavy Industries, Ltd. Co-axial multi-stage pulse tube for helium recondensation
US8418479B2 (en) 2005-01-04 2013-04-16 Sumitomo Heavy Industries, Ltd. Co-axial multi-stage pulse tube for helium recondensation
EP1681576A2 (fr) 2005-01-15 2006-07-19 Bruker BioSpin AG Fermeture de transition supraconductrice
DE102005002011B3 (de) * 2005-01-15 2006-04-20 Bruker Biospin Ag Quenchverschluß
US7503181B2 (en) 2005-01-15 2009-03-17 Bruker Biospin Ag Quench seal
US7568351B2 (en) 2005-02-04 2009-08-04 Shi-Apd Cryogenics, Inc. Multi-stage pulse tube with matched temperature profiles
JP2007024490A (ja) * 2005-06-23 2007-02-01 Bruker Biospin Ag 低温冷凍機を備えたクライオスタット構造
DE102005029151B4 (de) * 2005-06-23 2008-08-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler
WO2012127255A2 (fr) 2011-03-22 2012-09-27 Institut Za Fiziku Cryostat à refroidissement ptr et thermalisation en deux étages du porte-échantillon
US9458969B2 (en) 2011-03-22 2016-10-04 Institut Za Fiziku Cryostat with PTR cooling and two stage sample holder thermalization

Also Published As

Publication number Publication date
GB0224419D0 (en) 2002-11-27
GB0125189D0 (en) 2001-12-12
GB2382127A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
EP1436555B1 (fr) Gaine pour refrigerateur a tube pulse
CN100580824C (zh) 磁共振组件和超导磁体系统
CN101853731B (zh) 用于冷却超导磁体组装件的设备和方法
US4796433A (en) Remote recondenser with intermediate temperature heat sink
JP4031121B2 (ja) クライオスタット装置
US10731914B2 (en) Cryocooler and magnetic shield structure of cryocooler
US7131276B2 (en) Pulse tube refrigerator
JP4892328B2 (ja) 磁気シールド付き冷凍機
JPH11243007A (ja) 磁気共鳴イメージング用超電導磁石
GB2367354A (en) Cryostats
US11573279B2 (en) Displacer in magnetic resonance imaging system
WO2003036190A1 (fr) Refrigerateur a tube pulse comportant une gaine d'isolation
JP2001510551A (ja) 冷却電気装置用の電流供給装置
JP6164409B2 (ja) Nmrシステム
JP2004235653A (ja) 超電導マグネット
JP2004233047A (ja) 超電導マグネット
JP2004140411A (ja) 超電導マグネット
WO2022153713A1 (fr) Congélateur à tube à impulsions et appareil à aimant supraconducteur
JP2014020767A (ja) 冷凍機用ポット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP