[go: up one dir, main page]

WO2003036677A1 - Electron microscope having x-ray spectrometer - Google Patents

Electron microscope having x-ray spectrometer Download PDF

Info

Publication number
WO2003036677A1
WO2003036677A1 PCT/JP2002/001899 JP0201899W WO03036677A1 WO 2003036677 A1 WO2003036677 A1 WO 2003036677A1 JP 0201899 W JP0201899 W JP 0201899W WO 03036677 A1 WO03036677 A1 WO 03036677A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
diffraction grating
electron microscope
microscope according
sample
Prior art date
Application number
PCT/JP2002/001899
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Terauchi
Original Assignee
Jeol Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001326066A external-priority patent/JP2002329473A/en
Application filed by Jeol Ltd. filed Critical Jeol Ltd.
Publication of WO2003036677A1 publication Critical patent/WO2003036677A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2445Photon detectors for X-rays, light, e.g. photomultipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors

Definitions

  • the present invention relates to an electron microscope equipped with an X-ray spectroscope. Background art
  • a wavelength-dispersive spectrometer is attached to a scanning electron microscope (SEM), and the characteristic X-rays generated when the sample is irradiated with an electron beam in the electron microscope are detected by the WDS.
  • An electron probe microanalyzer (EPMA) for performing line analysis (elemental analysis) is known.
  • This WDS requires a mechanism that aligns the three points of the X-ray generation point (sample), the center point of the spectral crystal, and the center point of the slit of the detector with predetermined positions on the Rowland circle. Because it is several meters long, it becomes a large-scale optical system.
  • an energy dispersive spectrometer (EDS) is combined with a transmission electron microscope (T EM) or SEM to detect characteristic X-rays from a sample by EDS.
  • EDS energy dispersive spectrometer
  • T EM transmission electron microscope
  • SEM SEM
  • the present inventor has been developing an electron microscope capable of performing high-resolution energy analysis by combining an energy filter with a transmission electron microscope (TEM). Using this device, it is possible to know the dielectric function and the conduction band density distribution in the 30 nm ⁇ region of the sample. For detailed electronic state studies It is necessary to know not only the conduction band but also the valence band state density. As described above, in a transmission electron microscope (TEM) equipped with an EDS, elemental analysis can be performed using characteristic X-rays generated from a region irradiated with an electron beam. If Torr can be measured with an energy resolution of less than leV, the valence band density of states distribution can be obtained.
  • TEM transmission electron microscope
  • the energy resolution of current EDS using semiconductor detectors is about 100-200 eV, which is not enough for studying electronic states.
  • WDS has a higher resolution (about 10 eV) than EDS, but does not have sufficient energy resolution to obtain the valence band state density. Disclosure of the invention
  • An object of the present invention is to provide an electron microscope having an X-ray spectrometer having a compact optical system and capable of obtaining high energy resolution.
  • An electron microscope equipped with the X-ray spectrometer of the present invention is an X-ray spectrometer which is evacuated by a vacuum pump, has a non-equidistant diffraction grating, and has a spectroscopic chamber having an X-ray detector attached to an end. Electron microscope attached to the side wall of an electron microscope via a gate valve. The characteristic X-ray emitted from the sample irradiated with the electron beam is oblique at a large angle with respect to the normal to the irregularly spaced diffraction grating surface. The X-ray detector detects the diffracted X-rays with an X-ray detector.
  • the X-ray detector a back-illuminated CCD detector can be used. It is preferable that the emission angle of the X-ray diffracted by the unequally spaced diffraction grating is 75 to 87 degrees with respect to the normal to the diffraction grating surface.
  • the characteristic X-rays emitted from the sample are focused toward the irregularly spaced diffraction grating.
  • An X-ray focusing mirror can be provided.
  • the CCD detector is connected to the spectroscopic chamber via a bellows so as to be movable with respect to the diffraction grating.
  • the bellows has a structure in which a plurality of bellows with different expansion and contraction directions are connected in cascade, and the CCD detector can be moved two-dimensionally with respect to the diffraction grating by combining expansion and contraction of multiple bellows. It is preferably provided in BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing an example of a transmission electron microscope equipped with an X-ray spectrometer.
  • FIG. 3 is a conceptual diagram illustrating another example of the transmission electron microscope of the present invention.
  • FIG. 4 is a diagram showing an X-ray focusing mirror.
  • FIG. 5 is a diagram showing a grating exchange mechanism.
  • FIG. 6 is a diagram showing a grating tilt adjusting mechanism.
  • FIG. 7 is a diagram showing another example of the X-ray focusing mirror. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an example of a transmission electron microscope equipped with an X-ray spectrometer according to the present invention.
  • FIG. 1 the inside of the lens barrel 2 of the TEM 1 is maintained at a vacuum.
  • the sample 3 placed in the lens barrel 2 is irradiated with an electron beam from above through an electron lens, and is projected on a fluorescent screen through an electron beam lens transmitted through the sample.
  • a transmitted electron image is formed on the phosphor screen.
  • a hole for taking out characteristic X-rays generated from the sample to the outside of the lens barrel 2 is formed in the side wall of the room in which the sample 3 of the lens barrel 2 is disposed, and a connection pipe having a gate valve 4 in this hole is provided.
  • X-ray spectroscope 10 is attached via 60.
  • the gate valve 4 is arranged between the spectroscope 10 and the lens barrel of the TEM 1 and can separate the vacuum of both.
  • Spectroscope (spectrometer chamber 1) 11 A diffraction grating 12 arranged in the chamber 1 and a back-illuminated CCD detector 14 attached to the end of the spectroscopic chamber via a bellows 13 14 Spectroscope 10 Is configured.
  • the diffraction grating 12 has grooves formed at irregular intervals for aberration correction. It is known that such unequally spaced diffraction gratings can realize an image plane perpendicular to the diffracted light when light is incident at a large incident angle. Therefore, in this embodiment, the characteristic X-ray emitted from the sample 3 when irradiated with the electron beam in the TEM 1 has a large incident angle ⁇ (normally parallel to the diffraction grating plane) with respect to the normal to the diffraction grating plane. ), The incident angle a to the diffraction grating is selected.
  • the focal point of the diffracted X-rays is created not on the Rowland circle but on a plane (CCD plane) almost perpendicular to the light rays. Dispersion due to this diffraction grating is smaller than that of a normal grooved diffraction grating, so that a wide energy range can be detected using a fixed CCD detector 14.
  • the spectrometer chamber 11 is provided with a turbo molecular pump (TMP) 19 and a sputter ion pump (SIP) 18 combined with a single pump 20 through valves 15, 16 and 17. It has been evacuated to a vacuum.
  • TMP turbo molecular pump
  • SIP sputter ion pump
  • the diffraction grating of the present embodiment has 1200 grooves / mm, and is arranged so that the interval gradually changes from one to the other along the traveling direction of the light beam (X-ray).
  • the diffraction grating has a concave surface with a radius of 6549 mm, a width (in the direction perpendicular to the light beam direction) of 30 mm, and a length (in the light beam direction) of 50 mm.
  • a gold layer is formed on the surface by surface treatment.
  • the incident angle ⁇ to the normal of the diffraction grating surface is 87 degrees
  • the emission angle 3 is 77 to 83 degrees
  • the length of the arm is , Are set to 237mm and 235mm respectively.
  • the back-illuminated CCD has a size of 1100X330 pixels, size 26.4mm x 7.9mm, and one pixel size of 24 ⁇ m x 24xm (resolution corresponding to an emission angle of 77 to 83 degrees).
  • the spot size of the diffracted X-ray focused on the CCD detector is the superposition of the size of the electron beam on the sample and the spread due to the aberration of the diffraction grating.
  • the size of the electron beam focused on the sample is approximately 500 ⁇ m in the experiment. It has been reported that the spot spread due to the diffraction grating aberration is 40 m at 248 eV and 20 ⁇ m at 124 eV, so the spread for Boron K emission energy of about 185 eV is almost It is estimated to be 30 / xm. Therefore, the spot size of the diffracted X-ray focused on the CCD detector is mainly determined by the aberration.
  • the energy resolution of the Boron K emission spectrum is estimated to be about 0.6 eV (0.3 eV x 2 pixels).
  • Figure 2 shows a Boron K emission spectrum of 3 pols obtained from a 600 nm diameter single crystal sample surface at a probe current of about 70 ⁇ A.
  • the detection time is about 1 hour.
  • the horizontal axis represents the number of channels of the CCD detector.
  • the stalls show one peak and two shoulders, each indicated by an arrow and a vertical line.
  • the energy of the peak is 185 eV and the width of the peak is about 10 eV when referring to the previously reported spectrum by the diffraction spectrometer.
  • FIG. 2 shows that the device of the present invention has a high energy resolution and an excellent SZN ratio.
  • FIG. 3 is a conceptual diagram illustrating another example of the transmission electron microscope of the present invention.
  • a hole is made to take out the characteristic X-rays generated from the sample to the outside of the lens barrel 2, and a metal connection pipe 6 is formed in this hole.
  • 0—1 is entered.
  • One end of the connection pipe 60-1 extends into the room toward the sample 3, and the other end is connected to the gate valve 4.
  • An X-ray spectroscope 10 is connected to the other end of the gate valve 4 via a metal connection pipe 60-2.
  • An X-ray focusing mirror 30 for collecting X-rays emitted from the sample 3 is mounted inside the distal end of the connection tube 60-1.
  • the X-ray focusing mirror 30 focuses the X-rays to increase the intensity of X-rays incident on the diffraction grating.
  • the fixed time can be shortened and the SZN ratio of the spectrum can be improved.
  • the collected X-rays are unequally spaced in the spectrometer chamber 11 through slits 31 and 32 arranged in the connecting pipes 60-1 and 60-2 before and after the gate valve 4. The light enters the diffraction grating 12.
  • Slits 33 are also arranged immediately above the incident surface of the unequally spaced diffraction grating 12 with a small distance from the incident surface (a distance that does not hinder X-ray incidence and emission).
  • the light emitted from the electron irradiation point on the sample and traveling in a direction other than the X-ray optical path from the sample to the diffraction grating reaches the CCD detector 14 by these multiple slits 31, 32, and 33. It can be prevented from being detected as a ground. This improves the S / N ratio of the spectrum.
  • the unequally spaced diffraction grating 12 is attached to a grating exchange mechanism 40 described later.
  • the grating exchange mechanism 40 holds and holds a plurality of unequally spaced diffraction gratings having different measurement energy regions.
  • One of the unequally spaced diffraction gratings is set at the X-ray incident position and diffracts X-rays.
  • the tilt of the diffraction grating set at the X-ray incident position is adjusted by the grating tilt adjusting mechanism 50.
  • a CCD detector 14 for detecting diffracted X-rays is attached to the end of the spectrometer chamber 11 via a bellows 13.
  • the spectrometer chamber 111 of the present embodiment includes two divided cylinders 111, 112 and a bellows 34 connecting the two cylinders. As shown in FIG. 3, the two cylinders 1 1—1, 1 1 and 1 2 are arranged with their center axes shifted, and the bellows 3 4 The cylinder 1 1 1 1 and 1 1-2 are connected. As a result, by combining the expansion and contraction of the two bellows 13 and 34, the CCD detector 14 can be moved up and down, left and right (two-dimensional direction), and the position can be finely adjusted.
  • the position and direction of the light receiving surface with respect to the diffracted X-rays are adjusted by moving the cylinder 1 1-2 and the CCD detector 14 using two bellows having different expansion and contraction directions. Can be.
  • the incidence of the diffracted X-rays on the CCD detector can be optimized by combining the adjustment of the grating inclination adjusting mechanism 50.
  • FIG. 4 is a diagram illustrating the X-ray focusing mirror 30.
  • the X-ray focusing mirror 30 is a pair of two mirrors facing each other, and the surface facing each mirror is flat in the direction perpendicular to the plane of the paper, and in the direction parallel to the plane of the paper, the angle of incidence of X-rays on the mirror gradually decreases.
  • a curved surface is drawn on the sample, and the distance between the mirrors is such that the sample side is narrow and the diffraction grating side is wide.
  • X-rays generated from the electron beam irradiation point of the sample tilted toward the X-ray focusing mirror are radiated in all solid angle directions, and XI and X2 in the figure (the electron beam irradiation point of the sample and the diffraction grating).
  • the range within the straight line connecting the ends) represents the X-rays incident on the diffraction grating when no mirror is used.
  • the X-rays in the range between XI and X3, X2 and X4 in the figure (X3 and X4 are straight lines connecting the sample and the front end of the mirror)
  • the light is condensed and enters the diffraction grating.
  • the intensity of X-rays incident on the diffraction grating increases (the solid angle of X-ray detection increases), so that the measurement time can be reduced and the SZN ratio of the spectrum can be improved.
  • FIG. 5 is a diagram illustrating an example of the grating exchange mechanism.
  • Fig. 5 (a) In the example, unequally spaced diffraction gratings I, II, and III having different measurement energy ranges are fixed to a rotating table 41 that can rotate in a vertical plane, and the rotation angle of the rotating table can be adjusted from outside the vacuum. As a result, any one of the three diffraction gratings can be set at the X-ray incident position by the slit 33 without breaking the vacuum. Of course, a turntable that rotates in a horizontal plane may be used.
  • unequally spaced diffraction gratings I, II, and II with different measurement energy ranges are fixed to the horizontal moving table 42, and the position of the horizontal moving table 42 is adjusted from outside the vacuum. Can be.
  • any one of the three diffraction gratings can be set at the X-ray incident position by the slit 33 without breaking the vacuum.
  • FIG. 6 is a diagram illustrating a grating tilt adjustment mechanism.
  • the inclination of the diffraction grating set at the X-ray incident position by the slit 33 can be detected by the grating exchange mechanism using the turntable 41 shown in FIG. 5 (a). .
  • the straight line introducer 51 is configured so that the rod in contact with one end of the diffraction grating moves up and down by converting the rotational movement into linear movement, and the height of one side of the diffraction grating at the tip of the aperture Can be adjusted. As a result, it is possible to correct the tilt of the diffraction grating due to an assembly error or the like, and realize an optimal X-ray optical system.
  • FIG. 7 is a view showing another example of the condensing mirror 30.
  • two X-ray focusing mirrors with curved surfaces were used facing each other.
  • a total of four rat focusing mirrors are used in combination.
  • Each mirror is composed of a silicon substrate, and a gold thin film is formed on the facing surface (X-ray incident surface) by sputtering. By forming a thin gold film, the reflection efficiency of X-rays on the mirror surface can be increased.
  • the present invention is not limited to the above-described embodiment, and can be modified.
  • the voltage may be applied to repel secondary electrons.
  • a trapping electrode to which a voltage for attracting secondary electrons is applied may be arranged in the connection tubes 60-1 and 60-2.
  • the X-ray spectrometer is combined with the TEM column.
  • the X-ray spectrometer may be combined with another electron microscope (SEM, EPMA or Auger microprobe). good.
  • an X-ray spectrometer may be attached to the side wall of the sample chamber of SEM, EPMA or Auger microprobe.
  • the term “electron microscope” as used in the present invention is not limited to TEM or SEM, but encompasses all devices having a function of acquiring an image of a sample based on electron beam irradiation on the sample. is there.
  • X-rays from the sample are condensed by a condenser mirror and made incident on the diffraction grating, thereby increasing the intensity of X-rays incident on the diffraction grating, shortening measurement time, The SZN ratio of the spectrum can be improved.
  • the background due to stray light can be reduced, and the SZN ratio of the spectrum can be improved.
  • the electron microscope equipped with the X-ray spectrometer according to the present invention is useful as an apparatus that can obtain a valence band state density distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An electron microscope having an X-ray spectrometer of high resolution with a compact optical system. The X-ray spectrometer (10) has a spectrometer chamber (11) from which air is exhausted by vacuum pumps (18, 19, 20). In the spectrometer chamber (11), diffraction grating at different intervals (12) is arranged and at its end, an X-ray detector (14) is mounted. The X-ray spectrometer (1) is mounted on the side wall of the electron microscope via a gate valve (4). Characteristic X-rays emitted from a sample (3) to which an electron beam is applied is incident at a great angle (α) with respect to a normal of the diffraction grating at different intervals and diffracted X-rays from the diffraction grating reach the X-ray detector (14) and are detected by it.

Description

明 細 書  Specification
X線分光器を備えた電子顕微鏡 技術分野 Electron microscope equipped with X-ray spectrometer
本発明は X線分光器を備えた電子顕微鏡に関する。 背景技術 The present invention relates to an electron microscope equipped with an X-ray spectroscope. Background art
従来、 走査型電子顕微鏡(S EM)に波長分散型分光器(WD S)を取り 付け、 電子顕微鏡内で電子線を試料に照射したときに発生する特性 X線 を WD Sで検出し、 X線分析 (元素分析)を行う電子プローブマイクロア ナライザ(E PMA)が知られている。この WD Sでは、 X線発生点(試料)、 分光結晶中心点、 検出器のスリット中心点の 3点をローランド円上の所 定の位置に合わせる機構が必要であるとともに、 ローランド円の半径が 数 mもあるため、 大がかりな構造の光学系となってしまう。 また、 分光 結晶への入射角(結晶面の法線に対する角度)が小さいため、 検出器が電 子顕微鏡の鏡筒側に近づき、 全体の配置構成が難しくなってしまう。 一方、 エネルギー分散型の分光器(ED S)を透過型電子顕微鏡(T EM) あるいは S EMと組み合わせ、 試料からの特性 X線を ED Sで検出する ことが行われているが、 E D Sは E PMA用の WD Sに比べエネノレギー 分解能の点が十分ではない。  Conventionally, a wavelength-dispersive spectrometer (WDS) is attached to a scanning electron microscope (SEM), and the characteristic X-rays generated when the sample is irradiated with an electron beam in the electron microscope are detected by the WDS. An electron probe microanalyzer (EPMA) for performing line analysis (elemental analysis) is known. This WDS requires a mechanism that aligns the three points of the X-ray generation point (sample), the center point of the spectral crystal, and the center point of the slit of the detector with predetermined positions on the Rowland circle. Because it is several meters long, it becomes a large-scale optical system. In addition, since the angle of incidence on the spectroscopic crystal (the angle relative to the normal to the crystal plane) is small, the detector approaches the electron microscope column side, making the overall arrangement difficult. On the other hand, an energy dispersive spectrometer (EDS) is combined with a transmission electron microscope (T EM) or SEM to detect characteristic X-rays from a sample by EDS. Energy-energy resolution is not enough compared to WDS for PMA.
本発明者は、 透過型電子顕微鏡(T EM)にエネルギーフィルタを組み 合わせ、 高分解能でエネルギー分析が可能な電子顕微鏡の開発を行って いる。 この装置を用いると、 試料における 30 n m φの領域の誘電関数、 伝導帯状態密度分布を知ることができる。 詳細な電子状態の研究のため には、 伝導帯だけではなく価電子帯の状態密度分布も知る必要がある。 上述したように、 E D Sを備えた透過型電子顕微鏡(T E M)では、 電 子ビームを照射している領域から発生する特性 X線を用いて元素分析を 行うことができ、 この特性 X線のスペク トルを l e V程度以下のェネル ギー分解能で測定できれば、価電子帯状態密度分布を得ることができる。 ところが、 半導体検出器を用いる現在の E D Sのエネルギー分解能は、 100- 200 e V程度であるので電子状態の研究には十分ではない。 また、 W D Sは、 E D Sよりも高い分解能(約 10 e V )を有するが、 価電子帯の 状態密度を得るには十分なエネルギー分解能ではない。 発明の開示 The present inventor has been developing an electron microscope capable of performing high-resolution energy analysis by combining an energy filter with a transmission electron microscope (TEM). Using this device, it is possible to know the dielectric function and the conduction band density distribution in the 30 nm φ region of the sample. For detailed electronic state studies It is necessary to know not only the conduction band but also the valence band state density. As described above, in a transmission electron microscope (TEM) equipped with an EDS, elemental analysis can be performed using characteristic X-rays generated from a region irradiated with an electron beam. If Torr can be measured with an energy resolution of less than leV, the valence band density of states distribution can be obtained. However, the energy resolution of current EDS using semiconductor detectors is about 100-200 eV, which is not enough for studying electronic states. Also, WDS has a higher resolution (about 10 eV) than EDS, but does not have sufficient energy resolution to obtain the valence band state density. Disclosure of the invention
本発明は、 コンパク トな光学系を有し、 かつ高いエネルギー分解能が 得られる X線分光器を備えた電子顕微鏡を提供することを目的とするも のである。  An object of the present invention is to provide an electron microscope having an X-ray spectrometer having a compact optical system and capable of obtaining high energy resolution.
本発明の X線分光器を備えた電子顕微鏡は、 真空ポンプで排気され、 不等間隔回折格子が配置されるとともに、 端部に X線検出器が取り付け られた分光室を有する X線分光器をゲートバルブを介して電子顕微鏡の 側壁に取り付けた電子顕微鏡であって、 電子線が照射された試料から放 出される特性 X線を不等間隔回折格子面の法線に対して大きな角度で斜 め入射させ、 その回折 X線を X線検出器で検出することを特徴としてい る。  An electron microscope equipped with the X-ray spectrometer of the present invention is an X-ray spectrometer which is evacuated by a vacuum pump, has a non-equidistant diffraction grating, and has a spectroscopic chamber having an X-ray detector attached to an end. Electron microscope attached to the side wall of an electron microscope via a gate valve.The characteristic X-ray emitted from the sample irradiated with the electron beam is oblique at a large angle with respect to the normal to the irregularly spaced diffraction grating surface. The X-ray detector detects the diffracted X-rays with an X-ray detector.
前記 X線検出器としては、 背面照射型 C C D検出器を用いることがで きる。 前記不等間隔回折格子で回折される X線の出射角は、 回折格子面 の法線に対して 7 5〜8 7度であることが好ましい。  As the X-ray detector, a back-illuminated CCD detector can be used. It is preferable that the emission angle of the X-ray diffracted by the unequally spaced diffraction grating is 75 to 87 degrees with respect to the normal to the diffraction grating surface.
また、 試料から放出される特性 X線を不等間隔回折格子に向けて集光 する X線集光ミラーを設けることができる。 In addition, the characteristic X-rays emitted from the sample are focused toward the irregularly spaced diffraction grating. An X-ray focusing mirror can be provided.
また、 測定エネルギー領域の異なる複数の不等間隔回折格子を装着し、 不等間隔回折格子の 1つを特性 X線入射位置に選択的に配置しうる回折 格子交換機構を備えることができる。  Further, it is possible to equip a plurality of unequally spaced diffraction gratings having different measurement energy ranges and provide a diffraction grating exchange mechanism capable of selectively arranging one of the unequally spaced diffraction gratings at the characteristic X-ray incident position.
特性 X線入射位置に選択的にセッ トされた不等間隔回折格子の傾き を調整するグレーティング傾斜調整機構を設けることができる。  Characteristics It is possible to provide a grating tilt adjustment mechanism that adjusts the tilt of unequally spaced diffraction gratings selectively set at the X-ray incidence position.
前記 C C D検出器は、 前記分光室に対してべローズを介して接続される ことにより、 前記回折格子に対して移動可能に設けられることが好まし い。 It is preferable that the CCD detector is connected to the spectroscopic chamber via a bellows so as to be movable with respect to the diffraction grating.
前記べ口一ズは伸縮方向の異なる複数のベロ一ズを縦続に連結した 構造を有し、 複数のベローズの伸縮を組み合わせることにより C C D検 出器を回折格子に対して二次元的に移動可能に設けられることが好まし い。 図面の簡単な説明  The bellows has a structure in which a plurality of bellows with different expansion and contraction directions are connected in cascade, and the CCD detector can be moved two-dimensionally with respect to the diffraction grating by combining expansion and contraction of multiple bellows. It is preferably provided in BRIEF DESCRIPTION OF THE FIGURES
図 1は X線分光器を備えた透過電子顕微鏡の例を示す図である。 FIG. 1 is a diagram showing an example of a transmission electron microscope equipped with an X-ray spectrometer.
図 2は ]3ポロンの Boron Kェミッションスぺク トノレを示す図である。 図 3は本発明の透過型電子顕微鏡の他の例を説明する概念図である。 図 4は X線集光ミラーを示す図である。 Figure 2 shows the Boron K emission spectrum of] 3 polon. FIG. 3 is a conceptual diagram illustrating another example of the transmission electron microscope of the present invention. FIG. 4 is a diagram showing an X-ray focusing mirror.
図 5はグレーティング交換機構を示す図である。 FIG. 5 is a diagram showing a grating exchange mechanism.
図 6はグレーティング傾斜調整機構を示す図である。 FIG. 6 is a diagram showing a grating tilt adjusting mechanism.
図 7は X線集光ミラーの他の例を示す図である。 発明を実施するための最良の形態 FIG. 7 is a diagram showing another example of the X-ray focusing mirror. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明にかかる X線分光器を備えた透過型電子顕微鏡の例を 示す図である。 図 1において、 T E M 1の鏡筒 2内は真空に維持されて いる。 鏡筒 2内に配置される試料 3には、 上方から電子レンズを介して 電子ビームが照射され、 試料を透過した電子ほ電子レンズを介して蛍光 板上に投射される。 その結果、 蛍光板上には透過電子像が形成される。 鏡筒 2の試料 3が配置される部屋の側壁には、 試料から発生した特性 X線を鏡筒 2の外部に取り出すための孔が開けられ、 この孔にゲ一トバ ルブ 4を有する接続管 6 0を介して X線分光器 1 0が取り付けられてい る。 ゲートバルブ 4は分光器 1 0と T E M 1の鏡筒間に配置されて両者 の真空をセパレートすることができる。 分光室(分光器チャンバ一) 1 1 内に配置される回折格子 1 2と、 分光室端部にベローズ 1 3を介して取 付られた背面照射型の C C D検出器 1 4により分光器 1 0が構成されて いる。 Fig. 1 shows an example of a transmission electron microscope equipped with an X-ray spectrometer according to the present invention. FIG. In FIG. 1, the inside of the lens barrel 2 of the TEM 1 is maintained at a vacuum. The sample 3 placed in the lens barrel 2 is irradiated with an electron beam from above through an electron lens, and is projected on a fluorescent screen through an electron beam lens transmitted through the sample. As a result, a transmitted electron image is formed on the phosphor screen. A hole for taking out characteristic X-rays generated from the sample to the outside of the lens barrel 2 is formed in the side wall of the room in which the sample 3 of the lens barrel 2 is disposed, and a connection pipe having a gate valve 4 in this hole is provided. X-ray spectroscope 10 is attached via 60. The gate valve 4 is arranged between the spectroscope 10 and the lens barrel of the TEM 1 and can separate the vacuum of both. Spectroscope (spectrometer chamber 1) 11 A diffraction grating 12 arranged in the chamber 1 and a back-illuminated CCD detector 14 attached to the end of the spectroscopic chamber via a bellows 13 14 Spectroscope 10 Is configured.
回折格子 1 2は収差補正のために不等間隔で溝が形成されている。 こ のような不等間隔回折格子は、 大きな入射角で光を入射させたとき、 そ の回折光に対して垂直な結像面を実現できることが知られている。 そこ で、 本実施例では、 T E M 1内で電子ビームが照射されて試料 3から放 出される特性 X線が、回折格子面の法線に対して大きな入射角 α (回折格 子面にほぼ平行)で入射するように、回折格子への入射角 aが選定される。 この斜め入射により、 回折 X線の焦点がローランド円上ではなく、 光線 にほぼ垂直な平面(C C Dの面)上に作られる。 この回折格子による分散 は通常の溝付回折格子よりも小さく、 そのため固定された C C D検出器 1 4を用いて広いエネルギー範囲を検出することができる。  The diffraction grating 12 has grooves formed at irregular intervals for aberration correction. It is known that such unequally spaced diffraction gratings can realize an image plane perpendicular to the diffracted light when light is incident at a large incident angle. Therefore, in this embodiment, the characteristic X-ray emitted from the sample 3 when irradiated with the electron beam in the TEM 1 has a large incident angle α (normally parallel to the diffraction grating plane) with respect to the normal to the diffraction grating plane. ), The incident angle a to the diffraction grating is selected. Due to this oblique incidence, the focal point of the diffracted X-rays is created not on the Rowland circle but on a plane (CCD plane) almost perpendicular to the light rays. Dispersion due to this diffraction grating is smaller than that of a normal grooved diffraction grating, so that a wide energy range can be detected using a fixed CCD detector 14.
また、 分光器チャンバ一 1 1は、 バルブ 1 5、 1 6、 1 7を通して口 一タリ一ポンプ 2 0と組み合わされたターボ分子ポンプ(T M P ) 1 9及 びスパッタイオンポンプ(S I P ) 1 8で真空に排気されている。 C C D 検出器 1 4は、 ベローズ 1 3·を介して分光器チャンバ一 1 1に取り付け られているため、 回折格子からの距離の微調整が可能になっている。 C CDコントローラ 2 1の制御のもとで取り出された C CD検出器 1 4力 らの信号は、 データ処理装置 2 2に転送されてデータ処理され、 モニタ 2 3にそのスペク トルが表示される。 The spectrometer chamber 11 is provided with a turbo molecular pump (TMP) 19 and a sputter ion pump (SIP) 18 combined with a single pump 20 through valves 15, 16 and 17. It has been evacuated to a vacuum. CCD Since the detector 14 is attached to the spectrometer chamber 11 via the bellows 13 ·, fine adjustment of the distance from the diffraction grating is possible. The signals from the CCD detector 14 taken out under the control of the CCD controller 21 are transferred to the data processor 22 for data processing, and the spectrum is displayed on the monitor 23. .
本実施例の回折格子は、 1200 本/ mmの溝を有し、 光線(X線)の進行 方向に沿って一方から他方へ徐々に間隔が変わるように配置されている。 また、 回折格子は半径 6549mmの凹面を有し、 幅(光線方向に直交する 方向の) 30mm、長さ(光線方向) 50mmで、表面処理により表面に金層を 形成している。  The diffraction grating of the present embodiment has 1200 grooves / mm, and is arranged so that the interval gradually changes from one to the other along the traveling direction of the light beam (X-ray). The diffraction grating has a concave surface with a radius of 6549 mm, a width (in the direction perpendicular to the light beam direction) of 30 mm, and a length (in the light beam direction) of 50 mm. A gold layer is formed on the surface by surface treatment.
そして、 回折格子面の法線に対する入射角 αは 87度、 出射角 3は 77 〜83 度、 腕の長さ(試料から回折格子照射点までおよぴ回折格子から C CDまでの距離)は、 それぞれ 237mm、 235mmに設定されている。 ま た、 背面照射型 CCDは 1100X330 ピクセノレ、 サイズ 26.4mm X 7.9m m、 1画素サイズ 24μ mX24 x m (出射角 77〜83度に対応する分解能) である。  The incident angle α to the normal of the diffraction grating surface is 87 degrees, the emission angle 3 is 77 to 83 degrees, and the length of the arm (the distance from the sample to the diffraction grating irradiation point and the distance from the diffraction grating to the CCD) is , Are set to 237mm and 235mm respectively. The back-illuminated CCD has a size of 1100X330 pixels, size 26.4mm x 7.9mm, and one pixel size of 24µm x 24xm (resolution corresponding to an emission angle of 77 to 83 degrees).
C CD検出器にフォーカスされる回折 X線のスポットサイズは、 試料 上の電子ビームのサイズと、回折格子の収差による広がりの重畳である。 試料上にフォーカスされる電子ビームのサイズは、 実験ではほぼ 500η mである。 また、 回折格子の収差によるスポットの広がりは、 248 e Vで 40 m、 124e Vで 20μ mとの評価がすでに報告されているので、約 185 e Vの Boron Kェミッションエネルギーに対する広がりは、 ほぼ 30/x mと見積もられる。 したがって、 C CD検出器にフォーカスされる回折 X線のスポットサイズは、主として収差によって決定されることになる。 回折格子のエネルギー分散は、 下式 λ = σ (sin CK -f- sin β ) ( 1 ) The spot size of the diffracted X-ray focused on the CCD detector is the superposition of the size of the electron beam on the sample and the spread due to the aberration of the diffraction grating. The size of the electron beam focused on the sample is approximately 500ηm in the experiment. It has been reported that the spot spread due to the diffraction grating aberration is 40 m at 248 eV and 20 μm at 124 eV, so the spread for Boron K emission energy of about 185 eV is almost It is estimated to be 30 / xm. Therefore, the spot size of the diffracted X-ray focused on the CCD detector is mainly determined by the aberration. The energy dispersion of the diffraction grating is λ = σ (sin CK -f- sin β) (1)
( は波長、 σは溝間隔、 αと は入射角と回折角)  (Is wavelength, σ is groove interval, α is incident angle and diffraction angle)
により、画素サイズ当たり約 0.3 e Vと評価される。 したがって、 Boron Kェミ ッションスペク トルのエネルギー分解能は、 約 0.6 e V (0.3 e V X 2画素)と評価される。 Is evaluated as about 0.3 eV per pixel size. Therefore, the energy resolution of the Boron K emission spectrum is estimated to be about 0.6 eV (0.3 eV x 2 pixels).
図 2は 600n m径の単結晶試料面からプローブ電流約 70 η Aで得られ た ]3ポロンの Boron Kエミッションスぺク トルで、検出時間は約 1時間 である。 水平軸は C C D検出器のチャンネル数を表している。 スぺタ ト ルは、 それぞれ矢印と垂直線で示された 1 つのピークと、 2つの肩部を 示している。 ピークのエネルギーは、 すでに報告されている回折分光器 によるスぺク トルを参照すると 185 e V、ピークの幅は約 10 e Vである。 図 2から本発明の装置は高エネルギー分解能で、 SZN比が優れている ことが分かる。  Figure 2 shows a Boron K emission spectrum of 3 pols obtained from a 600 nm diameter single crystal sample surface at a probe current of about 70 ηA. The detection time is about 1 hour. The horizontal axis represents the number of channels of the CCD detector. The stalls show one peak and two shoulders, each indicated by an arrow and a vertical line. The energy of the peak is 185 eV and the width of the peak is about 10 eV when referring to the previously reported spectrum by the diffraction spectrometer. FIG. 2 shows that the device of the present invention has a high energy resolution and an excellent SZN ratio.
次に、 本発明にかかる X線分光器を備えた透過型電子顕微鏡の他の実 施例について、 図 3〜図 6を用いて説明する。  Next, another embodiment of a transmission electron microscope equipped with the X-ray spectrometer according to the present invention will be described with reference to FIGS.
図 3は本発明の透過型電子顕微鏡の他の例を説明する概念図である。 T EMの鏡筒 2の試料 3が配置される部屋の側壁には、 試料から発生した 特性 X線を鏡筒 2の外部に取り出すための孔が開けられ、 この孔に金属 製の接続管 6 0— 1が揷入されている。 接続管 6 0 - 1の一端は試料 3 へ向けて前記部屋内まで延びており、 他端はゲートバルブ 4に接続され ている。 ゲートバルブ 4の他端には、 金属製の接続管 6 0— 2を介して X線分光器 1 0が接続される。 FIG. 3 is a conceptual diagram illustrating another example of the transmission electron microscope of the present invention. On the side wall of the room where the sample 3 of the TEM lens barrel 2 is placed, a hole is made to take out the characteristic X-rays generated from the sample to the outside of the lens barrel 2, and a metal connection pipe 6 is formed in this hole. 0—1 is entered. One end of the connection pipe 60-1 extends into the room toward the sample 3, and the other end is connected to the gate valve 4. An X-ray spectroscope 10 is connected to the other end of the gate valve 4 via a metal connection pipe 60-2.
前記接続管 6 0 - 1の先端内部には、 試料 3から放出される X線を集 光する X線集光ミラー 3 0が取り付けられている。 X線集光ミラー 3 0 で集光させることにより、 回折格子に入射する X線強度を増加させて測 定時間の短縮、 スペク トルの S ZN比を向上させることができる。 集光 された X線は、 ゲートバルブ 4の前後の接続管 6 0— 1及び 6 0— 2に 配置されたスリット 3 1、 3 2を通して分光器チャンバ一 1 1に配置さ れた不等間隔回折格子 1 2に入射する。 不等間隔回折格子 1 2の入射面 の直上にも、 入射面とわずかな距離(X線の入出射を妨げない距離)を置 いてスリット 3 3が配置されている。これら複数のスリット 3 1、 3 2、 3 3により、 試料上の電子照射点から発生し試料から回折格子への X線 光路以外の方向へ進んだ光が C C D検出器 1 4へ到達し、 バックグラウ ンドと して検出されるのを防ぐことができる。 これにより、 スペク トル の S /N比が向上する。 An X-ray focusing mirror 30 for collecting X-rays emitted from the sample 3 is mounted inside the distal end of the connection tube 60-1. The X-ray focusing mirror 30 focuses the X-rays to increase the intensity of X-rays incident on the diffraction grating. The fixed time can be shortened and the SZN ratio of the spectrum can be improved. The collected X-rays are unequally spaced in the spectrometer chamber 11 through slits 31 and 32 arranged in the connecting pipes 60-1 and 60-2 before and after the gate valve 4. The light enters the diffraction grating 12. Slits 33 are also arranged immediately above the incident surface of the unequally spaced diffraction grating 12 with a small distance from the incident surface (a distance that does not hinder X-ray incidence and emission). The light emitted from the electron irradiation point on the sample and traveling in a direction other than the X-ray optical path from the sample to the diffraction grating reaches the CCD detector 14 by these multiple slits 31, 32, and 33. It can be prevented from being detected as a ground. This improves the S / N ratio of the spectrum.
不等間隔回折格子 1 2は、 後述するグレーティング交換機構 4 0に取 り付けられる。 グレーティング交換機構 4 0は、 測定エネルギー領域の 異なる複数の不等間隔回折格子を装着保持するもので、 不等間隔回折格 子の 1つが X線入射位置にセッ トされて X線を回折する。 X線入射位置 にセッ トされた回折格子は、 グレーティング傾斜調整機構 5 0によりそ の傾きが調整される。  The unequally spaced diffraction grating 12 is attached to a grating exchange mechanism 40 described later. The grating exchange mechanism 40 holds and holds a plurality of unequally spaced diffraction gratings having different measurement energy regions. One of the unequally spaced diffraction gratings is set at the X-ray incident position and diffracts X-rays. The tilt of the diffraction grating set at the X-ray incident position is adjusted by the grating tilt adjusting mechanism 50.
回折 X線を検出する C C D検出器 1 4は、 分光器チャンバ一 1 1の端 部にベローズ 1 3を介して取り付けられる。 本実施例の分光器チャンバ 一 1 1は、 分割された 2つの筒体 1 1一 1, 1 1一 2と、 この 2つの筒 体を接続するべローズ 3 4から構成される。図 3に示されているように、 2つの筒体 1 1— 1、 1 1一 2は中心軸をずらして配置され、 ベローズ 3 4は、ベローズ 1 3とは伸縮方向が異なるように 2つの筒体 1 1一 1, 1 1— 2を接続している。 この結果、 2つのべローズ 1 3, 3 4の伸縮 を組み合わせることにより、 C C D検出器 1 4を上下、左右方向(2次元 方向)に移動させ、 位置の微調整を行うことができる。 上記したように、 不等間隔回折格子は大きな入射角で光を入射させたとき、 その回折光に 対して垂直な結像面が形成されるので、 その結像面に C C D検出器 1 4 の受光面を合わせるようにする必要がある。 本実施例では、 伸縮方向の 異なる 2つのべローズを用いて筒体 1 1— 2及ぴ C C D検出器 1 4を移 動させることにより、 回折 X線に対する受光面の位置、 方向を調整する ことができる。 A CCD detector 14 for detecting diffracted X-rays is attached to the end of the spectrometer chamber 11 via a bellows 13. The spectrometer chamber 111 of the present embodiment includes two divided cylinders 111, 112 and a bellows 34 connecting the two cylinders. As shown in FIG. 3, the two cylinders 1 1—1, 1 1 and 1 2 are arranged with their center axes shifted, and the bellows 3 4 The cylinder 1 1 1 1 and 1 1-2 are connected. As a result, by combining the expansion and contraction of the two bellows 13 and 34, the CCD detector 14 can be moved up and down, left and right (two-dimensional direction), and the position can be finely adjusted. As mentioned above, When light is incident at a large angle of incidence, an unequally spaced diffraction grating forms an image plane perpendicular to the diffracted light, so the light-receiving surface of the CCD detector 14 must be aligned with that image plane. Need to be In the present embodiment, the position and direction of the light receiving surface with respect to the diffracted X-rays are adjusted by moving the cylinder 1 1-2 and the CCD detector 14 using two bellows having different expansion and contraction directions. Can be.
これにより、 例えば組み立て誤差による C C D位置のずれを捕正する ことができ、 最適な位置への設定が可能となる。 このとき、 グレーティ ング傾斜調整機構 5 0の調整も組み合わせることにより、 C C D検出器 への回折 X線の入射を最適化することができる。  As a result, for example, it is possible to detect a deviation of the CCD position due to an assembly error, and it is possible to set an optimal position. At this time, the incidence of the diffracted X-rays on the CCD detector can be optimized by combining the adjustment of the grating inclination adjusting mechanism 50.
図 4は X線集光ミラー 3 0を説明する図である。 X線集光ミラー 3 0 は 2枚を向き合わせて 1組とし、 それぞれのミラーの向き合う面は紙面 垂直方向に平坦で、 紙面平行方向ではミラーへの X線の入射角が徐々に 小さくなるように曲面を描き、 且つミラーの間隔は、 試料側が狭く回折 格子側が広くなるようにされている。  FIG. 4 is a diagram illustrating the X-ray focusing mirror 30. The X-ray focusing mirror 30 is a pair of two mirrors facing each other, and the surface facing each mirror is flat in the direction perpendicular to the plane of the paper, and in the direction parallel to the plane of the paper, the angle of incidence of X-rays on the mirror gradually decreases. A curved surface is drawn on the sample, and the distance between the mirrors is such that the sample side is narrow and the diffraction grating side is wide.
X線集光ミラーへ向けて傾斜された試料の電子ビーム照射点から発 生する X線は、 全立体角方向へ放射され、 図の X I、 X 2 (試料の電子ビー ム照射点と回折格子端部を結ぶ直線)内の範囲はミラーを用いない場合 に回折格子に入射する X線を表している。 そして、 集光ミラーを設定す ることで、 図の X Iと X 3、 X 2と X 4 ( X 3、 X 4は試料とミラー手前側端 部を結ぶ直線)の間の範囲の X線も集光されて回折格子に入射するよう になる。 これにより、回折格子に入射する X線強度が増加(X線検出立体 角を増加)するので、測定時間の短縮、スぺク トルの S Z N比の向上を実 現させることができる。  X-rays generated from the electron beam irradiation point of the sample tilted toward the X-ray focusing mirror are radiated in all solid angle directions, and XI and X2 in the figure (the electron beam irradiation point of the sample and the diffraction grating). The range within the straight line connecting the ends) represents the X-rays incident on the diffraction grating when no mirror is used. By setting the focusing mirror, the X-rays in the range between XI and X3, X2 and X4 in the figure (X3 and X4 are straight lines connecting the sample and the front end of the mirror) The light is condensed and enters the diffraction grating. As a result, the intensity of X-rays incident on the diffraction grating increases (the solid angle of X-ray detection increases), so that the measurement time can be reduced and the SZN ratio of the spectrum can be improved.
図 5はグレーティング交換機構の例を説明する図である。 図 5 (a)の 例では、 垂直面内で回転できる回転台 4 1に測定エネルギー領域の異な る不等間隔回折格子 I、 I I、 I IIが固定され、 回転台の回転角を真空外部 から調整することができる。 これにより、 真空を破らずに 3つの回折格 子の内の任意のものを、 スリット 3 3による X線入射位置にセットでき る。 勿論、 水平面内で回転する回転台を用いるようにしてもよい。 FIG. 5 is a diagram illustrating an example of the grating exchange mechanism. Fig. 5 (a) In the example, unequally spaced diffraction gratings I, II, and III having different measurement energy ranges are fixed to a rotating table 41 that can rotate in a vertical plane, and the rotation angle of the rotating table can be adjusted from outside the vacuum. As a result, any one of the three diffraction gratings can be set at the X-ray incident position by the slit 33 without breaking the vacuum. Of course, a turntable that rotates in a horizontal plane may be used.
図 5 (b)の例では、 水平移動台 4 2に測定エネルギー領域の異なる不 等間隔回折格子 I、 II、 II Iが固定され、 水平移動台 4 2の位置を真空外 部から調整することができる。 これにより、 真空を破らずに 3つの回折 格子の内の任意のものをスリット 3 3による X線入射位置にセットでき る。  In the example of Fig. 5 (b), unequally spaced diffraction gratings I, II, and II with different measurement energy ranges are fixed to the horizontal moving table 42, and the position of the horizontal moving table 42 is adjusted from outside the vacuum. Can be. Thus, any one of the three diffraction gratings can be set at the X-ray incident position by the slit 33 without breaking the vacuum.
このように測定エネルギー領域の異なる 3個の不等間隔回折格子 I、 II、 I II を交換して用いることにより、 より広いエネルギー領域(60— 1200 e V )が測定できるようになった。なお、 さらに測定するエネルギー 領域の異なる不等間隔回折格子を数多く取り付けることにより、 真空を 破らずに回折格子を交換してより広いエネルギー領域が測定可能となる。 図 6は、 グレーティング傾斜調整機構を説明する図である。 この例で は、図 5 (a)に示した回転台 4 1を用いるグレーティング交換機構におい て、 スリ ット 3 3による X線入射位置にセットされた回折格子の傾斜を 捕正することができる。 すなわち、 直線導入器 5 1は回転運動を直線運 動に変換することにより、 回折格子の一端に接触したロッドが上下に動 くように構成され、 口ッド先端で回折格子の片側の高さを調整できる。 これにより、 組み立て誤差等による回折格子の傾きを補正し、 最適な X 線光学系を実現することができる。  By using three unequally spaced diffraction gratings I, II and I II with different measurement energy ranges in this way, a wider energy range (60-1200 eV) can be measured. Furthermore, by installing a large number of unequally spaced diffraction gratings with different energy ranges to be measured, it is possible to measure a wider energy range by replacing the diffraction grating without breaking vacuum. FIG. 6 is a diagram illustrating a grating tilt adjustment mechanism. In this example, the inclination of the diffraction grating set at the X-ray incident position by the slit 33 can be detected by the grating exchange mechanism using the turntable 41 shown in FIG. 5 (a). . That is, the straight line introducer 51 is configured so that the rod in contact with one end of the diffraction grating moves up and down by converting the rotational movement into linear movement, and the height of one side of the diffraction grating at the tip of the aperture Can be adjusted. As a result, it is possible to correct the tilt of the diffraction grating due to an assembly error or the like, and realize an optimal X-ray optical system.
図 7は、 前記集光ミラー 3 0の他の例を示す図である。 図 4の例では 曲面を持つ X線集光ミラー 2枚を向き合わせて用いたが、 本例では、 フ ラットな集光ミラーを 2枚ずつ計 4枚組み合わせて用いている。 それぞ れのミラーはシリコン基板で構成され、 その向き合う面(X線入射面)に は、 スパッタ処理により金の薄膜が形成されている。 金の薄膜を形成す ることにより、 ミラー表面での X線の反射効率が高められる。 FIG. 7 is a view showing another example of the condensing mirror 30. As shown in FIG. In the example of Fig. 4, two X-ray focusing mirrors with curved surfaces were used facing each other. A total of four rat focusing mirrors are used in combination. Each mirror is composed of a silicon substrate, and a gold thin film is formed on the facing surface (X-ray incident surface) by sputtering. By forming a thin gold film, the reflection efficiency of X-rays on the mirror surface can be increased.
なお、 本発明は上述した実施例に限定されることなく、 変形が可能で ある。 例えば、 試料上の電子ビーム照射点から発生した 2次電子が C C D検出器 1 4へ到達して何らかのノイズを発生させることを防ぐため、 例えば、 スリッ ト 3 1あるいは 3 2を周囲と絶縁して配置し、 2次電子 を追い返す電圧を印加するようにしても良い。 あるいは、 接続管 6 0― 1 , 6 0— 2の中に、 2次電子を吸引する電圧が印加されたトラップ電 極を配置するようにしても良い。  It should be noted that the present invention is not limited to the above-described embodiment, and can be modified. For example, to prevent secondary electrons generated from the electron beam irradiation point on the sample from reaching the CCD detector 14 and generating some noise, for example, insulate the slit 31 or 32 from the surroundings. The voltage may be applied to repel secondary electrons. Alternatively, a trapping electrode to which a voltage for attracting secondary electrons is applied may be arranged in the connection tubes 60-1 and 60-2.
また、 上記実施例では T E Mの鏡筒に X線分光器を組み合わせたが、 . その他の電子顕微鏡(S E M , E P MAあるいはォージェマイクロプロ一 ブ)に X線分光器を組み合わせるようにしても良い。 この場合には、 S E M, E P MAあるいはォージェマイクロプロープの試料室の側壁に X線 分光器を取り付けるようにすれば良い。 要するに、 本発明で言う 「電子 顕微鏡」 とは、 T E Mまたは S E Mに限定されるものではなく、 試料へ の電子ビーム照射に基づいて試料の像を取得する機能を有するすべての 装置を包含するものである。  In the above embodiment, the X-ray spectrometer is combined with the TEM column. However, the X-ray spectrometer may be combined with another electron microscope (SEM, EPMA or Auger microprobe). good. In this case, an X-ray spectrometer may be attached to the side wall of the sample chamber of SEM, EPMA or Auger microprobe. In short, the term “electron microscope” as used in the present invention is not limited to TEM or SEM, but encompasses all devices having a function of acquiring an image of a sample based on electron beam irradiation on the sample. is there.
以上説明したように、 本発明によれば、 従来の WD Sよりコンパク ト な光学系で、 かつ高分解能化を達成でき、 特定の小試料領域から価電子 帯の部分状態密度を得ることのできる、 X線分光器を備えた電子顕微鏡 が実現できる。  As described above, according to the present invention, it is possible to achieve a higher resolution with a more compact optical system than conventional WDS, and to obtain a partial state density of a valence band from a specific small sample region. An electron microscope equipped with an X-ray spectrometer can be realized.
また、 試料からの X線を集光ミラーで集光して回折格子に入射させる ことにより、回折格子に入射する X線強度を増加させ、測定時間の短縮、 スペク トルの S Z N比を向上させることができる。 In addition, X-rays from the sample are condensed by a condenser mirror and made incident on the diffraction grating, thereby increasing the intensity of X-rays incident on the diffraction grating, shortening measurement time, The SZN ratio of the spectrum can be improved.
また、 複数のスリッ トを介して回折格子に X線を入射させることによ り、 迷光によるバックグラウンドを低減させて、 スぺク トルの S Z N比 を向上させることができる。  In addition, by making X-rays incident on the diffraction grating through a plurality of slits, the background due to stray light can be reduced, and the SZN ratio of the spectrum can be improved.
また、 伸縮方向の異なるベローズを組み合わせて C C Dを取り付ける ことにより、 C C D位置の上下、 左右方向への微調整が可能になり、 こ れにより組み立て誤差等による C C D位置のずれを補正し、 最適な位置 への設定が可能となる。  In addition, by attaching the CCD by combining bellows with different expansion and contraction directions, fine adjustment of the CCD position in the vertical and horizontal directions can be performed. Can be set.
また、 測定エネルギー領域の異なる複数の回折格子を装着したグレー ティング交換機構を設けることにより、 真空を破らずに回折格子を交換 してより広いエネルギー領域が測定可能となる。  In addition, by providing a grating exchange mechanism equipped with a plurality of diffraction gratings with different measurement energy regions, it is possible to measure a wider energy region by exchanging diffraction gratings without breaking vacuum.
また、 グレーティング傾斜調整機構を設けることにより、 組み立て誤 差等による回折格子の傾きを補正し、 最適な X線光学系を実現すること ができる。 産業上の利用可能性  In addition, by providing a grating tilt adjustment mechanism, it is possible to correct the tilt of the diffraction grating due to an assembly error or the like, and to realize an optimal X-ray optical system. Industrial applicability
以上のように、 本発明にかかる X線分光器を備えた電子顕微鏡は、 価 電子帯の状態密度分布を得ることのできる装置として有用である。  As described above, the electron microscope equipped with the X-ray spectrometer according to the present invention is useful as an apparatus that can obtain a valence band state density distribution.

Claims

請求の範囲 The scope of the claims
1 . 真空ポンプで排気され、 不等間隔回折格子が配置されるとともに、 端部に X線検出器が取り付けられた分光室を有する X線分光器をゲート バルブを介して電子顕微鏡の側壁に取り付けた電子顕微鏡であって、 電 子線が照射された試料から放出される特性 X線を不等間隔回折格子面の 法線に対して大きな角度で斜め入射させ、 その回折 X線を X線検出器で 検出することを特徴とする X線分光器を備えた電子顕微鏡。  1. An X-ray spectrometer, which is evacuated by a vacuum pump, has a non-uniformly spaced diffraction grating, and has a spectroscopic chamber with an X-ray detector mounted at the end, is attached to the side wall of the electron microscope via a gate valve. A characteristic X-ray emitted from an electron beam-irradiated sample at an oblique angle at a large angle with respect to the normal to the irregularly spaced diffraction grating surface, and the diffracted X-ray is detected as an X-ray An electron microscope equipped with an X-ray spectrometer, which is characterized by detection with an instrument.
2 . 前記 X線検出器は、 背面照射型 C C D検出器であることを特徴とす る請求項 1記載の X線分光器を備えた電子顕微鏡。  2. The electron microscope according to claim 1, wherein the X-ray detector is a back-illuminated CCD detector.
3 . 不等間隔回折格子で回折される X線の出射角は、 回折格子面の法線 に対して 7 5〜 8 7度であることを特徴とする請求項 1記載の電子顕微  3. The electron microscope according to claim 1, wherein an emission angle of the X-ray diffracted by the unequally spaced diffraction grating is 75 to 87 degrees with respect to a normal to the diffraction grating surface.
4 . 試料から放出される特性 X線を X線集光ミラーで集光して不等間隔 回折格子に入射させるようにしたことを特徴とする請求項 1記載の透過 型電子顕微鏡。 4. The transmission electron microscope according to claim 1, wherein the characteristic X-rays emitted from the sample are condensed by an X-ray condensing mirror and incident on a non-equidistant diffraction grating.
5 . 測定エネルギー領域の異なる複数の不等間隔回折格子を装着し、 不 等間隔回折格子の 1つを特性 X線入射位置に選択的に配置しうる回折格 子交換機構を備えたことを特徴とする請求項 1記載の透過型電子顕微鏡。 5. Equipped with a plurality of unequally spaced diffraction gratings with different measurement energy ranges, and equipped with a diffraction grating exchange mechanism that can selectively arrange one of the unequally spaced diffraction gratings at the characteristic X-ray incident position. 2. The transmission electron microscope according to claim 1, wherein:
6 . 特性 X線入射位置に選択的にセットされた不等間隔回折格子の傾き を調整するグレーティング傾斜調整機構を備えたことを特徴とする請求 項 5記載の透過型電子顕微鏡。 6. Characteristics The transmission electron microscope according to claim 5, further comprising a grating tilt adjusting mechanism for adjusting the tilt of the unequally spaced diffraction grating selectively set at the X-ray incident position.
7 . 前記 C C D検出器は、 前記分光室に対してべローズを介して接続さ れることにより、 前記回折格子に対して移動可能に設けられていること を特徴とする請求項 1記載の電子顕微鏡。  7. The electron microscope according to claim 1, wherein the CCD detector is connected to the spectroscopic chamber via a bellows so as to be movable with respect to the diffraction grating. .
8 . 前記べローズは伸縮方向の異なる複数のベローズを縦続に連結した 構造を有し、 複数のベローズの伸縮を組み合わせることにより C C D検 出器を回折格子に対して二次元的に移動可能に設けられていることを特 徴とする請求項 7記載の電子顕微鏡。 8. The bellows cascade connects a plurality of bellows with different expansion and contraction directions. 8. The electron microscope according to claim 7, having a structure, wherein the CCD detector is provided so as to be two-dimensionally movable with respect to the diffraction grating by combining expansion and contraction of a plurality of bellows.
PCT/JP2002/001899 2001-10-24 2002-02-28 Electron microscope having x-ray spectrometer WO2003036677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-326066 2001-10-24
JP2001326066A JP2002329473A (en) 2001-02-27 2001-10-24 Transmission electron microscope equipped with X-ray spectrometer

Publications (1)

Publication Number Publication Date
WO2003036677A1 true WO2003036677A1 (en) 2003-05-01

Family

ID=19142516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001899 WO2003036677A1 (en) 2001-10-24 2002-02-28 Electron microscope having x-ray spectrometer

Country Status (1)

Country Link
WO (1) WO2003036677A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047682A (en) * 1973-08-27 1975-04-28
JPH0599863A (en) * 1991-10-08 1993-04-23 Olympus Optical Co Ltd X-ray spectroscope
JPH0566599U (en) * 1992-02-17 1993-09-03 理学電機工業株式会社 X-ray spectrometer
JPH0676780A (en) * 1992-08-28 1994-03-18 Shimadzu Corp X-ray micro analyzer
JPH07209216A (en) * 1994-01-24 1995-08-11 Rigaku Ind Co Total reflection X-ray fluorescence analyzer
JP2000039359A (en) * 1998-07-23 2000-02-08 Japan Atom Energy Res Inst Conical diffraction oblique incidence spectrometer and diffraction grating for the spectrometer
JP2000146692A (en) * 1998-11-10 2000-05-26 Shimadzu Corp Spectroscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047682A (en) * 1973-08-27 1975-04-28
JPH0599863A (en) * 1991-10-08 1993-04-23 Olympus Optical Co Ltd X-ray spectroscope
JPH0566599U (en) * 1992-02-17 1993-09-03 理学電機工業株式会社 X-ray spectrometer
JPH0676780A (en) * 1992-08-28 1994-03-18 Shimadzu Corp X-ray micro analyzer
JPH07209216A (en) * 1994-01-24 1995-08-11 Rigaku Ind Co Total reflection X-ray fluorescence analyzer
JP2000039359A (en) * 1998-07-23 2000-02-08 Japan Atom Energy Res Inst Conical diffraction oblique incidence spectrometer and diffraction grating for the spectrometer
JP2000146692A (en) * 1998-11-10 2000-05-26 Shimadzu Corp Spectroscope

Similar Documents

Publication Publication Date Title
US10578566B2 (en) X-ray emission spectrometer system
US10416099B2 (en) Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US6710341B2 (en) Electron microscope equipped with X-ray spectrometer
JP3135920B2 (en) Surface analysis method and device
US9448190B2 (en) High brightness X-ray absorption spectroscopy system
CN110530907B (en) X-ray absorption measurement system
US5061850A (en) High-repetition rate position sensitive atom probe
WO2015187219A1 (en) X-ray absorption measurement system
US5892809A (en) Simplified system for local excitation by monochromatic x-rays
JP2000514238A (en) Electron beam microcolumn as a general-purpose scanning electron microscope
CN103026215B (en) Method of X-ray diffraction and the Portable X-ray diffraction instrument of use the method
EP1053551B1 (en) Wavelength dispersive x-ray spectrometer with x-ray collimator optic for increased sensitivity over a wide x-ray energy range
JP2004184314A (en) X-ray fluorescence analyzer
CN110621986B (en) Method of performing x-ray spectral analysis and x-ray absorption spectrometer system
US20080075229A1 (en) Generation of Monochromatic and Collimated X-Ray Beams
JP2007273477A (en) Electron microscope with X-ray spectrometer
Hague et al. Plane-grating flat-field soft x-ray spectrometer
JP2014240770A (en) Radiation detecting device and radiation analyzing device
JP4039599B2 (en) X-ray equipment
US20070009091A1 (en) Equipment for measuring distribution of void or particle size
WO2003036677A1 (en) Electron microscope having x-ray spectrometer
JP2000146872A (en) X-ray diffractometer
JP5563935B2 (en) X-ray detection system
Kelly et al. Proposed configurations for a high-repetition-rate position-sensitive atom probe
JP5347559B2 (en) X-ray analyzer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase