[go: up one dir, main page]

WO2004059366A1 - Illuminating device and porjection type image display unit - Google Patents

Illuminating device and porjection type image display unit Download PDF

Info

Publication number
WO2004059366A1
WO2004059366A1 PCT/JP2003/016836 JP0316836W WO2004059366A1 WO 2004059366 A1 WO2004059366 A1 WO 2004059366A1 JP 0316836 W JP0316836 W JP 0316836W WO 2004059366 A1 WO2004059366 A1 WO 2004059366A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lighting device
lens
solid
aspect ratio
Prior art date
Application number
PCT/JP2003/016836
Other languages
French (fr)
Japanese (ja)
Inventor
Fusao Terada
Kenji Torazawa
Yasuo Funazou
Yoichi Tsuchiya
Katsutoshi Hibino
Hideyuki Kanayama
Shouichi Yoshii
Yoshitaka Kurosaka
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002377871A external-priority patent/JP4162484B2/en
Priority claimed from JP2002379014A external-priority patent/JP2004212445A/en
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to EP03786342A priority Critical patent/EP1577697A4/en
Priority to US10/540,545 priority patent/US20060132725A1/en
Publication of WO2004059366A1 publication Critical patent/WO2004059366A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Definitions

  • Illumination device and projection type video display device are Illumination device and projection type video display device
  • the present invention relates to a lighting device and a projection display device.
  • Illumination devices used in liquid crystal projectors and the like are generally composed of lamps such as ultra-high pressure mercury lamps, metal halide lamps, xenon lamps, and parabolic reflectors that collimate the irradiation light. Further, in such an illuminating device, in order to reduce unevenness in the amount of light on the illuminated surface, an integrated function using a pair of fly-eye lenses (illuminating a plurality of illumination areas of a predetermined shape sampled and formed in a plane by an optical device). (It refers to the function of superimposing and condensing light on the target object). Furthermore, in recent years, from the viewpoint of weight reduction and miniaturization, it has been attempted to use a light emitting diode (LED) as a light source (see Japanese Patent Application Laid-Open No. 10-186507).
  • LED light emitting diode
  • a semiconductor laser may be used instead of a light emitting diode.
  • LD semiconductor laser
  • the speckle noise is reduced because the phases are aligned.
  • Highly coherent light such as laser light irradiates a rough surface or heterogeneous medium, and when observing the scattered light, a high spot-like pattern of contrast generated in space. Surface appears to be glaring. 200 hired 6836
  • the beam cross section is elliptical, and the emission intensity distribution has a Gaussian distribution. Disclosure of the invention
  • an object of the present invention is to provide a practical lighting device using a solid-state light-emitting element such as a light-emitting diode and a projection-type image display device using the same.
  • a lighting device includes: a light source in which solid-state light-emitting elements are arranged in an array; and integration means for integrating and guiding light emitted from each solid-state light-emitting element to an object to be illuminated. It is characterized by having.
  • the light sources are arranged in the form of an array of solid state light emitting elements, the amount of light can be increased, and the light emitted from each solid state light emitting element is integrated and guided to the illumination target. Therefore, it is possible to prevent an array of light and dark from being formed on the object to be illuminated.
  • a lens cell on the light emission side of the solid state light emitting device.
  • the lens cell may be integrally molded with a resin for molding each solid-state light emitting element, or may be formed separately from the mold resin and provided with a resin layer interposed between the resin and the mold resin. Good to be.
  • the lens cells have a wall surface separated from each other, and the wall surface forms a reflection surface.
  • the integrating means includes a first lens group for receiving and condensing light and a second lens group provided at a condensing point, and the lens cell transmits light from a solid state light emitting element to the first lens. May be configured to lead to groups. It is preferable that the lens cell and the first lens group are in close contact with each other. This adhesion eliminates unwanted reflection of light and improves light use efficiency.
  • the lens cell may be configured to collect light from a solid state light emitting element, and the integration means may include a lens group provided at a light collecting point of the light passing through the lens cell. According to this, the number of components can be reduced by eliminating the need for the optical components corresponding to the first lens group described above.
  • each solid-state light emitting element, each lens cell, and each lens of the lens group correspond one to one. It is preferable to provide a polarization conversion device comprising a polarization beam splitter array on the light emission side of the integration means.
  • a polarization conversion device comprising a polarization beam splitter array on the light emission side of the integration means.
  • each lens of the lens group in the above-mentioned integrator coincides or substantially coincides with the aspect ratio of the illumination object.
  • the lens cell is matched or substantially matched with an aspect ratio of an object to be illuminated.
  • the aspect ratio of each solid-state light-emitting element matches or substantially matches the aspect ratio of the illumination target.
  • an anamorphic lens is provided, and the flux ratio of the light beam guided to the anamorphic lens is different from the flux ratio of the object to be illuminated, and the flux ratio of the light beam emitted from the anamorphic lens is different.
  • the aspect ratio may be set to match or substantially match the aspect ratio of the lighting object. With such a configuration, light emitted from the solid state light emitting element can be guided to the entire surface of the object to be illuminated without waste, and the utilization efficiency of the emitted light is improved.
  • the integrator may be a rod integrator. It is preferable that the light exit surface of the rod integrator matches or substantially matches the aspect ratio of the illumination target.
  • an anamorphic lens is provided on the light exit surface side of the rod integrator, and an aspect ratio of the light exit surface of the rod integrator is different from an aspect ratio of an illumination object; The aspect ratio of the light beam emitted from the anamorphic lens may match or substantially match the aspect ratio of the illumination target.
  • the lighting device of the present invention is a light source comprising a plurality of semiconductor lasers, which are solid-state light emitting elements, an integrator for integrating and guiding light emitted from the semiconductor laser to an object to be illuminated, and the semiconductor laser. And phase shifting means for making the phases of the light emitted from the light sources non-uniform.
  • the light source since the light source includes a plurality of semiconductor lasers, the amount of light can be increased, and the laser light emitted from each semiconductor laser is integrated and guided to the object to be illuminated. It is possible to prevent light and dark corresponding to the arrangement of the semiconductor lasers from being formed on the illumination target.
  • a phase shift means for making the phases of the laser beams emitted from the semiconductor laser non-uniform is provided, speckle noise can be reduced.
  • the phase shift means may be composed of a plurality of flat plate transparent portions having different thicknesses arranged on the optical path of the light emitted from each semiconductor laser.
  • the phase shift means may be composed of a plurality of flat plate transparent portions having different dielectric constants arranged on the optical path of the light emitted from each semiconductor laser.
  • phase The shift means may be a wedge-shaped optical element arranged on the optical path of the laser light emitted from the semiconductor laser.
  • the lighting device of the present invention includes a light source having a plurality of semiconductor lasers, which are solid-state light-emitting elements, an integrating means for integrating and guiding laser light emitted from the semiconductor laser to an object to be illuminated; And a light diffusing means for diffusing the laser light emitted from the conductor laser.
  • the light source since the light source includes a plurality of semiconductor lasers, the amount of light can be increased, and the laser light emitted from each semiconductor laser is integrated into the illumination target and guided. Therefore, it is possible to prevent light and dark corresponding to the arrangement of the semiconductor laser from being formed on the illumination target.
  • speckle noise can be reduced.
  • the light diffusing means may be an optical element having minute irregularities.
  • the lighting device of the present invention includes a light source having a plurality of solid-state light-emitting elements arranged therein, and receiving light emitted from each of the solid-state light-emitting elements and integrating each of light at a plurality of positions in a light-receiving region of the solid-state light-emitting element into an illumination target. And integrated means for guiding.
  • the lighting device of the present invention includes a light source having a plurality of solid-state light-emitting elements having different emission intensity distributions arranged therein, and an integrating means for guiding light emitted from each of the solid-state light-emitting elements to an object to be illuminated. And.
  • the lighting device of the present invention includes: a light source having a plurality of solid-state light-emitting elements arrayed; intensity distribution converting means for receiving light emitted from each solid-state light-emitting element, converting an intensity distribution thereof, and emitting the light; And integrating means for guiding the light emitted from the distribution converting means to the object to be illuminated. Also in such a configuration, it is possible to increase the amount of light and to prevent the occurrence of light and dark corresponding to the arrangement of the solid-state light-emitting elements on the illumination target. Furthermore, since there is provided an intensity distribution conversion means for receiving the light emitted from each solid state light emitting element, converting the intensity distribution, and emitting the light, it is possible to average the brightness of each portion on the illumination target.
  • the lighting device of the present invention comprises: a light source having a plurality of solid state light emitting elements arranged therein; and integrating means for guiding light emitted from each of the solid state light emitting elements to an object to be illuminated with different light converging patterns. It is characterized by having. Also in this configuration, it is possible to increase the amount of light and to prevent the occurrence of light and dark corresponding to the arrangement of the solid-state light-emitting elements on the illumination target. Furthermore, since the light emitted from each solid-state light emitting element is integrated and guided to the illumination target with a different light-gathering pattern, the brightness of each portion on the illumination target can be averaged.
  • a semiconductor laser is provided as a solid-state light emitting element, an object to be illuminated is a liquid crystal display panel, and a linear polarization direction of the semiconductor laser and a polarization direction of the liquid crystal display panel are matched.
  • a semiconductor laser is provided as the solid-state light emitting element, and the elliptical longitudinal direction of the light emission coincides or substantially coincides with the longitudinal direction of the illumination target.
  • a semiconductor laser is provided as the solid-state light emitting element, and an aspect ratio of an optical element in an optical system for guiding light from the semiconductor laser to the illumination target is determined by the illumination. It is preferable that the longitudinal direction of the emission of the semiconductor laser is made to correspond to the longitudinal direction of the optical element in addition to or substantially matching the aspect ratio of the object.
  • a plurality of solid state light emitting elements are arranged in a three-dimensional manner in a mirror cylinder having one surface serving as a light emitting surface and a reflective surface inside the other surface, and the light is emitted from the solid state light emitting element.
  • the light is integrated on the reflection surface and is emitted from the light emission surface.
  • the mirror-surface cylindrical body is a rectangular cylindrical body. It is preferable that the aspect ratio of the light emission surface is made to substantially or substantially coincide with the aspect ratio of the illumination target. According to this, the light emitted from the solid-state light emitting element can be guided to the entire surface of the object to be illuminated without waste, and the utilization efficiency of the emitted light is improved.
  • the mirror-surface cylindrical body has a conical shape, and the light-emitting surface has a larger area than the surface facing the light-emitting surface. According to this, the divergence of light is suppressed, and it is possible to irradiate the generated light to the illuminated object as much as possible. Become.
  • the illumination device of the present invention is characterized in that a diffractive optical element having a collimating function or a condensing function is provided on the light emitting side of the solid state light emitting element. Further, the illumination device of the present invention is characterized in that a hologram optical element portion having a collimating function or a condensing function is provided on the light emitting side of the solid state light emitting element.
  • the lighting device of the present invention is characterized in that a plurality of solid-state light-emitting elements are arranged two-dimensionally or three-dimensionally, and a polarization conversion element is provided on the light emission side of each solid-state light-emitting element. According to this, when a liquid crystal display panel is used as an object to be illuminated, light can be effectively used, and a contribution can be made to obtaining a practical illuminating device.
  • a projection display apparatus including any one of the illumination devices described above.
  • FIG. 1 is an explanatory diagram showing an optical system of a projection display according to an embodiment of the present invention.
  • FIG. 2 is a front view showing the liquid crystal display panel.
  • Fig. 3 is an enlarged view of a part of the lighting device shown in Fig. 1, wherein Fig. 3 (a) is a front view, and Fig. 3 (b) is a cross-sectional view taken along the line CC. is there.
  • FIG. 4 is an enlarged view of a part of another lighting device according to the embodiment of the present invention.
  • FIG. 4 (a) is a front view
  • FIG. FIG. FIG. FIG. 5 is an explanatory diagram showing the operation of the lighting device shown in FIG. FIG.
  • FIG. 6 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 7 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 9 shows the present invention.
  • FIG. 2 is an explanatory diagram illustrating an optical system of the projection display apparatus according to the embodiment.
  • Fig. 12 (a) is a side view of the phase shift plate, and Fig. 12 (b) is a front view.
  • FIG. 13 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 14 is an explanatory diagram showing an optical system of the projection display apparatus according to the embodiment of the present invention.
  • FIG. 15 is an explanatory diagram showing the integration action of the lighting device of FIG.
  • FIG. 16 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 17 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 18 is an explanatory diagram of an LD chip and an ED chip in the lighting device of FIG.
  • FIG. 19 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 20 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention.
  • FIGS. 21 (a) and 21 (b) are explanatory diagrams showing an intensity distribution conversion prism used in the illumination device of FIG.
  • FIG. 22 is an explanatory diagram showing the optical system of the projection display apparatus according to the embodiment of the present invention.
  • FIG. 23 is an explanatory diagram showing an enlarged lighting device according to the embodiment of the present invention.
  • FIG. 24 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 25 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention.
  • FIG. 26 is a diagram showing another embodiment of the present invention, and is an explanatory diagram showing the relationship between the longitudinal direction of the light emitting elements and the arrangement of the polarizing beam splitters.
  • FIG. 1 is a diagram showing an optical system of a three-panel projection image display device.
  • This projection type video display device includes three lighting devices 1R, 1G, and 1B (hereinafter, when the individual lighting devices are indicated without being specified, the symbol "1" is used).
  • the illuminator 1R emits red light
  • the illuminator 1G emits green light
  • the illuminator 1B emits blue light.
  • Each liquid crystal display panel 3 includes an incident-side polarizing plate, a panel portion formed by sealing liquid crystal between a pair of glass substrates (on which a pixel electrode and an alignment film are formed), and an emitting-side polarizing plate.
  • a transmissive liquid crystal display panel a liquid crystal display panel in which a microlens is arranged in each pixel portion is known. In this embodiment, a liquid crystal display panel having no microphone port lens is used.
  • the illuminating device 1 point light source
  • using a liquid crystal display panel without a microlens improves the light use efficiency.
  • the modulated light (image light of each color) modulated by passing through the liquid crystal display panels 3 R, 3 G, and 3 B is combined by the dichroic prism 4 to become color image light.
  • This color image light is enlarged and projected by the projection lens 5 and is projected and displayed on a screen.
  • FIG. 2 is a front view showing the liquid crystal display panel 3.
  • FIG. The liquid crystal display panel 3 has an aspect ratio of horizontal A to vertical B.
  • a vs. B is, for example, 4 vs. 3 or 16 vs. 9
  • the illumination device 1 includes a light source 12 in which LED chips 11 are arranged in an array and a lens cell 14 is arranged on the light emission side of each LED chip 11, and light emitted from each LED chip 11. And a fly-eye lens pair 13 for integrating and guiding the light collimated by the lens cell 14 to the liquid crystal display panel 3.
  • the LED chips 1 1... are arranged in an array. Therefore, the amount of light can be increased.
  • the fly-eye lens pair 13 includes a pair of lens groups 13a and 13b, and each lens pair is emitted from each LED chip 11. The light is guided to the entire surface of the liquid crystal display panel 3.
  • each LED chip 11, each lens cell 14, and each lens of the lens groups 13 a, 13 b have a one-to-one correspondence.
  • a polarization converter may be provided between the fly-eye lens pair 13 and the condenser lens 2.
  • the polarization conversion device 20 is configured by a polarization beam splitter array (hereinafter, referred to as a PBS array) in which a number of polarization beam splitters 20a are arranged.
  • the PBS array includes a polarization separation film and a retardation plate (12 ⁇ plate).
  • Each polarization separation film of the PBS array allows, for example, ⁇ -polarized light of the light from the fly-eye lens pair 13 to pass, and changes the optical path of the S-polarized light by 90 °.
  • the S-polarized light whose path has been changed is reflected by the adjacent polarization splitting film and emitted as it is.
  • the ⁇ -polarized light transmitted through the polarization separation film is converted into S-polarized light by the retardation plate provided on the front side (light emission side) and emitted. That is, in this example, almost all light is converted to S-polarized light.
  • the polarizing beam splitter 20a has an elongated rectangular prism shape.
  • the longitudinal direction of the LED chip 11 (the longitudinal direction of the lens cell 14 and the lens groups 13a and 13b) is made to coincide with the longitudinal direction of the polarizing beam splitter 20a. That is, the polarizing beam splitters 18a are arranged in the short side direction of the LED chip 11, thereby improving light use efficiency.
  • FIG. 3 is an enlarged view of a part of the light source 12, and FIG. FIG. 2B is a cross-sectional view taken along the line CC of FIG. 1A.
  • the LED chips 11 are molded by a transparent resin, and the lens cells 14 are formed by forming the transparent resin in a convex shape.
  • the LED chip 11 and the lens cell 14 are formed in a rectangular shape, and furthermore, the LED chip 11 and the lens cell 14 match or almost match the aspect ratio of the liquid crystal display panel 3. It has become something. Thereby, the light emitted from the LED chip 11 can be guided to the entire surface of the liquid crystal display panel 3 without waste, and the efficiency of using the emitted light is improved.
  • the lens cell 14 has a wall surface (air gap 15) spaced apart from each other, and the wall surface forms a reflection surface.
  • the light emitted from the LED chip 11 can be prevented from being guided to the adjacent lens cell 14 by the wall surface forming the reflection surface, and the reflected light is emitted from the lens cell 14 on its own side. And light use efficiency is improved.
  • FIG. 4 shows a configuration in which a reflector 16 is disposed at a position corresponding to the air gap 15. With such a configuration in which the reflector 16 is interposed, the light use efficiency is further improved.
  • the reflector 16 may be arranged at the resin molding stage, or may be inserted into the air gap 15 after the resin molding.
  • the reflector 16 is preferably made of a metal plate (foil) having a high reflectance.
  • FIG. 6 shows a modification of the lighting device 1.
  • the lens cell 14 ′ shown in FIG. 6 is designed not to collimate the light from the chip 11 but to guide it to the center of each lens of the lens group 13 b. . With such a configuration, the number of parts can be reduced by eliminating the need for the lens group 13a.
  • Figures 7 and 8 show rod integrators as an integration method.
  • 1 shows a lighting device 1 using the same.
  • the rod integrator 18 has a light exit surface 18b larger than the light entrance surface 18a thereof, and the light entrance surface 18a of the liquid crystal display panel 3
  • the light emission surface 18 b is substantially the same size as the liquid crystal display panel 3.
  • the light of the LED chip 11 is collimated by the lens cell 14 and guided to the light incident surface 18a of the rodintegrator 18 by the condenser lens 17.
  • the light incident on the light incident surface 18a of the mouth integrator 18 is integrated and irradiated on the liquid crystal display panel 3.
  • the light incident surface 19a and the light emitting surface 19b of the mouth adder 19 shown in FIG. 8 have the same size, and the liquid crystal display panel 3 and the light source 12 have substantially the same size. ing.
  • the lens cell 14 is not formed in the light source 12 in FIG. 8, the lens cell 14 may of course be formed.
  • the lens cell 14 is formed integrally with the light source 12 using a mold resin.
  • the present invention is not limited to such a configuration, and the lens cell is made of resin or glass separately from the mold resin. It may be.
  • the refractive index of the transparent resin layer matches or approximates the refractive index of the lens cell or the mold resin.
  • Such a configuration can be applied to other embodiments including a lens cell for the printing chip 11.
  • the molded LED lamps individually manufactured may be arranged in an array to serve as a light source.
  • the outer shape of the molded LED lamp and the shape of the element portion preferably match or substantially match the shape (aspect ratio) of the liquid crystal display panel 3, and the side wall portion has a reflection. It is good to have a face.
  • the projection type image display device not only the transmission type liquid crystal display panel but also a reflection type liquid crystal display panel may be used, and instead of these liquid crystal display panels, minute mirrors serving as pixels are individually provided.
  • a driving type display panel may be used.
  • three illuminators 1 R, 1 G, and 1 B that emit light of each color are provided, an illuminator that emits white light is used.
  • each solid state light emitting element may emit white light, or a solid light emitting element that emits red light, blue light, and green light may be appropriately arranged. Good. Further, the solid-state light emitting device is not limited to a light emitting diode (LED).
  • the shape of the luminous flux guided to the liquid crystal display panel 3, which is the object to be illuminated depends on the aspect ratio of the luminous flux shape-related elements (solid-state light-emitting element, lens cell, fly-eye lens lens, rod integrator cross section).
  • the aspect ratio of the illuminating object was set to 4: 3
  • the aspect ratio of the luminous flux-related elements was set to 4: 3, but this is not a limitation.
  • the aspect ratio of the light flux shape-related element is made different from the aspect ratio of the object to be illuminated, such as 4: 4, and the luminous flux having the aspect ratio of 4: 4 is converted by an anamorphic lens.
  • FIG. 9 is a diagram showing an optical system of a three-panel projection image display device.
  • This projection-type image display device includes three lighting devices 101 R, 101 G, and 101 B (hereinafter, when the individual lighting devices are indicated without being specified, reference numeral “101” is used).
  • the lighting device 101 R emits red light
  • the lighting device 101 G emits green light
  • the lighting device 101 B emits blue light.
  • the light emitted from each lighting device 101 is guided to a liquid crystal display panel 103R, 103G, 103B for each color by a condenser lens 102 (hereinafter, individual liquids).
  • Each of the liquid crystal display panels 103 includes an incident-side polarizing plate, a panel section in which liquid crystal is sealed between a pair of glass substrates (on which a pixel electrode and an alignment film are formed), and an emitting-side polarizing plate. Be prepared.
  • the modulated light (image light of each color) modulated by passing through the liquid crystal display panels 103R, 103G, and 103B is combined by the dichroic prism 104 to become color image light. This color image light is enlarged and projected by the projection lens 105 and projected and displayed on a screen.
  • the illuminating device 101 has a light source 111 in which LD (laser diode) chips 111 are arranged in an array and a lens cell 111 is arranged on the light emitting side of each LD chip 111. And a fly-eye lens pair 113 for guiding the laser light emitted from each LD chip 111 and collimated by the lens cell 114 to the liquid crystal display panel 103. In this manner, since the LD chips 111 are arranged in an array, the amount of light can be increased.
  • LD laser diode
  • the fly-eye lens pair 113 is composed of a pair of lens groups 113a and 113b.
  • the laser light emitted from 1 is guided to the entire surface of the liquid crystal display panel 103. That is, the light emitted from the LD chip 1 1 1
  • the reflected laser light is integrated into the liquid crystal display panel 103 and guided, so that it is possible to prevent the formation of an array of light and dark on the liquid crystal display panel 103 (on the screen image). .
  • a phase shift plate 115 is provided between the fly-eye lens pair 113 and the condenser lens 102. As shown in FIGS. 11 (a) and 11 (b), the phase shift plate 115 is composed of a plurality of flat plate transparent portions arranged on the laser beam path of each LD chip 111 and having different thicknesses. Both surfaces of each flat plate are perpendicular to the optical axis. When light passes through the transparent plate, the light distance (optical distance (nxd: n is the refractive index, d is the thickness of the medium)) changes in proportion to the refractive index. Since the thickness of each transparent plate is different, the light distance (optical distance) is also different, and the phase of the laser light transmitted through each transparent plate is different.
  • each laser beam emitted from the LD chip 111 has a different phase, and the phase from each LED chip 111 superimposed on the liquid crystal display panel 103 is different. It becomes non-uniform, and it is possible to reduce speckle noise.
  • the phase shift plate 1 15 is provided between the fly-eye lens pair 1 13 and the condenser lens 102.
  • the present invention is not limited to this. What is necessary is just to arrange in any place between the liquid crystal display panels 103.
  • FIG. 12 shows the phase shift plate 1 16.
  • the phase shift plate 1 16 is composed of a plurality of flat plate transparent portions (a plurality of flat plate transparent regions) having the same thickness, as shown in FIG.
  • Each flat plate transparent portion (each flat plate transparent area) is arranged on the optical path of the laser light emitted from each LD chip 111.
  • the refractive index (the refractive index corresponds to the dielectric constant)
  • n is ⁇ ⁇ , n 1, ⁇ 2 as shown in FIG. ,..., They are different from each other.
  • Laser transparent flat plate When light is transmitted, the distance (optical distance) of the light changes in proportion to the refractive index, so that the phase of the laser light transmitted through each transparent portion of the plate becomes different.
  • the phase of the laser beam itself emitted from the LD chip 111 is the same as that of the laser beam of the other LD chip 111, although the phase of the laser beam itself is the same.
  • the phases are mutually non-uniform, and speckle noise can be reduced.
  • FIG. 13 shows a modification of the lighting device 101.
  • the illuminating device shown in FIG. 13 has a plate-shaped wedge-shaped prism 117 arranged on the optical path of the laser light emitted from the light source 112.
  • the light distance optical distance
  • the phase in the light itself changes.
  • the phases of the laser beams are different from each other. Thus, speckle noise can be reduced.
  • the speckle noise was reduced by shifting the phase of the laser light of each LD chip 111, but the speckle noise was reduced by providing light diffusion means on the optical path to diffuse the laser light. Noise can be reduced.
  • the light diffusing means ground glass or the like having fine irregularities can be used. Also, fine irregularities may be formed on the surface of the fly-eye lens pair 113 and the condenser lens 102.
  • the fly-eye lens pair is shown as the integration means, but a rod integrator may be used.
  • the LD chip is not limited to the edge emission type, but uses a surface emitting laser. It may be.
  • a structure in which a plurality of LDs are formed on a single substrate can be used.
  • the projection type image display device not only the transmission type liquid crystal display panel but also a reflection type liquid crystal display panel may be used.
  • a driving display panel may be used.
  • three illumination devices 101 R, 101 G, and 101 B that emit light of each color are provided. However, the illumination device emits white light, and the light is separated by a dichroic mirror or the like.
  • a configuration in which the light is led to a single-panel color display panel without spectral separation may be employed.
  • a configuration in which LDs that emit red light, blue light, and green light may be appropriately arranged may be used.
  • a polarization converter may be provided at a position before the condenser lens 102 or the like.
  • This polarization conversion device is constituted by a PBS array as described above.
  • FIGS. 14 to 21 a lighting device and a projection-type image display device according to a third embodiment of the present invention will be described with reference to FIGS. 14 to 21.
  • FIG. 14 is a diagram showing an optical system of a three-panel projection image display device.
  • This projection-type image display device is provided with three lighting devices 201R, 201G, and 201B. (Hereinafter, when individual lighting devices are indicated without being specified, reference numeral "201" is used. ).
  • the lighting device 201R emits red light
  • the lighting device 201G emits green light
  • the lighting device 201B emits blue light.
  • the light emitted from each lighting device 201 is guided to the liquid crystal display panels 203 R, 203 G, and 203 B for each color by the condenser lens 202 (hereinafter, individual liquid crystals).
  • Each of the liquid crystal display panels 203 includes an incident-side polarizing plate, a panel section in which liquid crystal is sealed between a pair of glass substrates (on which pixel electrodes and an alignment film are formed), and an emitting-side polarizing plate. Be prepared.
  • the modulated light (image light of each color) modulated by passing through the liquid crystal display panels 203 R, 203 G, and 203 B is combined by the dichroic prism 204 to be a single image light. This color image light is magnified and projected by the projection lens 205, and is projected and displayed on the screen.
  • the illumination device 201 includes a light source including a plurality of LD (laser diode) chips 211, a collimating lens 211 provided on the light emitting side of each LD chip 211, It consists of a fly-eye lens pair 2 13. Since the light source includes a plurality of LD chips 211,..., The light amount can be increased.
  • the fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b as shown in FIG. Lenses (lens groups) are matched. The light emitted from each D chip 211 and collimated by the collimating lens 212 is guided to the lens group at the corresponding position.
  • the light emission intensity distribution of the LD chip 211 is reflected.
  • Each of the light and dark areas is integrated into the liquid crystal display panel 203 and guided.
  • the linear polarization direction of the LD chip 211 and the linear polarization direction of the liquid crystal display panel 203 match or substantially match. Furthermore, a pair of Aspect ratio of each lens in the lens groups 2 13 a and 2 13 b, parallelism Aspect ratio of the lens 2 12, and an aspect of the light emitting section shape of the LD chip 2 11 The ratio is equal to or approximately equal to the aspect ratio of the liquid crystal display panel 203. Further, the elliptical longitudinal direction of light emission of the LD chip 211 coincides with or substantially coincides with the longitudinal direction of the liquid crystal display panel 203.
  • the light emitted from the LD chip 211 is guided to the substantially entire surface of the liquid crystal display panel 203 without waste, and the light use efficiency is improved.
  • the aspect ratio of the light flux shape-related elements solid-state light emitting element, lens cell, fly-eye lens lens, rod integrator
  • the anamorphic lens may be used to make the luminous flux coincide with or substantially coincide with the angle of the display panel.
  • one anamorphic lens is used for the entire fly-eye lens pair 2 13. I just need to prepare.
  • FIG. 16 shows a modification of the lighting device 201.
  • the light source of the illuminating device shown in FIG. 16 includes an LED (light emitting diode) chip 214 and a parabolic mirror 215.
  • a plurality of lenses correspond to one LED chip 21, and receive light emitted from each LD chip 211, and receive light at a plurality of positions in a light receiving area thereof.
  • the liquid crystal display panel 203 is integrated and guided.
  • the light exit side shape of the parabolic mirror 2 15 is formed in a substantially rectangular shape, and matches or substantially matches the aspect ratio of the liquid crystal display panel 203.
  • FIG. 17 shows a modification of the lighting device 201.
  • an LD chip and an LED chip are shown as a pair of light emitting chips having different light emission patterns (intensity distribution profiles), but the present invention is not limited to such a combination.
  • the lighting device shown in Fig. 17 is an LD
  • the chips 2 11 A ... and the LED chips 2 11 B ... are arranged in an array and the lens cells 2 16 ... are arranged on the light emitting side of each chip 2 11 A, 2 11 B.
  • a light source and a fly-eye lens pair 2 1 for integrating and guiding the light emitted from each of the chips 211 A and 211 B and collimated by the lens cell 211 to the liquid crystal display panel 203. Consists of three.
  • the lens cell 2 16 is formed in a square shape, and has a shape that matches or substantially matches the aspect ratio of the liquid crystal display panel 203.
  • the fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b, and each lens pair emits light from each chip 2 11 A and 2 11 B.
  • the LD chip 211A has a single light emitting point as shown in FIG. 18 (a), and its light intensity distribution is Gaussian distribution as shown in FIG. 18 (b).
  • the LED chip 211B has two light emitting points as shown in FIG.
  • chips may be configured and arranged so as to have many patterns such as three or four in addition to the two patterns (light intensity distribution) as described above.
  • the LD chips 211A may be arranged such that the longitudinal directions of the elliptical beam cross sections of the respective LD chips 211A.
  • FIG. 19 shows a modification of the lighting device 201.
  • the lighting devices used here use chips that have many patterns of light intensity distribution.
  • an LD chip 211A ... and an LED chip 211B are arranged in an array, and a lens cell 211 ... on a light emitting side of each chip 211A, 211B.
  • a fly-eye for integrating and guiding light emitted from each of the chips 211A and 211B and collimated by the lens cell 216 to the liquid crystal display panel 203. It consists of a lens pair 2 1 3.
  • the fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b, and each lens pair is emitted from each chip 2 11 A and 2 11 B.
  • the light is guided to the liquid crystal display panel 203.
  • the cross-sectional shape of each rectangular light beam guided to the liquid crystal display panel is the same, the intensity distribution profile of each rectangular light beam is different, and the brightness of each portion on the liquid crystal display panel 203 can be averaged.
  • FIG. 20 shows a modification of the lighting device 201.
  • the lighting device shown in FIG. 20 has a light source having a plurality of LD chips 211 arranged thereon, and receives light emitted from each LD chip 211, converts the intensity distribution thereof, and emits the light.
  • the fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b, and one LD chip 2 11 corresponds to a plurality of lenses (lens groups). .
  • the intensity distribution conversion prism 226 is composed of, for example, a plate-shaped wedge-shaped prism as shown in FIGS. 21 (a) and (b), and the laser beam of the LD chip 211 is incident from the thick side.
  • the laser light has a long and thin elliptical shape and is incident on the incident surface of the prism 226.
  • the refraction and reflection surface a reflector such as a metal is coated).
  • the light is emitted as an ellipse or circle with a reduced degree of ellipse.
  • the longitudinal direction of the ellipse preferably or substantially coincides with the longitudinal direction of the liquid crystal display panel 203.
  • the fly-eye lens pair is shown as the integration means, but a rod integrator may be used.
  • the LD chip is not limited to the edge emission type, and a surface emitting laser may be used.
  • a substrate in which a plurality of LDs are formed on a single substrate can be used.
  • the projection type image display device is not limited to the transmission type liquid crystal display panel, but may be a reflection type liquid crystal display panel, and individually drives micro mirrors serving as pixels instead of these liquid crystal display panels. Alternatively, a display panel of such a type may be used.
  • three illuminating devices 201 R, 201 G, and 201 B that emit light of each color are provided.
  • each solid state light emitting element may emit white light, or a solid light emitting element that emits red light, blue light, and green light may be appropriately arranged. .
  • a polarization converter may be provided at a position before the condenser lens 202 or the like.
  • This polarization conversion device is constituted by a PBS array as described above.
  • the invention of the third embodiment it is possible to provide a practical lighting device and a projection-type image display device using the solid-state light emitting device such as a semiconductor laser having a distribution. This has the effect.
  • FIGS. 22 to 25 a lighting device and a projection-type image display device according to an embodiment of the present invention will be described with reference to FIGS. 22 to 25.
  • FIG. 22 is a diagram showing an optical system of a three-panel projection image display device.
  • This Is equipped with three lighting devices 30 1 R, 30 1 G, and 30 1 B (hereinafter, when individual lighting devices are indicated without being specified, reference numeral “30 1” is used).
  • the lighting device 301R emits red light
  • the lighting device 301G emits blue light
  • the lighting device 301B emits blue light.
  • the light emitted from each lighting device 301 is guided to the liquid crystal display panels 303 R, 303 G, and 303 B for each color by the convex lens 302 (hereinafter, when the individual liquid crystal display panels are shown without being specified, a symbol “ 303 ").
  • Each liquid crystal display panel 303 includes an incident-side polarizing plate, a panel portion in which liquid crystal is sealed between a pair of glass substrates (on which a pixel electrode and an alignment film are formed), and an emitting-side polarizing plate. Become.
  • the modulated light (image light of each color) modulated by passing through the liquid crystal display panels 303 R, 303 G, and 303 B is combined by the dichroic prism 304 to become color image light. This color image light is enlarged and projected by the projection lens 305, and is projected and displayed on a screen.
  • the illuminating device 301 is configured by three-dimensionally arranging LEDs 311... In a mirror tube 312.
  • the mirror tube 312 has a rectangular parallelepiped shape (parallel hexahedron), one surface of which is a light emission surface and the other surface is a reflection surface.
  • the LEDs 311 are supported on one side or both sides of a transparent glass plate (not shown), for example, and the transparent glass substrates are laminated on the mirror tube 312 so that the LEDs 311 are tertiary. Will be placed in the original.
  • the wiring to each LED 311 can be formed on a transparent glass substrate.
  • the wiring portion may be covered with a reflector.
  • a portion other than the light emitting portion may be covered with a reflector.
  • the aspect ratio of the light emitting surface matches or substantially matches the aspect ratio of the liquid crystal display panel 303. According to this, light emitted from the LED 311 can be guided to the entire surface of the liquid crystal display panel 303 without waste, and the use efficiency of the emitted light is improved.
  • the above-mentioned mirror-surface cylindrical body 312 may be formed in a conical shape, and the light emitting surface may have a larger area than the surface facing the light emitting surface. According to this, it is possible to irradiate the liquid crystal display panel 303 with suppressing the divergence of light.
  • FIG. 24 shows another lighting device.
  • This illuminating device is configured by arranging LED chips 311a in an array and arranging a diffraction grating cell 313 ... for collimating light on the light emitting side of each LED chip 311a. is there. Since the LED chips 311a are arranged in an array in this manner, the amount of light can be increased.
  • the LED chips 311a... Are molded with a transparent resin, and the surface of the transparent resin is formed in an uneven shape to constitute the diffraction grating cells 311.
  • the diffraction grating cells 3 13 have wall surfaces that are separated from each other. The wall surface can be obtained by arranging a mold member at a location to be the wall surface during resin molding and removing the mold member after molding.
  • the wall surface serves as a reflection surface, which can improve light use efficiency.
  • the light emitted from the LED chip 3 "I1a is collimated by the diffraction grating cells 3 1 3..., But the light guided to an off-axis position by a normal lens is also effective. It can be used, and the light use efficiency is improved. It may be.
  • an integrator including, for example, a first fly-eye lens and a second fly-eye lens may be provided on the light emitting side of the diffraction grating cell 313.
  • the light-gathering function may be provided on the diffraction grating surface.
  • the diffraction grating surface can be configured to also have the function of the first fly-eye lens, and the number of components can be reduced.
  • a hologram surface may be formed instead of the diffraction grating surface.
  • the wall surface on which the diffraction grating surface or the hologram surface is formed may be formed as an inclined surface so that parallel light or light collection can be easily obtained.
  • a configuration may be adopted in which a lens portion formed by a curved surface and a diffraction grating surface or a hologram surface coexist.
  • a diffraction grating surface or a hologram surface may be provided in each of the molded LED lamps manufactured individually, and the LED lamps may be arranged in an array. Further, the lighting device shown in FIG. 24 may be arranged as the LED 311 of the lighting device 301 shown in FIG.
  • FIG. 25 shows another lighting device.
  • This illumination device has a configuration in which a polarization conversion device 314 is provided at the light emitting portion of the LED 331.
  • the polarization converter 314 is constituted by a pair of polarization beam splitters (hereinafter, referred to as PBS).
  • PBS polarization beam splitters
  • Each PBS is provided with a polarization separation film 314a.
  • a phase difference plate (1Z2 plate) 314b is provided on the light emission side of one PBS.
  • the polarization separation film 314a of PBS passes, for example, P-polarized light of the light emitted from the LED 311 and changes the optical path of S-polarized light by 90 °.
  • the S-polarized light whose path has been changed is reflected by the adjacent polarization splitting film 314 a and emitted as it is.
  • the P-polarized light transmitted through the polarization separation film 314a is converted into s-polarized light by the retardation plate 314b provided on the front side (light emission side) and emitted. That is, almost all light is converted to S-polarized light.
  • the retardation plate 314b provided on the front side (light emission side) and emitted. That is, almost all light is converted to S-polarized light.
  • a reflector may be provided in addition to the light entrance surface and the polarization exit surface of the LED 311.
  • a reflector reflection film
  • a display panel or the like of a type that individually drives the LCDs may be used.
  • three illumination devices 30 1 R, 30 1 G, and 30 1 B that emit light of each color are provided. A configuration may be adopted in which the display is guided to a color display panel.
  • each solid state light emitting element may emit white light, or a solid light emitting element that emits red light, blue light, and green light may be appropriately arranged.
  • Solid-state light-emitting devices are not limited to light-emitting diodes (LEDs). As described above, according to the invention of the fourth embodiment, it is possible to provide a practical illumination device using a solid-state light-emitting element such as a light-emitting diode and a projection-type image display device using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

An illuminating device (1) comprising a light source (12) consisting of LED chips (11) disposed in a array form and lens cells (14) each disposed on the light outgoing side of each LED chip (11), and a fly-eye lens pair (13) for integrating and guiding rays of light output from respective LED chips (11) and made parallel by the lens cells (14) to a liquid crystal display panel (3). The LED chips (11) and the lens cells (14) are formed in square shapes that match the aspect ratio of the liquid crystal display panel (3). The lens cells (14) are separated from each other and have a wall surface (air gap) that works as a reflection surface.

Description

明 細 書  Specification
照明装置及び投写型映像表示装置 技術分野 Illumination device and projection type video display device
この発明は、 照明装置及び投写型映像表示装置に関する。  The present invention relates to a lighting device and a projection display device.
背景技術 Background art
液晶プロジェクタなどに用いられる照明装置としては、 超高圧水銀ラ ンプ、 メタルハライ ドランプ、 キセノンランプ等のランプと、 その照射 光を平行光化するパラボラリフレクタから成るものが一般的である。 ま た、 かかる照明装置においては、 照射面の光量むらを軽減するために、 一対のフライアイレンズによるインテグレー卜機能( 光学デバイスによ リ平面内にサンプリング形成された所定形状の複数照明領域を照明対象 物上に重畳集光する機能をいう) を持たせたものがある。 更に、 近年に おいては、 軽量小型化等の観点から、 発光ダイオード (L E D ) を光源 として用いることも試みられている(特開平 1 0— 1 8 6 5 0 7号参照)。  Illumination devices used in liquid crystal projectors and the like are generally composed of lamps such as ultra-high pressure mercury lamps, metal halide lamps, xenon lamps, and parabolic reflectors that collimate the irradiation light. Further, in such an illuminating device, in order to reduce unevenness in the amount of light on the illuminated surface, an integrated function using a pair of fly-eye lenses (illuminating a plurality of illumination areas of a predetermined shape sampled and formed in a plane by an optical device). (It refers to the function of superimposing and condensing light on the target object). Furthermore, in recent years, from the viewpoint of weight reduction and miniaturization, it has been attempted to use a light emitting diode (LED) as a light source (see Japanese Patent Application Laid-Open No. 10-186507).
しかしながら、 発光ダイォードを用いて実用的な照明装置を得るには 至っていないのが実情である。  However, it has not been possible to obtain a practical lighting device using a light emitting diode.
また、 発光ダイオードに代えて半導体レーザ (L D ) を用いることが 考えられるが、 同一波長光を出射する複数の半導体レーザ (L D ) を用 いる場合においては、その位相が揃っているゆえにスペックルノイズ(レ 一ザ光のような非常に干渉性の高い光で、 粗面、 不均質媒質を照射し、 その散乱光を観察したとき、 空間に生じるコン卜ラス卜の高い斑点状の 模様。 照射面がギラついて見えてしまう) が発生するという不都合があ る。 200雇 6836 A semiconductor laser (LD) may be used instead of a light emitting diode. However, when a plurality of semiconductor lasers (LDs) that emit light of the same wavelength are used, the speckle noise is reduced because the phases are aligned. (Highly coherent light such as laser light irradiates a rough surface or heterogeneous medium, and when observing the scattered light, a high spot-like pattern of contrast generated in space. Surface appears to be glaring). 200 hired 6836
2 更に、 半導体レーザ (L D ) を用いようとする場合、 そのビーム断面 が楕円であったリ、 また、 発光強度分布がガウス分布になっているなど 不都合がある。 発明の開示 2 Furthermore, when a semiconductor laser (LD) is to be used, the beam cross section is elliptical, and the emission intensity distribution has a Gaussian distribution. Disclosure of the invention
この発明は、 上記事情に鑑み、 発光ダイオードなどの固体発光素子を 用いる実用的な照明装置及びこれを用いた投写型映像表示装置を提供す ることを目的とする。  In view of the above circumstances, an object of the present invention is to provide a practical lighting device using a solid-state light-emitting element such as a light-emitting diode and a projection-type image display device using the same.
この発明の照明装置は、 上記の課題を解決するために、 固体発光素子 がアレイ状に配置された光源と、 各固体発光素子から出射された光を照 明対象物ヘインテグレートして導くインテグレート手段と、 を備えたこ とを特徴とする。  In order to solve the above-described problems, a lighting device according to the present invention includes: a light source in which solid-state light-emitting elements are arranged in an array; and integration means for integrating and guiding light emitted from each solid-state light-emitting element to an object to be illuminated. It is characterized by having.
上記の構成であれば、 固体発光素子をァレイ状に配置した光源とする ため、 光量の増大を図ることができると共に、 各固体発光素子から出射 された光は照明対象物へインテグレートされて導かれるため、 照明対象 物上にァレイ状の明暗ができてしまうのを防止することができる。  According to the above configuration, since the light sources are arranged in the form of an array of solid state light emitting elements, the amount of light can be increased, and the light emitted from each solid state light emitting element is integrated and guided to the illumination target. Therefore, it is possible to prevent an array of light and dark from being formed on the object to be illuminated.
前記固体発光素子の光出射側にレンズセルを配置するのがよい。 前記 レンズセルを設けることによリ、 固体発光素子から出射された光の発散 を抑えた上でインテグレート手段に導くことが可能となる。 また、 前記 レンズセルは各固体発光素子をモールドする樹脂にて一体的に成型され るか又は、 前記モールド樹脂とは別個に形成され且つ当該モールド樹脂 との間に樹脂層を介在させて設けられているのがよい。 また、 前記レン ズセルは互いに離間して壁面を有し、前記壁面が反射面をなすのがよし、。 これによれば、 前記反射面をなす壁面によって固体発光素子から出射さ れた光が隣のレンズセルに導かれてしまうのを防止できると共に、 当該 反射した光を自身の側のレンズセルから出射させることができ、 光利用 効率が向上する。 また、 前記離間箇所に反射体を介在させるのがよい。 これにより、 更に光利用効率を向上させることができる。 It is preferable to arrange a lens cell on the light emission side of the solid state light emitting device. By providing the lens cell, it is possible to guide the light emitted from the solid state light emitting device to the integration means while suppressing the divergence of the light. The lens cell may be integrally molded with a resin for molding each solid-state light emitting element, or may be formed separately from the mold resin and provided with a resin layer interposed between the resin and the mold resin. Good to be. Preferably, the lens cells have a wall surface separated from each other, and the wall surface forms a reflection surface. According to this, it is possible to prevent the light emitted from the solid state light emitting element from being guided to the adjacent lens cell by the wall surface forming the reflection surface, and to emit the reflected light from the lens cell on its own side. Can use the light Efficiency is improved. In addition, it is preferable that a reflector is interposed at the space. Thereby, the light use efficiency can be further improved.
前記ィンテグレー卜手段は光を受けて集光する第 1のレンズ群と集光 点に設けられた第 2のレンズ群とから成り、 前記レンズセルは固体発光 素子からの光を前記第 1のレンズ群に導くように構成されていてもよし、。 前記レンズセルと第 1のレンズ群とが密着しているのがよい。 この密着 によって光の不所望な反射が無くなり、 光利用効率が向上する。  The integrating means includes a first lens group for receiving and condensing light and a second lens group provided at a condensing point, and the lens cell transmits light from a solid state light emitting element to the first lens. May be configured to lead to groups. It is preferable that the lens cell and the first lens group are in close contact with each other. This adhesion eliminates unwanted reflection of light and improves light use efficiency.
前記レンズセルは固体発光素子からの光を集光するように構成され、 前記ィンテグレート手段は前記レンズセルを経た光の集光点に設けられ たレンズ群を備えていてもよい。 これによれば、 前述した第 1のレンズ 群に相当する光学部品を不要にして部品点数の削減が図れる。  The lens cell may be configured to collect light from a solid state light emitting element, and the integration means may include a lens group provided at a light collecting point of the light passing through the lens cell. According to this, the number of components can be reduced by eliminating the need for the optical components corresponding to the first lens group described above.
各固体発光素子と各レンズセルとレンズ群の各レンズとが 1対 1で対 応しているのがよい。 偏光ビームスプリッタアレイから成る偏光変換装 置を、 前記インテグレート手段の光出射側に設けるのがよい。 前記偏光 変換装置を備える構成であれば、 照明対象物として液晶表示パネルを用 いる場合において、 光の有効活用が図れることになリ、 実用的な照明装 置を得ることに貢献できることになる。 特に、 前記偏光変換装置は偏光 ビームスプリッタァレイから成るので、 固体発光素子がァレイ状に配置 された光源において高い光利用効率が得られる。  It is preferable that each solid-state light emitting element, each lens cell, and each lens of the lens group correspond one to one. It is preferable to provide a polarization conversion device comprising a polarization beam splitter array on the light emission side of the integration means. With the configuration including the polarization conversion device, when a liquid crystal display panel is used as an object to be illuminated, light can be effectively used, and a practical illumination device can be obtained. In particular, since the polarization conversion device is composed of a polarization beam splitter array, high light utilization efficiency can be obtained in a light source in which solid-state light-emitting elements are arranged in an array.
前記ィン亍グレー卜手段におけるレンズ群の各レンズを照明対象物の アスペク ト比に一致又は略一致させるのがよい。 また、 前記レンズセル を照明対象物のァスぺク 卜比に一致又は略一致させるのがよい。 また、 各固体発光素子のァスぺク ト比を照明対象物のァスぺク ト比に一致又は 略一致させるのがよい。 その一方、 アナモフィックレンズを備え、 この アナモフィックレンズに導かれる光束のァスぺク ト比は照明対象物のァ スぺク 卜比と相違し、 アナモフィックレンズから出射される光束のァス ぺク 卜比が照明対象物のァスぺク ト比に一致又は略一致するようにして もよい。 これら構成であれば、 固体発光素子から出射された光を照明対 象物の全面に無駄なく導き得ることになリ、 出射光の利用効率が向上す る。 It is preferable that each lens of the lens group in the above-mentioned integrator coincides or substantially coincides with the aspect ratio of the illumination object. In addition, it is preferable that the lens cell is matched or substantially matched with an aspect ratio of an object to be illuminated. In addition, it is preferable that the aspect ratio of each solid-state light-emitting element matches or substantially matches the aspect ratio of the illumination target. On the other hand, an anamorphic lens is provided, and the flux ratio of the light beam guided to the anamorphic lens is different from the flux ratio of the object to be illuminated, and the flux ratio of the light beam emitted from the anamorphic lens is different. The aspect ratio may be set to match or substantially match the aspect ratio of the lighting object. With such a configuration, light emitted from the solid state light emitting element can be guided to the entire surface of the object to be illuminated without waste, and the utilization efficiency of the emitted light is improved.
前記ィンテグレート手段はロッ ドィンテグレータから成るものでもよ し、。 前記ロッ ドインテグレータの光出射面を照明対象物のァスぺク ト比 に一致又は略一致させるのがよい。 その一方、 前記ロッ ドインテグレー タの光出射面側にアナモフィックレンズを備え、 前記ロッ ドインテグレ 一タの光出射面のァスぺク ト比は照明対象物のァスぺク 卜比と相違し、 アナモフィックレンズから出射される光束のァスぺク 卜比が照明対象物 のァスぺク 卜比に一致又は略一致させてもよい。  The integrator may be a rod integrator. It is preferable that the light exit surface of the rod integrator matches or substantially matches the aspect ratio of the illumination target. On the other hand, an anamorphic lens is provided on the light exit surface side of the rod integrator, and an aspect ratio of the light exit surface of the rod integrator is different from an aspect ratio of an illumination object; The aspect ratio of the light beam emitted from the anamorphic lens may match or substantially match the aspect ratio of the illumination target.
また、 この発明の照明装置は、 固体発光素子である半導体レーザを複 数配列してなる光源と、 前記半導体レーザから出射された光を照明対象 物ヘインテグレートして導くィンテグレート手段と、 前記半導体レーザ から出射された光の位相を互いに不均一にする位相シフト手段と、 を備 えたことを特徴とする。 上記の構成であれば、 半導体レーザを複数配置 した光源とするため、 光量の増大を図ることができると共に、 各半導体 レーザから出射されたレーザー光は照明対象物ヘインテグレー卜されて 導かれるため、 照明対象物上に半導体レーザ配置に対応した明暗ができ てしまうのを防止することができる。 更に、 半導体レーザから出射され たレーザー光の位相を互いに不均一にする位相シフ卜手段を備えたので、 スペックルノイズを低減することができる。  Further, the lighting device of the present invention is a light source comprising a plurality of semiconductor lasers, which are solid-state light emitting elements, an integrator for integrating and guiding light emitted from the semiconductor laser to an object to be illuminated, and the semiconductor laser. And phase shifting means for making the phases of the light emitted from the light sources non-uniform. With the above configuration, since the light source includes a plurality of semiconductor lasers, the amount of light can be increased, and the laser light emitted from each semiconductor laser is integrated and guided to the object to be illuminated. It is possible to prevent light and dark corresponding to the arrangement of the semiconductor lasers from being formed on the illumination target. Furthermore, since a phase shift means for making the phases of the laser beams emitted from the semiconductor laser non-uniform is provided, speckle noise can be reduced.
位相シフト手段は、 各半導体レーザから出射された光の光路上に配置 された互いに厚みが異なる複数の平板透明部から成るものでもよい。 位 相シフト手段は、 各半導体レーザから出射された光の光路上に配置され た互いに誘電率が異なる複数の平板透明部から成るものでもよい。 位相 シフ 卜手段は、 前記半導体レーザから出射されたレーザー光の光路上に 配置された楔状光学素子であってもよい。 The phase shift means may be composed of a plurality of flat plate transparent portions having different thicknesses arranged on the optical path of the light emitted from each semiconductor laser. The phase shift means may be composed of a plurality of flat plate transparent portions having different dielectric constants arranged on the optical path of the light emitted from each semiconductor laser. phase The shift means may be a wedge-shaped optical element arranged on the optical path of the laser light emitted from the semiconductor laser.
また、 この発明の照明装置は、 固体発光素子である半導体レーザを複 数配列してなる光源と、 前記半導体レーザから出射されたレーザー光を 照明対象物へインテグレートして導くインテグレート手段と、 前記半導 体レーザから出射されたレーザー光を拡散させる光拡散手段と、 を備え たことを特徴とする。 上記の構成であれば、 半導体レーザを複数配置し た光源とするため、 光量の増大を図ることができると共に、 各半導体レ —ザから出射されたレーザー光は照明対象物ヘインテグレー卜されて導 かれるため、 照明対象物上に半導体レーザ配置に対応した明暗ができて しまうのを防止することができる。 更に、 半導体レーザから出射された レーザー光を拡散させる光拡散手段を備えたので、 スペックルノイズを 低減することができる。 光拡散手段は微小凹凸を有する光学素子であつ てもよい。  Further, the lighting device of the present invention includes a light source having a plurality of semiconductor lasers, which are solid-state light-emitting elements, an integrating means for integrating and guiding laser light emitted from the semiconductor laser to an object to be illuminated; And a light diffusing means for diffusing the laser light emitted from the conductor laser. With the above configuration, since the light source includes a plurality of semiconductor lasers, the amount of light can be increased, and the laser light emitted from each semiconductor laser is integrated into the illumination target and guided. Therefore, it is possible to prevent light and dark corresponding to the arrangement of the semiconductor laser from being formed on the illumination target. Furthermore, since a light diffusing means for diffusing laser light emitted from the semiconductor laser is provided, speckle noise can be reduced. The light diffusing means may be an optical element having minute irregularities.
また、 この発明の照明装置は、 固体発光素子を複数配列してなる光源 と、 各固体発光素子から出射された光を受けてその受光領域の複数箇所 の光の各々について照明対象物ヘインテグレートして導くィンテグレー ト手段と、 を備えたことを特徴とする。 上記の構成であれば、 固体発光 素子を複数配置した光源とするため、 光量の増大を図ることができると 共に、 各固体発光素子から出射された光は照明対象物へインテグレート されて導かれるため、 照明対象物上に固体発光素子配置に対応した明暗 ができてしまうのを防止することができる。 更に、 固体発光素子に発光 強度分布が存在しても、 各固体発光素子から出射された光を受けてその 受光領域の複数箇所の光の各々について照明対象物ヘインテグレー卜し て導くので、 発光強度分布の分散化が行なわれ、 照明対象物上での各箇 所の明るさを平均化することができる。 また、 この発明の照明装置は、 互いに発光強度分布が相違する複数の 固体発光素子を配列してなる光源と、 各固体発光素子から出射された光 を照明対象物ヘインテグレートして導くィンテグレー卜手段と、 を備え たことを特徴とする。 かかる構成においても、 光量増大が図れると共に 照明対象物上での固体発光素子配置に対応した明暗の発生を防止できる。 更に、 互いに発光強度分布が相違する複数の固体発光素子を配列してな るので、 照明対象物上での各箇所の明るさを平均化することができる。 上記構成において、 2点発光の発光ダイォードから成る固体発光素子と 半導体レーザから成る固体発光素子とを混在させてもよい。 In addition, the lighting device of the present invention includes a light source having a plurality of solid-state light-emitting elements arranged therein, and receiving light emitted from each of the solid-state light-emitting elements and integrating each of light at a plurality of positions in a light-receiving region of the solid-state light-emitting element into an illumination target. And integrated means for guiding. With the above configuration, since the light source has a plurality of solid state light emitting elements, the light amount can be increased, and the light emitted from each solid state light emitting element is integrated and guided to the illumination target. In addition, it is possible to prevent light and dark corresponding to the arrangement of the solid-state light emitting elements from being formed on the illumination target. Furthermore, even if the solid-state light-emitting element has a light-emission intensity distribution, light emitted from each solid-state light-emitting element is received, and light at a plurality of positions in the light-receiving region is integrated and guided to an object to be illuminated. The distribution of the intensity distribution is performed, and the brightness at each location on the illumination target can be averaged. In addition, the lighting device of the present invention includes a light source having a plurality of solid-state light-emitting elements having different emission intensity distributions arranged therein, and an integrating means for guiding light emitted from each of the solid-state light-emitting elements to an object to be illuminated. And. Also in such a configuration, it is possible to increase the amount of light and to prevent the occurrence of light and dark corresponding to the arrangement of the solid state light emitting elements on the illumination target. Further, since a plurality of solid state light emitting elements having different emission intensity distributions are arranged, the brightness of each portion on the illumination target can be averaged. In the above configuration, a solid state light emitting device composed of a two-point light emitting diode and a solid state light emitting device composed of a semiconductor laser may be mixed.
また、 この発明の照明装置は、 固体発光素子を複数配列してなる光源 と、 各固体発光素子から出射された光を受けてその強度分布を変換して 出射する強度分布変換手段と、 各強度分布変換手段から出射された光を 照明対象物ヘインテグレー卜して導くインテグレート手段と、 を備えた ことを特徴とする。 かかる構成においても、 光量増大が図れると共に照 明対象物上での固体発光素子配置に対応した明暗の発生を防止できる。 更に、 各固体発光素子から出射された光を受けてその強度分布を変換し て出射する強度分布変換手段を備えるので、 照明対象物上での各箇所の 明るさを平均化することができる。  In addition, the lighting device of the present invention includes: a light source having a plurality of solid-state light-emitting elements arrayed; intensity distribution converting means for receiving light emitted from each solid-state light-emitting element, converting an intensity distribution thereof, and emitting the light; And integrating means for guiding the light emitted from the distribution converting means to the object to be illuminated. Also in such a configuration, it is possible to increase the amount of light and to prevent the occurrence of light and dark corresponding to the arrangement of the solid-state light-emitting elements on the illumination target. Furthermore, since there is provided an intensity distribution conversion means for receiving the light emitted from each solid state light emitting element, converting the intensity distribution, and emitting the light, it is possible to average the brightness of each portion on the illumination target.
また、 この発明の照明装置は、 固体発光素子を複数配列してなる光源 と、 各固体発光素子から出射された光を照明対象物へ互いに異なる集光 パターンでィンテグレー卜して導くィンテグレー卜手段と、 を備えたこ とを特徴とする。 かかる構成においても、 光量増大が図れると共に照明 対象物上での固体発光素子配置に対応した明暗の発生を防止できる。 更 に、 各固体発光素子から出射された光を照明対象物へ互いに異なる集光 パターンでインテグレートして導くので、 照明対象物上での各箇所の明 るさを平均化することができる。 これら構成の照明装置において、 固体発光素子として半導体レーザを 備え、 照明対象物を液晶表示パネルとし、 半導体レーザの直線偏光方向 と液晶表示パネルの偏光方向とを対応させるのがよい。 Further, the lighting device of the present invention comprises: a light source having a plurality of solid state light emitting elements arranged therein; and integrating means for guiding light emitted from each of the solid state light emitting elements to an object to be illuminated with different light converging patterns. It is characterized by having. Also in this configuration, it is possible to increase the amount of light and to prevent the occurrence of light and dark corresponding to the arrangement of the solid-state light-emitting elements on the illumination target. Furthermore, since the light emitted from each solid-state light emitting element is integrated and guided to the illumination target with a different light-gathering pattern, the brightness of each portion on the illumination target can be averaged. In the illuminating device having such a configuration, it is preferable that a semiconductor laser is provided as a solid-state light emitting element, an object to be illuminated is a liquid crystal display panel, and a linear polarization direction of the semiconductor laser and a polarization direction of the liquid crystal display panel are matched.
また、 これら構成の照明装置において、 固体発光素子として半導体レ 一ザを備え、 その発光の楕円長手方向を照明対象物の長手方向に一致又 は略一致させるのがよい。  Further, in the lighting device having the above configuration, it is preferable that a semiconductor laser is provided as the solid-state light emitting element, and the elliptical longitudinal direction of the light emission coincides or substantially coincides with the longitudinal direction of the illumination target.
また、 これら構成の照明装置において、 前記固体発光素子として半導 体レーザを備え、 この半導体レーザからの光を前記照明対象物に導く光 学系における光学素子のァスぺク ト比を前記照明対象物のァスぺク ト比 に一致又は略一致させると共に、 前記半導体レーザの発光の楕円長手方 向を前記光学素子の長手方向に対応させるのがよい。  Further, in the illuminating device having the above configuration, a semiconductor laser is provided as the solid-state light emitting element, and an aspect ratio of an optical element in an optical system for guiding light from the semiconductor laser to the illumination target is determined by the illumination. It is preferable that the longitudinal direction of the emission of the semiconductor laser is made to correspond to the longitudinal direction of the optical element in addition to or substantially matching the aspect ratio of the object.
また、 この発明の照明装置は、 一面が光出射面とされ、 他の面の内側 を反射面とした鏡面筒体内に固体発光素子を三次元に複数配置し、 前記 固体発光素子から出射された光が前記反射面にてィン亍グレー卜されて 前記光出射面から出射されるように構成されたことを特徴とする。 上記 の構成であれば、 固体発光素子を三次元に複数配置するため、 光量の増 大を図ることができると共に、 各固体発光素子から出射された光は鏡面 筒体内で反射し、 ィンテグレー卜されて光出射面から出射されるため、 照明対象物上に固体発光素子の配置に対応した明暗ができてしまうのを 防止することができる。 前記鏡面筒体は角筒体を成すのがよい。 前記光 出射面のァスぺク ト比を照明対象物のァスぺク 卜比に一致又は略一致さ せるのがよい。 これによれば、 固体発光素子から出射された光を照明対 象物の全面に無駄なく導き得ることになリ、 出射光の利用効率が向上す る。 前記鏡面筒体は錐形状をなし、 前記光出射面に対面する面よりも、 前記光出射面の方が大面積とされるのがよい。 これによれば、 光の発散 が抑制され、 生成された光を極力、 照明対象物に照射することが可能に なる。 Also, in the lighting device of the present invention, a plurality of solid state light emitting elements are arranged in a three-dimensional manner in a mirror cylinder having one surface serving as a light emitting surface and a reflective surface inside the other surface, and the light is emitted from the solid state light emitting element. The light is integrated on the reflection surface and is emitted from the light emission surface. With the above configuration, since a plurality of solid state light emitting devices are arranged three-dimensionally, the amount of light can be increased, and the light emitted from each solid state light emitting device is reflected inside the mirror cylinder and integrated. As a result, light is emitted from the light exit surface, so that it is possible to prevent light and dark corresponding to the arrangement of the solid state light emitting elements from being formed on the illumination target. Preferably, the mirror-surface cylindrical body is a rectangular cylindrical body. It is preferable that the aspect ratio of the light emission surface is made to substantially or substantially coincide with the aspect ratio of the illumination target. According to this, the light emitted from the solid-state light emitting element can be guided to the entire surface of the object to be illuminated without waste, and the utilization efficiency of the emitted light is improved. Preferably, the mirror-surface cylindrical body has a conical shape, and the light-emitting surface has a larger area than the surface facing the light-emitting surface. According to this, the divergence of light is suppressed, and it is possible to irradiate the generated light to the illuminated object as much as possible. Become.
また、 この発明の照明装置は、 固体発光素子の光出射側に平行化機能 又は集光機能を持つ回折光学素子部を備えたことを特徴とする。 また、 この発明の照明装置は、 固体発光素子の光出射側に平行化機能又は集光 機能を持つホログラム光学素子部を備えたことを特徴とする。 これらの 構成であれば、 通常レンズでは軸外となる箇所に導かれる光をも有効利 用できることになリ、 実用的な照明装置を得ることに貢献できることに なる。  Further, the illumination device of the present invention is characterized in that a diffractive optical element having a collimating function or a condensing function is provided on the light emitting side of the solid state light emitting element. Further, the illumination device of the present invention is characterized in that a hologram optical element portion having a collimating function or a condensing function is provided on the light emitting side of the solid state light emitting element. With these configurations, it is possible to effectively use the light guided to an off-axis position in a normal lens, and to contribute to obtaining a practical lighting device.
また、 この発明の照明装置は、 固体発光素子を二次元又は三次元に複 数配置すると共に各固体発光素子の光出射側に偏光変換素子を設けたこ とを特徴とする。 これによれば、 照明対象物として液晶表示パネルを用 いる場合において、 光の有効活用が図れることになリ、 実用的な照明装 置を得ることに貢献できることになる。  Further, the lighting device of the present invention is characterized in that a plurality of solid-state light-emitting elements are arranged two-dimensionally or three-dimensionally, and a polarization conversion element is provided on the light emission side of each solid-state light-emitting element. According to this, when a liquid crystal display panel is used as an object to be illuminated, light can be effectively used, and a contribution can be made to obtaining a practical illuminating device.
また、 この発明の投写型映像表示装置は、 上述したいずれかの照明装 置を備えたことを特徴とする。  According to another aspect of the invention, there is provided a projection display apparatus including any one of the illumination devices described above.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 はこの発明の実施形態の投写型映像表示装置の光学系を示した説 明図である。 図 2は液晶表示パネルを示した正面図である。 図 3は図 1 に示した照明装置の一部を拡大して示した図であって、 同図 (a ) は正 面図であり、 同図 ( b ) は C— C矢視断面図である。 図 4はこの発明の 実施形態の他の照明装置の一部を拡大して示した図であって、 同図(a ) は正面図であり、 同図 (b ) は C一 C矢視断面図である。 図 5は図 1 に 示した照明装置の作用を示した説明図である。 図 6はこの発明の他の実 施形態の照明装置の作用を示した説明図である。 図 7はこの発明の他の 実施形態の照明装置の作用を示した説明図である。 図 8はこの発明の他 の実施形態の照明装置の作用を示した説明図である。 図 9はこの発明の 実施形態の投写型映像表示装置の光学系を示した説明図である。 図 1 0 は 図 9の照明装置によるインテグレー卜作用を示した説明図である。 図 1 1 ( a ) は位相シフト板の側面図であり、 同図 (b ) は正面図であ る。 図 1 2 ( a ) は位相シフ卜板の側面図であり、 同図 ( b ) は正面図 である。 図 1 3はこの発明の他の実施形態の照明装置の作用を示した説 明図である。 図 1 4はこの発明の実施形態の投写型映像表示装置の光学 系を示した説明図である。 図 1 5は図 1 4の照明装置によるインテグレ 一卜作用を示した説明図である。 図 1 6はこの発明の他の実施形態の照 明装置の作用を示した説明図である。 図 1 7はこの発明の他の実施形態 の照明装置の作用を示した説明図である。 図 1 8は図 1 7の照明装置に おける L Dチップ及びし E Dチップの説明図である。 図 1 9はこの発明 の他の実施形態の照明装置の作用を示した説明図である。 図 2 0はこの 発明の他の実施形態の照明装置の作用を示した説明図である。 図 2 1 ( a ) ( b )は図 2 0の照明装置で用いた強度分布変換プリズムを示した 説明図である。 図 2 2はこの発明の実施形態の投写型映像表示装置の光 学系を示した説明図である。 図 2 3はこの発明の実施形態の照明装置を 拡大して示した説明図である。 図 2 4はこの発明の他の実施形態の照明 装置の作用を示した説明図である。 図 2 5はこの発明の他の実施形態の 照明装置の作用を示した説明図である。 図 2 6はこの発明の他の実施形 態を示した図であって、 発光素子の長手方向と偏光ビームスプリッタの 並びとの関係を示した説明図である。 発明を実施するための最良の形態 FIG. 1 is an explanatory diagram showing an optical system of a projection display according to an embodiment of the present invention. FIG. 2 is a front view showing the liquid crystal display panel. Fig. 3 is an enlarged view of a part of the lighting device shown in Fig. 1, wherein Fig. 3 (a) is a front view, and Fig. 3 (b) is a cross-sectional view taken along the line CC. is there. FIG. 4 is an enlarged view of a part of another lighting device according to the embodiment of the present invention. FIG. 4 (a) is a front view, and FIG. FIG. FIG. 5 is an explanatory diagram showing the operation of the lighting device shown in FIG. FIG. 6 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention. FIG. 7 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention. FIG. 8 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention. FIG. 9 shows the present invention. FIG. 2 is an explanatory diagram illustrating an optical system of the projection display apparatus according to the embodiment. FIG. 10 is an explanatory diagram showing the integration action of the lighting device of FIG. Fig. 11 (a) is a side view of the phase shift plate, and Fig. 11 (b) is a front view. Fig. 12 (a) is a side view of the phase shift plate, and Fig. 12 (b) is a front view. FIG. 13 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention. FIG. 14 is an explanatory diagram showing an optical system of the projection display apparatus according to the embodiment of the present invention. FIG. 15 is an explanatory diagram showing the integration action of the lighting device of FIG. FIG. 16 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention. FIG. 17 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention. FIG. 18 is an explanatory diagram of an LD chip and an ED chip in the lighting device of FIG. FIG. 19 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention. FIG. 20 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention. FIGS. 21 (a) and 21 (b) are explanatory diagrams showing an intensity distribution conversion prism used in the illumination device of FIG. FIG. 22 is an explanatory diagram showing the optical system of the projection display apparatus according to the embodiment of the present invention. FIG. 23 is an explanatory diagram showing an enlarged lighting device according to the embodiment of the present invention. FIG. 24 is an explanatory view showing the operation of a lighting device according to another embodiment of the present invention. FIG. 25 is an explanatory diagram showing the operation of a lighting device according to another embodiment of the present invention. FIG. 26 is a diagram showing another embodiment of the present invention, and is an explanatory diagram showing the relationship between the longitudinal direction of the light emitting elements and the arrangement of the polarizing beam splitters. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
以下、 この発明の実施例の照明装置及び投写型映像表示装置を図 1乃 至図 8及び図 2 6に基づいて説明していく。 図 1 は 3板式の投写型映像表示装置の光学系を示した図である。 この 投写型映像表示装置は 3つの照明装置 1 R, 1 G , 1 Bを備える(以下、 個々の照明装置を特定しないで示すときには、 符号" 1 " を用いる)。 照 明装置 1 Rは赤色光を出射し、 照明装置 1 Gは緑色光を出射し、 照明装 置 1 Bは青色光を出射する。 各照明装置 1から出射された光は、 凸レン ズ 2によって各色用の透過型の液晶表示パネル 3 R , 3 G , 3 Bに導か れる (以下、 個々の液晶表示パネルを特定しないで示すときには、 符号" 3 " を用いる)。 各液晶表示パネル 3は、 入射側偏光板と、 一対のガラス 基板 (画素電極や配向膜を形成してある) 間に液晶を封入して成るパネ ル部と、 出射側偏光板とを備えて成る。 透過型の液晶表示パネルとして は、 各画素部分にマイクロレンズを配置したものが知られているが、 こ の実施例では、マイク口レンズを有しない液晶表示パネルを用いている。 照明装置 1 (点光源) を用いる構成では、 マイクロレンズを有しない液 晶表示パネルを用いる方が光利用効率が向上する。液晶表示パネル 3 R , 3 G , 3 Bを経ることで変調された変調光 (各色映像光) は、 ダイク口 ィックプリズム 4によって合成されてカラー映像光となる。 このカラー 映像光は、 投写レンズ 5によって拡大投写され、 スクリーン上に投影表 示される。 Hereinafter, a lighting device and a projection type video display device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 8 and FIG. FIG. 1 is a diagram showing an optical system of a three-panel projection image display device. This projection type video display device includes three lighting devices 1R, 1G, and 1B (hereinafter, when the individual lighting devices are indicated without being specified, the symbol "1" is used). The illuminator 1R emits red light, the illuminator 1G emits green light, and the illuminator 1B emits blue light. Light emitted from each lighting device 1 is guided to the transmissive liquid crystal display panels 3 R, 3 G, and 3 B for each color by the convex lens 2 (hereinafter, when individual liquid crystal display panels are shown without being specified, , The sign "3" is used). Each liquid crystal display panel 3 includes an incident-side polarizing plate, a panel portion formed by sealing liquid crystal between a pair of glass substrates (on which a pixel electrode and an alignment film are formed), and an emitting-side polarizing plate. Become. As a transmissive liquid crystal display panel, a liquid crystal display panel in which a microlens is arranged in each pixel portion is known. In this embodiment, a liquid crystal display panel having no microphone port lens is used. In the configuration using the illuminating device 1 (point light source), using a liquid crystal display panel without a microlens improves the light use efficiency. The modulated light (image light of each color) modulated by passing through the liquid crystal display panels 3 R, 3 G, and 3 B is combined by the dichroic prism 4 to become color image light. This color image light is enlarged and projected by the projection lens 5 and is projected and displayed on a screen.
図 2は液晶表示パネル 3を示した正面図である。液晶表示パネル 3は、 横 A対縦 Bのアスペク ト比を有する。 A対 Bは例えば 4対 3や 1 6対 9 である。  FIG. 2 is a front view showing the liquid crystal display panel 3. FIG. The liquid crystal display panel 3 has an aspect ratio of horizontal A to vertical B. A vs. B is, for example, 4 vs. 3 or 16 vs. 9
照明装置 1 は、 L E Dチップ 1 1…がァレイ状に配置され且つ各 L E Dチップ 1 1の光出射側にレンズセル 1 4…を配置して成る光源 1 2と、 各 L E Dチップ 1 1から出射されて前記レンズセル 1 4にて平行化され た光を液晶表示パネル 3ヘインテグレートして導くフライアイレンズ対 1 3とから成る。 このように、 L E Dチップ 1 1 …をァレイ状に配置す るため、 光量の増大を図ることができる。 フライアイレンズ対 1 3は、 図 5にも示しているように、 一対のレンズ群 1 3 a, 1 3 bにて構成さ れており、 個々のレンズ対が各 L E Dチップ 1 1から出射された光を液 晶表示パネル 3の全面へ導くようになつている。 すなわち、 L E Dチッ プ 1 1から出射された光は液晶表示パネル 3ヘインテグレートされて導 かれることになるため、 液晶表示パネル 3上 (スクリーンの映像上) に アレイ状の明暗ができてしまうのを防止することができる。 特に、 上記 の例では、 各 L E Dチップ 1 1 と各レンズセル 1 4とレンズ群 1 3 a , 1 3 bの各レンズとを 1対 1で対応させている。 The illumination device 1 includes a light source 12 in which LED chips 11 are arranged in an array and a lens cell 14 is arranged on the light emission side of each LED chip 11, and light emitted from each LED chip 11. And a fly-eye lens pair 13 for integrating and guiding the light collimated by the lens cell 14 to the liquid crystal display panel 3. Thus, the LED chips 1 1… are arranged in an array. Therefore, the amount of light can be increased. As shown in FIG. 5, the fly-eye lens pair 13 includes a pair of lens groups 13a and 13b, and each lens pair is emitted from each LED chip 11. The light is guided to the entire surface of the liquid crystal display panel 3. In other words, the light emitted from the LED chip 11 is integrated into the liquid crystal display panel 3 and guided, so that an array of light and dark is formed on the liquid crystal display panel 3 (on the screen image). Can be prevented. In particular, in the above example, each LED chip 11, each lens cell 14, and each lens of the lens groups 13 a, 13 b have a one-to-one correspondence.
フライアイレンズ対 1 3と集光レンズ 2との間に偏光変換装置を設け ておいても'よい。 図 26に示すように、 偏光変換装置 20は、 偏光ビ一 ムスプリッタ 20 aを多数並べて成る偏光ビームスプリッタアレイ (以 下、 P B Sアレイと称する) によって構成される。 P B Sアレイは、 偏 光分離膜と位相差板 ( 1 2 λ板) とを備える。 P B Sアレイの各偏光 分離膜は、 フライアイレンズ対 1 3からの光のうち例えば Ρ偏光を通過 させ、 S偏光を 90° 光路変更する。 光路変更された S偏光は隣接の偏 光分離膜にて反射されてそのまま出射される。 一方、 偏光分離膜を透過 した Ρ偏光はその前側 (光出射側) に設けてある前記位相差板によって S偏光に変換されて出射される。 すなわち、 この例では、 ほぼ全ての光 は S偏光に変換される。 前記偏光ビームスプリッタ 20 aは細長い四角 柱形状を有する。 この実施例では、 L E Dチップ 1 1 の長手方向 (レン ズセル 1 4、 レンズ群 1 3 a, 1 3 bの長手方向) と前記偏光ビームス プリッタ 20 aの長手方向とを一致させている。 すなわち、 前記偏光ビ 一ムスプリッタ 1 8 aを L E Dチップ 1 1の短辺方向に並べており、 こ れにより、 光の利用効率が向上する。  A polarization converter may be provided between the fly-eye lens pair 13 and the condenser lens 2. As shown in FIG. 26, the polarization conversion device 20 is configured by a polarization beam splitter array (hereinafter, referred to as a PBS array) in which a number of polarization beam splitters 20a are arranged. The PBS array includes a polarization separation film and a retardation plate (12λ plate). Each polarization separation film of the PBS array allows, for example, Ρ-polarized light of the light from the fly-eye lens pair 13 to pass, and changes the optical path of the S-polarized light by 90 °. The S-polarized light whose path has been changed is reflected by the adjacent polarization splitting film and emitted as it is. On the other hand, the Ρ-polarized light transmitted through the polarization separation film is converted into S-polarized light by the retardation plate provided on the front side (light emission side) and emitted. That is, in this example, almost all light is converted to S-polarized light. The polarizing beam splitter 20a has an elongated rectangular prism shape. In this embodiment, the longitudinal direction of the LED chip 11 (the longitudinal direction of the lens cell 14 and the lens groups 13a and 13b) is made to coincide with the longitudinal direction of the polarizing beam splitter 20a. That is, the polarizing beam splitters 18a are arranged in the short side direction of the LED chip 11, thereby improving light use efficiency.
図 3は、 光源 1 2の一部を拡大して示した図であり、 同図 ( a ) は平 面図であり、 同図 (b ) は同図 (a ) の C— C矢視断面図である。 L E Dチップ 1 1…は透明樹脂によりモールドされており、 この透明樹脂が 凸状に形成されたことで前記レンズセル 1 4…を構成している。 L E D チップ 1 1及びレンズセル 1 4は、 図 3 ( a ) に示しているように、 方 形状に形成されており、 更に、 液晶表示パネル 3のァスぺク 卜比に一致 又は略一致したものとなっている。 これにより、 L E Dチップ 1 1から 出射された光を液晶表示パネル 3の全面に無駄なく導くことができ、 出 射光の利用効率が向上する。 FIG. 3 is an enlarged view of a part of the light source 12, and FIG. FIG. 2B is a cross-sectional view taken along the line CC of FIG. 1A. The LED chips 11 are molded by a transparent resin, and the lens cells 14 are formed by forming the transparent resin in a convex shape. As shown in FIG. 3A, the LED chip 11 and the lens cell 14 are formed in a rectangular shape, and furthermore, the LED chip 11 and the lens cell 14 match or almost match the aspect ratio of the liquid crystal display panel 3. It has become something. Thereby, the light emitted from the LED chip 11 can be guided to the entire surface of the liquid crystal display panel 3 without waste, and the efficiency of using the emitted light is improved.
また、 レンズセル 1 4は、 図 3 ( b ) に示しているように、 互いに離 間して壁面 (空気ギャップ 1 5 ) を有し、 前記壁面が反射面をなしてい る。 前記反射面をなす壁面によって L E Dチップ 1 1から出射された光 が隣のレンズセル 1 4に導かれてしまうのを防止できると共に、 当該反 射した光を自身の側のレンズセル 1 4から出射させることができ、 光利 用効率が向上する。  Further, as shown in FIG. 3 (b), the lens cell 14 has a wall surface (air gap 15) spaced apart from each other, and the wall surface forms a reflection surface. The light emitted from the LED chip 11 can be prevented from being guided to the adjacent lens cell 14 by the wall surface forming the reflection surface, and the reflected light is emitted from the lens cell 14 on its own side. And light use efficiency is improved.
図 4には、 前記空気ギャップ 1 5に対応する箇所に反射体 1 6を配置 した構成を示している。 このように反射体 1 6を介在させる構成であれ ば、 更に光利用効率が向上する。 反射体 1 6は、 樹脂モールドの段階で 配置しておくこととしてもよいし、 樹脂モールド後に前記空気ギャップ 1 5に挿入していくこととしてもよい。 反射体 1 6は高反射率を有する 金属板 (箔) 等を用いるのがよい。  FIG. 4 shows a configuration in which a reflector 16 is disposed at a position corresponding to the air gap 15. With such a configuration in which the reflector 16 is interposed, the light use efficiency is further improved. The reflector 16 may be arranged at the resin molding stage, or may be inserted into the air gap 15 after the resin molding. The reflector 16 is preferably made of a metal plate (foil) having a high reflectance.
図 6には、 照明装置 1の変形例を示している。 この図 6に示している レンズセル 1 4 ' は、 し £ 0チップ1 1からの光を平行化するのではな く、 レンズ群 1 3 bの各レンズの中心に導くように設計されている。 か かる構成であれば、 レンズ群 1 3 aを不要にして部品点数の削減が図れ る。  FIG. 6 shows a modification of the lighting device 1. The lens cell 14 ′ shown in FIG. 6 is designed not to collimate the light from the chip 11 but to guide it to the center of each lens of the lens group 13 b. . With such a configuration, the number of parts can be reduced by eliminating the need for the lens group 13a.
図 7及び図 8には、 インテグレート手段としてロッ ドインテグレータ を用いた照明装置 1 を示している。 図 7に示す構成において、 ロッ ドィ ンテグレータ 1 8は、 その光入射面 1 8 aよりも光出射面 1 8 bの方が 大きくされており、 光入射面 1 8 aは液晶表示パネル 3のァスぺク ト比 に一致又は略一致し、 光出射面 1 8 bは液晶表示パネル 3と略同じ大き さとなつている。 L E Dチップ 1 1の光はレンズセル 1 4によって平行 化され、 集光レンズ 1 7によってロッ ドィンテグレータ 1 8の光入射面 1 8 aに導かれる。 口ッ ドィンテグレータ 1 8の光入射面 1 8 aに入射 した光はィンテグレー卜されて液晶表示パネル 3に照射される。 図 8に 示している口ッ ドィンテグレータ 1 9は、 その光入射面 1 9 a及び光出 射面 1 9 bが同じ大きさとされ、 且つ、 液晶表示パネル 3及び光源 1 2 とも略同じ大きさとなっている。 なお、 図 8では光源 1 2にレンズセル 1 4を形成していないが、 レンズセル 1 4は勿論形成してもよい。 Figures 7 and 8 show rod integrators as an integration method. 1 shows a lighting device 1 using the same. In the configuration shown in FIG. 7, the rod integrator 18 has a light exit surface 18b larger than the light entrance surface 18a thereof, and the light entrance surface 18a of the liquid crystal display panel 3 The light emission surface 18 b is substantially the same size as the liquid crystal display panel 3. The light of the LED chip 11 is collimated by the lens cell 14 and guided to the light incident surface 18a of the rodintegrator 18 by the condenser lens 17. The light incident on the light incident surface 18a of the mouth integrator 18 is integrated and irradiated on the liquid crystal display panel 3. The light incident surface 19a and the light emitting surface 19b of the mouth adder 19 shown in FIG. 8 have the same size, and the liquid crystal display panel 3 and the light source 12 have substantially the same size. ing. Although the lens cell 14 is not formed in the light source 12 in FIG. 8, the lens cell 14 may of course be formed.
なお、 以上の説明においては、 レンズセル 1 4はモールド樹脂により 光源 1 2において一体的に形成されていたが、 かかる構成に限らず、 レ ンズセルをモールド樹脂とは別個に樹脂やガラスにより作製することと してもよい。 この場合、 レンズセルとモールド樹脂 (L E Dチップ 1 1 の保護樹脂) との間に空間を形成せずに、 透明樹脂層を介在させるのが よい。 前記透明樹脂層の屈折率はレンズセルやモールド樹脂の屈折率に 一致又は近似しているのがよい。 このような構成は、 し £りチップ1 1 に対してレンズセルを備える他の実施例においても適用することができ る。  In the above description, the lens cell 14 is formed integrally with the light source 12 using a mold resin. However, the present invention is not limited to such a configuration, and the lens cell is made of resin or glass separately from the mold resin. It may be. In this case, it is preferable to interpose a transparent resin layer without forming a space between the lens cell and the mold resin (the protective resin of the LED chip 11). It is preferable that the refractive index of the transparent resin layer matches or approximates the refractive index of the lens cell or the mold resin. Such a configuration can be applied to other embodiments including a lens cell for the printing chip 11.
また、 個々に作製されたモールド済み L E Dランプをァレイ状に配置 して光源とすることとしてもよい。 かかる構成において、 モールド済み L E Dランプの外形状や素子部の形状は、 液晶表示パネル 3の形状 (ァ スぺク 卜比) に一致又は略一致しているのがよく、 また、 側壁部が反射 面を成しているのがよい。 また、 投写型映像表示装置においては、 透過型の液晶表示パネルに限 らず、 反射型の液晶表示パネルを用いてもよいし、 これら液晶表示パネ ルに代えて画素となる微小ミラーを個々に駆動するタイプの表示パネル を用いることとしてもよい。 また、 各色光を出射する 3つの照明装置 1 R , 1 G , 1 Bを備えたが、 白色光を出射する照明装置とし、 ダイク口 イツクミラー等で分光したリ或いは分光せずに単板のカラー表示パネル に導く構成としてもよい。 白色光を出射する照明装置とする場合、 各固 体発光素子が白色光を出射してもよいし、 赤色光と青色光と緑色光を出 射する固体発光素子を適宜に並べた構成としてもよい。 また、 固体発光 素子は発光ダイオード (L E D ) に限るものではない。 Alternatively, the molded LED lamps individually manufactured may be arranged in an array to serve as a light source. In such a configuration, the outer shape of the molded LED lamp and the shape of the element portion preferably match or substantially match the shape (aspect ratio) of the liquid crystal display panel 3, and the side wall portion has a reflection. It is good to have a face. Further, in the projection type image display device, not only the transmission type liquid crystal display panel but also a reflection type liquid crystal display panel may be used, and instead of these liquid crystal display panels, minute mirrors serving as pixels are individually provided. A driving type display panel may be used. In addition, although three illuminators 1 R, 1 G, and 1 B that emit light of each color are provided, an illuminator that emits white light is used. A configuration leading to the display panel may be adopted. In the case of a lighting device that emits white light, each solid state light emitting element may emit white light, or a solid light emitting element that emits red light, blue light, and green light may be appropriately arranged. Good. Further, the solid-state light emitting device is not limited to a light emitting diode (LED).
ところで、 照明対象物である液晶表示パネル 3に導く光束の形状は、 光束形状関連要素 (固体発光素子、 レンズセル、 フライアイレンズの各 レンズ、ロッ ドインテグレータの断面)のァスぺク 卜比の影響を受ける。 上記の例では、 照明対象物のアスペク ト比を 4 : 3とし、 光束形状関連 要素のアスペク ト比も 4 : 3とすることとしたが、 これに限るものでは ない。 例えば、 前記光束形状関連要素のアスペク ト比を 4 : 4のごとく 照明対象物のァスぺク 卜比と異ならせ、 この 4 : 4のァスぺク ト比の光 束を、 アナモフィックレンズによって変化させ (上記の場合は垂直方向 に幾分集光させ)、光束のァスぺク 卜比が照明対象物に導かれる段階で当 該照明対象物のァスぺク 卜比 (例えば、 4 : 3 ) に一致又は略一致する ようにしてもよい。 このような構成は、 光束形状関連要素 (固体発光素 子、 レンズセル、 フライアイレンズの各レンズ、 ロッ ドインテグレータ) を備える他の実施例においても適用することができる。  By the way, the shape of the luminous flux guided to the liquid crystal display panel 3, which is the object to be illuminated, depends on the aspect ratio of the luminous flux shape-related elements (solid-state light-emitting element, lens cell, fly-eye lens lens, rod integrator cross section). Affected by In the above example, the aspect ratio of the illuminating object was set to 4: 3, and the aspect ratio of the luminous flux-related elements was set to 4: 3, but this is not a limitation. For example, the aspect ratio of the light flux shape-related element is made different from the aspect ratio of the object to be illuminated, such as 4: 4, and the luminous flux having the aspect ratio of 4: 4 is converted by an anamorphic lens. Is changed (in the above case, the light is condensed somewhat in the vertical direction), and at the stage when the luminous flux is guided to the illuminated object, the eccentric ratio of the illuminated object (for example, 4 : 3) or almost the same. Such a configuration can be applied to other embodiments including a light flux shape-related element (solid-state light-emitting element, lens cell, fly-eye lens lens, rod integrator).
(実施例 2 )  (Example 2)
以下、 この発明の実施例 2の照明装置及び投写型映像表示装置を図 9 乃至図 1 3に基づいて説明していく。 図 9は 3板式の投写型映像表示装置の光学系を示した図である。 この 投写型映像表示装置は 3つの照明装置 1 0 1 R, 1 0 1 G , 1 0 1 Bを 備える (以下、 個々の照明装置を特定しないで示すときには、 符号" 1 0 1 " を用いる)。 照明装置 1 0 1 Rは赤色光を出射し、 照明装置 1 0 1 Gは緑色光を出射し、 照明装置 1 0 1 Bは青色光を出射する。 各照明装 置 1 0 1から出射された光は、 集光レンズ 1 0 2によって各色用の液晶 表示パネル 1 0 3 R, 1 0 3 G , 1 0 3 Bに導かれる (以下、 個々の液 晶表示パネルを特定しないで示すときには、 符号" 1 0 3 " を用いる)。 各液晶表示パネル 1 0 3は、 入射側偏光板と、 一対のガラス基板 (画素 電極や配向膜を形成してある) 間に液晶を封入して成るパネル部と、 出 射側偏光板とを備えて成る。 液晶表示パネル 1 0 3 R, 1 0 3 G , 1 0 3 Bを経ることで変調された変調光 (各色映像光) は、 ダイクロイツク プリズム 1 0 4によって合成されてカラー映像光となる。 このカラー映 像光は、 投写レンズ 1 0 5によって拡大投写され、 スクリーン上に投影 表示される。 Hereinafter, a lighting device and a projection-type image display device according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 13. FIG. 9 is a diagram showing an optical system of a three-panel projection image display device. This projection-type image display device includes three lighting devices 101 R, 101 G, and 101 B (hereinafter, when the individual lighting devices are indicated without being specified, reference numeral “101” is used). . The lighting device 101 R emits red light, the lighting device 101 G emits green light, and the lighting device 101 B emits blue light. The light emitted from each lighting device 101 is guided to a liquid crystal display panel 103R, 103G, 103B for each color by a condenser lens 102 (hereinafter, individual liquids). The symbol "103" is used to indicate the crystal display panel without specifying it.) Each of the liquid crystal display panels 103 includes an incident-side polarizing plate, a panel section in which liquid crystal is sealed between a pair of glass substrates (on which a pixel electrode and an alignment film are formed), and an emitting-side polarizing plate. Be prepared. The modulated light (image light of each color) modulated by passing through the liquid crystal display panels 103R, 103G, and 103B is combined by the dichroic prism 104 to become color image light. This color image light is enlarged and projected by the projection lens 105 and projected and displayed on a screen.
照明装置 1 0 1 は、 L D (レーザーダイオード) チップ 1 1 1 …がァ レイ状に配置され且つ各 L Dチップ 1 1 1の光出射側にレンズセル 1 1 4…を配置して成る光源 1 1 2と、 各 L Dチップ 1 1 1から出射されて 前記レンズセル 1 1 4にて平行化されたレーザー光を液晶表示パネル 1 0 3ヘインテグレートして導くフライアイレンズ対 1 1 3とから成る。 このように、 L Dチップ 1 1 1…をアレイ状に配置するため、 光量の増 大を図ることができる。  The illuminating device 101 has a light source 111 in which LD (laser diode) chips 111 are arranged in an array and a lens cell 111 is arranged on the light emitting side of each LD chip 111. And a fly-eye lens pair 113 for guiding the laser light emitted from each LD chip 111 and collimated by the lens cell 114 to the liquid crystal display panel 103. In this manner, since the LD chips 111 are arranged in an array, the amount of light can be increased.
フライアイレンズ対 1 1 3は、 図 1 0にも示しているように、 一対の レンズ群 1 1 3 a, 1 1 3 bにて構成されており、 個々のレンズ対が各 L Dチップ 1 1 1から出射されたレーザー光を液晶表示パネル 1 0 3の 全面へ導くようになつている。 すなわち、 L Dチップ 1 1 1から出射さ れたレーザー光は液晶表示パネル 1 0 3ヘインテグレー卜されて導かれ るため、 液晶表示パネル 1 0 3上 (スクリーンの映像上) にアレイ状の 明暗ができてしまうのを防止することができる。 As shown in FIG. 10, the fly-eye lens pair 113 is composed of a pair of lens groups 113a and 113b. The laser light emitted from 1 is guided to the entire surface of the liquid crystal display panel 103. That is, the light emitted from the LD chip 1 1 1 The reflected laser light is integrated into the liquid crystal display panel 103 and guided, so that it is possible to prevent the formation of an array of light and dark on the liquid crystal display panel 103 (on the screen image). .
フライアイレンズ対 1 1 3と集光レンズ 1 0 2との間には、 位相シフ ト板 1 1 5が設けられている。位相シフト板 1 1 5は、図 1 1 ( a ) ( b ) に示しているように、 各 L Dチップ 1 1 1のレーザー光路上に配置され た互いに厚みが異なる複数の平板透明部から成る。 各平板透明部の両面 は光軸に対して直交する。 平板透明部に光が透過するとき、 その屈折率 に比例して光の距離 (光学距離 ( n x d : nは屈折率、 dは媒質厚み)) が変化することになる。 各平板透明部の厚みは異なるから光の距離 (光 学距灕) も異なることとなり、 各平板透明部を透過するレーザー光の位 相が異なってくる。 これにより、 L Dチップ 1 1 1から出射された各レ 一ザ一光は各々異なる位相を有することになリ、 液晶表示パネル 1 0 3 上で重畳された各 L E Dチップ 1 1 1からの位相は不均一になり、 スぺ ックルノイズを低減することができる。  A phase shift plate 115 is provided between the fly-eye lens pair 113 and the condenser lens 102. As shown in FIGS. 11 (a) and 11 (b), the phase shift plate 115 is composed of a plurality of flat plate transparent portions arranged on the laser beam path of each LD chip 111 and having different thicknesses. Both surfaces of each flat plate are perpendicular to the optical axis. When light passes through the transparent plate, the light distance (optical distance (nxd: n is the refractive index, d is the thickness of the medium)) changes in proportion to the refractive index. Since the thickness of each transparent plate is different, the light distance (optical distance) is also different, and the phase of the laser light transmitted through each transparent plate is different. As a result, each laser beam emitted from the LD chip 111 has a different phase, and the phase from each LED chip 111 superimposed on the liquid crystal display panel 103 is different. It becomes non-uniform, and it is possible to reduce speckle noise.
なお、 上記の構成例では、 位相シフト板 1 1 5をフライアイレンズ対 1 1 3と集光レンズ 1 0 2との間に設けたが、これに限るものではなく、 L Dチップ 1 1 1から液晶表示パネル 1 0 3までの間のいずれかの箇所 に配置すればよい。  In the above configuration example, the phase shift plate 1 15 is provided between the fly-eye lens pair 1 13 and the condenser lens 102. However, the present invention is not limited to this. What is necessary is just to arrange in any place between the liquid crystal display panels 103.
図 1 2には、 位相シフト板 1 1 6を示している。 この位相シフ ト板 1 1 6は、 同図 (a ) に示しているように、 厚みが同じである複数の平板 透明部 (複数の平板透明領域) から成る。 各平板透明部 (各平板透明領 域) は、 各 L Dチップ 1 1 1から出射されたレーザー光の光路上に配置 される。 各平板透明部は、 その厚みは同じであるが、 同図 ( b ) に示し ているように、 その屈折率 (屈折率は誘電率に対応する) nは、 η θ , n 1 , η 2 , …のごとく、 互いに異なっている。 平板透明部をレーザ一 光が透過するとき、 その屈折率に比例して光の距離 (光学距離) が変化 することになるから各平板透明部を透過するレーザー光の位相が異なつ てくる。 これにより、 L Dチップ 1 1 1から出射されたレーザ一光それ 自体の光内での位相は同じであるものの他の L Dチップ 1 1 1 のレーザ 一光の位相とは異なることになリ、 液晶表示パネル 1 0 3上では位相は 互いに不均一になり、 スペックルノィズを低減することができる。 FIG. 12 shows the phase shift plate 1 16. The phase shift plate 1 16 is composed of a plurality of flat plate transparent portions (a plurality of flat plate transparent regions) having the same thickness, as shown in FIG. Each flat plate transparent portion (each flat plate transparent area) is arranged on the optical path of the laser light emitted from each LD chip 111. Although the thickness of each transparent plate is the same, the refractive index (the refractive index corresponds to the dielectric constant) n is η θ, n 1, η 2 as shown in FIG. ,…, They are different from each other. Laser transparent flat plate When light is transmitted, the distance (optical distance) of the light changes in proportion to the refractive index, so that the phase of the laser light transmitted through each transparent portion of the plate becomes different. As a result, the phase of the laser beam itself emitted from the LD chip 111 is the same as that of the laser beam of the other LD chip 111, although the phase of the laser beam itself is the same. On the display panel 103, the phases are mutually non-uniform, and speckle noise can be reduced.
図 1 3には、 照明装置 1 0 1 の変形例を示している。 この図 1 3に示 している照明装置は、光源 1 1 2から出射されたレーザー光の光路上に、 板形楔状のプリズム 1 1 7を配置している。 板形楔状のプリズム 1 1 7 にレーザ一光が入射するとき、 プリズム 1 1 7の厚み変化方向において 光の距離 (光学距離) は異なってくるから、 L Dチップ 1 1 1から出射 されたレーザー光それ自体の光内での位相が変化する。 また、 厚み変化 方向に並ぶ L Dチップ 1 1 1 …についてはそれらのレーザ一光の位相は 互いに異なることになる。 これにより、 スペックルノイズを低減するこ とができる。 なお、 一つの L Dチップ 1 1 1 に対して一つの板形楔状の プリズム 1 1 7を対応させて配置するのが良く、 更には、 各板形楔状の プリズム 1 1 7の楔の程度 (角度) を変えることとするのがより良い。 以上の例では、 各 L Dチップ 1 1 1 のレーザー光の位相をシフ 卜させ ることでスペックルノイズを低減したが、 レーザー光を拡散させる光拡 散手段を光路上に設けることにより、 スペックルノイズを低減すること が可能である。 光拡散手段としては、 微小凹凸を有するすリガラス等を 用いることができる。 また、 フライアイレンズ対 1 1 3や集光レンズ 1 0 2などの表面に微小凹凸を形成してもよいものである。  FIG. 13 shows a modification of the lighting device 101. The illuminating device shown in FIG. 13 has a plate-shaped wedge-shaped prism 117 arranged on the optical path of the laser light emitted from the light source 112. When one laser beam enters the plate-shaped wedge-shaped prism 1 17, the light distance (optical distance) varies in the thickness change direction of the prism 1 17, so that the laser light emitted from the LD chip 1 11 The phase in the light itself changes. Also, for the LD chips 111,... Arranged in the thickness changing direction, the phases of the laser beams are different from each other. Thus, speckle noise can be reduced. It is preferable to arrange one plate-shaped wedge-shaped prism 117 in correspondence with one LD chip 111, and furthermore, the degree of the wedge of each plate-shaped wedge-shaped prism 117 (angle It is better to change. In the above example, the speckle noise was reduced by shifting the phase of the laser light of each LD chip 111, but the speckle noise was reduced by providing light diffusion means on the optical path to diffuse the laser light. Noise can be reduced. As the light diffusing means, ground glass or the like having fine irregularities can be used. Also, fine irregularities may be formed on the surface of the fly-eye lens pair 113 and the condenser lens 102.
なお、 以上の説明においては、 インテグレート手段としてフライアイ レンズ対を示したが、ロッ ドインテグレータを用いてもよいものである。 また、 L Dチップとしては、 端面出射型に限らず、 面発光レーザ一を用 いてもよい。 また、 単一基板上に複数の L Dが形成されたものを用いる こともできる。 また、 投写型映像表示装置においては、 透過型の液晶表 示パネルに限らず、 反射型の液晶表示パネルを用いてもよいし,、 これら 液晶表示パネルに代えて画素となる微小ミラーを個々に駆動するタイプ の表示パネルを用いることとしてもよい。 また、 各色光を出射する 3つ の照明装置 1 0 1 R, 1 0 1 G , 1 0 1 Bを備えたが、 白色光を出射す る照明装置とし、 ダイクロイツクミラー等で分光したリ或いは分光せず に単板のカラー表示パネルに導く構成としてもよい。 白色光を出射する 照明装置とする場合、 赤色光と青色光と緑色光を出射する L Dを適宜に 並べた構成でもよい。 In the above description, the fly-eye lens pair is shown as the integration means, but a rod integrator may be used. In addition, the LD chip is not limited to the edge emission type, but uses a surface emitting laser. It may be. In addition, a structure in which a plurality of LDs are formed on a single substrate can be used. Further, in the projection type image display device, not only the transmission type liquid crystal display panel but also a reflection type liquid crystal display panel may be used. A driving display panel may be used. In addition, three illumination devices 101 R, 101 G, and 101 B that emit light of each color are provided. However, the illumination device emits white light, and the light is separated by a dichroic mirror or the like. A configuration in which the light is led to a single-panel color display panel without spectral separation may be employed. In the case of a lighting device that emits white light, a configuration in which LDs that emit red light, blue light, and green light may be appropriately arranged may be used.
また、 図示はしていないが、 集光レンズ 1 0 2の手前位置などに偏光 変換装置を設けておいてもよい。この偏光変換装置は、先述したごとく、 P B Sアレイによって構成される。  Although not shown, a polarization converter may be provided at a position before the condenser lens 102 or the like. This polarization conversion device is constituted by a PBS array as described above.
以上説明したように、 実施例 2の発明によれば、 半導体レーザを用い る場合に生じるスペックルノイズを低減できるという効果を奏する。 (実施例 3 )  As described above, according to the invention of the second embodiment, there is an effect that speckle noise generated when a semiconductor laser is used can be reduced. (Example 3)
以下、 この発明の実施例 3の照明装置及び投写型映像表示装置を図 1 4乃至図 2 1 に基づいて説明していく。  Hereinafter, a lighting device and a projection-type image display device according to a third embodiment of the present invention will be described with reference to FIGS. 14 to 21.
図 1 4は 3板式の投写型映像表示装置の光学系を示した図である。 こ の投写型映像表示装置は 3つの照明装置 2 0 1 R, 2 0 1 G , 2 0 1 B を備える (以下、 個々の照明装置を特定しないで示すときには、 符号" 2 0 1 " を用いる)。 照明装置 2 0 1 Rは赤色光を出射し、 照明装置 2 0 1 Gは緑色光を出射し、 照明装置 2 0 1 Bは青色光を出射する。 各照明 装置 2 0 1から出射された光は、 集光レンズ 2 0 2によって各色用の液 晶表示パネル 2 0 3 R , 2 0 3 G , 2 0 3 Bに導かれる (以下、 個々の 液晶表示パネルを特定しないで示すときには、符号" 2 0 3 "を用いる)。 各液晶表示パネル 2 0 3は、 入射側偏光板と、 一対のガラス基板 (画素 電極や配向膜を形成してある) 間に液晶を封入して成るパネル部と、 出 射側偏光板とを備えて成る。 液晶表示パネル 2 0 3 R , 2 0 3 G , 2 0 3 Bを経ることで変調された変調光 (各色映像光) は、 ダイクロイツク プリズム 2 0 4によって合成されてカラ一映像光となる。 このカラー映 像光は、 投写レンズ 2 0 5によって拡大投写され、 スクリーン上に投影 表示され <©。 FIG. 14 is a diagram showing an optical system of a three-panel projection image display device. This projection-type image display device is provided with three lighting devices 201R, 201G, and 201B. (Hereinafter, when individual lighting devices are indicated without being specified, reference numeral "201" is used. ). The lighting device 201R emits red light, the lighting device 201G emits green light, and the lighting device 201B emits blue light. The light emitted from each lighting device 201 is guided to the liquid crystal display panels 203 R, 203 G, and 203 B for each color by the condenser lens 202 (hereinafter, individual liquid crystals). When the display panel is indicated without specifying it, the reference numeral “203” is used.) Each of the liquid crystal display panels 203 includes an incident-side polarizing plate, a panel section in which liquid crystal is sealed between a pair of glass substrates (on which pixel electrodes and an alignment film are formed), and an emitting-side polarizing plate. Be prepared. The modulated light (image light of each color) modulated by passing through the liquid crystal display panels 203 R, 203 G, and 203 B is combined by the dichroic prism 204 to be a single image light. This color image light is magnified and projected by the projection lens 205, and is projected and displayed on the screen.
照明装置 2 0 1 は、 複数の L D (レーザーダイォード) チップ 2 1 1 …を配置して成る光源と、 各 L Dチップ 2 1 1の光出射側に設けられた 平行化レンズ 2 1 2と、 フライアイレンズ対 2 1 3とから成る。 前記光 源は複数の L Dチップ 2 1 1 …を配置して成るので、 光量の増大を図る ことができる。 フライアイレンズ対 2 1 3は、 図 1 5にも示しているよ うに、 一対のレンズ群 2 1 3 a , 2 1 3 bにて構成されており、 一つの L Dチップ 2 1 1 に複数のレンズ (レンズ群) を対応させている。 各し Dチップ 2 1 1から出射され、 平行化レンズ 2 1 2にて平行化された光 は、 それに対応する位置のレンズ群に導かれる。 このレンズ群上 (受光 面上) では L Dチップ 2 1 1の発光強度分布が反映されているが、 当該 レンズ群における各レンズによリ、受光面上の複数箇所の光の各々力《(明 るい領域及び暗い領域の各々が) 液晶表示パネル 2 0 3ヘインテグレー 卜されて導かれることになる。これにより、液晶表示パネル 2 0 3上(ス クリーンの映像上) に L Dチップ 2 1 1の配置に対応した明暗ができて しまうのを防止できると共に、 L Dチップ 2 1 1 に発光強度分布が存在 しても、 その発光強度分布の分散化が行なわれ、 液晶表示パネル 2 0 3 上での各箇所の明るさを平均化することができる。  The illumination device 201 includes a light source including a plurality of LD (laser diode) chips 211, a collimating lens 211 provided on the light emitting side of each LD chip 211, It consists of a fly-eye lens pair 2 13. Since the light source includes a plurality of LD chips 211,..., The light amount can be increased. The fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b as shown in FIG. Lenses (lens groups) are matched. The light emitted from each D chip 211 and collimated by the collimating lens 212 is guided to the lens group at the corresponding position. On this lens group (on the light receiving surface), the light emission intensity distribution of the LD chip 211 is reflected. Each of the light and dark areas is integrated into the liquid crystal display panel 203 and guided. As a result, it is possible to prevent light and dark corresponding to the arrangement of the LD chip 211 from being formed on the liquid crystal display panel 203 (on the screen image), and the light emission intensity distribution exists in the LD chip 211. Even so, the luminous intensity distribution is dispersed, and the brightness of each portion on the liquid crystal display panel 203 can be averaged.
また、 上記の例では、 L Dチップ 2 1 1の直線偏光方向と液晶表示パ ネル 2 0 3の直線偏光方向を一致又は略一致させている。 更に、 一対の レンズ群 2 1 3 a , 2 1 3 bにおける各レンズのァスぺク ト比、 平行化 レンズ 2 1 2のアスペク ト比、 及び L Dチップ 2 1 1 の光出射部形状の ァスぺク 卜比を、 液晶表示パネル 2 0 3のァスぺク 卜比に一致又は略一 致させている。 更に、 L Dチップ 2 1 1の発光の楕円長手方向を液晶表 示パネル 2 0 3の長手方向に一致又は略一致させている。 これにより、 L Dチップ 2 1 1から出射された光が液晶表示パネル 2 0 3の略全面に 無駄なく導かれ光利用効率が向上する。なお、実施例 1 で述べたごとく、 光束形状関連要素 (固体発光素子、 レンズセル、 フライアイレンズの各 レンズ、 ロッ ドインテグレータ) のアスペク ト比を表示パネルのァスぺ ク ト比と異ならせ、 アナモフィックレンズにて光束を表示パネルのァス ぺク 卜に一致又は略一致させることとしてもよいが、この実施例の場合、 フライアイレンズ対 2 1 3の全体に対して一つのアナモフィックレンズ を備えればよい。 Further, in the above example, the linear polarization direction of the LD chip 211 and the linear polarization direction of the liquid crystal display panel 203 match or substantially match. Furthermore, a pair of Aspect ratio of each lens in the lens groups 2 13 a and 2 13 b, parallelism Aspect ratio of the lens 2 12, and an aspect of the light emitting section shape of the LD chip 2 11 The ratio is equal to or approximately equal to the aspect ratio of the liquid crystal display panel 203. Further, the elliptical longitudinal direction of light emission of the LD chip 211 coincides with or substantially coincides with the longitudinal direction of the liquid crystal display panel 203. Thereby, the light emitted from the LD chip 211 is guided to the substantially entire surface of the liquid crystal display panel 203 without waste, and the light use efficiency is improved. As described in Example 1, the aspect ratio of the light flux shape-related elements (solid-state light emitting element, lens cell, fly-eye lens lens, rod integrator) is made different from the aspect ratio of the display panel. Alternatively, the anamorphic lens may be used to make the luminous flux coincide with or substantially coincide with the angle of the display panel. However, in this embodiment, one anamorphic lens is used for the entire fly-eye lens pair 2 13. I just need to prepare.
図 1 6には、 照明装置 2 0 1の変形例を示している。 この図 1 6に示 している照明装置の光源は、 L E D (発光ダイオード) チップ 2 1 4と 放物面ミラー 2 1 5とから成っている。 かかる構成においても、 一つの L E Dチップ 2 1 に対して複数のレンズ(レンズ群)が対応しておリ、 各 L Dチップ 2 1 1から出射された光を受けてその受光領域の複数箇所 の光の各々について液晶表示パネル 2 0 3ヘインテグレー卜して導くよ うになつている。 放物面ミラー 2 1 5の光出射側形状は、 略方形状に形 成されておリ液晶表示パネル 2 0 3のァスぺク 卜比に一致又は略一致し ている。  FIG. 16 shows a modification of the lighting device 201. The light source of the illuminating device shown in FIG. 16 includes an LED (light emitting diode) chip 214 and a parabolic mirror 215. Even in such a configuration, a plurality of lenses (lens groups) correspond to one LED chip 21, and receive light emitted from each LD chip 211, and receive light at a plurality of positions in a light receiving area thereof. In each case, the liquid crystal display panel 203 is integrated and guided. The light exit side shape of the parabolic mirror 2 15 is formed in a substantially rectangular shape, and matches or substantially matches the aspect ratio of the liquid crystal display panel 203.
図 1 7には、 照明装置 2 0 1の変形例を示している。 なお、 この例で は、 発光パターン (強度分布プロファイル) が異なる発光チップのペア として、 L Dチップと L E Dチップを示したが、 このような組み合わせ に限定されるものではない。 この図 1 7に示している照明装置は、 L D チップ 2 1 1 A…と L E Dチップ 2 1 1 B…とがァレイ状に配置され且 つ各チップ 2 1 1 A, 2 1 1 Bの光出射側にレンズセル 2 1 6…を配置 して成る光源と、 各チップ 2 1 1 A, 2 1 1 Bから出射されて前記レン ズセル 2 1 6にて平行化された光を液晶表示パネル 203ヘインテグレ 一卜して導くためのフライアイレンズ対 2 1 3とから成る。このように、 チップ 2 1 1 A, 2 1 1 Bをァレイ状に配置するため、 光量の増大を図 ることができる。 レンズセル 2 1 6は、方形状に形成されており、更に、 液晶表示パネル 203のァスぺク 卜比に一致又は略一致したものとなつ ている。 フライアイレンズ対 2 1 3は、 一対のレンズ群 2 1 3 a, 2 1 3 bにて構成されており、 個々のレンズ対が各チップ 2 1 1 A, 2 1 1 Bから出射された光を液晶表示パネル 203の全面へ導くようになって いる。 ここで、 L Dチップ 2 1 1 Aは、 図 1 8 ( a ) に示すように、 単 一発光点を有しており、 その光強度分布は、 同図 ( b ) に示すように、 ガウス分布をなす。 一方、 L E Dチップ 2 1 1 Bは、 同図 ( c ) に示す ように、 二発光点を有しており、 その光強度分布は、 同図 (d ) に示す ように、 中央よりもサイ ドにピークを持つものとなる。 このように、 互 いに光強度分布が相違するチップ 2 1 1 A, 2 1 1 Bを配列し、 各チッ プ 2 1 1 A, 2 1 1 Bから出射された光を液晶表示パネル 203の全面 ヘインテグレー卜して導くので、 液晶表示パネル 203上での各箇所の 明るさを平均化することができる。 FIG. 17 shows a modification of the lighting device 201. In this example, an LD chip and an LED chip are shown as a pair of light emitting chips having different light emission patterns (intensity distribution profiles), but the present invention is not limited to such a combination. The lighting device shown in Fig. 17 is an LD The chips 2 11 A ... and the LED chips 2 11 B ... are arranged in an array and the lens cells 2 16 ... are arranged on the light emitting side of each chip 2 11 A, 2 11 B. A light source and a fly-eye lens pair 2 1 for integrating and guiding the light emitted from each of the chips 211 A and 211 B and collimated by the lens cell 211 to the liquid crystal display panel 203. Consists of three. As described above, since the chips 211A and 211B are arranged in an array, the amount of light can be increased. The lens cell 2 16 is formed in a square shape, and has a shape that matches or substantially matches the aspect ratio of the liquid crystal display panel 203. The fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b, and each lens pair emits light from each chip 2 11 A and 2 11 B. To the entire surface of the liquid crystal display panel 203. Here, the LD chip 211A has a single light emitting point as shown in FIG. 18 (a), and its light intensity distribution is Gaussian distribution as shown in FIG. 18 (b). Make On the other hand, the LED chip 211B has two light emitting points as shown in FIG. 3 (c), and its light intensity distribution is larger than the center as shown in FIG. 3 (d). Will have a peak at In this way, the chips 211A and 211B having different light intensity distributions are arranged, and the light emitted from each chip 211A and 211B is formed on the liquid crystal display panel 203. Since the entire surface is integrated and guided, the brightness of each part on the liquid crystal display panel 203 can be averaged.
なお、 上記のような二つのパターン (光強度分布) の他、 三つ或いは 四つといった数多くのパターンを持つようにチップを構成して配列する ようにしてもよい。 また、 各 L Dチップ 2 1 1 A…の楕円状のビーム断 面における長手方向が互いに異なるように L Dチップ 2 1 1 A…を配置 してもよい。  Note that chips may be configured and arranged so as to have many patterns such as three or four in addition to the two patterns (light intensity distribution) as described above. Further, the LD chips 211A... May be arranged such that the longitudinal directions of the elliptical beam cross sections of the respective LD chips 211A.
図 1 9には、 照明装置 20 1の変形例を示している。 この図 1 9に示 している照明装置では、 数多くのパターンの光強度分布を持つチップを 用いている。 この照明装置は、 L Dチップ 2 1 1 A…と L E Dチップ 2 1 1 Bとがアレイ状に配置され、 且つ各チップ 2 1 1 A, 2 1 1 Bの光 出射側にレンズセル 2 1 6…を配置して成る光源と、各チップ 2 1 1 A, 2 1 1 Bから出射されて前記レンズセル 2 1 6にて平行化された光を液 晶表示パネル 203ヘインテグレ一卜して導くフライアイレンズ対 2 1 3とから成る。フライアイレンズ対 2 1 3は、一対のレンズ群 2 1 3 a , 2 1 3 bにて構成されておリ、 個々のレンズ対が各チップ 2 1 1 A, 2 1 1 Bから出射された光を液晶表示パネル 203へ導くようになつてい る。 液晶表示パネルに導かれる各矩形光束の断面形状は同じであるが、 各矩形光束の強度分布プロファイルは異なり、 液晶表示パネル 203上 での各箇所の明るさを平均化することができる。 FIG. 19 shows a modification of the lighting device 201. This is shown in Figure 19 The lighting devices used here use chips that have many patterns of light intensity distribution. In this illuminating device, an LD chip 211A ... and an LED chip 211B are arranged in an array, and a lens cell 211 ... on a light emitting side of each chip 211A, 211B. And a fly-eye for integrating and guiding light emitted from each of the chips 211A and 211B and collimated by the lens cell 216 to the liquid crystal display panel 203. It consists of a lens pair 2 1 3. The fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b, and each lens pair is emitted from each chip 2 11 A and 2 11 B. The light is guided to the liquid crystal display panel 203. Although the cross-sectional shape of each rectangular light beam guided to the liquid crystal display panel is the same, the intensity distribution profile of each rectangular light beam is different, and the brightness of each portion on the liquid crystal display panel 203 can be averaged.
図 20には、 照明装置 20 1の変形例を示している。 この図 20に示 している照明装置は、複数の L Dチップ 2 1 1…を配置して成る光源と、 各 L Dチップ 2 1 1から出射された光を受けてその強度分布を変換して 出射する強度分布変換プリズム 226と平行化レンズ 2 1 2とフライア ィレンズ対 2 1 3とから成る。 フライアイレンズ対 2 1 3は、 一対のレ ンズ群 2 1 3 a, 2 1 3 bにて構成されており、 一つの L Dチップ 2 1 1 に複数のレンズ (レンズ群) が対応している。  FIG. 20 shows a modification of the lighting device 201. The lighting device shown in FIG. 20 has a light source having a plurality of LD chips 211 arranged thereon, and receives light emitted from each LD chip 211, converts the intensity distribution thereof, and emits the light. And a collimating lens 2 12 and a fly-eye lens pair 2 13. The fly-eye lens pair 2 13 is composed of a pair of lens groups 2 13 a and 2 13 b, and one LD chip 2 11 corresponds to a plurality of lenses (lens groups). .
強度分布変換プリズム 2 26は、 例えば、 図 2 1 ( a ) ( b ) に示すよ うに、 板状楔型のプリズムから成り、 厚肉の側から L Dチップ 2 1 1の レーザー光が入射されるように配置される。 レーザー光は、 同図 ( a ) に示すように、 細長の楕円状を有してプリズム 226の入射面に入射す るが、 このプリズム 226において屈折及び反射面 (金属等の反射体を コーティングしている) による反射の作用が与えられることで、 楕円の 程度が緩和された楕円又は円形となって出射される。 楕円とする場合、 例えば、 楕円の長手方向を液晶表示パネル 2 0 3の長手方向に一致又は 略一致させるのがよい。 The intensity distribution conversion prism 226 is composed of, for example, a plate-shaped wedge-shaped prism as shown in FIGS. 21 (a) and (b), and the laser beam of the LD chip 211 is incident from the thick side. Are arranged as follows. As shown in FIG. 3A, the laser light has a long and thin elliptical shape and is incident on the incident surface of the prism 226. In the prism 226, the refraction and reflection surface (a reflector such as a metal is coated). ), The light is emitted as an ellipse or circle with a reduced degree of ellipse. For an ellipse, For example, the longitudinal direction of the ellipse preferably or substantially coincides with the longitudinal direction of the liquid crystal display panel 203.
なお、 以上の説明においては、 インテグレート手段としてフライアイ レンズ対を示したが、ロッ ドインテグレータを用いてもよいものである。 また、 L Dチップとしては、 端面出射型に限らず、 面発光レーザーを用 いてもよい。 また、 単一基板上に複数の L Dが形成されたものを用いる こともできる。 また、 投写型映像表示装置においては、 透過型の液晶表 示パネルに限らず、 反射型の液晶表示パネルを用いてもよいし、 これら 液晶表示パネルに代えて画素となる微小ミラーを個々に駆動するタイプ の表示パネルを用いることとしてもよい。 また、 各色光を出射する 3つ の照明装置 2 0 1 R, 2 0 1 G , 2 0 1 Bを備えたが、 白色光を出射す る照明装置とし、 ダイクロイツクミラ一等で分光したリ或いは分光せず に単板のカラー表示パネルに導く構成としてもよい。 白色光を出射する 照明装置とする場合、 各固体発光素子が白色光を出射してもよいし、 赤 色光と青色光と緑色光を出射する固体発光素子を適宜に並べた構成とし てもよい。  In the above description, the fly-eye lens pair is shown as the integration means, but a rod integrator may be used. Further, the LD chip is not limited to the edge emission type, and a surface emitting laser may be used. Further, a substrate in which a plurality of LDs are formed on a single substrate can be used. Further, the projection type image display device is not limited to the transmission type liquid crystal display panel, but may be a reflection type liquid crystal display panel, and individually drives micro mirrors serving as pixels instead of these liquid crystal display panels. Alternatively, a display panel of such a type may be used. In addition, three illuminating devices 201 R, 201 G, and 201 B that emit light of each color are provided. However, a lighting device that emits white light is used, and the light is separated by a dichroic mirror or the like. Alternatively, a configuration may be adopted in which the light is led to a single-panel color display panel without spectral separation. When a lighting device that emits white light is used, each solid state light emitting element may emit white light, or a solid light emitting element that emits red light, blue light, and green light may be appropriately arranged. .
また、 図示はしていないが、 集光レンズ 2 0 2の手前位置などに偏光 変換装置を設けておいてもよし、。この偏光変換装置は、前述したごとく、 P B Sアレイによって構成される。  Although not shown, a polarization converter may be provided at a position before the condenser lens 202 or the like. This polarization conversion device is constituted by a PBS array as described above.
以上説明したように、 実施例 3の発明によれば、 分布が存在する半導 体レーザ等の固体発光素子を用いても実用的な照明装置及びこれを用い た投写型映像表示装置を提供できるという効果を奏する。  As described above, according to the invention of the third embodiment, it is possible to provide a practical lighting device and a projection-type image display device using the solid-state light emitting device such as a semiconductor laser having a distribution. This has the effect.
(実施例 4 )  (Example 4)
以下、 この発明の実施形態の照明装置及び投写型映像表示装置を図 2 2乃至図 2 5に基づいて説明していく。  Hereinafter, a lighting device and a projection-type image display device according to an embodiment of the present invention will be described with reference to FIGS. 22 to 25.
図 2 2は 3板式の投写型映像表示装置の光学系を示した図である。 こ の投写型映像表示装置は 3つの照明装置 30 1 R, 30 1 G, 30 1 B を備える (以下、 個々の照明装置を特定しないで示すときには、 符号" 30 1 " を用いる)。 照明装置 30 1 Rは赤色光を出射し、 照明装置 30 1 Gは綠色光を出射し、 照明装置 30 1 Bは青色光を出射する。 各照明 装置 30 1から出射された光は、 凸レンズ 302によって各色用の液晶 表示パネル 303 R, 303 G, 303 Bに導かれる (以下、 個々の液 晶表示パネルを特定しないで示すときには、 符号" 303" を用いる)。 各液晶表示パネル 303は、 入射側偏光板と、 一対のガラス基板 (画素 電極や配向膜を形成してある) 間に液晶を封入して成るパネル部と、 出 射側偏光板とを備えて成る。 液晶表示パネル 303 R, 303 G, 30 3 Bを経ることで変調された変調光 (各色映像光) は、 ダイクロイツク プリズム 304によって合成されてカラー映像光となる。 このカラー映 像光は、 投写レンズ 305によって拡大投写され、 スクリーン上に投影 表示される。 FIG. 22 is a diagram showing an optical system of a three-panel projection image display device. This Is equipped with three lighting devices 30 1 R, 30 1 G, and 30 1 B (hereinafter, when individual lighting devices are indicated without being specified, reference numeral “30 1” is used). The lighting device 301R emits red light, the lighting device 301G emits blue light, and the lighting device 301B emits blue light. The light emitted from each lighting device 301 is guided to the liquid crystal display panels 303 R, 303 G, and 303 B for each color by the convex lens 302 (hereinafter, when the individual liquid crystal display panels are shown without being specified, a symbol “ 303 "). Each liquid crystal display panel 303 includes an incident-side polarizing plate, a panel portion in which liquid crystal is sealed between a pair of glass substrates (on which a pixel electrode and an alignment film are formed), and an emitting-side polarizing plate. Become. The modulated light (image light of each color) modulated by passing through the liquid crystal display panels 303 R, 303 G, and 303 B is combined by the dichroic prism 304 to become color image light. This color image light is enlarged and projected by the projection lens 305, and is projected and displayed on a screen.
照明装置 30 1 は、 図 23にも示しているように、 鏡面筒体 3 1 2内 に L E D 3 1 1…を三次元に配置して成るものである。 鏡面筒体 3 1 2 は、 長方体 (平行六面体) 形状を成しており、 その一面が光出射面とさ れ、 他の面の内側が反射面とされたものである。 L E D 3 1 1 …を例え ば図示しない透明ガラス板の片面或いは両面にて支持し、 この透明ガラ ス基板を積層状に鏡面筒体 3 1 2に配置することにより、 L E D 3 1 1 …が三次元に配置されることになる。 各 L E D 3 1 1への配線は透明ガ ラス基板上に形成できる。 前記配線部分を反射体にて覆うようにしても よい。 また、 L E D 3 1 1 についても、 発光部以外を反射体にて覆うよ うにしてもよい。  As shown in FIG. 23, the illuminating device 301 is configured by three-dimensionally arranging LEDs 311... In a mirror tube 312. The mirror tube 312 has a rectangular parallelepiped shape (parallel hexahedron), one surface of which is a light emission surface and the other surface is a reflection surface. The LEDs 311 are supported on one side or both sides of a transparent glass plate (not shown), for example, and the transparent glass substrates are laminated on the mirror tube 312 so that the LEDs 311 are tertiary. Will be placed in the original. The wiring to each LED 311 can be formed on a transparent glass substrate. The wiring portion may be covered with a reflector. Also, for LED 311, a portion other than the light emitting portion may be covered with a reflector.
このように、 L E D 3 1 1…を三次元に複数配置するため、 光量の増 大を図ることができる。 そして、 L E D 3 1 1 …から出射された光は鏡 面筒体 3 1 2内で反射され、 イン亍グレー卜されて光出射面から出射さ れるため、 液晶表示パネル 3 0 3上に L E D 3 1 1 …の配置に対応した 明暗ができてしまうのを防止することができる。 In this way, since a plurality of LEDs 311... Are arranged three-dimensionally, the amount of light can be increased. And the light emitted from LED 3 1 1… Since the light is reflected in the face cylinder 312, is integrated, and is emitted from the light emission surface, light and dark corresponding to the arrangement of the LEDs 311 on the liquid crystal display panel 303 is generated. Can be prevented.
上述した鏡面筒体 3 1 2においては、 前記光出射面のァスぺク 卜比が 液晶表示パネル 3 0 3のァスぺク 卜比に一致又は略一致しているのがよ し、。 これによれば、 L E D 3 1 1から出射された光を液晶表示パネル 3 0 3の全面に無駄なく導き得ることになリ、 出射光の利用効率が向上す る。  In the above-mentioned mirror-surface cylindrical body 312, it is preferable that the aspect ratio of the light emitting surface matches or substantially matches the aspect ratio of the liquid crystal display panel 303. According to this, light emitted from the LED 311 can be guided to the entire surface of the liquid crystal display panel 303 without waste, and the use efficiency of the emitted light is improved.
また、 上述した鏡面筒体 3 1 2を錐形状に構成し、 前記光出射面に対 面する面よりも、 前記光出射面の方を大面積とするようにしてもよい。 これによれば、 光の発散を抑制して液晶表示パネル 3 0 3に照射するこ とが可能になる。  Further, the above-mentioned mirror-surface cylindrical body 312 may be formed in a conical shape, and the light emitting surface may have a larger area than the surface facing the light emitting surface. According to this, it is possible to irradiate the liquid crystal display panel 303 with suppressing the divergence of light.
図 2 4には他の照明装置を示している。 この照明装置は、 L E Dチッ プ 3 1 1 aをアレイ状に配置し且つ各 L E Dチップ 3 1 1 aの光出射側 に平行光化用の回折格子セル 3 1 3…を配置して成るものである。 この ように、 L E Dチップ 3 1 1 a…をアレイ状に配置するため、 光量の増 大を図ることができる。 L E Dチップ 3 1 1 a…は透明樹脂によりモー ルドされており、 この透明樹脂の表面が凹凸状に形成されたことで前記 回折格子セル 3 1 3…を構成している。 回折格子セル 3 1 3は、 互いに 離間して壁面を有している。 樹脂モールドに際して前記壁面となる箇所 に型部材を配置しておき、 モールド後に前記型部材を外すことで前記壁 面を得ることができる。 前記壁面は反射面となり、 光利用効率を向上し 得る。 そして、 回折格子セル 3 1 3…により、 L E Dチップ 3 "I 1 aか ら出射された光は平行光化されることになるが、 通常レンズでは軸外と なる箇所に導かれる光をも有効利用できることになリ、 光利用効率が向 上する。 なお、 回折格子面をなす別部材をモールド後に貼り付けるよう にしてもよい。 また、 図示はしていないが、 回折格子セル 3 1 3の光出 射側に例えば第 1 フライアイレンズと第 2フライアイレンズとから成る インテグレ一タを設けてもよい。 回折格子面に集光機能を持たせてもよ く、 これによれば、 回折格子面が第 1 フライアイレンズの機能を兼ねる 構成とすることができ、 部品点数の削減を図ることができる。 FIG. 24 shows another lighting device. This illuminating device is configured by arranging LED chips 311a in an array and arranging a diffraction grating cell 313 ... for collimating light on the light emitting side of each LED chip 311a. is there. Since the LED chips 311a are arranged in an array in this manner, the amount of light can be increased. The LED chips 311a... Are molded with a transparent resin, and the surface of the transparent resin is formed in an uneven shape to constitute the diffraction grating cells 311. The diffraction grating cells 3 13 have wall surfaces that are separated from each other. The wall surface can be obtained by arranging a mold member at a location to be the wall surface during resin molding and removing the mold member after molding. The wall surface serves as a reflection surface, which can improve light use efficiency. The light emitted from the LED chip 3 "I1a is collimated by the diffraction grating cells 3 1 3..., But the light guided to an off-axis position by a normal lens is also effective. It can be used, and the light use efficiency is improved. It may be. Although not shown, an integrator including, for example, a first fly-eye lens and a second fly-eye lens may be provided on the light emitting side of the diffraction grating cell 313. The light-gathering function may be provided on the diffraction grating surface. According to this, the diffraction grating surface can be configured to also have the function of the first fly-eye lens, and the number of components can be reduced.
前記回折格子面に代えてホログラム面を形成してもよいものである。 また、 回折格子面やホログラム面が形成される壁面を平行光や集光が得 られやすいように傾斜面とするようにしてもよい。 また、 曲面によるレ ンズ部と回折格子面やホログラム面を併存させた構成としてもよい。 ま た、 個々に作製されたモールド済み L E Dランプにおいて回折格子面や ホログラム面を設け、 このし E Dランプをアレイ状に配置してもよい。 また、 この図 2 4に示した照明装置を図 2 3に示した照明装置 3 0 1 の L E D 3 1 1 として配置してもよいものである。  A hologram surface may be formed instead of the diffraction grating surface. Further, the wall surface on which the diffraction grating surface or the hologram surface is formed may be formed as an inclined surface so that parallel light or light collection can be easily obtained. Also, a configuration may be adopted in which a lens portion formed by a curved surface and a diffraction grating surface or a hologram surface coexist. In addition, a diffraction grating surface or a hologram surface may be provided in each of the molded LED lamps manufactured individually, and the LED lamps may be arranged in an array. Further, the lighting device shown in FIG. 24 may be arranged as the LED 311 of the lighting device 301 shown in FIG.
図 2 5には、 他の照明装置を示している。 この照明装置は、 L E D 3 1 1の光出射部に偏光変換装置 3 1 4を設けたものである。 この偏光変 換装置 3 1 4は、 一対の偏光ビームスプリッタ (以下、 P B Sと称する) によって構成される。 各 P B Sは偏光分離膜 3 1 4 aを備えている。 ま た、 一方の P B Sの光出射側には位相差板 ( 1 Z 2ス板) 3 1 4 bが設 けられている。 P B Sの偏光分離膜 3 1 4 aは、 L E D 3 1 1が出射す る光のうち例えば P偏光を通過させ、 S偏光を 9 0 ° 光路変更する。 光 路変更された S偏光は隣接の偏光分離膜 3 1 4 aにて反射されてそのま ま出射される。 一方、 偏光分離膜 3 1 4 aを透過した P偏光はその前側 (光出射側) に設けてある前記位相差板 3 1 4 bによって S偏光に変換 されて出射される。 すなわち、 ほぼ全ての光は S偏光に変換される。 こ のように偏光方向が揃えられることで、 液晶表示パネル 3 0 3を用いる 投写型映像表示装置において、 スクリーン上の明るさを向上することが できる。 なお、 一つの偏光変換装置 3 1 4に対して一つの L E D 3 1 1 を設けたが、 一つの偏光変換装置 3 1 4に対して複数の L E D 3 1 1 を 設けてもよい。 また、 図 25に示した照明装置を図 23に示した照明装 置 30 1の L E D 3 1 1 として配置してもよいものである。 この場合、 偏光変換装置 3 1 4に不要な光が入射するのを防止するため、 L E D 3 1 1の光入射面及び偏光出射面以外に反射体(反射膜)を設けてもよい。 なお、 実施例 4の投写型映像表示装置においては、 透過型の液晶表示 パネルに限らず、 反射型の液晶表示パネルを用いてもよいし、 これら液 晶表示パネルに代えて画素となる微小ミラーを個々に駆動するタイプの 表示パネル等を用いてもよい。 また、 各色光を出射する 3つの照明装置 30 1 R, 30 1 G, 30 1 Bを備えたが、 白色光を出射する照明装置 とし、 ダイクロイツクミラー等で分光したリ或いは分光せずに単板の力 ラー表示パネルに導く構成としてもよい。 白色光を出射する照明装置と する場合、 各固体発光素子が白色光を出射してもよいし、 赤色光と青色 光と緑色光を出射する固体発光素子を適宜に並べた構成としてもよい。 また、 固体発光素子は発光ダイオード (L E D) に限るものではない。 以上説明したように、 実施例 4の発明によれば、 発光ダイオード等の 固体発光素子を用いる実用的な照明装置及びこれを用いた投写型映像表 示装置を提供できるという効果を奏する。 Figure 25 shows another lighting device. This illumination device has a configuration in which a polarization conversion device 314 is provided at the light emitting portion of the LED 331. The polarization converter 314 is constituted by a pair of polarization beam splitters (hereinafter, referred to as PBS). Each PBS is provided with a polarization separation film 314a. A phase difference plate (1Z2 plate) 314b is provided on the light emission side of one PBS. The polarization separation film 314a of PBS passes, for example, P-polarized light of the light emitted from the LED 311 and changes the optical path of S-polarized light by 90 °. The S-polarized light whose path has been changed is reflected by the adjacent polarization splitting film 314 a and emitted as it is. On the other hand, the P-polarized light transmitted through the polarization separation film 314a is converted into s-polarized light by the retardation plate 314b provided on the front side (light emission side) and emitted. That is, almost all light is converted to S-polarized light. By aligning the polarization directions in this way, it is possible to improve the brightness on the screen in a projection type image display device using the liquid crystal display panel 303. it can. Although one LED 311 is provided for one polarization conversion device 3 14, a plurality of LEDs 3 11 may be provided for one polarization conversion device 3 14. Further, the lighting device shown in FIG. 25 may be arranged as the LED 311 of the lighting device 301 shown in FIG. In this case, in order to prevent unnecessary light from being incident on the polarization conversion device 3 14, a reflector (reflection film) may be provided in addition to the light entrance surface and the polarization exit surface of the LED 311. In the projection display apparatus of the fourth embodiment, not only the transmission type liquid crystal display panel but also a reflection type liquid crystal display panel may be used. Alternatively, a display panel or the like of a type that individually drives the LCDs may be used. In addition, three illumination devices 30 1 R, 30 1 G, and 30 1 B that emit light of each color are provided. A configuration may be adopted in which the display is guided to a color display panel. When a lighting device that emits white light is used, each solid state light emitting element may emit white light, or a solid light emitting element that emits red light, blue light, and green light may be appropriately arranged. Solid-state light-emitting devices are not limited to light-emitting diodes (LEDs). As described above, according to the invention of the fourth embodiment, it is possible to provide a practical illumination device using a solid-state light-emitting element such as a light-emitting diode and a projection-type image display device using the same.

Claims

請 求 の 範 囲 The scope of the claims
1 . 固体発光素子がアレイ状に配置された光源と、 各固体発光素子か ら出射された光を照明対象物ヘインテグレートして導くインテグレート 手段と、 を備えたことを特徴とする照明装置。 1. A lighting device, comprising: a light source in which solid-state light-emitting elements are arranged in an array; and integration means for integrating and guiding light emitted from each solid-state light-emitting element to an object to be illuminated.
2 . 請求項 1 に記載の照明装置において、 各固体発光素子の光出射側 にレンズセルを配置したことを特徴とする照明装置。  2. The lighting device according to claim 1, wherein a lens cell is arranged on a light emitting side of each solid state light emitting element.
3 . 請求項 2に記載の照明装置において、 前記レンズセルは各固体発 光素子をモールドする樹脂にて一体的に成型されるか又は、 前記モール ド樹脂とは別個に形成され且つ当該モールド樹脂との間に樹脂層を介在 させて設けられていることを特徴とする照明装置。  3. The lighting device according to claim 2, wherein the lens cell is integrally molded with a resin for molding each solid state light emitting element, or is formed separately from the molded resin and is formed of the molded resin. And a resin layer interposed therebetween.
4 . 請求項 2又は請求項 3に記載の照明装置において、 前記レンズセ ルは互いに離間して壁面を有し、 前記壁面が反射面をなすことを特徴と する照明装置。  4. The lighting device according to claim 2, wherein the lens cells have wall surfaces that are separated from each other, and the wall surfaces form a reflection surface.
5 . 請求項 4に記載の照明装置において、 前記離間箇所に反射体を介 在させたことを特徴とする照明装置。 5. The lighting device according to claim 4, wherein a reflector is interposed at the separated portion.
6 . 請求項 2乃至請求項 5のいずれかに記載の照明装置において、 前 記インテグレー卜手段は光を受けて集光する第 1のレンズ群と集光点に 設けられた第 2のレンズ群とから成り、 前記レンズセルは固体発光素子 からの光を前記第 1のレンズ群に導くように構成されていることを特徴 とする照明装置。  6. The lighting device according to any one of claims 2 to 5, wherein the integrating means includes a first lens group for receiving and condensing light and a second lens group provided at a converging point. Wherein the lens cell is configured to guide light from the solid state light emitting element to the first lens group.
7 . 請求項 6に記載の照明装置において、 前記レンズセルと前記第 1 のレンズ群とが密着していることを特徴とする照明装置。  7. The lighting device according to claim 6, wherein the lens cell and the first lens group are in close contact with each other.
8 . 請求項 2乃至請求項 5のいずれかに記載の照明装置において、 前 記レンズセルは固体発光素子からの光を集光するように構成され、 前記 ィンテグレー卜手段は前記レンズセルを経た光の集光点に設けられたレ ンズ群を備えて成ることを特徴とする照明装置。 8. The lighting device according to any one of claims 2 to 5, wherein the lens cell is configured to collect light from a solid-state light emitting element, and the integrating means is configured to control the light passing through the lens cell. Of the light focusing point A lighting device comprising a group of lenses.
9 . 請求項 6乃至請求項 8のいずれかに記載の照明装置において、 各 固体発光素子と各レンズセルとレンズ群の各レンズとが 1対 1 で対応し ていることを特徴とする照明装置。  9. The lighting device according to any one of claims 6 to 8, wherein each solid-state light emitting element, each lens cell, and each lens of the lens group have a one-to-one correspondence. .
1 0 . 請求項 6乃至請求項 9のいずれかに記載の照明装置において、 偏光ビ一ムスプリッタをァレイ状に配置して成る偏光変換装置を、 前記 ィンテグレート手段の光出射側に設けたことを特徴とする照明装置。10. The lighting device according to any one of claims 6 to 9, wherein a polarization conversion device having a polarization beam splitter arranged in an array is provided on the light emitting side of the integral means. Lighting device characterized by the following.
1 1 . 請求項 1 0に記載の照明装置において、 前記偏光ビームスプリ ッタは四角柱形状を有し、 その長手方向を固体発光素子の長手方向に一 致させていることを特徴とする照明装置。 11. The lighting device according to claim 10, wherein the polarizing beam splitter has a quadrangular prism shape, and its longitudinal direction matches the longitudinal direction of the solid-state light emitting element. apparatus.
1 2 . 請求項 2乃至請求項 1 1のいずれかに記載の照明装置において、 前記ィンテグレート手段におけるレンズ群の各レンズを照明対象物のァ スぺク 卜比に一致又は略一致させたことを特徴とする照明装置。  12. The lighting device according to any one of claims 2 to 11, wherein each lens of the lens group in the integrating means is matched or substantially matched with an aspect ratio of an object to be illuminated. Lighting device characterized by the following.
1 3 . 請求項 2乃至請求項 1 2のいずれかに記載の照明装置において、 前記レンズセルを照明対象物のァスぺク 卜比に一致又は略一致させたこ とを特徴とする照明装置。  13. The lighting device according to any one of claims 2 to 12, wherein the lens cell matches or substantially matches an aspect ratio of an object to be illuminated.
1 4 . 請求項 1乃至請求項 1 3のいずれかに記載の照明装置において、 各固体発光素子のァスぺク ト比を照明対象物のァスぺク 卜比に一致又は 略一致させたことを特徴とする照明装置。  14. The lighting device according to any one of claims 1 to 13, wherein an aspect ratio of each solid-state light-emitting element matches or substantially matches an aspect ratio of an object to be illuminated. A lighting device, comprising:
1 5 . 請求項 1乃至請求項.1 1のいずれかに記載の照明装置において、 アナモフィックレンズを備え、 このアナモフィックレンズに導かれる光 束のァスぺク ト比は照明対象物のァスぺク 卜比と相違し、 アナモフイツ クレンズから出射される光束のァスぺク ト比が照明対象物のァスぺク 卜 比に一致又は略一致することを特徴とする照明装置。  15. The lighting device according to any one of claims 1 to 11, further comprising an anamorphic lens, wherein a flux ratio of a light beam guided to the anamorphic lens is equal to that of an illumination target. An illuminating device, wherein the illuminating device differs from the fracturing ratio in that the luminous flux emitted from the anamorphic lens has the same or substantially the same as the illuminating object.
1 6 . 請求項 1乃至請求項 5のいずれかに記載の照明装置において、 前記インテグレー卜手段はロッ ドインテグレータから成ることを特徴と する照明装置。 16. The lighting device according to any one of claims 1 to 5, wherein the integrating means comprises a rod integrator. Lighting equipment.
1 7 . 請求項 1 6に記載の照明装置において、 前記ロッ ドインテグレ —夕の光出射面を照明対象物のァスぺク 卜比に一致又は略一致させたこ とを特徴とする照明装置。  17. The illuminating device according to claim 16, wherein the rod integrator has a light emitting surface in the evening that is substantially or substantially equal to an aspect ratio of an object to be illuminated.
1 8 . 請求項 1 6に記載の照明装置において、 前記ロッ ドイン亍グレ 一タの光出射面側にアナモフィックレンズを備え、 前記ロッ ドィンテグ レ一タの光出射面のァス ク 卜比は照明対象物のァスぺク ト比と相違し、 アナモフィックレンズから出射される光束のァスぺク ト比が照明対象物 のァスぺク 卜比に一致又は略一致することを特徴とする照明装置。 18. The lighting device according to claim 16, further comprising: an anamorphic lens provided on a light exit surface side of the rod integrator, wherein an aspect ratio of the light exit surface of the rod integrator is illumination. An illumination characterized in that the aspect ratio of the luminous flux emitted from the anamorphic lens coincides with or substantially coincides with the aspect ratio of the illumination object, which is different from the aspect ratio of the object. apparatus.
1 9 . 固体発光素子である半導体レーザを複数配列してなる光源と、 前記半導体レーザから出射された光を照明対象物へインテグレートして 導くインテグレー卜手段と、 前記半導体レーザから出射された光の位相 を互いに不均一にする位相シフ卜手段と、 を備えたことを特徴とする照 明装置。 19. Light source comprising a plurality of semiconductor lasers which are solid-state light emitting elements, integration means for guiding light emitted from the semiconductor laser to an object to be illuminated, and light emitted from the semiconductor laser. An illuminating device comprising: a phase shift means for making phases non-uniform with each other.
2 0 . 請求項 1 9に記載の照明装置において、 位相シフト手段は、 各 半導体レーザから出射された光の光路上に配置された互いに厚みが異な る複数の平板透明部から成ることを特徴とする照明装置。 20. The lighting device according to claim 19, wherein the phase shift means comprises a plurality of flat plate transparent portions having different thicknesses arranged on an optical path of light emitted from each semiconductor laser. Lighting equipment.
2 1 . 請求項 1 9に記載の照明装置において、 位相シフ ト手段は、 各 半導体レーザから出射された光の光路上に配置された互いに誘電率が異 なる複数の平板透明部から成ることを特徴とする照明装置。 21. The lighting device according to claim 19, wherein the phase shift means includes a plurality of flat plate transparent portions having different dielectric constants arranged on an optical path of light emitted from each semiconductor laser. Lighting device characterized by the following.
2 2 . 請求項 2 0又は請求項 2 1 に記載の照明装置において、 前記平 板透明部のァスぺク 卜比が照明対象物のァスぺク ト比に一致又は略一致 することを特徴とする照明装置。  22. The lighting device according to claim 20 or claim 21, wherein an aspect ratio of the transparent portion of the flat plate matches or substantially matches an aspect ratio of the object to be illuminated. Lighting device characterized by the following.
2 3 . 請求項 2 0又は請求項 2 1 に記載の照明装置において、 アナモ フィックレンズを備え、 このアナモフィックレンズに導かれる光束のァ スぺク 卜比は照明対象物のァスぺク 卜比と相違し、 アナモフィックレン ズから出射される光束のァスぺク 卜比が照明対象物のァスぺク 卜比に一 致又は略一致することを特徴とする照明装置。 23. The lighting device according to claim 20 or 21, further comprising an anamorphic lens, wherein the luminous flux guided to the anamorphic lens has an aspect ratio of an illuminated object. Anamorphic wren An illumination device characterized in that an aspect ratio of a luminous flux emitted from a laser beam coincides with or substantially coincides with an aspect ratio of an object to be illuminated.
2 4 . 請求項 1 9に記載の照明装置において、 位相シフ ト手段は、 前 記半導体レーザから出射されたレーザー光の光路上に配置された楔状光 学素子であることを特徴とする照明装置。  24. The lighting device according to claim 19, wherein the phase shift means is a wedge-shaped optical element arranged on an optical path of the laser light emitted from the semiconductor laser. .
2 5 . 固体発光素子である半導体レーザを複数配列してなる光源と、 前記半導体レーザから出射されたレーザ一光を照明対象物ヘインテダレ 25. A light source comprising a plurality of semiconductor lasers, which are solid-state light-emitting elements, and a laser beam emitted from the semiconductor laser.
—卜して導くインテグレート手段と、 前記半導体レーザから出射された レーザー光を拡散させる光拡散手段と、 を備えたことを特徴とする照明 装置。 A lighting device comprising: an integrating means for guiding the laser light; and a light diffusing means for diffusing the laser light emitted from the semiconductor laser.
2 6 . 請求項 2 5に記載の照明装置において、 光拡散手段は微小凹凸 を有する光学素子であることを特徴とする照明装置。  26. The lighting device according to claim 25, wherein the light diffusing means is an optical element having minute irregularities.
2 7 . 固体発光素子を複数配列してなる光源と、 各固体発光素子から 出射された光を受けてその受光領域の複数箇所の光の各々について照明 対象物へインテグレートして導くインテグレート手段と、 を備えたこと を特徴とする照明装置。 27. A light source in which a plurality of solid state light emitting elements are arrayed, integration means for receiving light emitted from each solid state light emitting element and integrating and guiding each of light at a plurality of places in its light receiving region to an illumination target; A lighting device comprising:
2 8 . 請求項 2 7に記載の照明装置において、 前記インテグレート手 段はレンズ群から成り、 一つの固体発光素子からの光を前記レンズ群が 受光することを特徴とする照明装置。  28. The lighting device according to claim 27, wherein the integration means includes a lens group, and the lens group receives light from one solid state light emitting element.
2 9 . 請求項 2 8に記載の照明装置において、 前記インテグレート手 段におけるレンズ群の各レンズを照明対象物のァスぺク ト比に一致又は 略一致させたことを特徴とする照明装置。 29. The illuminating device according to claim 28, wherein each lens of the lens group in the integration step matches or substantially matches an aspect ratio of an object to be illuminated.
3 0 . 請求項 2 8に記載の照明装置において、 アナモフィックレンズ を備え、 このアナモフィックレンズに導かれる光束のァスぺク ト比は照 明対象物のアスペク ト比と相違し、 アナモフィックレンズから出射され る光束のァスぺク 卜比が照明対象物のァスぺク 卜比に一致又は略一致す ることを特徴とする照明装置。 30. The lighting device according to claim 28, further comprising an anamorphic lens, wherein an aspect ratio of a light beam guided to the anamorphic lens is different from an aspect ratio of an object to be illuminated, and is emitted from the anamorphic lens. The aspect ratio of the luminous flux matches or almost matches the aspect ratio of the illuminated object. A lighting device, comprising:
3 1 . 互いに発光強度分布が相違する複数の固体発光素子を配列して なる光源と、 各固体発光素子から出射された光を照明対象物ヘインテグ レートして導くインテグレート手段と、 を備えたことを特徴とする照明 装置。  3 1. A light source comprising a plurality of solid-state light-emitting elements having mutually different light emission intensity distributions, and integration means for integrating and guiding light emitted from each solid-state light-emitting element to an object to be illuminated. Characteristic lighting equipment.
3 2 . 固体発光素子を複数配列してなる光源と、 各固体発光素子から 出射された光を受けてその強度分布を変換して出射する強度分布変換手 段と、 各強度分布変換手段から出射された光を照明対象物ヘインテグレ 一卜して導くインテグレート手段と、 を備えたことを特徴とする照明装 置。  32. A light source having a plurality of solid state light emitting elements arranged, an intensity distribution converting means for receiving the light emitted from each solid state light emitting element, converting the intensity distribution and emitting the light, and emitting light from each intensity distribution converting means. An integrating means for integrating the light into an object to be illuminated and guiding the light to the object to be illuminated.
3 3 . 固体発光素子を複数配列してなる光源と、 各固体発光素子から 出射された光を照明対象物へ互いに異なる集光パターンでィンテグレー 卜して導くインテグレー卜手段と、を備えたことを特徴とする照明装置。  33. A light source having a plurality of solid state light emitting elements arranged therein, and an integrating means for guiding light emitted from each solid state light emitting element to an object to be illuminated by different condensing patterns and guiding the same to each other. Lighting device characterized by the following.
3 4 . 請求項 3 1 に記載の投写型映像表示装置において、 2点発光の 固体発光素子を備えることを特徴とする照明装置。 34. The projection display according to claim 31, further comprising a solid-state light-emitting element that emits light at two points.
3 5 . 請求項 2 5乃至請求項 3 4のいずれかに記載の照明装置におい て、 固体発光素子として半導体レーザを備え、 照明対象物を液晶表示パ ネルとし、 半導体レーザの直線偏光方向と液晶表示パネルの偏光方向と を一致又は略一致させたことを特徴とする照明装置。  35. The lighting device according to any one of claims 25 to 34, further comprising a semiconductor laser as a solid-state light emitting element, an illumination target being a liquid crystal display panel, a linear polarization direction of the semiconductor laser, and a liquid crystal. A lighting device characterized in that the polarization direction of the display panel coincides with or substantially coincides with the polarization direction of the display panel.
3 6 . 請求項 2 5乃至請求項 3 5のいずれかに記載の照明装置におい て、 固体発光素子として半導体レーザを備え、 その発光の楕円長手方向 を照明対象物の長手方向に一致又は略一致させたことを特徴とする照明 装置。 36. The lighting device according to any one of claims 25 to 35, further comprising a semiconductor laser as the solid-state light-emitting element, wherein an elliptical longitudinal direction of the light emission coincides or substantially coincides with a longitudinal direction of the illumination target. A lighting device characterized by being made to work.
3 7 . 請求項 2 5乃至請求項 3 6のいずれかに記載の照明装置におい て、 前記固体発光素子として半導体レーザを備え、 この半導体レーザか らの光を前記照明対象物に導く光学系における光学素子のァスぺク 卜比 を前記照明対象物のァスぺク 卜比に一致又は略一致させると共に、 前記 半導体レーザの発光の楕円長手方向を前記光学素子の長手方向に一致又 は略一致させたことを特徴とする照明装置。 37. The lighting device according to any one of claims 25 to 36, further comprising a semiconductor laser as the solid-state light-emitting element, wherein an optical system that guides light from the semiconductor laser to the illumination target. Aspect ratio of optical element And an elliptical longitudinal direction of light emission of the semiconductor laser coincides with or substantially coincides with a longitudinal direction of the optical element, while making the length of the ellipse coincide with or substantially coincides with the aspect ratio of the illumination object. apparatus.
3 8 . —面が光出射面とされ、 他の面の内側を反射面とした鏡面筒体 内に固体発光素子を三次元に複数配置し、 前記固体発光素子から出射さ れた光が前記反射面にてィンテグレー卜されて前記光出射面か 出射さ れるように構成されたことを特徴とする照明装置。  38. A plurality of solid-state light-emitting elements are arranged three-dimensionally in a mirror-surface cylindrical body whose surface is a light-emitting surface and the inside of the other surface is a reflecting surface, and the light emitted from the solid-state light-emitting element is A lighting device, wherein the lighting device is configured to be integrated on a reflection surface and to be emitted from the light emission surface.
3 9 . 請求項 3 8に記載の照明装置において、 鏡面筒体は角筒体を成 すことを特徴とする照明装置。  39. The lighting device according to claim 38, wherein the mirror-surface cylindrical body forms a square cylindrical body.
4 0 . 請求項 3 9に記載の照明装置において、 前記光出射面のァスぺ ク ト比を照明対象物のァスぺク 卜比に一致又は略一致させたことを特徴 とする照明装置。 40. The lighting device according to claim 39, wherein an aspect ratio of the light exit surface is made to match or substantially matches an aspect ratio of an object to be illuminated. .
4 1 . 請求項 3 8乃至請求項 4 0のいずれかに記載の照明装置におい て、 前記鏡面筒体は錐形状をなし、 前記光出射面に対面する面よりも、 前記光出射面の方が大面積とされたことを特徴とする照明装置。  41. The lighting device according to any one of claims 38 to 40, wherein the mirror-surface cylindrical body has a conical shape, and the light-emitting surface is closer to the light-emitting surface than to a surface facing the light-emitting surface. A lighting device characterized by having a large area.
4 2 . 固体発光素子の光出射側に平行化機能又は集光機能を持つ回折 光学素子部を備えたことを特徴とする照明装置。  42. An illumination device comprising a diffractive optical element having a collimating function or a condensing function on the light emitting side of the solid state light emitting element.
4 3 . 固体発光素子の光出射側に平行化機能又は集光機能を持つホロ グラム光学素子部を備えたことを特徴とする照明装置。  43. An illumination device comprising a holographic optical element section having a collimating function or a condensing function on the light emission side of a solid-state light emitting element.
4 4 . 固体発光素子を二次元又は三次元に 数配置すると共に各固体 発光素子の光出射側に偏光変換素子を設けたことを特徴とする照明装置。 44. An illumination device comprising a plurality of solid-state light-emitting elements arranged two-dimensionally or three-dimensionally, and a polarization conversion element provided on the light emission side of each solid-state light-emitting element.
4 5 . 請求項 1乃至請求項 4 4のいずれかに記載の照明装置において、 照明対象物としてマイクロレンズを有しない透過型の液晶表示パネルを 備えたことを特徴とする照明装置。 45. The lighting device according to any one of claims 1 to 44, further comprising a transmissive liquid crystal display panel having no microlens as an object to be illuminated.
4 6 . 請求項 1乃至請求項 4 5のいずれかに記載の照明装置を備えた ことを特徴とする投写型映像表示装置。 46. A projection-type image display device comprising the lighting device according to any one of claims 1 to 45.
PCT/JP2003/016836 2002-12-26 2003-12-25 Illuminating device and porjection type image display unit WO2004059366A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03786342A EP1577697A4 (en) 2002-12-26 2003-12-25 Illuminating device and porjection type image display unit
US10/540,545 US20060132725A1 (en) 2002-12-26 2003-12-25 Illuminating device and projection type image display unit

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-377871 2002-12-26
JP2002-377870 2002-12-26
JP2002-377872 2002-12-26
JP2002377871A JP4162484B2 (en) 2002-12-26 2002-12-26 Projection display device
JP2002377872 2002-12-26
JP2002377870 2002-12-26
JP2002379014A JP2004212445A (en) 2002-12-27 2002-12-27 Illuminator and projection video display device
JP2002-379014 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004059366A1 true WO2004059366A1 (en) 2004-07-15

Family

ID=32686186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016836 WO2004059366A1 (en) 2002-12-26 2003-12-25 Illuminating device and porjection type image display unit

Country Status (4)

Country Link
US (1) US20060132725A1 (en)
EP (1) EP1577697A4 (en)
KR (4) KR20050089074A (en)
WO (1) WO2004059366A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006071391A1 (en) * 2004-12-29 2006-07-06 3M Innovative Properties Company Illumination system using multiple light sources with integrating tunnel and projection systems using same
KR100760740B1 (en) 2005-06-20 2007-09-21 세이코 엡슨 가부시키가이샤 Display unit and light-emitting unit
GB2426378B (en) * 2005-05-17 2008-09-17 Bosch Gmbh Robert Device comprsing a plastics component and a light-emitting diode

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345431B4 (en) * 2003-09-30 2009-10-22 Carl Zeiss Jena Gmbh Device for the homogeneous multicolor illumination of a surface
US7427146B2 (en) * 2004-02-11 2008-09-23 3M Innovative Properties Company Light-collecting illumination system
JP4616577B2 (en) * 2004-04-22 2011-01-19 株式会社日立製作所 Video display device
JP2005352205A (en) * 2004-06-10 2005-12-22 Fujinon Corp Illuminator
US7390097B2 (en) * 2004-08-23 2008-06-24 3M Innovative Properties Company Multiple channel illumination system
JP2006134975A (en) 2004-11-04 2006-05-25 Hitachi Displays Ltd LIGHTING DEVICE AND DISPLAY DEVICE USING THE LIGHTING DEVICE
US9128519B1 (en) 2005-04-15 2015-09-08 Intellectual Ventures Holding 67 Llc Method and system for state-based control of objects
US7401943B2 (en) * 2005-06-07 2008-07-22 Fusion Uv Systems, Inc. Solid-state light sources for curing and surface modification
JP2007058163A (en) * 2005-07-27 2007-03-08 Ricoh Co Ltd LIGHT SOURCE DEVICE, LIGHT MODULATION DEVICE, DISPLAY DEVICE, CONCENTRATION LIGHTING DEVICE, AND PROJECTION COLOR DISPLAY DEVICE
US20090257029A1 (en) * 2005-09-14 2009-10-15 Tetsuro Mizushima Image forming device
JP2007200730A (en) * 2006-01-27 2007-08-09 Casio Comput Co Ltd Light source unit, light source device and projector
US7901083B2 (en) 2006-07-31 2011-03-08 3M Innovative Properties Company Optical projection subsystem
DE102006045440A1 (en) * 2006-09-26 2008-03-27 Osram Opto Semiconductors Gmbh Optical projection device comprises light source provided with two light-emitting diode chips, and light source has illumination surface formed by radiation emission surfaces of light-emitting diode chips
WO2008139355A1 (en) * 2007-05-11 2008-11-20 Koninklijke Philips Electronics N.V. Illumination system
KR101141087B1 (en) 2007-09-14 2012-07-12 인텔렉츄얼 벤처스 홀딩 67 엘엘씨 Processing of gesture-based user interactions
EP2193657A2 (en) * 2007-09-25 2010-06-09 Explay Ltd. Micro-projector
US20090096630A1 (en) * 2007-10-13 2009-04-16 David Belanger Laser lighted guidance exit indicator
US8159682B2 (en) * 2007-11-12 2012-04-17 Intellectual Ventures Holding 67 Llc Lens system
US20100039500A1 (en) * 2008-02-15 2010-02-18 Matthew Bell Self-Contained 3D Vision System Utilizing Stereo Camera and Patterned Illuminator
US8259163B2 (en) 2008-03-07 2012-09-04 Intellectual Ventures Holding 67 Llc Display with built in 3D sensing
US8595218B2 (en) 2008-06-12 2013-11-26 Intellectual Ventures Holding 67 Llc Interactive display management systems and methods
JP5493483B2 (en) * 2008-07-24 2014-05-14 セイコーエプソン株式会社 projector
WO2010019594A2 (en) * 2008-08-14 2010-02-18 3M Innovative Properties Company Projection system with imaging light source module
KR100909444B1 (en) * 2008-11-27 2009-08-06 주식회사 썬아이씨피브이 Miniature PV Module with Fly Eye Lens
JP4756403B2 (en) 2009-06-30 2011-08-24 カシオ計算機株式会社 Light source device and projector
CN101943845A (en) * 2009-07-07 2011-01-12 红蝶科技(深圳)有限公司 Efficient miniature projection optical engine
US8662704B2 (en) * 2009-08-14 2014-03-04 U.S. Pole Company, Inc. LED optical system with multiple levels of secondary optics
DE102009039982A1 (en) 2009-09-03 2011-03-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
JP5492582B2 (en) * 2010-01-29 2014-05-14 日立コンシューマエレクトロニクス株式会社 Projection display device
CN102155713B (en) 2010-04-08 2013-06-05 深圳市光峰光电技术有限公司 Light mixing luminaire
EP2789899B1 (en) 2010-04-10 2017-07-05 LG Innotek Co., Ltd. Lighting apparatus
KR101090728B1 (en) 2010-04-10 2011-12-08 엘지이노텍 주식회사 Lighting apparatus
JP5581958B2 (en) * 2010-10-12 2014-09-03 ソニー株式会社 Illumination device, projection display device, direct view display device
KR101103522B1 (en) * 2010-11-08 2012-01-09 엘지이노텍 주식회사 Lighting device
EP2738445B1 (en) 2010-11-08 2018-01-10 LG Innotek Co., Ltd. Lighting apparatus
JP2012113223A (en) * 2010-11-26 2012-06-14 Sony Corp Illuminating device, projection type display device, and direct-view type display device
JP5494678B2 (en) * 2011-02-17 2014-05-21 株式会社ニコン Illumination optical system and projector apparatus
JP5772143B2 (en) * 2011-03-28 2015-09-02 ソニー株式会社 Illumination device, projection display device, and direct view display device
JP5643720B2 (en) * 2011-06-30 2014-12-17 株式会社沖データ Display module, manufacturing method thereof and display device
US9069183B2 (en) 2011-09-28 2015-06-30 Applied Materials, Inc. Apparatus and method for speckle reduction in laser processing equipment
DE102011054234B4 (en) * 2011-10-06 2020-03-12 HELLA GmbH & Co. KGaA Lighting device
DE102011054230B4 (en) 2011-10-06 2023-09-14 HELLA GmbH & Co. KGaA Lighting device for vehicles
US9328875B2 (en) * 2012-03-27 2016-05-03 Flir Systems, Inc. Scalable laser with selectable divergence
TWI464517B (en) * 2012-04-11 2014-12-11 鴻海精密工業股份有限公司 Light source structure of porjector
TWI453525B (en) * 2012-04-11 2014-09-21 Hon Hai Prec Ind Co Ltd Light source structure of porjector
TWI546607B (en) * 2012-12-13 2016-08-21 鴻海精密工業股份有限公司 Laser projection device
JP6172936B2 (en) * 2012-12-28 2017-08-02 キヤノン株式会社 projector
WO2014183583A1 (en) * 2013-05-17 2014-11-20 深圳市绎立锐光科技开发有限公司 Light-emitting device and stage lamp system
DE102013214116C5 (en) * 2013-07-18 2018-07-05 Automotive Lighting Reutlingen Gmbh Headlamp for a glare-free high beam
JP6476062B2 (en) 2014-06-19 2019-02-27 株式会社Screenホールディングス Light irradiation apparatus and drawing apparatus
TWI530750B (en) * 2014-08-05 2016-04-21 中強光電股份有限公司 Projector
FR3048060B1 (en) * 2016-02-22 2019-04-05 Valeo Vision LIGHT BEAM PROJECTION DEVICE WITH LIGHT SOURCE SUBMATHES, LIGHTING MODULE AND PROJECTOR PROVIDED WITH SUCH A DEVICE
US10930710B2 (en) * 2017-05-04 2021-02-23 Apple Inc. Display with nanostructure angle-of-view adjustment structures
CN207049716U (en) * 2017-07-25 2018-02-27 深圳市绎立锐光科技开发有限公司 The stage lamp illuminating system of light supply apparatus and the application light supply apparatus
JP7370713B2 (en) 2019-03-07 2023-10-30 株式会社小糸製作所 optical unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210310A (en) * 1988-06-29 1990-01-16 Omron Tateisi Electron Co Multibeam light source
WO1999049358A1 (en) * 1998-03-26 1999-09-30 Mitsubishi Denki Kabushiki Kaisha Image display and light-emitting device
JP2003177353A (en) * 2001-09-29 2003-06-27 Samsung Electronics Co Ltd Lighting system and projector employing the same
JP2003195213A (en) * 2001-10-12 2003-07-09 Samsung Electronics Co Ltd Illumination system and projector using the same
JP2003218017A (en) * 2001-11-16 2003-07-31 Ricoh Co Ltd Laser illumination optical system and exposure apparatus, laser processing apparatus, and projection apparatus using the same
JP2003280095A (en) * 2001-11-08 2003-10-02 Samsung Electronics Co Ltd Lighting system and projection system using the same
JP2003330106A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Lighting device and projection display device
JP2003329978A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Lighting device and projection display device
JP2003339052A (en) * 2002-05-21 2003-11-28 Mitsubishi Electric Corp Color video display

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619508A (en) * 1984-04-28 1986-10-28 Nippon Kogaku K. K. Illumination optical arrangement
US5013144A (en) * 1988-10-15 1991-05-07 Hewlett-Packard Company Light source having a multiply conic lens
US5313479A (en) * 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
DE19508754C2 (en) * 1995-03-10 1999-06-02 Ldt Gmbh & Co Method and apparatus for reducing interference from a coherent light beam
US6712481B2 (en) * 1995-06-27 2004-03-30 Solid State Opto Limited Light emitting panel assemblies
US6031958A (en) * 1997-05-21 2000-02-29 Mcgaffigan; Thomas H. Optical light pipes with laser light appearance
JP3585097B2 (en) * 1998-06-04 2004-11-04 セイコーエプソン株式会社 Light source device, optical device and liquid crystal display device
US6005722A (en) * 1998-09-04 1999-12-21 Hewlett-Packard Company Optical display system including a light valve
US6064528A (en) * 1998-11-20 2000-05-16 Eastman Kodak Company Multiple laser array sources combined for use in a laser printer
TW380213B (en) * 1999-01-21 2000-01-21 Ind Tech Res Inst Illumination apparatus and image projection apparatus includes the same
JP2001343706A (en) * 2000-05-31 2001-12-14 Sony Corp Video display device
JP2002216503A (en) * 2001-01-11 2002-08-02 Prokia Technology Co Ltd Multi-light-source light condensing apparatus
US6577429B1 (en) * 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210310A (en) * 1988-06-29 1990-01-16 Omron Tateisi Electron Co Multibeam light source
WO1999049358A1 (en) * 1998-03-26 1999-09-30 Mitsubishi Denki Kabushiki Kaisha Image display and light-emitting device
JP2003177353A (en) * 2001-09-29 2003-06-27 Samsung Electronics Co Ltd Lighting system and projector employing the same
JP2003195213A (en) * 2001-10-12 2003-07-09 Samsung Electronics Co Ltd Illumination system and projector using the same
JP2003280095A (en) * 2001-11-08 2003-10-02 Samsung Electronics Co Ltd Lighting system and projection system using the same
JP2003218017A (en) * 2001-11-16 2003-07-31 Ricoh Co Ltd Laser illumination optical system and exposure apparatus, laser processing apparatus, and projection apparatus using the same
JP2003330106A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Lighting device and projection display device
JP2003329978A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Lighting device and projection display device
JP2003339052A (en) * 2002-05-21 2003-11-28 Mitsubishi Electric Corp Color video display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1577697A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006071391A1 (en) * 2004-12-29 2006-07-06 3M Innovative Properties Company Illumination system using multiple light sources with integrating tunnel and projection systems using same
GB2426378B (en) * 2005-05-17 2008-09-17 Bosch Gmbh Robert Device comprsing a plastics component and a light-emitting diode
KR100760740B1 (en) 2005-06-20 2007-09-21 세이코 엡슨 가부시키가이샤 Display unit and light-emitting unit

Also Published As

Publication number Publication date
KR20070062611A (en) 2007-06-15
US20060132725A1 (en) 2006-06-22
EP1577697A4 (en) 2007-12-26
KR20050089074A (en) 2005-09-07
KR20070062612A (en) 2007-06-15
EP1577697A1 (en) 2005-09-21
KR20070062610A (en) 2007-06-15

Similar Documents

Publication Publication Date Title
WO2004059366A1 (en) Illuminating device and porjection type image display unit
US7040767B2 (en) Integrator module with a compact light source and projection display having the same
CN102385232B (en) Lighting device and projector
US10372028B2 (en) Light source device and projection type display apparatus
JP2004220015A (en) Lighting unit and projection video display device
CN107436526B (en) Light source device and projection display device
WO2014132368A1 (en) Light source device
US7267446B2 (en) Projection display
JP2004220016A (en) Lighting system and projection-type image display
TW201833653A (en) Projection System
US10634981B2 (en) Light source device and projection type display apparatus
JP4162484B2 (en) Projection display device
US11327294B2 (en) Projection device
US11269247B2 (en) Light source module and projection device using the same
JP2006039338A (en) Lighting system and projection type video display device
JP4166261B2 (en) Illumination device and projection display device
US11656541B2 (en) Light source apparatus and image projection apparatus having the same
US20230244131A1 (en) Light source device and projector
CN113900340A (en) Light source assembly and projection equipment
US20250298302A1 (en) Beam projection apparatus and projector thereof
CN114077135B (en) Light recycling assembly and projection device
US20250298300A1 (en) Beam projection apparatus and projector thereof
CN115808836A (en) Light source device and projection display device
CN113009755A (en) Light source device and projection display device
JP2005099590A (en) Illuminating device and projection type image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003786342

Country of ref document: EP

Ref document number: 1020057011935

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A77284

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057011935

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003786342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006132725

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540545

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10540545

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003786342

Country of ref document: EP