WO2006001165A1 - 多心フェルール - Google Patents
多心フェルール Download PDFInfo
- Publication number
- WO2006001165A1 WO2006001165A1 PCT/JP2005/010241 JP2005010241W WO2006001165A1 WO 2006001165 A1 WO2006001165 A1 WO 2006001165A1 JP 2005010241 W JP2005010241 W JP 2005010241W WO 2006001165 A1 WO2006001165 A1 WO 2006001165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- ferrule
- core ferrule
- ferrules
- buffer portion
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 239000000835 fiber Substances 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 3
- 239000002356 single layer Substances 0.000 claims 2
- 239000013307 optical fiber Substances 0.000 abstract description 8
- 238000006073 displacement reaction Methods 0.000 abstract description 3
- 238000012423 maintenance Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- UPPMZCXMQRVMME-UHFFFAOYSA-N valethamate Chemical compound CC[N+](C)(CC)CCOC(=O)C(C(C)CC)C1=CC=CC=C1 UPPMZCXMQRVMME-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3873—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
- G02B6/3874—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
- G02B6/3878—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules comprising a plurality of ferrules, branching and break-out means
Definitions
- the present invention relates to a multi-fiber ferrule for holding an optical fiber (core wire) in an optical connector, for example.
- a multi-core connector provided with a plurality of optical connector core wires
- a plurality of round holes are formed in a ferrule in which ceramic raw material powder such as zirconia powder is formed into a predetermined shape by a molding die. Is formed by inserting an optical fiber into the round hole and fixing with an adhesive (see, for example, JP-A-2003-202454). Disclosure of the invention
- each independent single-core ferrule can be finely moved, so troubles when inserting into the sleeve are reduced. Force In this case, the single-core ferrule inserted into the sleeve does not release V, and an elastic member such as a coil spring is required for each single-core ferrule so that the number of parts increases and the cost is reduced. It will be bulky.
- the present invention solves such a problem in the conventional ferrule, and can be manufactured with a small number of parts, and when the ferrule is connected to the sleeve, it is caused by misalignment of the axial center between the ferrule and the sleeve. It provides a multi-core ferrule that does not cause any problems.
- the multi-fiber ferrule according to the present invention includes a plurality of single-core ferrules, a base portion of the plurality of single-core ferrules, and a base portion. And a buffer portion for absorbing the misalignment of the shaft when the plurality of single-core ferrules are connected to the sleeve.
- the buffer portion may be provided with flexibility by bending the connecting portion.
- the buffer portion is formed by forming a concave groove around the single-core ferrule of the base portion, and increasing the flexibility of the single-core ferrule by increasing the length of the single-core ferrule. Good.
- the multi-core ferrule having the curved connecting portion may be integrally formed with a flexible member.
- the single-core ferrule may be cylindrical, and the buffer portion may be a recess formed at a desired depth in the outer peripheral portion of the cylindrical single-core ferrule.
- the buffer portion may be a combination of a concave portion on the outer peripheral portion of the single-core ferrule and a concave groove provided around the single-core ferrule on the base portion.
- the number of single-core ferrules is n (n is a natural number greater than or equal to 2), the number of fan seats is S, and the number of panels within the range expressed by l ⁇ S ⁇ n— It is preferable that a seat is provided.
- a method for integrally connecting each base portion and the connecting portion a method by integral molding, a method by adhesion, welding, and pressure bonding can be used, but the method is not limited thereto.
- the multi-fiber flute of the present invention has a force buffering portion in which the single-fiber flutes are integrally connected by the connecting portion, so that the deviation of the shaft center when connecting to the sleeve is absorbed.
- the connecting part that connects each single-core ferrule has flexibility so that the buffer part is also used as a buffer part, and the connecting part is formed rigidly so that the buffer part is attached to the base part of the single-core ferrule. In either case, the displacement of the shaft center is finely adjusted and absorbed, so that each single-core ferrule and each sleeve can be connected without hindrance.
- the mold for manufacturing the multi-fiber ferrule does not need to be a mold in which the positional accuracy of each manufactured single-core ferrule and its optical fiber insertion hole is high.
- the manufacturing cost of the mold can be reduced.
- each single-core ferrule can be handled in the same way as an independent ferrule, and the pressing elastic member necessary for it can be covered with a smaller number of parts than in the past, thereby reducing costs.
- FIG. 1A is a front view of a multi-core fleur 1 according to a first embodiment of the present invention.
- FIG. 1B is a side view of the multi-core ferrule 1 according to the first embodiment.
- FIG. 1C is a plan view of the multi-core ferrule 1 according to the first embodiment.
- FIG. 1D is a bottom view of the multi-core ferrule 1 according to the first embodiment.
- FIG. 2A is a front view of the multi-core ferrule 1 of the first embodiment with the elastic member 6 attached to the panel seat.
- FIG. 2B is a side view of the multi-core ferrule 1 of the first embodiment with the elastic member 6 attached to the panel seat.
- FIG. 3A is a front view showing a cutaway part of a multi-core ferrule la according to a second embodiment of the present invention.
- FIG. 3B is a side view of the multi-core ferrule la according to the second embodiment.
- FIG. 3C is a plan view of a multi-core ferrule la according to the second embodiment.
- FIG. 3D is a bottom view of the multi-core ferrule la according to the second embodiment.
- FIG. 4A is a front view showing a state in which the elastic member 6 is attached to the panel seat on the multi-core ferrule la shown by cutting away a part shown in FIG. 3A.
- FIG. 4B is a side view of the multi-fiber ferrule la according to the second embodiment with the elastic member 6 attached to the panel seat.
- FIG. 5A is a front view showing a cutaway part of a multi-core ferrule lb according to a third embodiment of the present invention.
- FIG. 5B is a side view of the multi-core ferrule lb according to the third embodiment.
- FIG. 5C is a plan view of the multi-core ferrule lb according to the third embodiment.
- FIG. 5D is a bottom view of the multi-core ferrule lb according to the third embodiment.
- FIG. 5E is a cross-sectional view taken along line AA in FIG. 5A showing a multi-core ferrule lb.
- FIG. 6A is a front view showing a cutaway part of a multi-core ferrule lc according to a fourth embodiment of the present invention.
- FIG. 6B is a side view of the multi-core ferrule lc according to the fourth embodiment.
- FIG. 6C is a plan view of the multi-core ferrule lc according to the fourth embodiment.
- FIG. 6D is a bottom view of the multi-core ferrule lc according to the fourth embodiment.
- the multi-fiber ferrule 1 includes a plurality of single-core ferrules 2 and 2 and a connecting portion in the ferrule for an optical connector.
- the connecting portion 3 functions as the buffer portion 4 that absorbs the shift of the shaft center.
- the connecting portion 3 in the first embodiment has a wide band shape.
- This multi-core ferrule 1 is made of a synthetic resin suitable for precision processing using liquid crystal polymer (LCP) or the like, and the center of the single-core ferrule 2 is provided with round holes 2a and 2b for inserting optical fibers. It has been.
- One of the round holes 2a is formed to have a diameter substantially the same as the diameter of the optical fiber to be inserted, and the other round hole 2b is formed to have a slightly larger diameter in consideration of positional accuracy with respect to the round hole 2a.
- the base portion 2c of the single-core ferrule 2 is formed in a rectangular shape, and the wall surface force coupling portion 3 that faces it is extended with an appropriate width, and its central portion is curved to be flexible. have. This makes it possible to adjust the displacement of the axis of the single-core ferrule 2 relatively finely. Therefore, in the first embodiment, the flexible connecting portion 3 is also used as the buffer portion 4. The degree of this curvature depends on the accuracy of the single-core ferrule 2 and the accuracy of the sleeve to be fitted, and is a design matter.
- a panel seat 5 is provided on the bottom surface of the base portion 2c of the multi-core ferrule 1 as shown in FIGS. 2A and 2B. This is because when this multi-core ferrule 1 is connected, a coil spring, which is an elastic member 6 that presses the single-core ferrule 2 inserted into the sleeve so as not to be separated after contacting the other party, is required. is there.
- the number of single-core ferrules is n (n is a natural number, n ⁇ 2)
- the number of panel seats is S
- l ⁇ Is a natural number within the range expressed by S ⁇ n—l
- a number of panel seats 5 are provided.
- the connecting portion 3a of the multi-core ferrule la is formed as a rigid connecting portion, and the positions of the two-core ferrules 2, 2 are defined. Position with high accuracy.
- groove 2e is provided in the circumference
- a hole 2d is provided inside the base 2c of the single-core ferrule 2 to prevent sink marks.
- a panel seat 5 is provided on the bottom surface of the connecting portion 3a.
- the elastic member 6 is attached to the panel seat 5 described above.
- the single-core ferrule 2 is easily bent by providing the concave groove 2e as the buffer portion 4, even if the single-core ferrule has a shift in the axial center, the shift is absorbed by the buffer portion 4.
- the single-core ferrule 2 can be inserted into the sleeve without any trouble. Further, since the misalignment of the shaft center is absorbed by the multi-core ferrule itself, only one elastic member 6 is required.
- the multi-fiber ferrule lb according to the third embodiment of the present invention is used as a buffer portion 4 in addition to the concave groove 2e in the base portion 2c similar to the second embodiment.
- the cylindrical single-core ferrule 2 is composed of one or a plurality of (four in the example shown in FIG. 5E) recesses 2f perforated at a desired depth.
- the buffer portion may be only the concave portion 2f without the concave groove 2e. Other configurations are the same as those of the second embodiment.
- the concave portion 2f is disposed in an arbitrary angular range in the circumferential direction on the surface of the single-core ferrule.
- the shape of the recess 2f is not particularly limited as long as it satisfies the function as a buffer portion.
- flexibility is imparted to the single core ferrule by the concave groove 2e and the concave portion 2f or only by the concave portion 2f, and the deviation of the axial center when the single core ferrule 2 is inserted into the sleeve is flexibly adjusted, It can be inserted without any problem.
- the multi-fiber fl lc according to the fourth embodiment of the present invention is such that the connecting portion 3b is a strong rigid body.
- the connecting portion 3b is provided with a wall 3c extending further upward than the connecting portion 3a in the third embodiment.
- Single core ferrule 2, 2 The positioning of the shaft center is determined with high accuracy, and the misalignment of the shaft center is absorbed by the concave groove 2e acting as the buffer portion 4.
- the multi-fiber ferrule according to the present invention is useful, for example, for holding an optical fiber (core wire) in a multi-fiber connector provided with a plurality of core wires of the optical connector.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006528443A JPWO2006001165A1 (ja) | 2004-06-25 | 2005-06-03 | 多心フェルール |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-187903 | 2004-06-25 | ||
JP2004187903 | 2004-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006001165A1 true WO2006001165A1 (ja) | 2006-01-05 |
Family
ID=35781687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/010241 WO2006001165A1 (ja) | 2004-06-25 | 2005-06-03 | 多心フェルール |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006001165A1 (ja) |
WO (1) | WO2006001165A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223149A (ja) * | 2008-03-18 | 2009-10-01 | Fujikura Ltd | ハイパワー用光コネクタ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06201951A (ja) * | 1992-11-13 | 1994-07-22 | Internatl Business Mach Corp <Ibm> | 光ファイバ・コネクタ・ハウジング、光ファイバ・レセプタクル、およびアクセサリ装置 |
JP2003329882A (ja) * | 2002-05-09 | 2003-11-19 | Seiko Instruments Inc | 斜めpcコネクタ |
-
2005
- 2005-06-03 WO PCT/JP2005/010241 patent/WO2006001165A1/ja active Application Filing
- 2005-06-03 JP JP2006528443A patent/JPWO2006001165A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06201951A (ja) * | 1992-11-13 | 1994-07-22 | Internatl Business Mach Corp <Ibm> | 光ファイバ・コネクタ・ハウジング、光ファイバ・レセプタクル、およびアクセサリ装置 |
JP2003329882A (ja) * | 2002-05-09 | 2003-11-19 | Seiko Instruments Inc | 斜めpcコネクタ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223149A (ja) * | 2008-03-18 | 2009-10-01 | Fujikura Ltd | ハイパワー用光コネクタ |
US8206041B2 (en) | 2008-03-18 | 2012-06-26 | Fujikura Ltd. | High power optical connector and optical fiber system using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006001165A1 (ja) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6052815B2 (ja) | 導波路用のコネクタおよびアライメント方法 | |
JP5510003B2 (ja) | 光コネクタ及びファイバアレイの接続方法 | |
US8256972B2 (en) | Fiber optic connector and fiber optic assembly having same | |
US7862244B2 (en) | Optical module providing a sleeve burying a tubular member | |
JP3091680B2 (ja) | リボン型光ケーブル用多芯光コネクタ | |
US4818061A (en) | Ferrule for connecting optical fibers and optical connector using it | |
KR101760156B1 (ko) | 광 콜리메이터 및 이를 이용한 광 커넥터 | |
US11327243B2 (en) | Optical connection component with elastic securing member | |
WO2006001165A1 (ja) | 多心フェルール | |
JP2012242658A (ja) | 光ファイバ用ソケット | |
JP4012537B2 (ja) | 光モジュール及びその作製方法 | |
CN100526926C (zh) | 生产带有光纤的套筒的方法 | |
KR100773175B1 (ko) | 광 접속기 | |
JP2005099748A (ja) | 光レセプタクル | |
JP5254296B2 (ja) | キャピラリ | |
JP5862968B2 (ja) | 光コネクタの作製方法 | |
WO2020045282A1 (ja) | 光接続部品 | |
JP4000043B2 (ja) | 光フェルールとその製造方法およびこれを用いた光ファイバコネクタ | |
JP2007121696A (ja) | ファイバスタブとそれを用いた光レセプタクルおよび光モジュール | |
JP3700775B2 (ja) | 光ファイバアレイ | |
JPH08211241A (ja) | 定偏波光ファイバ | |
JP2001042160A (ja) | 異径フェルール結合用アライメントスリーブ | |
JP2011150206A (ja) | 光減衰器 | |
JP2002296450A (ja) | 光ファイバコネクタ及び該光ファイバコネクタのフェルール成形用金型、並びに該光ファイバコネクタのフェルールの製造方法 | |
JP3218262B2 (ja) | 光導波路部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006528443 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |