[go: up one dir, main page]

WO2005078160A1 - 水素の製造方法及び装置 - Google Patents

水素の製造方法及び装置 Download PDF

Info

Publication number
WO2005078160A1
WO2005078160A1 PCT/JP2005/002420 JP2005002420W WO2005078160A1 WO 2005078160 A1 WO2005078160 A1 WO 2005078160A1 JP 2005002420 W JP2005002420 W JP 2005002420W WO 2005078160 A1 WO2005078160 A1 WO 2005078160A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode side
gas
electrolytic cell
anode
electrolysis
Prior art date
Application number
PCT/JP2005/002420
Other languages
English (en)
French (fr)
Inventor
Tohru Kato
Ken Nozaki
Hiroshi Yokota
Chi Matsumura
Hiroyuki Yamada
Original Assignee
Ebara Corporation
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004042040A external-priority patent/JP4512788B2/ja
Priority claimed from JP2004042041A external-priority patent/JP4500907B2/ja
Application filed by Ebara Corporation, National Institute Of Advanced Industrial Science And Technology filed Critical Ebara Corporation
Priority to DE112005000495T priority Critical patent/DE112005000495T5/de
Priority to US10/589,815 priority patent/US20070163889A1/en
Publication of WO2005078160A1 publication Critical patent/WO2005078160A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method and an apparatus for producing hydrogen by high-temperature steam electrolysis, and more particularly to an electrolysis apparatus in which an electrolytic cell is partitioned into an anode side and a force sword side by a solid oxide electrolyte membrane.
  • the present invention relates to an electrolysis apparatus suitable for use in an electrolysis method in which electrolysis is reduced by supplying steam to a power source side and supplying a reducing gas to an anode side to perform electrolysis.
  • Water electrolysis methods for the purpose of hydrogen production include alkaline water electrolysis, solid polymer water electrolysis, and high-temperature steam electrolysis.
  • the electrolysis voltage is 1. Since 8V or more is required, the electrical efficiency is less than 80% and the amount of electricity required for hydrogen production is large.
  • using a solid oxide electrolyte as a diaphragm the electrolytic cell is divided into an anode side and a power source side, and high-temperature water vapor is supplied to the power source side, so that the water vapor is electrolyzed at a high temperature of about 800 ° C.
  • heat energy can be used to decompose water due to the high temperature, and electrode overvoltage and resistance overvoltage can be suppressed low, so that an electrical efficiency of 90% or more can be expected. It can be reduced to 5V or less, and the amount of power required for hydrogen production can be reduced. Furthermore, recently, by supplying natural gas to the anode side of the electrolytic cell, oxygen ions which move to the anode side in the solid oxide electrolyte membrane are reacted on the anode side to reduce the chemical potential. An electrolysis method that can greatly reduce power consumption by using it for water decomposition has been proposed (US Pat. No. 6,051,125).
  • the electrolytic cell used for ordinary high-temperature steam electrolysis has the same material and structure as the cell of a solid oxide fuel cell (SOFC), and is used as an electrode on the power source side on which steam is introduced to generate hydrogen.
  • SOFC solid oxide fuel cell
  • Ni cermet suitable for a reducing atmosphere is used, while conductive electrodes such as lanthanum cobaltite and lanthanum manganate are used as electrodes on the anode side where oxygen is generated.
  • Figure 1 shows the concept of a normal high-temperature steam electrolyzer. In the device shown in Fig.
  • the electrolyzer (electrolyzer) is divided into a power source side and an anode side by a solid oxide electrolyte membrane, and high-temperature steam is supplied to the power source side to supply power source electrodes and By supplying power to the anode electrode, electrolysis of water vapor is performed on the power source side to obtain high-purity hydrogen.
  • Oxygen ions o 2 — generated by the electrolysis of water vapor move to the anode side through the solid oxide electrolyte diaphragm.
  • the present invention provides a reducing gas supplied to the anode side of an electrolytic cell, which is divided into an anode side and a cathode side by the above-described membrane of the solid oxide electrolyte, and is supplied to the power source side.
  • An object of the present invention is to find a configuration of an electrolytic cell suitable for a method for producing hydrogen by electrolysis of water vapor by supplying water vapor and supplying power to an anode electrode and a power source electrode.
  • one embodiment of the present invention provides an electrolytic cell separated into an anode side and a power source side by a membrane of a solid oxide electrolyte, and a reducing gas flowing through an electrolytic cell.
  • This is a hydrogen production apparatus using a high-temperature steam electrolysis method equipped with a pipeline for supplying water to the cathode side and a pipeline for supplying water vapor to the power source of the electrolytic cell.
  • the material of the anode electrode and the power source electrode is 400-1000 °
  • an apparatus characterized by using a cermet made of ceramic and metal which is stable in a reducing atmosphere at a temperature of C.
  • a reducing gas is supplied to the anode side of the electrolysis apparatus.
  • the reducing gas reacts with oxygen passing through the solid oxide electrolyte membrane to the anode side of the electrolytic cell in the steam electrolytic cell according to the present invention to lower the oxygen concentration on the anode side.
  • natural gas and hydrocarbon gas such as methane.
  • FIG. 1 is a view showing the concept of a normal high-temperature steam electrolysis apparatus.
  • FIG. 2 is a view showing the concept of a high-temperature steam electrolysis apparatus according to the present invention.
  • FIG. 3 is a view showing an interconnector structure according to the present invention.
  • FIG. 4 is a view showing the concept of a high-temperature steam electrolysis apparatus used in the second embodiment of the present invention.
  • FIG. 5 is a flowchart showing the concept of an example of a hydrogen production method that works on the second aspect of the present invention.
  • FIG. 6 is a view showing the concept of a hydrogen production apparatus used in Example 1.
  • FIG. 7 is a view showing a structure of a hydrogen production experimental apparatus used in Example 2 of the present invention.
  • FIG. 8 is a graph showing the results of Example 2 of the present invention.
  • FIG. 2 shows the concept of one embodiment of a hydrogen production apparatus that is active in the present invention.
  • a reducing atmosphere is provided on the power source side of the electrolysis apparatus (electrolyzer) by the generated hydrogen and on the anode side by the supply of reducing gas. Therefore, since both the anode electrode and the force electrode are exposed to the reducing gas, these materials also have stable ceramic and metallic power in a reducing atmosphere at a temperature of 400 to 1000 ° C. It is characterized by using cermet.
  • the introduced steam is electrolyzed to generate hydrogen, so that the gas composition in the electrolytic cell changes from the entrance side to the exit side.
  • the outlet has the lowest hydrogen concentration, and the outlet has the highest hydrogen concentration.
  • metals such as Ni undergo steam oxidation at high temperatures.
  • it is effective to mix a reducing gas, but on the cathode side of the electrolytic cell of the present invention, since the purpose is to produce high-purity hydrogen, reduction is necessary. It is appropriate to mix hydrogen as a neutral gas.
  • H / HO is 0.01 or more.
  • the concentration is 0.04 or more, steam concentration does not occur, so that the concentration becomes the necessary minimum hydrogen partial pressure.
  • the electrolysis voltage changes depending on the oxygen partial pressure on the anode side and the power source side of the electrolytic cell, and P (cathode)
  • the molar ratio of reducing gas to acidic gas near the outlet on the anode side of the electrolytic cell reducing gas Z Since acidic gas is 0.4 or less, it is necessary to reduce the electrolytic voltage.
  • the H / HO at the inlet on the power source side of the electrolytic cell should be 0.4 or less, preferably 0.2 or less.
  • Hydrogen to be mixed is preferably circulated to a part of the hydrogen generated by steam electrolysis, since the system is simplified.
  • the concentration of the reducing gas is highest at the entrance and decreases toward the exit.
  • the oxygen partial pressure is lowest at the inlet and highest at the outlet.
  • the hydrogen concentration increases toward the outlet, and the oxygen partial pressure decreases toward the outlet.
  • the molar ratio of water to reducing gas is 0.4 or less, and preferably 0.2 or less.
  • anode electrode and the force sword electrode have gas diffusivity, have electron conduction, and have activity as an electrode catalyst.
  • the anode electrode and the force source electrode are mainly composed of a metal material which does not form a compound.
  • Metals having electron conductivity and catalytic activity without forming oxides under such conditions include Ni, Fe, Co, Cu, Pt, Ag, Pd, Ru, and mixtures and alloys thereof.
  • the electrode material is generally used as a cermet mixed with a ceramic powder in order to suppress sintering at a high temperature.
  • a material having conductivity of electrons and oxygen ions is used, the number of reaction sites increases when an electrode is used, and the area where oxygen ions can be diffused increases, which is effective in reducing the reaction overvoltage.
  • a steam electrolyzer when a plurality of electrolysis cells are connected in series to form a multistage, an interconnector for connecting an anode electrode and a force sword electrode is required.
  • the gas contacts both the gas on the anode side and the gas on the power source side of the electrolytic cell, and also serves to separate (gas seal) these gases.
  • one side has a reducing atmosphere and the other has an oxidizing atmosphere, so that it is difficult to select a material suitable for these, and it is also difficult to manufacture the cell.
  • a metal can be used as an interconnector material, which is easy to mold and join, and A highly reliable electrolytic device that can withstand stress can be manufactured.
  • the interconnector material include Ni, Ni-based alloys, Fe-based alloys, Co-based alloys, Cu-based alloys, and Ag-based alloys.
  • FIG. 3 shows a concept of an interconnector structure according to the present invention.
  • the electrolytic cell 5 is divided into an outer anode side 12 and an inner power source side 11 by a cylindrical solid oxide electrolyte membrane 3, and an anode electrode 4 is provided outside the solid oxide electrolyte and an inner electrode side is provided inside.
  • Force sword electrode 2 is arranged.
  • the upper and lower two cylindrical electrodes ⁇ the solid oxidant electrolyte composite are joined via the insulator 21, and the anode and the power source are connected by the interconnector 22. They are connected in series.
  • High-temperature steam is supplied to the power source side 11 of the electrolytic cell, and reducing gas (indicated as CH) is supplied to the anode side 12, and power is supplied to both electrodes.
  • reducing gas indicated as CH
  • the above-mentioned metal material can be used as the interconnector material because both the anode side and the force source side of the electrolytic cell are in a reducing atmosphere.
  • a second aspect of the present invention is to provide a technique for preventing the above-described problem of electrode blocking due to generated carbon by a simple method without increasing the cost.
  • the present inventors have conducted intensive studies to find a means for solving the above-mentioned problems, and as a result, have found that natural gas (hydrocarbon-containing gas) supplied to the anode side of the electrolysis tank has water vapor or carbon dioxide. As a result, carbon produced by the decomposition of the hydrocarbon-containing gas on the anode side immediately reacts with water vapor and carbon dioxide to form CO or CO.
  • natural gas hydrogen-containing gas supplied to the anode side of the electrolysis tank has water vapor or carbon dioxide.
  • the present inventors described that water vapor was applied to the power source side of a high-temperature steam electrolyzer in which the electrolytic cell was partitioned into an anode side and a power source side using a solid oxide electrolyte as a diaphragm as described above.
  • the exhaust gas discharged from the anode side of the electrolysis device Focusing on the fact that water and carbon dioxide generated by the reaction between hydrocarbons and the like in the supplied gas and oxygen passing through the solid oxidant electrolyte membrane are included, the anode-side exhaust gas is It has been found that water vapor and Z or carbon dioxide can be easily mixed by mixing with a hydrocarbon-containing gas supplied to the anode side of the electrolysis apparatus.
  • a steam is supplied to a power source side of a high-temperature steam electrolysis apparatus in which an electrolytic cell is partitioned into an anode side and a power source side using a solid oxide electrolyte as a diaphragm,
  • a method for producing hydrogen by high-temperature steam electrolysis for reducing the electrolysis voltage is characterized in that exhaust gas discharged from the anode side of the electrolysis apparatus is mixed with hydrocarbon-containing gas supplied to the anode side of the electrolysis apparatus.
  • the present invention relates to a method for producing hydrogen.
  • the second aspect of the present invention also relates to an apparatus for performing a brute force method. Therefore, in still another embodiment of the present invention, an electrolytic cell partitioned into an anode side and a cathode side by a membrane of a solid oxide electrolyte, and a hydrocarbon-containing gas supplied to the anode side of the electrolytic cell. And a conduit for supplying water vapor to the force sword of the electrolytic cell. Further, the exhaust gas discharged from the anode side of the electrolytic cell is provided with a hydrocarbon-containing gas supplied to the anode side of the electrolytic cell.
  • the present invention relates to an apparatus for producing hydrogen, which is provided with a conduit for mixing hydrogen therein.
  • a hydrocarbon-containing gas is supplied to the anode side of the electrolysis apparatus.
  • the hydrocarbon-containing gas means a gas containing a hydrocarbon such as natural gas or methane.
  • the expression “reducing gas” used in the present specification means that in the steam electrolytic cell according to the present invention, oxygen reacts with oxygen passing through the solid oxide electrolyte membrane to the anode side of the electrolytic cell, and It means a gas that can lower the oxygen concentration.
  • the high-temperature steam electrolyzer 113 is divided into an anode side 115 and a force sword side 116 by a membrane 114 of a solid oxide electrolyte.
  • high-temperature steam 119 is supplied to the power source side 116 of the electrolytic cell, and the hydrocarbon-containing gas 110 is supplied to the anode side 115 of the electrolytic cell, and the electric power 117 is converted to direct current by the AC-DC converter 18 and the electricity is supplied to the electrolytic cell.
  • the high temperature steam 119 supplied to the power source side 116 is decomposed into hydrogen and oxygen by the electrolytic action.
  • the produced hydrogen 120 is recovered as high-purity hydrogen.
  • the generated oxygen 121 becomes oxygen ions and selectively passes through the solid oxide electrolyte diaphragm 114 and moves to the anode side 115.
  • oxygen ions 121 are consumed in reaction with the hydrocarbon-containing gas and contribute to the formation of a concentration gradient of oxygen ions. Voltage and power consumption is greatly reduced.
  • the second embodiment of the present invention is directed to a hydrocarbon-containing solution supplied to the anode side of a high-temperature steam electrolyzer.
  • An exhaust gas discharged from the anode side of the electrolytic cell is mixed with the gas.
  • a hydrocarbon-containing gas is supplied to the anode side of the high-temperature steam electrolysis tank described above, and high-temperature steam is supplied to the cathode side of the electrolysis tank to supply power.
  • high-temperature exhaust gas is generated from the anode side of the electrolytic cell, and high-temperature hydrogen-containing gas (including hydrogen and water vapor) is generated from the power source side.
  • the high-temperature exhaust gas discharged from the anode side of the electrolytic cell is mixed with the hydrocarbon-containing gas supplied to the electrolytic cell anode side.
  • the method according to the second aspect of the present invention comprises mixing the exhaust gas discharged from the anode side of the electrolytic cell with the hydrocarbon-containing gas supplied to the anode side of the electrolytic cell. Is supplied to the anode side of the electrolytic cell. As a result, water vapor and carbon dioxide contained in the mixed exhaust gas immediately react with carbon generated by thermal decomposition of hydrocarbons such as methane on the anode side of the electrolytic cell, and CO or CO
  • the total amount of water vapor or carbon dioxide added is determined by the amount of carbon (carbon equivalent If the amount is equimolar to (number), the carbon in the hydrocarbon-containing gas is all converted to CO, so that carbon precipitation hardly occurs.
  • the total amount of water vapor or carbon dioxide mixed into the hydrocarbon-containing gas depends on the amount of hydrocarbons supplied to the anode side of the electrolytic cell. It is preferably at least equimolar to the amount of carbon (moles of carbon atoms) in the gas.
  • the off-gas component contains water generated by methane oxidation and carbon dioxide in a ratio of 2: 1 and contains unburned reducing gas components (hydrocarbons such as methane). Therefore, according to the method of the present invention, instead of adding water vapor from the outside, if the offgas discharged from the anode side of the electrolytic cell is added to the supplied hydrocarbon-containing gas, the high-temperature offgas can be used as it is.
  • the steam contained in the off-gas and the carbon dioxide both have the effect of suppressing the precipitation of carbon, and also have the effect of depolarizing together with the unburned reducing gas component catalyst, thus making energy more effective. Can be used for
  • the mixed gas of methane, water vapor, and carbon dioxide easily reacts with the catalyst at the temperature (about 650 ° C to 1000 ° C) used in the high-temperature steam electrolysis that is effective in the present invention. CO and hydrogen, or CO and hydrogen. If this reaction is actively used, methane will touch the electrode
  • the mixed gas of the hydrocarbon-containing gas and the exhaust gas on the anode side supplied to the anode side of the electrolysis apparatus is subjected to a hydrogen reaction by a thermal reaction before coming into contact with the anode of the electrolysis apparatus. And converting the gas into a mixed gas containing carbon monoxide as a main component, and then bringing the mixed gas into contact with the anode.
  • the structure is such that the mixed gas of methane, water vapor and carbon dioxide supplied to the electrolytic cell passes through the catalyst layer before hitting the electrode, the methane will not directly hit the electrode.
  • the purpose of pollution prevention can be sufficiently achieved.
  • a mixed gas of steam and the exhaust gas on the anode side of the electrolysis tank is used for the electrolysis apparatus.
  • a catalyst layer is placed in the pipeline that supplies the anode side, and the mixed gas of the hydrocarbon-containing gas and the exhaust gas on the anode side mainly converts hydrogen and carbon monoxide by a thermal reaction before coming into contact with the anode of the electrolyzer. It is more preferable to be configured to be converted to a mixed gas as a component.
  • the generation of hydrogen by the reaction between methane and water is a slightly endothermic reaction, and the high-temperature steam electrolyzer used in the present invention maintains a high temperature of 650-1000 ° C. Energy may be insufficient at an overvoltage of about 0.5V.
  • overvoltage is reduced by adopting a thin YSZ (yttrium-stabilized zirconia) film as a solid oxide electrolyte diaphragm, energy injection is required to maintain the temperature required for the steam electrolysis reaction. . It is not advisable to supplement this with electric energy, so it is preferable to use the combustion energy of methane.
  • the simplest and most efficient method is to add partial oxygen to methane and supply it to the electrolyzer to cause a partial oxidation reaction of methane, and use the heat of this reaction. Since the amount of oxygen required for this reaction is not very large, there is little danger from oxygen contamination. Also, the use of air instead of oxygen does not increase the increase in waste heat due to nitrogen. Furthermore, the water vapor and CO generated by this reaction are more preferable because they are used to prevent carbon deposition on the electrode.
  • still another embodiment of the present invention relates to the above-described method for producing hydrogen, wherein oxygen or air is mixed with the exhaust gas on the anode side of the electrolysis apparatus, and the obtained mixed gas is mixed on the anode side of the electrolysis apparatus.
  • the present invention further relates to a method characterized by mixing with a hydrocarbon-containing gas supplied to a gas, and converting the mixture into a mixed gas containing hydrogen and carbon monoxide as main components by heat of partial oxidation reaction of the hydrocarbon-containing gas.
  • a cylindrical scandium-stabilized zirconia (SSZ) having a closed end was used as a solid oxide electrolyte diaphragm 3, and on both sides thereof, an anode 2 and a force sword 4 were provided with a Ni-zirconia cermet electrode.
  • An exhaust pipe 6 for discharging a mixed gas of hydrogen and water vapor is installed on the power source side 11, and a reducing gas (shown as CH) is introduced on the anode side 12 of the electrolytic cell.
  • a gas inlet 7 for the gas inlet was formed.
  • Methane is supplied from the gas inlet 7 to the anode side 12 of the electrolysis apparatus, and steam is supplied from the power source side inlet 8, and power is supplied to the anode 2 and power source 4 from the DC power supply 13 at 700 ° C.
  • high-temperature steam electrolysis was performed. It was confirmed that hydrogen was generated from the outlet 9 of the generated gas exhaust pipe 6.
  • the high-temperature steam electrolyzer 1 shown in FIG. 7 has electrodes (anode 2 and force source 4) attached to both sides of a cylindrical solid oxide electrolyte membrane 3 having one end closed, and an electrolytic cell 5 Is divided into an anode side 12 and a force sword side 11.
  • An exhaust pipe 6 for discharging a mixed gas of generated hydrogen and water vapor is provided on the power source side 11.
  • a gas inlet 7 for introducing a hydrocarbon-containing gas is formed on the anode side 12 of the electrolytic cell.
  • This structure is almost the same as that of the solid oxide fuel cell (SOFC) cell, and its manufacturing method is almost the same as that of the SOFC cell.
  • SOFC solid oxide fuel cell
  • a thin film of YSZ (yttrium-stabilized zirconia) (thickness: 100 ⁇ m) is used as the solid oxide electrolyte diaphragm 3, and nickel cermet electrodes 2 and 4 are formed on both sides of the YSZ film 3. Attach, the outer electrode 2 was the anode and the inner electrode 4 was the force source.
  • the electrolysis test was performed by disposing the electrolysis tank 5 in an electric furnace, applying a DC voltage 13 to both electrodes while maintaining the temperature at 1,000 ° C.
  • only steam was supplied to the power source side 11 of the electrolytic cell at normal pressure, and a mixture of simulated exhaust gas having a gas volume ratio twice that of methane was supplied to the anode side 12.
  • a mixture of steam, carbon dioxide, and methane at a ratio of 4: 2: 1 was supplied.
  • the actual anode side exhaust gas contains hydrogen and CO generated by the reaction of methane instead of methane as unburned gas.
  • methane was substituted.
  • the mixing ratio of methane was determined assuming a fuel utilization rate of about 85%. The reason why the outside of the electrolytic cell is set to the anode side is to make it easier to observe the state of carbon deposited on the anode.
  • the open circuit electrolysis voltage that is, the voltage at which a current starts to flow when the voltage is increased is about 0.9 V, which is practical steam electrolysis.
  • an electrolysis voltage of 2 V was required.
  • the open-circuit voltage does not become a definite value, and the electrolytic current starts to flow at a very small voltage, and when the voltage is increased, the current value becomes almost linear.
  • the electrolysis voltage was 1.3 V at lAZcm 2 which is a practical current value.
  • the effect of preventing electrode contamination by mixing steam and carbon dioxide into the hydrocarbon-containing gas supplied to the anode side of the electrolytic cell is to reduce the current value by keeping the electrolytic voltage 1.3V for a long time. It was checked by observation.
  • the change in electrolysis current value between the case where only methane is supplied to the anode side 12 of the electrolytic cell and the case where simulated anode exhaust gas with a volume ratio twice that of methane is mixed and supplied to the anode side 12 of the electrolytic cell are as follows: As shown in the graph of Fig. 8, the current value continued to decrease when only methane was supplied, whereas the current value remained almost constant when the simulated anode side exhaust gas was mixed with methane and supplied. Met.
  • the ratio of water vapor and carbon dioxide mixed into methane supplied to the anode side 12 of the electrolytic cell was changed, and the amount of water vapor mixed was twice that of methane. Even if the volume ratio is less than or equal to the volume ratio, the electrode was not immediately clogged.However, when the ratio of methane to the sum of water vapor and the carbon dioxide in the exhaust gas was an equimolar ratio, the ratio was low. The onset of occlusion was observed in a relatively short time. In the tests so far, when the sum of the water vapor added to methane and the carbon dioxide was twice the molar ratio of methane, no carbon deposition was observed.
  • Mixing of the anode side exhaust gas containing carbon dioxide is considered to be the most preferable amount for preventing the electrode from being clogged. Mixing a larger amount of exhaust gas is preferable in terms of clogging of the electrodes, but it is not preferable because the concentration of methane supplied to the anode side of the electrolytic cell decreases, so that a large electrolytic current value cannot be obtained.
  • the anode side force is adjusted so that the sum of water vapor and carbon dioxide is equal to or greater than the molar number of carbon atoms in the hydrocarbon-containing gas supplied to the anode side of the electrolysis apparatus. 2.
  • the anode-side force is set such that the sum of water vapor and carbon dioxide becomes about twice the molar number of carbon atoms in the hydrocarbon-containing gas supplied to the anode side of the electrolysis apparatus. 2. The method for producing hydrogen according to item 1, wherein the exhaust gas is mixed.
  • the mixed gas of the hydrocarbon-containing gas and the exhaust gas on the anode side to be supplied to the anode side of the electrolytic device is mixed with hydrogen and carbon monoxide as main components by a thermal reaction before contacting the anode of the electrolytic device. 4.
  • Oxygen or air is mixed with the exhaust gas on the anode side of the electrolyzer, and the obtained mixed gas is mixed with the hydrocarbon-containing gas supplied to the anode side of the electrolyzer to partially oxidize the hydrocarbon-containing gas. 5.
  • An electrolytic cell separated into an anode side and a force source side by a membrane of a solid oxide electrolyte, a pipeline for supplying a hydrocarbon-containing gas to the anode side of the electrolytic cell, A conduit for supplying the power source, and a conduit for mixing exhaust gas discharged from the anode side of the electrolytic cell into a hydrocarbon-containing gas supplied to the anode side of the electrolytic cell.
  • Hydrogen production equipment Hydrogen production equipment.
  • a catalyst layer is arranged in a conduit for supplying a mixed gas of water vapor and the exhaust gas on the anode side of the electrolytic cell to the anode side of the electrolytic cell, and the mixed gas of the hydrocarbon-containing gas and the exhaust gas on the anode side is subjected to electrolysis.
  • a high-temperature steam electrolysis method for producing hydrogen comprising An apparatus characterized in that a cermet which has a stable ceramic and metallic force in a reducing atmosphere at a temperature of 400 to 1000 ° C is used as a material for a cathode electrode and a force electrode.
  • cermet used as an electrode material a temperature of 400 to 1000 ° C. and a molar ratio of hydrogen to water vapor in the atmosphere: H / H 0, or a mole of water to a reducing gas
  • a reducing gas is supplied to the anode side of an electrolytic cell separated into an anode side and a force sword side by a membrane of a solid oxide electrolyte, and steam is supplied to the force sword side.
  • a method for producing hydrogen by electrolysis of steam by supplying electric power to an electrode and a force sword electrode, wherein hydrogen is mixed into steam supplied to a force sword side of an electrolytic cell.
  • Hydrogen is added to steam supplied to the power source side of the electrolytic cell, Ratio: H / HO is mixed in an amount of 0.4 or less and 0.01 or more,
  • the present invention relates to a method and an apparatus for producing hydrogen by high-temperature steam electrolysis, and in particular, an electrolytic cell is divided into an anode side and a force source side by a solid oxide electrolyte membrane.
  • a hydrocarbon-containing gas is supplied to the anode side of an electrolyzer in which an electrolytic cell is divided into an anode side and a power source side by a solid oxide electrolyte membrane.
  • the method of producing hydrogen by supplying high-temperature steam to the power source side and performing steam electrolysis to prevent clogging of electrodes due to solid carbon precipitated by the thermal decomposition of hydrocarbons
  • hydrogen can be efficiently produced by effectively utilizing the heat of the anode-side exhaust gas after the reaction and the unburned gas components contained therein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 固体酸化物電解質の隔膜によってアノード側とカソード側に仕切られている電解槽のアノード側に還元性ガスを供給し、カソード側に水蒸気を供給して、アノード電極及びカソード電極に電力を供給することによって、水蒸気の電解により水素を製造する方法に適した電解槽の構成を提供する。  本発明の一態様は、固体酸化物電解質の隔膜によってアノード側とカソード側に仕切られている電解槽、還元性ガスを電解槽のアノード側に供給する管路、水蒸気を電解槽のカソードに供給する管路を具備する高温水蒸気電解法による水素製造装置であって、アノード電極及びカソード電極の材質として、還元性雰囲気中において安定な金属サーメットを用いることを特徴とする装置に関する。また、本発明の他の態様は、固体酸化物電解質を隔膜として用いて電解槽をアノード側とカソード側に仕切った高温水蒸気電解装置のカソード側に水蒸気を供給し、アノード側に炭化水素含有ガスを供給して酸素イオンと反応させることにより電解電圧を低減させる高温水蒸気電解による水素製造方法において、電解装置のアノード側に供給する炭化水素含有ガスに、電解装置のアノード側から排出される排ガスを混入することを特徴とする水素製造方法に関する。

Description

明 細 書
水素の製造方法及び装置
技術分野
[0001] 本発明は、高温水蒸気電解により水素を製造する方法及び装置に関するものであ り、特に、固体酸ィ匕物電解質隔膜によって電解槽をアノード側と力ソード側に仕切つ た電解装置の力ソード側に水蒸気を供給し、アノード側に還元性のガスを供給して電 解を行うことによって、電解電力を低減した電解方法において用いるのに適した電解 装置に関するものである。 背景技術
[0002] 水素製造を目的とした水の電解法には、アルカリ水電解、固体高分子水電解、高 温水蒸気電解等があるが、アルカリ水電解、固体高分子水電解では電解電圧に 1. 8V以上を必要とするので、電気効率が 80%以下であり、水素製造に必要な電力量 が大きい。これに対し、固体酸化物電解質を隔膜として使用して電解槽をアノード側 と力ソード側に仕切って、力ソード側に高温の水蒸気を供給することによって、水蒸気 を 800°C程度の高温で電解する高温水蒸気電解法は、高温であるために水の分解 に熱エネルギーが利用でき、更に電極過電圧や抵抗過電圧が低く抑えられるために 、 90%以上の電気効率が期待でき、電解電圧は 1. 5V以下に小さくでき、水素製造 に必要な電力量を低減できる。さらに、最近、電解槽のアノード側に天然ガスを供給 することによって、固体酸ィ匕物電解質隔膜中を力ソード側力 アノード側へ移動する 酸素イオンをアノード側で反応させて、その化学ポテンシャルを水の分解に使用する ことにより、大幅に消費電力を低下させることのできる電解法が提案されている (米国 特許 6, 051, 125)。
[0003] 上記米国特許で提案されている方法では、電解槽のアノード側に天然ガスを直接 供給して、アノード側に存在する酸素イオンと反応させて、その反応エネルギーを力 ソード側での水の分解に援用するものである。この場合、原理的にはメタンによる復 極作用が水の電解電圧を下げるので、理論電解電圧はほぼ 0となる。実用的な水電 解装置では、これに過電圧を加えた電圧が必要となる力 トータル電圧として約 0. 5 Vで水電解が可能となると上記米国特許では主張している。
[0004] 通常の高温水蒸気電解に用いられる電解槽は、固体酸化物型燃料電池(SOFC) のセルと材料及び構造とも同じで、水蒸気が導入されて水素が生成する力ソード側 の電極としては還元雰囲気に適した Niサーメットが用いられ、一方酸素が発生するァ ノード側の電極としては導電性酸化物、例えばランタンコバルタイト、ランタンマンガ ネートなどが用いられている。図 1に通常の高温水蒸気電解装置の概念を示す。図 1 に示す装置は、電解装置 (電解槽)が固体酸化物電解質隔膜によって力ソード側とァ ノード側とに仕切られており、力ソード側に高温の水蒸気を供給して力ソード電極及 びアノード電極に電力を供給することによって、力ソード側で水蒸気の電気分解を行 わせて、高純度の水素を得る。水蒸気の電気分解によって発生する酸素イオン o2— は、固体酸化物電解質隔膜を通ってアノード側に移動する。
[0005] これに対して、酸素が発生する電解槽のアノード側に還元性ガスを導入して、電解 電力を低減しながら水蒸気電解を行なうプロセスにおいては、力ソード、アノードとも 還元性のガスに曝されることになる。但し、力ソード側では原料となる水蒸気が導入さ れ、水素の生成が生じるまでは、金属は高温で水蒸気酸ィ匕を起こす可能性がある。 アノード側にも、炭素析出抑制のために水蒸気を導入することがあり、また、電極反 応により水などの酸性ガスが生成するため、同様に、高温水蒸気酸化を考慮する必 要があるが、これに合った電解槽およびプロセス条件は提案されて 、な 、。
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記に説明した、固体酸ィ匕物電解質の隔膜によってアノード側とカソー ド側に仕切られて ヽる電解槽のアノード側に還元性ガスを供給し、力ソード側に水蒸 気を供給して、アノード電極及び力ソード電極に電力を供給することによって、水蒸 気の電解により水素を製造する方法に適した電解槽の構成を見出すことを目的とす る。
課題を解決するための手段
[0007] 上記課題を解決する手段として、本発明の一態様は、固体酸化物電解質の隔膜に よってアノード側と力ソード側に仕切られて ヽる電解槽、還元性ガスを電解槽のァノ ード側に供給する管路、水蒸気を電解槽の力ソードに供給する管路を具備する高温 水蒸気電解法による水素製造装置であって、アノード電極及び力ソード電極の材質 として、 400— 1000°Cの温度の還元性雰囲気中において安定なセラミックおよび金 属からなるサーメットを用いることを特徴とする装置を提供する。
[0008] なお、本発明にお ヽては、電解装置のアノード側には、還元性ガスを供給する。こ こで、還元性ガスとは、本発明にかかる水蒸気電解槽において固体酸化物電解質膜 を通して電解槽のアノード側に通過してくる酸素と反応して、アノード側での酸素濃 度を低下させることのできるガスを意味し、天然ガスやメタン等の炭化水素ガスが含ま れる。
図面の簡単な説明
[0009] [図 1]通常の高温水蒸気電気分解装置の概念を示す図である。
[図 2]本発明にかかる高温水蒸気電気分解装置の概念を示す図である。
[図 3]本発明にかかるインターコネクター構造を示す図である。
[図 4]本発明の第 2の態様において使用する高温水蒸気電解装置の概念を示す図 である。
[図 5]本発明の第 2の態様に力かる水素製造方法の一例の概念を示すフロー図であ る。
[図 6]実施例 1で用いた水素製造装置の概念を示す図である。
[図 7]本発明の実施例 2で用いた水素製造実験装置の構造を示す図である。
[図 8]本発明の実施例 2の結果を示すグラフである。
[0010] 図 2に、本発明に力かる水素製造装置の一態様の概念を示す。本発明にかかる水 素製造装置においては、電解装置 (電解槽)の力ソード側では生成する水素によって 、またアノード側では還元性ガスを供給するために、いずれも還元性の雰囲気となる 。よって、アノード電極及び力ソード電極のいずれも還元性のガスに曝されることにな るため、これらの材質として、 400— 1000°Cの温度の還元性の雰囲気において安定 なセラミックおよび金属力もなるサーメットを用いることを特徴とする。
[0011] なお、電解槽の力ソード側では、導入された水蒸気が電気分解されて水素を生成 するため、電解槽内のガス組成は、入り口側から出口に向力つて変化する。入口で は最も水素濃度が低ぐ出口で水素濃度が最も高くなる。電解槽の力ソード側に水蒸 気だけを供給した場合には、 Niなどの金属は高温で水蒸気酸化を受ける。水蒸気酸 化を防止するには、還元性のガスを混入させることが効果的であるが、本発明の電解 槽のカソード側においては、高純度の水素を製造することが目的であるので、還元性 のガスとして水素を混入させるのが適当である。電解槽で広く利用されている Ni電極 では、曝露雰囲気中の水蒸気に対する水素のモル比: H /H Oが 0. 01以上、この
2 2
ましくは 0. 04以上であれば、水蒸気酸ィ匕を起こさないため、この濃度が必要な最低 限の水素分圧となる。
[0012] 電解電圧は、電解槽のアノード側と力ソード側での酸素分圧により変化し、 P (カソ
02 ード側) ZP 02 (アノード側)をできるだけ大きくすることが電解電圧の低減に有効であ る。
[0013] しカゝしながら、電解槽の力ソード側に混入させる水素濃度を高くすると、力ソード側 での酸素分圧が低下し、電圧上昇の要因になるため、混入させる水素濃度はできる だけ低く抑えることが好まし 、。
[0014] 特に、電解槽のアノード側の出口付近での還元性ガスと酸性ガスとのモル比:還元 性ガス Z酸性ガスは 0. 4以下となるため、電解電圧低減効果を発揮させるためには 、電解槽の力ソード側の入り口での H /H Oは、 0. 4以下、好ましくは 0. 2以下にお
2 2
さえるのがよい。
[0015] 混入させる水素は、水蒸気電解で生成した水素の一部を入口に循環させれば、シ ステムが簡略ィ匕するため好ま 、。
[0016] 電解槽のアノード側では、還元性ガスの濃度は、入り口で最も高く出口に向かって 低下する。したがって、酸素分圧は、入口で最も小さぐ出口で最も大きくなる。一方 、電解槽の力ソード側では、水素が生成するので、出口に向力つて水素濃度が上昇 し、それに伴って酸素分圧は、出口に向かって小さくなる。電解槽の力ソード側での 水蒸気の流れと、アノード側での還元性ガスの流れが同じ向きの場合には、入口で 最も P (力ソード側) /P (アノード側)が大きぐ出口で最も小さくなるため、電流密
02 02
度の不均一性が増し、熱応力などの発生の原因となる。このため、電解槽の力ソード 側での水蒸気の流れと、アノード側での還元性ガスの流れを、互いに向い合う流れ( 向流)とすることが好ましい。
[0017] なお、電解槽のアノード側に供給する還元性ガスに水蒸気を加えて炭素の析出を 抑制することができる。この場合、還元性ガスに対する水のモル比は 0. 4以下、好ま しくは 0. 2以下とするのがよい。
[0018] アノード電極および力ソード電極は、ガスの拡散性を有し、電子伝導および電極触 媒としての活'性を有して ヽることが必要である。
[0019] 上記に説明した電解槽内の好ましい雰囲気である H /H O< 0. 4の条件下で酸
2 2
化物を形成しな ヽ金属材料を主として、アノード電極及び力ソード電極を構成するこ とが好ましい。このような条件下で酸化物を形成せずに、電子伝導および触媒活性を 持つ金属として、 Ni, Fe, Co, Cu, Pt, Ag, Pd, Ruあるいはこれらの混合物や合金 などが挙げられる。
[0020] なお、電極材料としては、高温での焼結を抑制するために、セラミック粉末と混合し たサーメットとして用いることが一般的である力 混合するセラミックとしては、 H /H
2 2
O< 0. 4の条件下で安定であり、電解質材料との反応性'結合性'熱膨張率の近似 性および酸素イオン伝導性或いは酸素イオン'電子伝導性を考慮して選定すること ができる。
[0021] 本発明に力かる装置においては、 ZrO、 CeO、、 LaCrO、 LaTiO、 LaGaOなど
2 2 3 3 3 に、一部元素置換して、酸素イオン伝導性や電子伝導性を向上させたものを、ァノー ド電極及び力ソード電極の材料として用いることが好ましい。特に、電子及び酸素ィ オンの伝導性を有する材料を用いると、電極とした場合に反応サイトが多くなり、酸素 イオンの拡散できる面積も増えるために、反応過電圧の低減に有効である。
[0022] また、水蒸気電解槽においては、複数の電解セルを直列に接続して多段化する場 合には、アノード電極と力ソード電極を接続するインターコネクターが必要となる力 こ のインターコネクタ一は、電解槽のアノード側および力ソード側のガスの両方に接し、 これらを分離 (ガスシール)する役目も果たして 、る。通常の SOFCセルや高温水蒸 気電解セルでは、片側が還元雰囲気、もう一方が酸ィ匕雰囲気であるため、これらに 適する材料の選定が難しぐまたセルの製造も困難であった。具体的には、現状では 、還元雰囲気及び酸ィ匕雰囲気の両方に適するインターコネクターの材料としては、ラ ンタン'クロマイトなどの限定されたセラミックしか見出されておらず、この材料からは 緻密な構造体を製造するのが困難であった。このため、この材料で製造したインター コネクターでは、電極の接合部でガスシールを確実にするのが難しかった。
[0023] 本プロセスでは、電解槽のアノード側及び力ソード側の両方とも還元性雰囲気であ るため、インターコネクター材料として、金属を用いることができ、これは成型'接合が 容易であると共に、応力にも強ぐ信頼性の高い電解装置が製造できる。本発明で用 いることのできるインターコネクター材料としては、 Niや Ni基合金、 Fe基合金、 Co基 合金、 Cu基合金、 Ag基合金などを挙げることができる。
[0024] 図 3に、本発明にかかるインターコネクター構造の概念を示す。電解槽 5は、筒状の 固体酸化物電解質の膜 3によって外側のアノード側 12と内側の力ソード側 11とに仕 切られており、固体酸化物電解質の外側にアノード電極 4が、内側に力ソード電極 2 が配置されている。図 3に示す装置においては、上下 2つの筒形の電極'固体酸ィ匕 物電解質複合体が、絶縁体 21を介して接合されており、インターコネクター 22によつ てアノードと力ソードとが直列に接続されている。これによつて、アノード及び力ソード に直流電源を接続することにより、少な ヽ電流で電解に必要な電圧を確保して電解 反応を進行させることができる。電解槽の力ソード側 11には高温水蒸気が供給され、 アノード側 12には還元性ガス (CHとして示す)が供給されて、両電極に電力が供給
4
されることによって、力ソード側では水蒸気の電気分解が起こって水素が生成する。 また生成した酸素イオンは固体酸ィ匕物電解質を通って力ソード側に移動する。ァノー ド側では、移動してきた酸素イオンと還元ガスが反応して、 COと H Oが生成する。本
2 2
発明にかかる装置にお!ヽては、電解槽のアノード側及び力ソード側の両方が還元性 雰囲気であるので、インターコネクター材料として、上述の金属材料を用いることがで きる。
[0025] また、本発明者らは、上述の米国特許 6, 051, 125号とほぼ同じ技術について以 前より研究を行っていたが、上記米国特許で提案されている天然ガスのみを電解槽 のアノード側に供給する方法では次のような欠陥のあることを見出した。すなわち、電 解槽の運転開始当初はほぼ上記米国特許に示されている条件と同じデータが得ら れるが、運転を継続していると電流値が次第に低下して、やがて運転を継続できなく なった。その理由について考察した結果、電解槽のアノード側にメタンを直接供給す ると、高温のアノード側でメタンが分解を起こし、分解生成物である炭素が膜状に電 極を覆うことにより電極の閉塞が生じるためであることが判明した。
[0026] 本発明の第 2の態様は、上記に説明した生成炭素による電極の閉塞という問題を、 コストをあまり掛けずに簡単な方法で防ぐ手法を提供することを課題とする。
[0027] 本発明者らは、上記の課題を解決する手段を見出すベぐ鋭意研究を重ねた結果 、電解槽のアノード側に供給する天然ガス (炭化水素含有ガス)に水蒸気または二酸 化炭素を混入させることによって、炭化水素含有ガスがアノード側で分解して生成す る炭素は、直ちに水蒸気及び二酸ィ匕炭素と反応して COまたは COになるため、固
2
体炭素が電極表面に析出することを防止できることを見出した。なお、固体酸化物電 解質隔膜を利用した高温水蒸気電解装置において、固体酸化物電解質隔膜を通過 して電解装置のアノード側に存在する酸素イオンによっても炭素を酸ィ匕させることは できるが、酸素イオンの量に比べて還元性ガスの量が多いため、この反応だけでは 固体炭素の析出を防ぐことができない。また、炭素と水蒸気または二酸化炭素との反 応により生ずる COと水素は還元性ガスとしてアノード側の酸素イオンと反応するため
、電解装置の電解電圧を下げることに寄与する。
[0028] 更に、本発明者らは、上記に説明した、固体酸化物電解質を隔膜として用いて電 解槽をアノード側と力ソード側に仕切った高温水蒸気電解装置の力ソード側に水蒸 気を供給し、アノード側に炭化水素含有ガスを供給して酸素イオンと反応させること により電解電圧を低減させる高温水蒸気電解法にお!ヽて、電解装置のアノード側か ら排出される排ガスには、供給されるガス中の炭化水素等と力ソード側力 固体酸ィ匕 物電解質隔膜を通過する酸素との反応によって生成した水蒸気及び二酸化炭素が 含まれることに着目し、このアノード側排ガスを、電解装置のアノード側に供給する炭 化水素含有ガスに混入させることによって水蒸気及び Z又は二酸ィヒ炭素を簡単に混 入させることができることを見出した。
[0029] すなわち、本発明の第 2の態様は、固体酸化物電解質を隔膜として用いて電解槽 をアノード側と力ソード側に仕切った高温水蒸気電解装置の力ソード側に水蒸気を 供給し、アノード側に炭化水素含有ガスを供給して酸素イオンと反応させることにより 電解電圧を低減させる高温水蒸気電解による水素製造方法にぉ ヽて、電解装置の アノード側に供給する炭化水素含有ガスに、電解装置のアノード側力 排出される排 ガスを混入することを特徴とする水素製造方法に関する。
[0030] また、本発明の第 2の態様は、力かる方法を実施するための装置にも関する。よつ て、本発明の更に他の態様は、固体酸ィ匕物電解質の隔膜によってアノード側とカソ ード側に仕切られている電解槽、炭化水素含有ガスを電解槽のアノード側に供給す る管路、水蒸気を電解槽の力ソードに供給する管路を具備し、更に、電解槽のァノー ド側カゝら排出される排ガスを、電解槽のアノード側に供給される炭化水素含有ガス中 に混入させる管路を具備することを特徴とする水素の製造装置に関する。
[0031] なお、本発明方法においては、電解装置のアノード側には、炭化水素含有ガスを 供給する。ここで、炭化水素含有ガスとは、天然ガスやメタン等の炭化水素を含むガ スを意味する。また、本明細書で用いる「還元性ガス」という表現は、本発明にかかる 水蒸気電解槽において固体酸化物電解質膜を通して電解槽のアノード側に通過し てくる酸素と反応して、アノード側での酸素濃度を低下させることのできるガスを意味 する。
[0032] 本発明の第 2の態様において使用される固体酸ィ匕物電解質膜を用いた高温水蒸 気電解による水素の製造装置の基本原理を図 4を参照して説明する。
[0033] 高温水蒸気電解槽 113は、固体酸ィ匕物電解質の隔膜 114によってアノード側 115 と力ソード側 116に仕切られて 、る。高温水蒸気 119を電解槽の力ソード側 116に、 炭化水素含有ガス 110を電解槽のアノード側 115に供給して、電力 117を AC-DC 変 l l8で直流に変換して電解槽に通電すると、力ソード側 116に供給された高 温水蒸気 119は電解作用で水素と酸素に分解される。生成した水素 120が、高純度 水素として回収される。一方、生成した酸素 121は酸素イオンとなり、固体酸化物電 解質の隔膜 114を選択的に通過してアノード側 115に移動する。ここで、アノード側 1 15に炭化水素含有ガス 110を供給すると、酸素イオン 121が炭化水素含有ガスと反 応して消費され、酸素イオンの濃度勾配の形成に寄与するので、水の電解に必要な 電圧が下がり、電力消費量は大幅に低減される。
[0034] 本発明の第 2の態様は、高温水蒸気電解槽のアノード側に供給する炭化水素含有 ガスに、電解槽のアノード側カゝら排出される排ガスを混入させることを特徴とする。本 発明にかかる方法を図 5を参照して説明する。なお、以下においては、炭化水素ガス として、適宜メタンを例にとって説明するが、本発明はかかる記載に限定されるもので はなぐ他の炭化水素ガスにも適用できる。
[0035] 図 5に示すシステムにおいて、炭化水素含有ガスを、上記に説明した高温水蒸気 電気分解槽のアノード側に供給すると共に、高温水蒸気を電気分解槽のカソード側 に供給し、電力を供給して高温水蒸気の電気分解を行う。電解槽のアノード側からは 高温の排ガスが、力ソード側からは高温の水素含有ガス (水素と水蒸気を含む)が生 成する。本発明のシステムでは、この電解槽のアノード側から排出される高温の排ガ スを、電解槽アノード側に供給される炭化水素含有ガスに混入する。
[0036] 上記に説明したように、本発明の第 2の態様に係る方法は、電解槽のアノード側に 供給する炭化水素含有ガスに、電解槽のアノード側から排出される排ガスを混入して 、電解槽アノード側に供給することを特徴とするものである。これによつて、混入した 排ガス中に含まれる水蒸気及び二酸ィ匕炭素が、電解槽のアノード側においてメタン 等の炭化水素の熱分解によって生成する炭素と直ちに反応して CO又は CO
2となる ため、電解槽アノード側での固体状炭素の発生を防ぎ、炭素による電極の汚染を防 止することができる。
[0037] し力しながら、この場合であっても、水蒸気の添加量が不足であると、電極上に炭 素皮膜が生成して障害が生ずる。理論上は、炭素皮膜の生成を防止するためには、 水蒸気または二酸ィ匕炭素の合計の添加量は、電解槽アノード側に供給される炭化 水素含有ガス中の炭素量 (炭素原子換算モル数)と等モル量であれば、炭化水素含 有ガスの炭素がすべて COに転換される量であるので炭素の析出は起こりにくくなる 。し力しながら、より確実に炭素析出を防止するためには、炭化水素含有ガスに混入 する水蒸気または二酸ィ匕炭素の合計の添加量は、電解槽アノード側に供給される炭 化水素含有ガス中の炭素量 (炭素原子換算モル数)と等モル量以上であることが好 ましい。炭化水素の炭素量と等モルよりも過剰に水蒸気を加えた場合は、メタンの炭 素が二酸ィ匕炭素にまで酸化されるが、 2倍モル量までは、二酸ィ匕炭素の発生に伴い 水素が発生し、その水素が還元剤として酸素イオンと反応するので、エネルギーの無 駄は殆ど生じない。 CO+H 0→CO +Hの反応は発熱反応であり、この反応を進
2 2 2
行させるためにエネルギーを供給する必要はな 、。メタンと水とのトータルの反応で ある CH + 2H 0→CO +4Hと、 CH +CO→2CO + 2Hの反応はやや吸熱反応
4 2 2 2 4 2 2
であるので、反応全体を進行させるためには熱供給を行う必要がある力 この熱エネ ルギ一は電解の時に過電圧としてカ卩えられる電気エネルギーよりも小さいために、外 部より加熱する必要はない。
[0038] メタンの 2倍モルの水蒸気を添加するために必要なエネルギーはかなり大きぐエネ ルギー消費を押さえるためには高効率の熱交^^によって、電解槽力も排出される 高温の排ガス (オフガス)の熱を利用することが必要となる。一方、オフガスの成分は 、メタンの酸ィ匕により生じた水と二酸ィ匕炭素が 2 : 1で存在し、かつ、未燃の還元ガス 成分 (メタン等の炭化水素)を含んでいる。従って、本発明方法によれば、外部から水 蒸気を添加する代わりに、電解槽アノード側カゝら排出されるオフガスを、供給炭化水 素含有ガスに添加すれば、高温オフガスをそのまま使用することにより熱交換の必要 力 Sなぐオフガスに含まれる水蒸気と二酸ィ匕炭素は共に炭素の析出を押さえる作用 があり、さらに未燃の還元ガス成分カ タンと共に減極作用を起こすのでエネルギー をより有効に利用することができる。
[0039] メタンと水蒸気および二酸ィ匕炭素の混合ガスは、本発明に力かる高温水蒸気電解 で使用される温度(650°C— 1000°C程度)では、触媒により容易に反応して、 COと 水素、又は COと水素になる。この反応を積極的に利用すれば、メタンが電極に触れ
2
る前にすベて CO、 CO、 Hに転換されるため、メタンが分解して電極を汚染すること
2 2
がなくなる。よって、本発明の好ましい態様は、上記記載の方法において、電解装置 のアノード側に供給する炭化水素含有ガスとアノード側排ガスの混合ガスを、電解装 置のアノードに接する前に、熱反応によって水素と一酸化炭素を主成分とする混合 ガスに転換した後にアノードと接触するようにすることを更に特徴とする方法に関する 。これを実現するためには、電解槽へ供給するメタンと水蒸気及び二酸化炭素の混 合ガスが電極に当たる前に触媒層を通過する構造にすれば、メタンが直接電極に当 たることが無ぐ電極汚染防止の目的を十分に達せられる。つまり、本発明にかかる 電解装置にぉ ヽては、水蒸気と電解槽のアノード側排ガスとの混合ガスを電解槽の アノード側に供給する管路に触媒層を配置して、炭化水素含有ガスとアノード側排ガ スの混合ガスが、電解装置のアノードに接する前に、熱反応によって水素と一酸化炭 素を主成分とする混合ガスに転換されるように構成することがより好ましい。
[0040] 上記に説明したように、メタンと水との反応による水素の生成はやや吸熱反応であ ることと、本発明に力かる高温水蒸気電解装置においては 650— 1000°Cの高温を 維持させる必要があるので、 0. 5V程度の過電圧ではエネルギーが不足する場合が ある。特に固体酸化物電解質隔膜として薄 、YSZ (イットリウム安定ィ匕ジルコユア)膜 を採用することによって過電圧を小さくした場合などでは、水蒸気電解反応に必要な 温度を維持するためにエネルギーの注入が必要となる。これを電気エネルギーで補 うことは得策ではないので、メタンの燃焼エネルギーを利用することが好ましい。この 場合には、メタンに酸素を加えて電解装置に供給することによって、メタンの部分酸 化反応を起こさせ、この反応熱を利用するのが簡単で最も熱効率の高い方法である 。この反応に必要な酸素の量はあまり多くはないので、酸素混入による危険性は殆ど ない。また酸素の代わりに空気を使用しても、窒素による廃熱の増加は大した大きさ にはならない。さらに、この反応で生じた水蒸気と COは電極の炭素析出防止に使わ れることとなるのでより好まし 、。
[0041] よって、本発明の更に他の態様は、上記記載の水素製造方法において、電解装置 のアノード側排ガスに酸素又は空気を混合し、得られた混合ガスを電解装置のァノ ード側に供給する炭化水素含有ガスに混入して、炭化水素含有ガスの部分酸化反 応熱によって水素と一酸化炭素を主成分とする混合ガスに転換することを更に特徴 とする方法に関する。
実施例 1
図 6に示す実験装置 1を用いて高温水蒸気電解による水素の製造実験を行った。 一端が閉じた円筒形のスカンジウム安定ィ匕ジルコユア(SSZ)を固体酸化物電解質 隔膜 3として、その両側にアノード 2及び力ソード 4として Ni—ジルコユアサーメット電 極を配置した。これを電解槽 5内に配置して、電解槽 5をアノード側 12と力ソード側 1 1とに仕切った。力ソード側 11には、生成する水素と水蒸気の混合ガスを排出する排 気管 6を設置し、また、電解槽のアノード側 12に、還元性ガス (CHとして示す)を導 入するガス導入口 7を形成した。
[0042] ガス導入口 7から電解装置のアノード側 12にメタンを、力ソード側入口 8より水蒸気 を供給して、 700°Cにおいて、直流電源 13よりアノード 2及び力ソード 4に電力を供給 することによって高温水蒸気電解を行った。生成ガス排気管 6の出口 9から水素が生 成して 、ることが確認された。
実施例 2
図 7に示す高温水蒸気電解装置によって、本発明の第 2の態様に係る高温水蒸気 電解による水素製造の実験を行った。図 7に示す高温水蒸気電解装置 1は、一端が 閉じた円筒状の形状の固体酸ィ匕物電解質の隔膜 3の両側に電極 (アノード 2及び力 ソード 4)を取り付けたもので、電解槽 5をアノード側 12と力ソード側 11とに仕切ってい る。力ソード側 11には、生成する水素と水蒸気の混合ガスを排出する排気管 6が設 置されている。また、電解槽のアノード側 12に、炭化水素含有ガスを導入するガス導 入口 7が形成されている。この構造は、固体酸ィ匕物燃料電池(SOFC)のセルとほぼ 同じであり、その製作法も SOFCセルと殆ど変わりない。本実施例では、固体酸化物 電解質隔膜 3として YSZ (イットリウム安定ィ匕ジルコユア)の薄膜 (膜厚 100 μ m)を使 用し、 YSZ膜 3の両側に、ともにニッケルサーメットの電極 2, 4を取り付け、外側の電 極 2をアノードと、内側の電極 4を力ソードとした。
[0043] 電解試験は、電気炉の中に電解槽 5を配置し、温度を 1, 000°Cに保って直流電圧 13を両極に与えることにより行った。本発明方法では、常圧で、電解槽の力ソード側 11には水蒸気のみを、アノード側 12には、メタンに対して気体体積比で 2倍の模擬 排ガスを混合したものを流した。模擬排ガスとしては、水蒸気、二酸化炭素、メタンを 4 : 2 : 1の割合で混合したものを供給した。実際のアノード側排ガスには、未燃ガスと してメタンではなくメタンの反応により生じた水素と COが含まれる力 ここではメタンで 代用した。メタンの混入割合は燃料利用率を約 85%と想定して決めた。なお、電解 槽の外側をアノード側としたのは、アノードに析出する炭素の状態を観測しやすくす るためである。
[0044] また、比較実験として、上述の米国特許 6, 051, 125号の方式に従い、常圧でカソ ード側 11には水蒸気のみを、アノード側 12にはメタンのみを流して実験を行った。更 に、アノード側 12を開放してメタンを流さない条件、すなわち通常の高温水蒸気電解 法の条件を使用して比較実験を行った。実験は、電極に直流電圧を与えて電圧対 電流を観測するとともに、適当な時間の電解を行った後にアノードの状態を観察した
[0045] アノード側 12にメタンを供給しない通常の水蒸気電解法では、開路電解電圧、す なわち電圧を上げていった時に電流が流れ始める電圧が約 0. 9Vであり、実用的な 水蒸気電解電流値である lAZcm2の条件では 2Vの電解電圧が必要であった。これ に対し、上記米国特許の方式および本発明方法では、開路電圧が明確な値とならず 、非常に小さい値の電圧で電解電流が流れ始め、電圧を上げていくとほぼ直線的に 電流値が上がり、実用的な電流値である lAZcm2では 1. 3Vの電解電圧であった。 この値は、上記米国特許明細書に定性的に記載されている事項力 推定される数値 と比べてかなり高い値である力 本実施例で使用した電解槽の YSZ膜厚が 100 m と厚めであることから、妥当な値であると考えられる。しかし、本実施例で得られた電 解電圧でも、天然ガスを使わな!/ヽ高温水蒸気電解と比べればかなり低!ヽ電解電圧と なっており、原理的に米国特許の理論が正しいことを示唆している。
[0046] 電解槽のアノード側に供給する炭化水素含有ガスに水蒸気と二酸化炭素を混入さ せることによる電極汚染防止効果については、電解電圧 1. 3Vを長時間継続させる ことで電流値の減少を観測することにより調べた。メタンのみを電解槽のアノード側 1 2に供給した場合と、メタンに対して体積比 2倍の模擬アノード排ガスを混合して電解 槽のアノード側 12に供給した場合の電解電流値の変化は、図 8のグラフで示すよう に、メタンのみを供給した場合には電流値が下がり続けたのに対して、模擬アノード 側排ガスをメタンに混合して供給した場合には電流値はほぼ一定のままであった。ま た、目視による電極 (アノード)の観察でも、電解槽のアノード側 12にメタンのみを供 給した場合には、アノードは 1時間後には炭素の析出がかなり生じていることが認め られたが、メタンと模擬廃ガスを混合して電解槽のアノード側 12に供給した場合には 、 10時間後にお 、てもきれ 、な表面を維持して 、た。
[0047] この試験結果から、電解槽のアノード側に炭化水素含有ガス (メタン)を供給する高 温水蒸気電解法にぉ 、て、メタンのみを電解槽のアノード側に供給する方法では、 数時間の電解で電極の閉塞が生じ始めるので、連続運転が困難であることが示され る。しかし、メタンに水蒸気と二酸化炭素を含むアノード側排ガスを加えて電解槽の アノード側に供給した場合には、排ガスの混入量カ^タンの 2倍体積比程度であれば 、殆ど炭素の析出による影響が生ずることなぐ実用的な長時間運転が可能であるこ と力示された。別の実験で、電解槽のアノード側 12に供給するメタンに混入する水蒸 気及び二酸ィ匕炭素の比を変化させて実験を行ったところ、混入する水蒸気の量がメ タンの 2倍体積比以下であっても、すぐに電極の閉塞が生ずることはな力つたが、メタ ンと排ガス中の水蒸気および二酸ィ匕炭素の合計との比が等モル比の場合には、比 較的短時間で閉塞の開始が認められた。これまでの試験では、メタンに添加する水 蒸気と二酸ィ匕炭素の合計をメタンの 2倍モル比としたときには全く炭素の析出が観測 されて 、な 、ので、 2倍モル比の水蒸気と二酸ィ匕炭素を含むアノード側排ガスの混 合が電極の閉塞防止に最も好ま 、量と考えられる。これ以上の排ガスを混合するこ とは、電極の閉塞に関しては好ましいことであっても、電解槽のアノード側に供給され るメタンの濃度が下がるために、電解電流値が大きく取れなくなるので好
ましいとは言えない。
[0048] ちなみに、アノード側排ガスの代わりに外部から水蒸気を混合する方法では、ァノ ードの閉塞を防止することはできるが、水力 水蒸気を作って電解槽の運転温度 (65 0°C— 1000°C程度)にまで上昇させるためのエネルギーを必要とするので、電解過 電圧が小さいときには余分なエネルギーの消費となる。また本発明方法では、ァノー ド側排ガス中に含まれる未燃ガス (残留メタン)が再使用されることとなるので、水蒸気 をメタンの 2倍モル混入させる場合で比較すれば、未燃ガスを約 40%減らすことがで きる。
[0049] 本発明の各種態様は以下の通りである。
[0050] 1.固体酸ィ匕物電解質を隔膜として用いて電解槽をアノード側と力ソード側に仕切 つた高温水蒸気電解装置の力ソード側に水蒸気を供給し、アノード側に炭化水素含 有ガスを供給して酸素イオンと反応させることにより電解電圧を低減させる高温水蒸 気電解による水素製造方法において、電解装置のアノード側に供給する炭化水素 含有ガスに、電解装置のアノード側カゝら排出される排ガスを混入することを特徴とす る水素製造方法。
[0051] 2.電解装置のアノード側に供給する炭化水素含有ガスの炭素原子換算のモル数 に対して、水蒸気と二酸ィ匕炭素の和が等モル比以上となるようにアノード側力 の排 ガスを混入することを特徴とする上記第 1項に記載の水素製造方法。
[0052] 3.電解装置のアノード側に供給する炭化水素含有ガスの炭素原子換算のモル数 に対して、水蒸気と二酸ィ匕炭素の和が約 2倍モル比となるようにアノード側力 の排 ガスを混入することを特徴とする上記第 1項に記載の水素製造方法。
[0053] 4.電解装置のアノード側に供給する炭化水素含有ガスとアノード側排ガスの混合 ガスを、電解装置のアノードに接する前に、熱反応によって水素と一酸化炭素を主成 分とする混合ガスに転換した後にアノードと接触するようにすることを特徴とする上記 第 1項一第 3項のいずれかに記載の水素製造方法。
[0054] 5.電解装置のアノード側排ガスに酸素又は空気を混合し、得られた混合ガスを電 解装置のアノード側に供給する炭化水素含有ガスに混入して、炭化水素含有ガスの 部分酸化反応熱によって水素と一酸化炭素を主成分とする混合ガスに転換すること を特徴とする上記第 1項一第 4項のいずれかに記載の水素製造方法。
[0055] 6.固体酸ィ匕物電解質の隔膜によってアノード側と力ソード側に仕切られている電 解槽、炭化水素含有ガスを電解槽のアノード側に供給する管路、水蒸気を電解槽の 力ソードに供給する管路を具備し、更に、電解槽のアノード側から排出される排ガス を、電解槽のアノード側に供給される炭化水素含有ガス中に混入させる管路を具備 することを特徴とする水素の製造装置。
[0056] 7.水蒸気と電解槽のアノード側排ガスとの混合ガスを電解槽のアノード側に供給 する管路に触媒層を配置して、炭化水素含有ガスとアノード側排ガスの混合ガスが、 電解装置のアノードに接する前に、熱反応によって水素と一酸化炭素を主成分とす る混合ガスに転換されるように構成したことを特徴とする上記第 6項に記載の水素の 製造装置。
[0057] 8.固体酸ィ匕物電解質の隔膜によってアノード側と力ソード側に仕切られている電 解槽、還元性ガスを電解槽のアノード側に供給する管路、水蒸気を電解槽のカソー ドに供給する管路を具備する高温水蒸気電解法による水素製造装置であって、ァノ ード電極及び力ソード電極の材質として、 400— 1000°Cの温度の還元性雰囲気中 にお 、て安定なセラミックと金属力もなるサーメットを用いることを特徴とする装置。
[0058] 9.電極材料として用いるサーメットとして、 400— 1000°Cの温度、及び雰囲気中 の水蒸気に対する水素のモル比: H /H 0、或いは還元性ガスに対する水のモル
2 2
比が 0. 4以下の雰囲気条件下で、平衡反応として酸化物を形成しない金属を主体と するサーメットを用いることを特徴とする上記第 8項に記載の装置。
[0059] 10.電極材料として用いるサーメットとして、 Niサーメットを用いることを特徴とする 上記第 8項に記載の装置。
[0060] 11.電極材料として用いる金属サーメットとして、金属に混合するセラミックの主体 力 酸素イオン伝導体或いは酸素イオン'電子伝導体である材料を用いる上記第 8 項一第 10項のいずれかに記載の装置。
[0061] 12.固体酸ィ匕物電解質として、スカンジウム安定ィ匕ジルコユア(SSZ)又はイットリウ ム安定ィ匕ジルコユア (YSZ)を用いる上記第 8項一第 10項のいずれかに記載の装置
[0062] 13.電解槽の力ソード側で生成する水素ガスの一部を、電解槽の力ソード側に供 給する水蒸気に混入させる管路を更に具備することを特徴とする上記第 8項一第 12 項の 、ずれかに記載の装置。
[0063] 14.電解槽の力ソード側での水蒸気の流れと、電解槽のアノード側での還元性ガス の流れが、互いに向流となるように構成されて 、ることを特徴とする上記第 8項一第 1 3項の!/、ずれかに記載の装置。
[0064] 15.複数のアノード電極及び力ソード電極が、金属製のインターコネクターによって 直列に接合されている上記第 8項一第 14項のいずれかに記載の装置。
[0065] 16.固体酸ィ匕物電解質の隔膜によってアノード側と力ソード側に仕切られている電 解槽のアノード側に還元性ガスを供給し、力ソード側に水蒸気を供給して、アノード 電極及び力ソード電極に電力を供給することによって、水蒸気の電解により水素を製 造する方法であって、電解槽の力ソード側に供給する水蒸気に水素を混入させること を特徴とする方法。
[0066] 17.電解槽の力ソード側に供給する水蒸気に水素を、水蒸気に対する水素のモル 比: H /H Oが 0. 4以下 0. 01以上となる量で混入させることを特徴とする上記第 16
2 2
項に記載の方法。
[0067] 18.電解槽の力ソード側での水蒸気の流れと、電解槽のアノード側での還元性ガス の流れを、互いに向流となるように水蒸気及び還元性ガスを供給する上記第 16項又 は第 17項に記載の方法。
産業上の利用可能性
[0068] 本発明によれば、本発明は、高温水蒸気電解により水素を製造する方法及び装置 に関するものであり、特に、固体酸ィ匕物電解質隔膜によって電解槽をアノード側と力 ソード側に仕切った電解装置の力ソード側に水蒸気を供給し、アノード側に還元性の ガスを供給して電解を行うことによって、電解電力を低減した電解方法にぉ ヽて用い るのに適した電解装置及びその最適の運転方法が提供される。
[0069] また、本発明の第 2の態様によれば、固体酸ィ匕物電解質隔膜によって電解槽をァノ ード側と力ソード側に仕切った電解装置のアノード側に炭化水素含有ガスを供給し、 力ソード側に高温水蒸気を供給して水蒸気の電気分解を行うことによって水素を製 造する方法にお!ヽて、炭化水素の熱分解で析出する固体炭素による電極の閉塞を 防止するとともに、反応後のアノード側排ガスの持つ熱とその中に含まれる未燃ガス 成分を有効に利用して、効率的に水素を製造することができる。

Claims

請求の範囲
[1] 固体酸ィ匕物電解質を隔膜として用いて電解槽をアノード側と力ソード側に仕切った 高温水蒸気電解装置の力ソード側に水蒸気を供給し、アノード側に炭化水素含有ガ スを供給して酸素イオンと反応させることにより電解電圧を低減させる高温水蒸気電 解による水素製造方法において、電解装置のアノード側に供給する炭化水素含有ガ スに、電解装置のアノード側から排出される排ガスを混入することを特徴とする水素 製造方法。
[2] 電解装置のアノード側に供給する炭化水素含有ガスの炭素原子換算のモル数に 対して、水蒸気と二酸ィ匕炭素の和が等モル比以上となるようにアノード側力もの排ガ スを混入することを特徴とする請求項 1に記載の水素製造方法。
[3] 電解装置のアノード側に供給する炭化水素含有ガスの炭素原子換算のモル数に 対して、水蒸気と二酸ィ匕炭素の和が約 2倍モル比となるようにアノード側からの排ガス を混入することを特徴とする請求項 1に記載の水素製造方法。
[4] 電解装置のアノード側に供給する炭化水素含有ガスとアノード側排ガスの混合ガス を、電解装置のアノードに接する前に、熱反応によって水素と一酸化炭素を主成分と する混合ガスに転換した後にアノードと接触するようにすることを特徴とする請求項 1 一 3のいずれかに記載の水素製造方法。
[5] 電解装置のアノード側排ガスに酸素又は空気を混合し、得られた混合ガスを電解 装置のアノード側に供給する炭化水素含有ガスに混入して、炭化水素含有ガスの部 分酸化反応熱によって水素と一酸化炭素を主成分とする混合ガスに転換することを 特徴とする請求項 1一 4のいずれかに記載の水素製造方法。
[6] 固体酸ィ匕物電解質の隔膜によってアノード側と力ソード側に仕切られている電解槽 、炭化水素含有ガスを電解槽のアノード側に供給する管路、水蒸気を電解槽のカソ ードに供給する管路を具備し、更に、電解槽のアノード側力も排出される排ガスを、 電解槽のアノード側に供給される炭化水素含有ガス中に混入させる管路を具備する ことを特徴とする水素の製造装置。
[7] 水蒸気と電解槽のアノード側排ガスとの混合ガスを電解槽のアノード側に供給する 管路に触媒層を配置して、炭化水素含有ガスとアノード側排ガスの混合ガスが、電解 装置のアノードに接する前に、熱反応によって水素と一酸化炭素を主成分とする混 合ガスに転換されるように構成したことを特徴とする請求項 6に記載の水素の製造装 置。
PCT/JP2005/002420 2004-02-18 2005-02-17 水素の製造方法及び装置 WO2005078160A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005000495T DE112005000495T5 (de) 2004-02-18 2005-02-17 Verfahren und Vorrichtung zur Erzeugung von Wasserstoff
US10/589,815 US20070163889A1 (en) 2004-02-18 2005-02-17 Method and apparatus for producing hydrogen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004042040A JP4512788B2 (ja) 2004-02-18 2004-02-18 高温水蒸気電解装置
JP2004-042040 2004-02-18
JP2004-042041 2004-02-18
JP2004042041A JP4500907B2 (ja) 2004-02-18 2004-02-18 水素の製造方法

Publications (1)

Publication Number Publication Date
WO2005078160A1 true WO2005078160A1 (ja) 2005-08-25

Family

ID=34863492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002420 WO2005078160A1 (ja) 2004-02-18 2005-02-17 水素の製造方法及び装置

Country Status (3)

Country Link
US (1) US20070163889A1 (ja)
DE (1) DE112005000495T5 (ja)
WO (1) WO2005078160A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183252A (ja) * 2014-03-25 2015-10-22 京セラ株式会社 セルスタックおよび電解モジュールならびに電解装置
GB2545444A (en) * 2015-12-16 2017-06-21 Siemens Ag Electrochemical cell and process

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921390B1 (fr) * 2007-09-25 2010-12-03 Commissariat Energie Atomique Electrolyseur haute temperature a dispositif d'homogeneisation de la temperature.
FR2921389B1 (fr) * 2007-09-25 2010-03-12 Commissariat Energie Atomique Electrolyseur haute temperature a dispositif de recuperation d'hydrogene.
RU2509828C2 (ru) * 2008-07-29 2014-03-20 Йеда Рисёч Энд Девелопмент Компани Лтд. Система и способ производства химической потенциальной энергии
KR100930790B1 (ko) * 2009-02-18 2009-12-09 황부성 수소산소 발생용 전극판 및 그를 제조하기 위한 제조방법
FR2957363B1 (fr) * 2010-03-12 2012-04-20 Commissariat Energie Atomique Architecture d'electrolyseur a haute temperature, a production cible elevee par cellule d'electrolyse et taux de degradation des cellules limite
US8591718B2 (en) * 2010-04-19 2013-11-26 Praxair Technology, Inc. Electrochemical carbon monoxide production
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
WO2013089895A1 (en) 2011-12-15 2013-06-20 Praxair Technology, Inc. Composite oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
JP2016505501A (ja) 2012-12-19 2016-02-25 プラクスエア・テクノロジー・インコーポレイテッド 酸素輸送膜集合体をシールするための方法
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
FR3004179B1 (fr) * 2013-04-08 2015-05-01 Commissariat Energie Atomique Procedes d'obtention de gaz combustible a partir d'electrolyse de l'eau (eht) ou de co-electrolyse avec h2o/co2 au sein d'une meme enceinte, reacteur catalytique et systeme associes
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9486765B2 (en) 2013-10-07 2016-11-08 Praxair Technology, Inc. Ceramic oxygen transport membrane array reactor and reforming method
EP3055053A2 (en) 2013-10-08 2016-08-17 Praxair Technology Inc. System and method for temperature control in an oxygen transport membrane based reactor
WO2015084729A1 (en) 2013-12-02 2015-06-11 Praxair Technology, Inc. Method and system for producing hydrogen using an oxygen transport membrane based reforming system with secondary reforming
CN103668307B (zh) * 2013-12-26 2016-01-13 王树金 电解高温水蒸汽制氢装置及制氢方法
CA2937943A1 (en) 2014-02-12 2015-08-20 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US9574274B2 (en) * 2014-04-21 2017-02-21 University Of South Carolina Partial oxidation of methane (POM) assisted solid oxide co-electrolysis
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US10758888B1 (en) 2014-10-08 2020-09-01 Ronny Bar-Gadda Simultaneous generation of electricity and chemicals using a renewable primary energy source
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
EP3436185A1 (en) 2016-04-01 2019-02-06 Praxair Technology Inc. Catalyst-containing oxygen transport membrane
US11136238B2 (en) 2018-05-21 2021-10-05 Praxair Technology, Inc. OTM syngas panel with gas heated reformer
US11767600B2 (en) 2018-11-06 2023-09-26 Utility Global, Inc. Hydrogen production system
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making
US11761096B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Method of producing hydrogen
EP3908551A4 (en) * 2019-01-11 2023-01-11 Utility Global, Inc. HYDROGEN PRODUCTION PROCESS
EP3909089A4 (en) * 2019-01-11 2023-01-11 Utility Global, Inc. ELECTROCHEMICAL DEVICE AND METHOD OF MANUFACTURE THEREOF
JP7484048B2 (ja) * 2020-03-10 2024-05-16 太陽誘電株式会社 固体酸化物型燃料電池およびその製造方法
US12312697B2 (en) 2021-05-18 2025-05-27 Bloom Energy Corporation Electrolyzer system with steam generation and method of operating same
AU2021468503A1 (en) * 2021-10-11 2024-03-14 Utility Global, Inc. Electrochemical hydrogen production utilizing ammonia
CN114032570B (zh) * 2021-12-01 2022-10-28 浙江大学 碳辅助固体氧化物电解池
CA3236978A1 (en) * 2021-12-07 2023-06-15 Nicholas FARANDOS Electrochemical producer for hydrogen or carbon monoxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350188A (ja) * 1991-02-14 1992-12-04 Japan Atom Energy Res Inst 向流式電解反応槽
JPH11269684A (ja) * 1998-03-20 1999-10-05 Japan Atom Energy Res Inst 電気化学反応装置
JP2002285367A (ja) * 2001-03-26 2002-10-03 Meidensha Corp 水素ガス製造方法及びその装置並びに水素ガス製造ユニット
JP2004010952A (ja) * 2002-06-06 2004-01-15 Nippon Sanso Corp 浸炭用雰囲気ガス発生装置及び方法
JP2004060041A (ja) * 2002-07-25 2004-02-26 Ebara Corp 高純度水素の製造方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US651125A (en) 1899-08-19 1900-06-05 Michael Blain Bicycle attachment.
JP2924815B2 (ja) 1996-09-27 1999-07-26 日本電気株式会社 ゼータ電位測定装置
US6051125A (en) * 1998-09-21 2000-04-18 The Regents Of The University Of California Natural gas-assisted steam electrolyzer
JP2001035943A (ja) 1999-07-23 2001-02-09 Mitsubishi Electric Corp 半導体装置および製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350188A (ja) * 1991-02-14 1992-12-04 Japan Atom Energy Res Inst 向流式電解反応槽
JPH11269684A (ja) * 1998-03-20 1999-10-05 Japan Atom Energy Res Inst 電気化学反応装置
JP2002285367A (ja) * 2001-03-26 2002-10-03 Meidensha Corp 水素ガス製造方法及びその装置並びに水素ガス製造ユニット
JP2004010952A (ja) * 2002-06-06 2004-01-15 Nippon Sanso Corp 浸炭用雰囲気ガス発生装置及び方法
JP2004060041A (ja) * 2002-07-25 2004-02-26 Ebara Corp 高純度水素の製造方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183252A (ja) * 2014-03-25 2015-10-22 京セラ株式会社 セルスタックおよび電解モジュールならびに電解装置
GB2545444A (en) * 2015-12-16 2017-06-21 Siemens Ag Electrochemical cell and process
GB2545444B (en) * 2015-12-16 2018-05-30 Siemens Ag An electrochemical cell with a steam inlet and a solid catalyst structure

Also Published As

Publication number Publication date
DE112005000495T5 (de) 2008-07-17
US20070163889A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
WO2005078160A1 (ja) 水素の製造方法及び装置
US7410717B2 (en) Solid oxide fuel cell(SOFC) for coproducing syngas and electricity by the internal reforming of carbon dioxide by hydrocarbons and electrochemical membrane reactor system
EP1668755B1 (en) Sorfc system with non-noble metal electrode compositions
US6811913B2 (en) Multipurpose reversible electrochemical system
EP2908371B1 (en) Fuel battery and operation method thereof
AU2002219941A1 (en) Multipurpose reversible electrochemical system
WO2013048705A1 (en) Integrated natural gas powered sofc system
JP2018519414A (ja) 二酸化炭素および硫化水素を共処理する方法
WO2018029994A1 (ja) 水素処理装置
Velraj et al. A novel solid oxide electrolytic cell with reduced endothermic load for CO2 electrolysis using (La0. 80Sr0. 20) 0.95 MnO3-δ cathode
JP4832982B2 (ja) 固体酸化物形燃料電池のアノード還元法
JP2003327411A (ja) 燃料電池の燃料改質装置及び燃料改質方法
JP4512788B2 (ja) 高温水蒸気電解装置
Hirata et al. Development of electrochemical cell with layered composite of the Gd-doped ceria/electronic conductor system for generation of H2–CO fuel through oxidation–reduction of CH4–CO2 mixed gases
JP2013014820A (ja) 燃料ガス改質用電解セル、及び電解セルを利用した改質ガスの生成方法
US20220045348A1 (en) Electrochemical cell and hydrogen generation method
KR20160120363A (ko) 탄소 흡착 방지 온-셀 개질기를 포함하는 직접 탄화수소 사용 고체산화물 연료전지
JP4500907B2 (ja) 水素の製造方法
US20220029195A1 (en) Electrochemical cell
IL257361A (en) Solid oxide fuel cell and method of operation
Singh et al. Corrosion in Fuel Cells
CN115725980A (zh) 燃料辅助电解池、氢气合成装置以及氢气合成方法
JP2008257886A (ja) 固体酸化物形燃料電池、及びそのスタック構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007163889

Country of ref document: US

Ref document number: 10589815

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580005433.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050004953

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10589815

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005000495

Country of ref document: DE

Date of ref document: 20080717

Kind code of ref document: P