[go: up one dir, main page]

WO2006006197A1 - 光モジュール及び光波長合分波装置 - Google Patents

光モジュール及び光波長合分波装置 Download PDF

Info

Publication number
WO2006006197A1
WO2006006197A1 PCT/JP2004/007194 JP2004007194W WO2006006197A1 WO 2006006197 A1 WO2006006197 A1 WO 2006006197A1 JP 2004007194 W JP2004007194 W JP 2004007194W WO 2006006197 A1 WO2006006197 A1 WO 2006006197A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
wavelength
fiber
collimator
Prior art date
Application number
PCT/JP2004/007194
Other languages
English (en)
French (fr)
Inventor
Tetsuo Takano
Kiyoshi Morita
Yoshiatsu Yokoo
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to JP2006527584A priority Critical patent/JP4311579B2/ja
Priority to CNB2004800431505A priority patent/CN100495096C/zh
Priority to US11/596,052 priority patent/US20080013955A1/en
Priority to PCT/JP2004/007194 priority patent/WO2006006197A1/ja
Publication of WO2006006197A1 publication Critical patent/WO2006006197A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to, for example, an optical wavelength multiplexing / demultiplexing device that branches signal light from a trunk line toward a relay station or inserts signal light from a relay station into the trunk line in the optical communication field, and uses the same
  • the present invention relates to an optical module.
  • Patent Document 1 discloses an apparatus used for branching a signal of a specific wavelength to a relay station or inserting a signal of a specific wavelength into a relay station.
  • An optical add / drop device such as that disclosed in is known.
  • this optical add / drop device includes an optical demultiplexer 3 that demultiplexes wavelength-multiplexed light input from the input optical transmission line 1 into light of each wavelength, and once demultiplexes. And an optical multiplexer 4 for multiplexing the transmitted light of each wavelength and sending it to the output transmission line 2.
  • This optical add / drop device also splits the light of each wavelength demultiplexed by the optical demultiplexer 3 to the receiver 7 of the relay station 8 and then transmits the signal transmitted from the transmitter 6 of the relay station 8.
  • An optical switch 5 for selecting whether to insert a new light or to transmit the light of each wavelength demultiplexed by the optical demultiplexer 3 as it is to the optical multiplexer 4 corresponds to the optical path of each wavelength. There are several.
  • the optical demultiplexer 3 or the optical multiplexer 4 has a wavelength selection filter, a lens, or the like fixed on the outgoing optical path from the optical fiber, and a single wavelength component from the multi-wavelength signal.
  • a filter module having a function of separating or a function of inserting a single wavelength component into a multi-wavelength signal is used.
  • Such a filter module has a configuration in which, as described in Patent Document 2 and Patent Document 3, for example, a collimator including a lens and an optical fiber is disposed facing each other with a wavelength selection filter interposed therebetween. Make it.
  • a wavelength selection filter, a lens, and an optical fiber are inserted and fixed in a common cylindrical casing with the optical axis adjusted.
  • Such a module is generally called an Add / Drop Multiplexer (ADM).
  • the optical demultiplexer 3 and the optical multiplexer 4 in the optical add / drop device of FIG. 17 need to perform similar multiplexing or demultiplexing for a plurality of wavelengths, and thus have different wavelength separation characteristics.
  • a plurality of filter modules are used, and the optical fibers at the signal input and output ends are connected by a method such as sequential fusion.
  • Such modules are commonly called “Mux / DeMux”.
  • the light input to the optical demultiplexer 3 or the optical multiplexer 4 passes through a plurality of the filter modules in order, so that the light demultiplexed to each wavelength or the light of each wavelength is sequentially multiplexed.
  • Patent Document 4 See, for example, Patent Document 4).
  • a plurality of unit modules connected in series are mounted in a single case!
  • GI graded index
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-183816
  • Patent Document 2 Japanese Patent Publication No. 10-511476
  • Patent Document 3 Japanese Patent Laid-Open No. 10-311905
  • Patent Document 4 Japanese Patent Laid-Open No. 11 337765
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-437270
  • the present inventors have eliminated the outer package that is the housing of the filter module, fixed each component as described above on a single substrate, and optically transmitted between the components.
  • the end faces of optical fibers and gradient index lenses are inclined end faces
  • a distributed feedback laser is generally used as a light source.
  • This type of laser light source travels backward in the fiber and reaches the light source.
  • the so-called return light has a characteristic that the output oscillation is likely to vary as a result of the laser oscillation becoming unstable. That is, when the reflected light increases, in other words, when the reflection loss is small, it means that the return light is large and the fluctuation of the output power is increased.
  • the end face reflection loss expressed by the following equation (1) is 50 dB or more. It is requested.
  • End face reflection loss —10 X log (IR ZIO)... (1)
  • IR is the amount of reflected light
  • IO is the amount of incident light
  • FIG. 18 shows a collimator manufactured by a current mainstream manufacturing method, that is, a combination of the fiber bigtil 11 and the gradient index lens 12.
  • each end face of the big 11 and the lens 12 has an angle of about 8 °, which causes the incident light to be displaced by ⁇ compared to the position of the incident light.
  • angular deviation ⁇ occurs.
  • the amount of optical axis misalignment due to zero angle deviation increases as the coupling distance L increases as shown in FIG. Therefore, if the distance between the collimator pair installed in the V-groove etc. on the same straight line is more than a few millimeters, the optical coupling becomes almost 0 (zero).
  • the optical fiber terminal and the lens end face may be all perpendicular to the optical axis.
  • all the end surface reflections are reflected as return light.
  • the reflection loss caused by the difference in refractive index between the glass end surface and air is 14.7 dB.
  • Even if a good AR coating (R 0.2%: 27 dB) is applied to this, the reflection loss at the end surface is about 42 dB. Therefore, the above required specification of 50 dB or more cannot be achieved.
  • the structure shown in Patent Document 5 is an optical fiber end structure having a condensing function, and the beam waist distance and the beam waist diameter can be set to desired values, that is, those Although it is said that it is possible to provide an optical fiber end structure that can be varied independently of each other, there is a problem that it is not possible to ensure the generally required return loss.
  • an interference filter such as a wavelength selection filter is usually produced by forming a film on a glass substrate 15 having a finite thickness. It has a thickness of about lmm in order to avoid breaking against the generated film pressure.
  • Figure 21 shows the optical axis deviation ⁇ m) and incident angle ⁇ (Degree) when light passes through a substrate with various thicknesses (0.5-1.5 mm) as shown in Figure 19. Shows the relationship. As shown in this figure, the optical axis shift occurs depending on the thickness of the substrate and the incident angle. Therefore, even if the optical coupling of the collimator pair is performed in advance before inserting the interference filter, the filter is inserted. By simply entering, the optical path is shifted, and the loss is greatly increased or cannot be coupled. [0027] As described above, in reality, if the components are simply arranged in parallel in the V-grooves for fixing the components formed on the same substrate as in the conventional trial, the optical axis is practically used. There was a problem that the deviation was large and sufficient optical coupling could not be obtained.
  • the present invention has been made to solve the above-described problems, and is practically used in a small and low insertion loss optical module in which an optical element having a collimator and a filter function is arranged on the same substrate. It is another object of the present invention to provide an optical module that can achieve a satisfactory optical coupling by reducing complicated alignment while ensuring a sufficient return loss, and an optical wavelength multiplexing / demultiplexing device using the same.
  • An optical module provides an end face of a coreless fiber made of a material having a uniform refractive index substantially the same as that of the core on the end face of an optical fiber having a core at the center and a cladding at the outer periphery thereof.
  • the first and second sets of fiber collimators configured by arranging a collimator lens on the other end surface side of the coreless fiber on the optical axis of the optical fiber are positioned on the same axis.
  • the optical elements having a filter function are arranged between the opposed surfaces of the fiber collimators, and are arranged in the first and second positioning grooves formed on one substrate.
  • An optical module according to a second invention is the optical module according to the first invention, wherein the fiber collimator includes an end of the optical fiber in which a coreless fiber is bonded to an end surface, and the collimator lens. It is characterized by being arranged in the positioning groove.
  • An optical module according to a third invention is the optical module according to the first invention, wherein the fiber collimator includes an end of the optical fiber in which a coreless fiber is bonded to an end surface, and the collimator lens.
  • the optical fiber is configured as a single optical component by being disposed in the glass tube, and the glass tube of the fiber collimator configured as the single optical component is disposed in the positioning groove.
  • An optical module of a fourth invention is the optical module according to any one of the first to third inventions, wherein the first fiber collimator is incident as an optical element having the filter function.
  • the first fiber collimator is incident as an optical element having the filter function.
  • the second fiber coupler Of the wavelength division multiplexed light, only the light of a specific wavelength band is transmitted to the second fiber coupler.
  • a demultiplexing function that transmits light toward another meter and reflects light of other wavelengths, transmitted light of a specific wavelength that is incident on one side from the second fiber collimator, and transmitted and reflected from another surface.
  • a wavelength selection filter having a multiplexing function for multiplexing the reflected light of the wavelength toward the first fiber collimator, and an optical path between the wavelength selection filter and the second fiber collimator.
  • a correction plate is provided.
  • An optical module according to a fifth aspect of the present invention is the optical module according to the fourth aspect of the present invention, wherein a path of reflected light incident from the first fiber collimator and reflected by the wavelength selective filter is provided in the path of the reflected light.
  • a third fiber collimator having the same configuration as that of the second fiber collimator is arranged, and the third fiber collimator is formed on the same plane as the first and second positioning grooves on the substrate. It is characterized by being placed in the third positioning groove.
  • An optical module according to a sixth invention is the optical module according to the fifth invention, wherein the third positioning groove is formed in parallel with the first and second positioning grooves, and the third The reflected light from the wavelength selective filter is coupled between the first fiber collimator and the third fiber collimator between the third fiber collimator disposed in the positioning groove and the wavelength selective filter.
  • An optical path correcting means is arranged.
  • An optical module according to a seventh aspect is the optical module according to the fifth or sixth aspect, wherein the first fiber collimator is connected to an external input optical transmission line force wavelength multiplexed.
  • An input light collimator that makes light incident on the wavelength selective filter as input light, and the second fiber collimator is a branched light for extracting light in a specific wavelength band that has been incident on and transmitted through the wavelength selective filter.
  • the third fiber collimator as an output collimator for sending light outside the specific wavelength band incident and reflected by the wavelength selection filter to an external output optical transmission line.
  • An optical module according to an eighth aspect of the present invention is the optical module according to the fifth or sixth aspect, wherein the third fiber collimator is transmitted through the external input optical transmission line force.
  • As an insertion light collimator that enters as insertion light By using the first fiber collimator as an output light collimator that transmits the combined light of the input light reflected by the wavelength selective filter and the transmitted insertion light to an external output optical transmission line, It is characterized by being configured as a wavelength multiplexing device.
  • An optical module includes a demultiplexing function that transmits only light of a specific wavelength in incident light and reflects light of other wavelengths, and transmitted light of a specific wavelength that is incident and transmitted from one side.
  • a plurality of wavelength selection filters having a multiplexing function for multiplexing reflected light of other wavelengths incident and reflected from other surfaces are provided with different specific wavelengths, and the plurality of wavelength selection filters are provided.
  • the filter is arranged so that the reflected light of the filter is incident in order from the upstream side to the downstream side of the light traveling direction, and on the optical path of the incident light to the most upstream wavelength selection filter and each wavelength selection filter Collimators are respectively arranged on the optical path of the transmitted light and the reflected light path of the most downstream wavelength selective filter, and each of these collimators is an optical fiber having a central core and a cladding on the outer periphery. On the end face, it is almost the same as the core and is uniform.
  • a fiber collimator is used in which one end face of a coreless fiber made of a material having a refractive index is bonded and a collimator lens is disposed on the other end face side of the coreless fiber on the optical axis of the optical fiber.
  • These fiber collimators are alternately arranged on one side and the other side of one substrate in accordance with the multiplexing / demultiplexing order of light, and opposed to each other with the arrangement space of the optical element including the wavelength selection filter interposed therebetween, and each fiber collimator Are positioned in a positioning groove formed in the same plane on the substrate, and at least one set of fiber collimators in a relationship of facing each other via a wavelength selection filter on one side and the other side of the substrate. Is disposed in a positioning groove formed on the same axis, and an optical path correction plate is disposed on the optical path between both fiber collimators. .
  • An optical module according to a tenth aspect of the invention is the optical module according to the ninth aspect of the invention, wherein all the positioning grooves are formed in parallel with each other, and are formed in parallel to each other at a place where optical path correction has occurred.
  • An optical path correction means is interposed.
  • An optical module according to an eleventh aspect is the optical module according to the ninth or tenth aspect, wherein the most upstream fiber collimator in the light traveling direction when used as a duplexer Wavelength collimated light transmitted from the input optical transmission line is input to the most upstream wavelength selection filter as input light, and the most downstream fiber collimator is Use the output collimator to send the light reflected by the most downstream wavelength selection filter to the external output optical transmission line, and use the other fiber collimator to branch out the light transmitted by each wavelength selection filter.
  • An optical wavelength demultiplexing device that demultiplexes wavelength multiplexed light in multiple stages by using it as an optical collimator is characterized.
  • An optical module according to a twelfth aspect of the invention is the optical module according to the ninth or tenth aspect of the invention, wherein the most upstream fiber collimator in the traveling direction of light when used as a multiplexer,
  • the input light collimator makes the light transmitted from the input optical transmission line incident on the surface of the most upstream wavelength selection filter as input light, and the most downstream fiber collimator is reflected by the most downstream wavelength selection filter.
  • the output light collimator transmits the combined light of the reflected light and the transmitted insertion light to the external output optical transmission line, and other fiber collimators are specified for each filter with respect to the back surface of each wavelength selection filter. It is characterized in that it is configured as an optical wavelength multiplexing device by using it as a collimator for insertion light that makes incident light in the wavelength band of this incident.
  • An optical module according to a thirteenth aspect is the optical module according to any one of the first and third aspects, wherein the first fiber collimator is incident as an optical element having the filter function.
  • a wavelength selective filter for demultiplexing that transmits only light in a specific wavelength band of the wavelength multiplexed light to the second fiber collimator and reflects light of other wavelengths is provided.
  • An optical path correction plate is provided between the second fiber collimator and the first fiber collimator force. The wavelength selective filter force for demultiplexing is in the path of reflected light that is incident and reflected by the wavelength selective filter for demultiplexing.
  • a wavelength selection filter for multiplexing is further disposed for reflecting the reflected light on its surface and for combining the transmitted light incident on and transmitted from the back surface of the reflected light with the reflected light on the surface.
  • the path of the reflected light that is incident from the remeter, reflected by the wavelength selecting filter for demultiplexing, and reflected by the surface of the wavelength selecting filter for multiplexing is reflected.
  • a third fiber collimator having a configuration is arranged, and light having a wavelength band that can be transmitted to the back side of the wavelength selection filter for multiplexing is incident on the back side of the wavelength selection filter for multiplexing.
  • the first and second fiber collimators have the same configuration as the first and second fiber collimators.
  • Four fiber collimators are arranged, and the third and fourth fiber collimators are arranged in the third and fourth positioning grooves formed in the same plane as the first and second positioning grooves on the substrate, respectively. And is positioned.
  • An optical module of the invention of claim 14 is the optical module of claim 13, wherein the wavelength selection filter for demultiplexing and the wavelength selection filter for multiplexing are used only for light of the same wavelength.
  • a wavelength selective filter having the same characteristics that transmits the light.
  • An optical module according to a fifteenth invention is the optical module according to the thirteenth or fourteenth invention, wherein the third and fourth positioning grooves are formed so as to be positioned on the same axis, and The third and fourth fiber collimators are arranged and positioned in the third and fourth positioning grooves so as to face each other with the wavelength selection filter for multiplexing interposed therebetween, and further, the fourth fiber collimator is further arranged.
  • An optical path correction plate is arranged between the optical filter and the wavelength selection filter for multiplexing.
  • An optical module according to a sixteenth aspect is the optical module according to the fifteenth aspect, wherein the first and second positioning grooves and the third and fourth positioning grooves are parallel to each other. Forming the first positioning groove and the fourth positioning groove on one side of the substrate, and arranging the second positioning groove and the third positioning groove on the other side of the substrate, It is characterized in that an arrangement space for the wavelength selection filter is provided between one side and the other side of the substrate.
  • An optical module is a demultiplexing function that transmits only light of a specific wavelength and reflects light of other wavelengths in incident light, and transmitted light of a specific wavelength that is incident from the back surface and transmitted.
  • a set of two wavelength selection filters having a multiplexing function for multiplexing reflected light of other wavelengths incident and reflected from the surface, and a plurality of sets each having a different specific wavelength for each set,
  • the wavelength selective filter is mounted on a substrate so that the reflected light of the wavelength selective filter is incident in order from the upstream side to the downstream side in the light traveling direction, and two wavelengths in each set.
  • the selection filters are arranged in a continuous manner. Of the two wavelength selection filters in each group, the upstream wavelength selection filter is for demultiplexing, and the downstream wavelength selection filter in each group is for multiplexing. ,
  • Each of the collimators is arranged on the end surface of an optical fiber having a core at the center and a clad at the outer periphery thereof, and a coreless fiber made of a material having the same and uniform refractive index as that of the core.
  • a fiber collimator formed by joining one end face and arranging a collimator lens on the other end face side of the coreless fiber on the optical axis of the optical fiber is used.
  • fiber collimators (b) A fiber collimator positioned on the optical path of the transmitted light of the demultiplexing wavelength selection filter on the upstream side of the set, and (d) a fiber collimator positioned on the optical path of the reflected light of the wavelength selection filter for the most downstream multiplexing (A) a fiber collimator positioned on the optical path of the incident light of the most upstream demultiplexing wavelength selection filter, and (c) a wavelength selection filter for multiplexing downstream of each set.
  • a fiber collimator positioned on the optical path of the incident light to the back surface of the filter is disposed oppositely on one side and the other side of one substrate with an arrangement space for the optical element including the wavelength selection filter interposed therebetween,
  • Each fiber collimator is placed and positioned in a positioning groove formed in the same plane on the substrate, and further, the one side and the other side of the substrate are opposed to each other via a wavelength selection filter.
  • At least one pair of fiber collimators is disposed in the positioning groove formed on the same axis, and an optical path correction plate is disposed on the optical path between both fiber collimators.
  • An optical module according to an eighteenth aspect of the invention is the optical module according to the seventeenth aspect of the invention, wherein the wavelength selection filter for demultiplexing and the wavelength selection filter for multiplexing of the respective sets described above have the same wavelength. It is characterized by the fact that it is a wavelength selective filter with the same characteristics that transmits only the light.
  • An optical module according to a nineteenth invention is the optical module according to the seventeenth or eighteenth invention, wherein all the positioning grooves are formed in parallel to each other and formed in parallel to each other.
  • the present invention is characterized in that an optical path correcting means is interposed at a position where correction has occurred.
  • An optical module according to a twentieth invention is the optical module according to any of the sixth, tenth, and nineteenth inventions, wherein the optical path correction means includes a mirror, a mirror having a gimbal mechanism, At least one of a reflecting prism and a refractive prism is used.
  • An optical module according to a twenty-first invention is the optical module according to any one of the first to the twentieth inventions, wherein the positioning groove includes a V groove, a round groove, a rectangular groove, and an elliptical groove. One of them is provided.
  • An optical module according to a twenty-second invention is the optical module according to any one of the first to third inventions, wherein as the optical element having the filter function, the intensity of incident light is adjusted to a wavelength. On the other hand, if it is uniform !, a gain equalizing filter that corrects the light intensity so as to flatten the intensity is used.
  • An optical module according to a twenty-third invention is the optical module according to any one of the first to third inventions, wherein the optical module has a part of the amount of incident light as the optical element having the filter function. It is characterized by using a filter for taking out only the minute.
  • An optical wavelength multiplexing / demultiplexing device is configured as an optical module configured as the optical wavelength demultiplexing device according to the seventh invention, and an optical wavelength multiplexing device according to the eighth invention. It is characterized in that it is combined with a pair of optical modules.
  • An optical wavelength multiplexer / demultiplexer is an optical module configured as the optical wavelength multiplexer / demultiplexer according to the eleventh aspect of the invention, and an optical wavelength multiplexer / demultiplexer according to the twelfth aspect of the invention. It is characterized in that it is combined with a pair of optical modules.
  • a fiber is formed by combining an optical fiber terminal and a collimator lens that can realize a sufficient return loss by reducing the optical axis deviation by arranging a coreless fiber at the tip. Since a collimator is configured and the fiber collimator is arranged in a positioning groove formed on one substrate so as to be positioned on the same axis, high-efficiency optical coupling can be easily obtained between the fiber collimators. . In addition, since an optical element having a filter function is arranged in the optical path, output light obtained by applying desired filtering to the input light can be obtained with low loss. In addition, each component is fixed on a common board so that light can propagate spatially between components, so there is no need to use unnecessary parts, and the optical module can be manufactured at a minimum volume and at a low price. It is possible to reduce the size and size.
  • the fiber collimator is configured by arranging the optical fiber terminal and the collimator lens in the glass tube in advance, and then, it is arranged in the positioning groove on the substrate. Easy assembly is possible.
  • the wavelength selection filter is used as an optical element having a filter function, only the light of a specific wavelength of the input light can be extracted from the output side fiber collimator force.
  • the third fiber collimator arranged on the same plane as the first and second fiber collimators is arranged in the path of the reflected light reflected by the wavelength selection filter. Highly efficient optical coupling can be easily obtained between the first and third fiber collimators.
  • the first and third fiber collimators are used as input / output ports, and the second fiber collimator is used as an add / drop port. Obtainable.
  • the inserted light inserted toward the wavelength selection filter for multiplexing is demultiplexed. If there is a slight reflection in the branched light, there is no fear of it.
  • the first, first and third positioning grooves are formed in parallel, the fiber collimator is arranged in each positioning groove, and necessary optical path adjustment is performed by optical path correction means (for example, a mirror). So if you do it with a prism), processing 'assembly is easy.
  • optical path correction means for example, a mirror
  • the optical wavelength demultiplexer can be easily used as a one-channel optical demultiplexer in the case of constituting an optical wavelength demultiplexer.
  • the eighth aspect of the invention it can be easily used as a one-channel type optical multiplexer when configuring an optical wavelength demultiplexing device.
  • the ninth invention can be used as a multi-channel optical demultiplexer or optical multiplexer.
  • the multi-wavelength multiplexer / demultiplexer which was normally manufactured by connecting multiple 1-channel multiplexers / demultiplexers, is integrated on the same substrate with components such as collimators and wavelength selection filters. Since it is configured to transmit light between components, it is possible to easily obtain a small and low-loss optical wavelength multiplexer / demultiplexer with a minimum volume without using unnecessary components. it can. Also, as each collimator, a coreless fiber is placed at the tip.
  • the fiber collimator is arranged in each positioning groove, and the necessary optical path adjustment is performed by the optical path correcting means (for example, a mirror or a prism). So if you go, machining 'assembly is easy.
  • the optical path correcting means for example, a mirror or a prism
  • the optical wavelength demultiplexer can be easily used as a multi-channel optical demultiplexer when configuring an optical wavelength demultiplexer.
  • the twelfth aspect of the present invention can be easily used as a multi-channel optical multiplexer when configuring an optical wavelength multiplexer.
  • the first fiber collimator is an input port
  • the third fiber collimator is an output port
  • the second fiber collimator is a branch port
  • the fourth fiber collimator is an insertion port.
  • each component is fixed on a common board and light is propagated between the components, so that unnecessary components can be used, and the optical module can be manufactured at a minimum volume and at a low cost. And size reduction can be achieved.
  • the insertion optical power component inserted toward the wavelength selection filter for multiplexing is inserted. There is no danger of it being mixed with waved branched light.
  • the fourteenth invention since two wavelength selective filters having the same characteristics for optical demultiplexing and optical multiplexing are provided in a single module, the first fiber collimator is connected to the input port, By using the third fiber collimator as an output port, the second fiber collimator as a branch port, and the fourth fiber collimator as an insertion port, it can be used as a low-loss, one-channel optical wavelength multiplexer / demultiplexer. be able to.
  • the first and second, third and fourth positioning grooves are formed on the same straight line, so that processing and assembly are easy.
  • the sixteenth aspect since the first and second, third and fourth positioning grooves are further formed in parallel, further processing can be facilitated and accuracy can be improved.
  • the most upstream fiber collimator is used as an input port
  • the most downstream fiber collimator is used as an output port
  • the other fiber collimator is used as a branching or inserting port. It can be used as an optical wavelength multiplexer / demultiplexer.
  • each component is fixed on a common board and light is propagated between the components, so that unnecessary components can be used, and the optical module can be manufactured at a minimum volume and at a low cost. And size reduction can be achieved.
  • two wavelength selection filters for optical demultiplexing and optical multiplexing are provided in a single module, they are inserted toward the wavelength selection filter for multiplexing. There is no fear that the inserted light will be mixed into the split branched light.
  • wavelength selection filters for optical demultiplexing and optical multiplexing for each specific wavelength are provided in a single module, wavelength selection is performed for multiplexing. There is no fear that the inserted light that is inserted toward the filter will be mixed into the split branched light.
  • the nineteenth invention since all the positioning grooves are formed in parallel and the fiber collimator is disposed in each positioning groove, the processing and assembling are easy.
  • the optical path correction means at least one of a mirror, a mirror having a gimbal mechanism, a total reflection prism, and a refractive prism can be used.
  • a round groove, a rectangular groove, an elliptical groove, etc. can be used as the positioning groove, and an optical having a filter function as in the 22nd and 23rd inventions.
  • a gain equalization filter instead of the wavelength selection filter, when the intensity of incident light is not uniform with respect to the wavelength, a gain equalization filter that corrects the light intensity so as to flatten the intensity or a filter for incident light. It is also possible to use a filter or the like for extracting only a part of the light amount.
  • a one-channel optical wavelength multiplexing / demultiplexing device can be configured by combining the optical module of the seventh invention and the eighth optical module, 25 departures
  • a multi-channel optical wavelength multiplexer / demultiplexer can be configured by combining the optical module of the eleventh invention and the twelfth optical module.
  • optical module A of the first embodiment which is the most basic configuration, will be described with reference to FIG.
  • the optical module A shown in FIG. 1 includes first and second positioning grooves in which two sets of first and second fiber collimators 101 and 102 are formed on one substrate 50 so as to be positioned on the same axis.
  • the optical element 70 having the filter function and the optical path correction plate 80 are arranged between the opposing surfaces of the fiber collimators 101 and 102, and the light is spatially transmitted between the components. It is comprised so that it may do.
  • an optical element arrangement surface (optical element arrangement space) 51 having an upper surface recessed by one step from both the left and right sides is secured.
  • the collimator placement surfaces 52 and 53 that are left slightly high are secured.
  • the collimator arrangement surfaces 52 and 53 on both sides are in the same plane, and the optical element arrangement surface 51 and the collimator arrangement surfaces 52 and 53 are both formed as flat parallel planes.
  • V-grooves are caulked as positioning grooves 61 and 62.
  • This optical module A filters the input light input from the external input optical fiber 1001 through the first fiber collimator 101 with the optical element 70 having a filter function, and passes through the second fiber collimator 102.
  • This is a module that has the function of outputting to the optical fiber 1002 for external output, and the details are as follows.
  • the substrate 50 is made of a glass substrate, and the two positioning grooves 61 and 62 are formed on the surfaces of the left and right collimator arrangement surfaces 52 and 53 on the same axis.
  • the two positioning grooves 61 and 62 are located on the same straight line, Yes. Therefore, high mutual positional accuracy can be easily ensured.
  • the positioning grooves 61 and 62 exemplified here is mainly V-shaped (V-groove), hereinafter, the positioning groove may be referred to as "V-groove” instead of "positioning groove”. is there.
  • Other examples of the cross-sectional shape of the positioning grooves 61 and 62 include a semicircular shape, a U shape, and a rectangular shape.
  • the material of the substrate 50 may be silicon, ceramic, metal, resin, etc. in addition to glass. About these points, it is common also in each subsequent embodiment, and it does not refuse in particular.
  • FIG. 2 and 3 show configuration examples of the fiber collimators 101 and 102.
  • FIG. 2 and 3 show configuration examples of the fiber collimators 101 and 102.
  • An optical fiber terminal 110 constituting the fiber collimators 101 and 102 has a standard outer diameter of 125 / zm and an arbitrary length of a cinder mode optical fiber (SMF) having a core 11 la at the center and a cladding 11 lb at the outer periphery thereof.
  • SMF cinder mode optical fiber
  • One end face of a coreless fiber (CLF) 112 made of a material having the same refractive index as the core 11 la is fused and joined to the end face of the core 11 la, and the length of the coreless fiber 112 is set to 350 m.
  • the other end surface of the coreless fiber 112 is ground and polished at 0 ° with respect to the surface perpendicular to the optical axis of the optical fiber 111, and this is further used as an outer diameter generally used for mounting an optical module. 1. It is bonded and fixed through a 249mm single-core ferrule 115 and is provided with an antireflection film.
  • the dimensions of the optical fiber 111 and the ferrule 115 are not limited to the above.
  • the collimator lens 120 is arranged on the other end surface side of the coreless fiber 112 on the optical axis of the optical fiber terminal 110, whereby the fiber collimators 101 and 102 are configured.
  • the collimator lens 120 When the collimator lens 120 is used on the light output side (when arranged immediately after the optical fiber terminal), it serves to convert the diffused light emitted from the optical fiber terminal 110 into parallel light. When used on the side (incident side) (when placed in front of the optical fiber terminal), it is a lens designed to serve to combine the light that has propagated in space with the optical fiber terminal 110. is there.
  • the collimator lens 120 in this case is a so-called drum lens in which the outer periphery of the ball lens is cut into a cylindrical shape, and the external difference between the optical fiber terminal 110 and the phenolic lens 115 is 2 m so that the optical axis is not displaced.
  • the lens is designed to have a lens eccentricity of 1 ⁇ m or less, a focal length of 2.6 mm, and an outer diameter of 1.249 mm.
  • these collimator lenses 120 are not limited to drum lenses, but are spherical lenses, Use aspherical lenses, ball lenses, and lenses with a curved surface on the exit end face of the gradient index lens, or lenses that do not have a flat surface perpendicular to the optical axis where parallel light is emitted or incident. be able to.
  • the wavelength selection filter 70 is a demultiplexing function that transmits only light of a specific wavelength in incident light and reflects light of other wavelengths, and light of a specific wavelength that is incident and transmitted from one side and is incident and reflected. It has a multiplexing function for multiplexing light of other wavelengths.
  • the wavelength selective filter 70 is formed by forming an optical multilayer film (eg, dielectric multilayer film) on a translucent substrate such as glass resin, and can exhibit filter characteristics depending on the material and layer structure of the optical multilayer film. It has been made possible.
  • An optical multilayer film generally has a structure in which materials having a low refractive index and materials having a high refractive index are alternately laminated. The dimensions are for example 1.4 X 1.4 X 1.2 mm.
  • the optical path correction plate 80 is a parallel flat glass substrate having antireflection films on both sides, and the material dimensions are substantially the same as those of the wavelength selection filter 70.
  • the antireflection film is designed to suppress the reflectance to 0.2% or less.
  • an optical path correction plate 80 is provided in combination with the wavelength selection filter 70.
  • This optical module A can be manufactured as follows. This will be explained with reference to Figs.
  • a substrate 50 on which V grooves (positioning grooves) 61 and 62 are formed is prepared. Then, in the first V groove 61 of the substrate 50, the optical fiber terminal 110, and the collimator lens 120. First, one of the first fiber collimators 101 is manufactured.
  • one of the optical fiber terminal 110 or the collimator lens 120 arranged in the first V-groove 61 is fixed to the V-groove 61 first.
  • set the distance between the two so that the collimated state is set in advance, and fix the other (the one that is not fixed first).
  • This positional relationship is set by using a method in which light is input to the optical fiber terminal 110, and collimated light that has passed through the collimator lens 120 is combined and adjusted with a collimator prepared in advance.
  • the member to be adjusted (the optical fiber terminal 110 or the collimator lens 120 to be fixed later) only needs to be positioned in one axial direction along the V-groove 61, so that the adjustment can be easily performed.
  • This distance setting includes a method of adjusting by disposing a detector far away, a method of recognizing the distance between the two, a method of monitoring and adjusting the reflected light of the mirror placed at a specified distance from the lens using a circulator, etc. Can also be used.
  • the optical fiber terminal 110 and the collimator 120 are similarly arranged and adjusted in the other opposite second V-groove 62, and the second fiber collimator 102 is produced. Also in this case, one of the optical fiber terminal 110 or the collimator lens 120 is fixed to the V groove 62 first, the distance between the two is adjusted while confirming the collimated state, and the other is fixed later. A second fiber collimator 102 is produced.
  • the first fiber collimator 101 produced in advance can be used. That is, light is input through the first fiber collimator 101, and the parallel light emitted from the first fiber collimator 101 is coupled to the optical fiber terminal 110 through the collimator lens 120 in the second V groove 62. . Then, by measuring the amount of light received when the optical fiber terminal 110 receives light through the collimator lens 120, the distance between the optical fiber terminal 110 and the collimator lens 120 in the second V-groove 62 is confirmed while checking the collimated state. Adjust and fix. This adjustment can be easily performed because only one axis needs to be positioned along the V-groove 62.
  • the wavelength selection filter 70 is disposed so as to be positioned on the optical path of the first fiber collimator 101 and the second fiber collimator 102, and between the wavelength selection filter 70 and the second fiber collimator 102.
  • An optical path correction plate 80 is arranged on the optical module A to complete the optical module A.
  • the fiber collimator 101 is formed by combining the optical fiber terminal 110 and the collimator lens 120, which can reduce the optical axis and realize a sufficient return loss by arranging the coreless fiber 112 at the tip.
  • the fiber collimators 101 and 102 are arranged in V grooves (positioning grooves) 61 and 62 formed on one substrate 50 so as to be positioned on the same axis line. It is possible to easily obtain highly efficient optical coupling between 102.
  • the optical element 70 having the filter function is arranged on the optical path between the fiber collimators 101 and 102, the output light obtained by applying the desired filtering to the input light can be obtained with low loss. Can do.
  • each component is placed and fixed on a common board 50, and light is propagated between the components in a space. Therefore, it is not necessary to use useless optical transmission components, and the optical module A can be used with the minimum necessary volume. Can be reduced in price and size.
  • the force shown in FIG. 3 is a case where the fiber collimators 101 and 102 are configured by arranging the optical fiber terminal 110 and the collimator lens 120 directly in the V grooves 61 and 62. As shown, the fiber collimator 101 and the collimator lens 120 are arranged in the glass tube 116 so that the fiber collimators 101 and 102 are configured as a single optical component in advance. 116 may be disposed in the V grooves 61 and 62.
  • the former has the advantage that the number of parts is small and low cost is possible, and the latter has the advantage that it can be easily assembled.
  • the optical element 70 having the filter function is a power-specific filter that shows a case where a wavelength selection filter is used, for example, the intensity of incident light is uniform with respect to the wavelength.
  • a gain equalization filter that corrects the light intensity so that this intensity is flattened can be replaced with a filter that extracts only a part of the amount of incident light.
  • Series B and Series C of optical modules that are assumed to be used as optical wavelength demultiplexing devices or optical wavelength demultiplexing devices will be described.
  • Series B is a type in which all V-grooves are formed in parallel to each other in the same plane on the substrate 50.
  • Series C is a type in which some of the V-grooves are formed in parallel with each other, and some of the remaining Ties formed at non-parallel angles Is.
  • Forming V-grooves in parallel on the substrate 50 as in series B has the advantage of facilitating accuracy in grooving, but it may naturally be necessary to bend the direction of light travel. Therefore, optical path correction means (mirrors and prisms) are required.
  • optical path correction means mirrors and prisms
  • V-groove machining is performed without being constrained in parallel, there is an advantage that it may take time and effort to improve accuracy during grooving, but there is an advantage that there is no need for optical path correction at a later stage.
  • the single optical module B (B1, B2, B3) is an optical wavelength demultiplexing device or optical wavelength demultiplexing device. It is designed to be used exclusively for either one of them.
  • optical module Bl for 1 channel (ch), optical module B2 for 2 channel (ch), and optical module B3 for 4 channel (ch) We will explain in order. These optical modules are listed as the second embodiment, the third embodiment, and the fourth embodiment of the present invention, respectively.
  • This optical module B1 includes first and second positioning grooves (V-grooves) in which two sets of first and second fiber collimators 101 and 102 are formed on the same substrate 50 on the same axis. ) 61 and 62 are arranged opposite to each other, and the wavelength selection filter 70 and the optical path correction plate 80 are arranged between the opposed surfaces of the fiber collimators 101 and 102. Further, the wavelength selection is performed by entering from the first fiber collimator 101.
  • a third fiber collimator 103 having the same configuration as the first and second fiber collimators 101 and 102 is arranged in the path of the reflected light reflected by the filter 70, and the third fiber collimator 103 is placed on the substrate. Arranged and positioned in a third positioning groove (V-groove) 63 formed on the same plane as the first and second positioning grooves 61 and 62 on 50, and configured to allow light to propagate spatially between each component It is characterized by that.
  • the third V-groove 63 is formed in parallel to the first and second V-grooves 61 and 62, and Between the third fiber collimator 103 and the wavelength selective filter 70, the reflected light from the wavelength selective filter 70 is coupled between the first fiber collimator 101 and the third fiber collimator 103.
  • a mirror 90 is disposed as an optical path correction means.
  • each fiber collimator 101-103 the configuration of the substrate 50, the configuration of the wavelength selection filter 70, and the configuration of the optical path correction plate 80 are shown in Fig. 1 except mainly for the dimensional difference of the substrate 50. Since these are the same as those described above, their description is omitted.
  • the mirror 90 as the optical path correcting means used in the present embodiment changes the optical path, and corrects the optical axis deviation caused by the external accuracy of the part and the optical axis deviation when passing the part. Is. Therefore, it is preferable to use a mirror with a gimbal mechanism and an adjustment mechanism according to the mirror force.
  • a mirror with a gimbal mechanism is a mirror whose tilt is adjustable with one point (normal center) of the mirror as the center of rotation.
  • these mirrors 90 it is preferable to use metal mirrors such as aluminum and gold from the viewpoint of excellent reflectance and durability.
  • the size of the mirror is 2 X 5 X 1mm.
  • a mirror with an aluminum and magnesium fluoride film attached to a glass substrate is used.
  • this optical path correction means a wedge-shaped prism that is formed only by a reflection mirror can also be used. In the case of a wedge-shaped prism, the optical path can be bent by refraction or total reflection, and optical path correction can be performed.
  • This optical module B1 can be manufactured as follows.
  • a substrate 50 is prepared in which first and second V grooves 61 and 62 are formed on the same axis, and further a third V groove 63 is formed in parallel with the first V groove 61. However, the third V groove 63 is formed on the same side as the first V groove 61.
  • the fiber terminal 110 and the collimator lens 120 are arranged in the first and second V-grooves 61 and 62, respectively, so that the positions thereof are adjusted. Collimators 101 and 102 are produced.
  • the wavelength selection filter 70 is arranged at a predesigned angle on the optical path between the first fiber collimator 101 and the second fiber collimator 102, and the wavelength selection filter 70 and the second fiber collimator are arranged.
  • the optical path correction plate 80 is symmetrical to the wavelength selective filter 70 between Place at an angle.
  • the optical fiber terminal 110 and the collimator lens 120 are disposed in the third V groove 63, and the third fiber collimator 103 is temporarily assembled.
  • a mirror 90 as an optical path correction means is disposed in front of the third fiber collimator 103.
  • light having a wavelength reflected by the wavelength selection filter 70 is input to the first fiber collimator 101, and wavelength selection is performed.
  • the position and orientation of the mirror 90, and the optical fiber terminal 110 constituting the third fiber collimator 103 and Determine and fix the distance between collimator lenses 120.
  • the optical module B1 is obtained.
  • the third fiber collimator 103 arranged in the same plane as the first and second fiber collimators 101 and 102 is disposed in the path of the reflected light reflected by the wavelength selection filter 70. Therefore, highly efficient optical coupling can be easily obtained between the first, third and third fiber collimators 101-103.
  • the first and third fiber collimators 101 and 103 are used as input / output ports, and the second fiber collimator 102 is used as a branching / inserting port.
  • An optical multiplexer can be configured.
  • the single module B1 since the single module B1 is used exclusively for optical demultiplexing or optical multiplexing, it is inserted into the wavelength selective filter 70 for multiplexing. There is no fear that the light will be reflected slightly and mixed into the split branched light.
  • this optical module B1 is used as an optical wavelength demultiplexing device or an optical wavelength multiplexing device for lch will be described with reference to FIG.
  • optical module B 1 is used as an optical wavelength demultiplexer
  • the optical fiber terminal 110 of the first fiber collimator 101 is transmitted from the external input optical transmission line 1 001 as shown in FIG. 5 (a).
  • the wavelength-division multiplexed light (light containing ⁇ 1) is input to the wavelength selection filter 70 as input light (In), and the optical fiber terminal 110 of the second fiber collimator 102 is wavelength-selected.
  • the optical fiber terminal 110 of the third fiber collimator 103 is used as a branching terminal (Drop) for extracting the transmitted light having a specific wavelength ⁇ 1 that has entered the filter 70 and transmitted to the external branching optical transmission line 1002.
  • the wavelength selective filter 70 It is used as an output terminal (Out) for sending light other than the specific wavelength ⁇ to the external output optical transmission line 1003.
  • the function of demultiplexing wavelength multiplexed light here, the function of extracting light of a specific wavelength ⁇ 1 is exhibited.
  • this optical module B1 is used as an optical wavelength multiplexer, as shown in FIG. 5 (b), the optical fiber terminal 110 of the third fiber collimator 103 is connected to an external input optical transmission line 1003.
  • an input terminal (In) for making light other than the specific wavelength ⁇ 1 transmitted from the light incident on the surface of the wavelength selection filter 70 as input light
  • the optical fiber terminal 110 of the second fiber collimator 102 is connected to the outside.
  • the optical fiber terminal of the first fiber collimator 103 is used as an insertion terminal (Add) for making the insertion light of the specific wavelength ⁇ 1 sent from the optical transmission line for insertion 1002 incident on the back surface of the wavelength selection filter 70 as the insertion light.
  • the optical module B1 of the present embodiment is a single component and can be used as one dedicated device of the optical demultiplexing device or the optical multiplexing device.
  • optical modules ⁇ 2 and ⁇ 3 for 2ch or more will be described with reference to Figs. 6 and 7 show the optical module 2 for 2ch, and FIGS. 8 and 9 show the optical module B3 for 4ch.
  • the optical modules B2 and B3 for 2 channels or more are basically configured as described below.
  • the 2ch optical module B2 includes the basic configuration of the 4ch optical module B3, so here the 4ch optical module B3 will be described first.
  • the 4-channel optical module B3 shown in FIG. 8 has a demultiplexing function that transmits only light of a specific wavelength and reflects light of other wavelengths in the incident light, and a specific that is transmitted from one side. Equipped with four wavelength selective filters 71-74 with different specific wavelengths that combine the transmitted light of the wavelength and the combined function of combining the reflected light of the other wavelengths incident and reflected from the other surface, These four wavelength selective filters 71-74 are arranged in order from the upstream side to the downstream side in the light traveling direction. Place the wavelength selective filter 71-74 so that the reflected light is incident on it.
  • a fiber collimator 10 1 1 106 exactly the same as that described in FIG. 1 and FIG. 4 is used.
  • These fiber collimators 101-106 are arranged on one side and the other side of one common substrate 50 in accordance with the multiplexing / demultiplexing order of light, and the arrangement space of optical elements including wavelength selective filters 7 1 1 74 They are placed opposite to each other with the (optical element placement surface 51) in between.
  • each fiber collimator 101-106 is placed and positioned in each of V-grooves 61-66 formed in the same plane on the collimator placement surfaces 52, 53 of the substrate 50, and further on one side of the substrate 50
  • several pairs of fiber collimators that face each other through the wavelength selective filter 71-74 are identical.
  • V-grooves 61 and 62 and V-grooves 63 and 66 formed on the axis are arranged. In this case, all V-grooves 61-66 are formed parallel to each other.
  • mirrors 91 and 92 for correcting the optical path are arranged at locations where the optical path correction has occurred by forming the V grooves 61-66 in parallel.
  • the wavelength selective filter 71-74 is disposed on the optical path where the optical path correction to each of the fiber collimators 101-106 occurs, in the case of the illustrated example, on the optical path where the wavelength selective filters 71, 73 are disposed.
  • the optical path correction plates 81 and 82 are arranged at an angle symmetrical to 73.
  • each fiber collimator 101-106 The configuration of each fiber collimator 101-106, the configuration of the substrate 50, the configuration of the wavelength selection filter 70, and the configuration of the optical path correction plate 80 are shown in Fig. 1 except mainly for the dimensional differences of the substrate 50. Since these are the same as those described above, description thereof is omitted here.
  • the optical module B2 for 2ch has the fifth and sixth V-grooves 65 and 66, the fifth and sixth fine collimators 105 and 106, and the wavelength from the configuration of the optical module B3 for 4ch described above.
  • the configuration is such that the selection filters 73 and 74, the optical path correction plate 82, and the mirror 92 are removed.
  • the 4-channel optical module B3 can be manufactured as follows.
  • first and second V-grooves 61 and 62 and the third and sixth V-grooves 63 and 66 are formed on the same axis and parallel to each other, and further, the first and second V-grooves 63 and 66 are parallel to the third V-groove 63.
  • a substrate 50 in which five V grooves 65 are formed and a fourth V groove 64 is formed in parallel with the second and sixth V grooves 62 and 66 is prepared.
  • an optical element placement surface 51 is formed which is recessed by one step from the left and right collimator placement surfaces 52, 53.
  • the dimensions of the substrate 50 in this case are 40 X 14 X 3 mm, and a total of 6 V-grooves 61-66 are parallel to each other on the collimator arrangement surfaces 52 and 53 with a width of 9 mm on the surface 52 and 53. And cut to the same depth.
  • the central optical element placement surface 51 is surface ground to a width of 21 mm.
  • the optical fiber terminal 110 and the collimator lens 120 are placed in the first and second V grooves 61 and 62, respectively.
  • the first and second fiber collimators 101 and 102 are produced.
  • the first wavelength selection filter 71 is disposed at an angle designed in advance on the optical path between the first fiber collimator 101 and the second fiber collimator 102, and Between the two fiber collimators 102, an optical path correction plate 81 that corrects an optical path shift by the first wavelength selection filter 71 is disposed at an angle symmetrical to the first wavelength selection filter 71.
  • the third fiber collimator 103 is temporarily assembled by disposing the optical fiber terminal 110 and the collimator lens 120 in the third V groove 63 adjacent to the first V groove 61.
  • the fiber terminal 110 and the collimator lens 120 are arranged in the V groove 64 and the fourth fiber collimator 104 is temporarily assembled.
  • a second wavelength selection filter 72 is disposed at a point where the optical axis of the reflected light reflected by the first wavelength selection filter 71 intersects with the extension line of the axis of the fourth V groove 64.
  • the light reflected by the first wavelength selection filter 71 and the second wavelength selection filter 72 is made incident on the fiber collimator 104 one after another.
  • a mirror 91 is disposed in front of the third fiber collimator 103.
  • the first fiber collimator 101 is reflected by the first wavelength selective filter 71 and is reflected by the second wavelength selective filter.
  • Light having a wavelength that passes through 72 is reflected by the first wavelength selection filter 71, passes through the second wavelength selection filter 72, and is coupled to the third fiber collimator 103 through the mirror 91.
  • the position and orientation of the mirror 91 and the distance between the fiber terminal 110 and the collimator lens 120 constituting the third fiber collimator 103 are determined and fixed.
  • the angle designed in advance on the optical path reflected by the second wavelength selection filter 72 and incident on the fourth fiber collimator 104 The third wavelength selection filter 73 is arranged in the above, and an optical path correction plate 82 for correcting an optical path shift due to the third wavelength selection filter 73 is provided between the third wavelength selection filter 73 and the fourth fiber collimator 104.
  • the third wavelength selection filter 73 is arranged at a symmetrical angle.
  • the fiber end 110 and the collimator lens 120 are disposed in the fifth V groove 65 to temporarily assemble the fifth fiber collimator 105, and the fiber end 110 and the collimator lens are disposed in the sixth V groove 66. 120 is arranged, and the sixth fiber collimator 106 is temporarily assembled.
  • a fourth wavelength selection filter 74 is arranged at a point where the optical axis of the reflected light reflected by the third wavelength selection filter 73 and the extension line of the axis of the sixth V groove 66 intersect. The light reflected by the first wavelength selection filter 71, the second wavelength selection filter 72, the third wavelength selection filter 73, and the fourth wavelength selection filter 74 is incident on the fiber collimator 106 one after another.
  • the first fiber collimator 101 is inputted with light having a wavelength reflected by the first, second, third, and fourth wavelength selection filters 71, 72, 73, and 74, and the wavelength selection filter While observing the amount of light that is reflected sequentially from 71, 72, 73, 74 and coupled to the optical fiber terminal 110 of the sixth fiber collimator 106, the position and orientation of the fourth wavelength selective filter 74 and the sixth fiber collimator 106 are The distance between the optical fiber terminal 110 and the collimator lens 120 is determined and fixed.
  • a mirror 92 is arranged in front of the fifth fiber collimator 105, and in this state, the first, second, and third wavelength selection filters 71, 72, and 73 are placed on the first fiber collimator 101.
  • the light of the wavelength that is reflected together and transmitted through the fourth wavelength selection filter 74 is input, reflected by the first, second, and third wavelength selection filters 71, 72, 73 one after another, and the fourth wavelength selection filter.
  • the position and orientation of the mirror 92 and the optical fiber terminal 110 constituting the fifth fiber collimator 105 Determine the distance of the collimator lens 120 and fix it. This completes the optical module B3.
  • the size is 1.4 X 1.4 X 1.2 mm, and light of wavelengths 1511, 1531, 1551, and 1571 nm is transmitted, respectively.
  • a wavelength selective filter designed to reflect other wavelengths.
  • optical path correction plates 81 and 82 a parallel plate glass substrate having antireflection films on both sides, and the material and dimensions thereof are substantially the same as those of the wavelength selective filter substrate disposed immediately before it.
  • Comb can be mentioned that is designed to suppress light with a wavelength of 1450-1650 nm to a reflectance of 0.2% or less.
  • the optical path correcting mirrors 91 and 92 it is preferable to use a metal mirror such as aluminum or gold because of its excellent reflectivity and durability.
  • a metal mirror such as aluminum or gold because of its excellent reflectivity and durability.
  • One example is a mirror with a 1 mm glass substrate with aluminum and magnesium fluoride films.
  • optical modules B2 and B3 for 2ch or more can be used as a multi-channel optical demultiplexer or an optical multiplexer.
  • components such as collimators and wavelength selection filters are integrated and deployed on a single board, with multiple wavelength multiplexers / demultiplexers that are normally manufactured by connecting multiple 1-channel multiplexers / demultiplexers. With light propagating between them Therefore, it is possible to easily obtain a small-sized and low-loss optical wavelength multiplexer / demultiplexer with a necessary minimum volume without using unnecessary parts.
  • a fiber collimator comprising a combination of an optical fiber terminal and a collimator lens, which is capable of realizing a sufficient return loss while reducing the optical axis deviation by arranging a coreless fiber at the tip. Since 101-106 is used, assembly is easy, and high efficiency optical coupling can be obtained between each fiber collimator 101-106, which is suitable for obtaining a low-loss optical multiplexer / demultiplexer.
  • a channel-type optical module can be provided.
  • the single optical modules B2 and B3 are used exclusively for optical demultiplexing or optical multiplexing, they are inserted toward the wavelength selection filter for multiplexing. As a result of a slight reflection of the inserted light by the wavelength selection filter, there is no fear that it will be mixed into the branched light that has been demultiplexed.
  • optical module B2 for 2ch is used as an optical wavelength demultiplexer.
  • the wavelength-division multiplexed light (wavelength) transmitted from the external input optical transmission line 1001 is transmitted through the first fiber collimator 101, which is the most upstream in the light traveling direction. (Including 1 and ⁇ 2) are input light collimators (In) that are incident on the most upstream wavelength selective filter 71 as input light, and the fourth downstream fiber collimator 104 is the most downstream wavelength selective filter.
  • the output collimator (Out) for sending the light reflected at 72 to the external output optical transmission line 1004 is used, and the other second and third fiber collimators 102 and 103 are connected to the wavelength selection filters 71, It is used as a collimator (Drop) for splitting the light transmitted at 72 (lights of wavelength 1 and ⁇ 2 respectively) to the external transmission lines 1002 and 1003.
  • Drop collimator
  • the wavelength division multiplexed light (wavelength) transmitted from the external input optical transmission line 1001 is transmitted through the first fiber collimator 101, which is the most upstream in the light traveling direction.
  • ⁇ 1- ⁇ 4) are input light collimators (In) that are incident on the most upstream wavelength selective filter 71 as input light
  • the sixth downstream fiber collimator 106 is the most downstream wavelength selective filter.
  • the output collimator (Out) for sending the light reflected by 74 to the external output optical transmission line 1006 is used, and the other second to fifth fiber collimators 102 to 105 are used as the wavelength selection filters 71.
  • the light of ⁇ 5 1591 nm is reflected toward the sixth fiber collimator 106 for output. Thereby, the light of each wavelength is demultiplexed sequentially.
  • the optical fiber terminal of the first fiber collimator 101 using a wavelength tunable laser as the light source 110 [manufacturing wavelength-multiplexed light of 1511, 1531, 1551, 1571, 1591 nm manually
  • the insertion loss was determined by measuring the light intensity of each wavelength that was demultiplexed and output to the optical fiber terminal 110 of each fiber collimator 102-106.
  • the insertion loss was less than 0.6dB.
  • a return loss measurement system that compares the return light when the output end with a built-in light source that is generally used is terminated and the return light when the measurement object is connected to the fiber end is used. was used to measure the return loss of each fiber end with light at a wavelength of 1550 nm.
  • optical modules ⁇ 2 and ⁇ 3 are used as an optical wavelength multiplexing device for 2ch'4ch will be described with reference to FIGS. 7 (b) and 9 (b).
  • optical module B2 is used as an optical wavelength multiplexer
  • optical module B2 for 2ch is used as an optical wavelength multiplexer.
  • the light transmitted from the external input optical transmission line 1004 is passed through the uppermost fourth fiber collimator 104 in the traveling direction of the light when multiplexed.
  • the input light collimator (In) is made incident on the surface of the most upstream second wavelength selection filter 72 as input light, and the most downstream first fiber collimator 101 is connected to the most downstream first wavelength selection filter 72.
  • the output light collimator (Out) that transmits the combined light of the reflected light reflected by the filter 71 and the transmitted insertion light to the external output optical transmission line 1001 is used, and the other third and second fiber collimators 103 , 102 from the external transmission path 1003, 1002 for the input light to the back side of each wavelength selection filter 7 2, 71, the input light of a specific wavelength band 2, ⁇ 1 for each filter 71, 72.
  • optical module ⁇ 3 is used as an optical wavelength multiplexer>
  • the light transmitted from the external input optical transmission line 1006 is passed through the uppermost sixth fiber collimator 106 in the traveling direction of the light when multiplexed.
  • the input light collimator (In) is made incident on the surface of the most upstream fourth wavelength selection filter 74 as input light, and the most downstream first fiber collimator 101 is connected to the most downstream first wavelength selection filter 74.
  • the output light collimator (Out) that transmits the combined light of the reflected light reflected by the filter 71 and the transmitted insertion light to the external output optical transmission line 1001, and the other fifth, fourth, third, and second fibers Codometers 105, 104, 103, 102 are connected to external insertion light transmission lines 1005, 1004, 1003, 1 002, respectively, and each of the fine selectors 74, 73, 72, Collision for insertion light that makes incident light of specific wavelength band for each 71, 4, ⁇ 3, ⁇ 2, and ⁇ 1 incident Be used as a chromatography data (Add). In this way, the function of sequentially combining light of different wavelengths (light of wavelength ⁇ 1—e4) can be exhibited.
  • the optical modules 2 and 3 of the embodiment of the present invention can be used as an optical demultiplexing device, or can be used as an optical multiplexing device.
  • the insertion loss and return loss in this case are the same as those used for the optical demultiplexer.
  • these optical modules B2 and B3 are configured such that each component is arranged on the substrate 50 and light is propagated in space between the components. Therefore, a plurality of filter modules are provided as in the related art.
  • a small and low cost optical demultiplexing device or optical multiplexing device can be obtained.
  • the greater the number of channels the more advantageous the optical module of the present embodiment.
  • 2ch and 4ch modules have been shown. However, even when a multi-channel module is configured, it can be developed as a repetition of the above.
  • Figure 10 Series C optical modules C1 and C3 shown in Fig. 12.
  • first V groove 61 only the third V groove 63 and the fifth V groove 65 on the same side as the first V groove 61 are used. It is formed at a predetermined angle that is not parallel to.
  • Other configurations correspond to the B series optical modules B1-B3, respectively, so detailed explanations are omitted.
  • the feature of the optical module C1 for lch in FIG. 10 is that the third fiber collimator 103 is positioned on the straight line in the traveling direction of the reflected light incident from the first fiber collimator 101 and reflected by the wavelength selection filter 70.
  • the third V groove 63 is formed at such an angle. This eliminates the need to bend the optical path, thus eliminating the mirror (see Fig. 4), which is the optical path correction means.
  • the feature of the optical module C2 for 2ch in FIG. 11 is that the third fiber collimator 103 is placed on a straight line in the traveling direction of the reflected light incident from the first fiber collimator 101 and reflected by the first wavelength selection filter 71.
  • the third V-groove 63 is formed at an angle such that the second wavelength selective filter is positioned on the optical path between the first wavelength selective filter 71 and the third fiber collimator 103. Therefore, an optical path correction plate 82 for correcting the optical path deviation due to the second wavelength selection filter 72 that is not a mirror is provided between the third fiber collimator 103 and the second wavelength selection filter 72. It is to arrange. [0164] ⁇ Optical module C3 (Seventh embodiment)>
  • the characteristic point of the optical module C3 for 4ch in FIG. 12 is that the third fiber collimator 103 is arranged on a straight line in the traveling direction of the reflected light incident from the first fiber collimator 101 and reflected by the first wavelength selection filter 71.
  • the third V-groove 63 is formed at an angle such that the first wavelength collimator 101 is incident on the first wavelength collimator 101, the second wavelength selective filter 72,
  • the fifth V-groove 65 is formed at such an angle that the fifth fiber collimator 105 is positioned on a straight line in the traveling direction of the reflected light sequentially reflected by the third wavelength selection filter 73 (this The third and fifth V-grooves 63 and 65 are formed in parallel with each other), and between the third fiber collimator 103 and the second wavelength selection filter 72, and the fifth fiber collimator.
  • 105 and the fourth wavelength selective filter 74 Hanagu second and fourth wavelength selective filter 72, 74 an optical path correcting plate 82, 8 4 for correcting the optical path shift by the respective place! / Is Rukoto.
  • the optical module C1 for lch and the optical module C2 for 2ch can be manufactured in the middle of the manufacturing process of the optical module C3 for 4ch, and the manufacturing method of the optical module C3 for 4ch is representative. Just explain.
  • the optical module C3 shown in FIG. 12 can be manufactured as follows. First, a substrate 50 on which six first and sixth six V-grooves 61-66 are formed is prepared. Here, the first, third, and fifth V-grooves 61, 63, and 65 called by odd numbers are formed on the collimator arrangement surface 52 on one side of the substrate 50, and are called second, fourth, and second numbers that are called by even numbers. Six V grooves 62, 64, 66 are formed on the collimator arrangement surface 53 on the other side of the substrate 50. These V grooves 61-66 are formed so as to be aligned on the same plane.
  • the first V-groove 61, the second V-groove 62, the fourth V-groove 64, and the sixth V-groove 66 are parallel to each other, particularly the first V-groove 61 and the second V-groove. 62 is arranged on the same axis.
  • the third V-groove 63 is formed so as to intersect the first V-groove 61 at a specified angle and location.
  • the fifth V-groove 6 5 is formed to be parallel to the third V-groove 63 and intersect the fourth V-groove 64 at a specified angle and location.
  • the optical element placement surface 51 in the center of the substrate 50 is aligned with the optical axis of the fiber collimator 101-106 placed in the V-groove 61-66 on both sides and the center of the optical element placed on the optical element placement surface 51. It is formed at a certain height.
  • the substrate 50 has dimensions of 35 ⁇ 17 ⁇ 3 mm, and 9 mm wide collimator arrangement surfaces 52 and 53 are formed at both ends.
  • Three V-grooves 61-66 having the same depth are formed on the left and right collimator arrangement surfaces 52, 53, and the interval between the parallel V-grooves 62, 64, 66 is 3 mm.
  • the optical element arrangement surface 51 having a width of 17 mm at the center is formed by surface grinding.
  • the shape of the substrate 50 is slightly higher than the B-grooves 63 and 65, but there is a merit that can reduce the size of the substrate 50.
  • the optical fiber terminal 110 and the collimator lens 120 are arranged in the first and second V grooves 61 and 62, and the first and second fiber collimators 101 and 102 are produced. . Since this method is exactly the same as that described for the optical module A, it will not be described here.
  • the optical fiber terminal 110 and the collimator lens 120 are disposed in the third V-groove 63, and the third V-groove 63 and the first and second V-grooves 61 and 62 on the substrate 50 are aligned with each other.
  • a wavelength selection filter 71 is disposed at a point where the extension lines intersect, and one of the optical fiber terminal 110 and the collimator lens 120 on the third V-groove 63 is fixed.
  • the first wavelength selection filter 71 maintains the accuracy of the optical axis of each of the first and third fiber collimators 101 and 103 sufficiently high, so that optical coupling can be easily obtained. Can be placed in position. Since the first and third V-grooves 61 and 63 are in the same plane, the optical axes of the fiber collimators 101 and 103 on these V-grooves 61 and 63 do not come out of this plane. By performing two-dimensional optical axis adjustment by one wavelength selection filter 71, low-loss optical coupling can be obtained.
  • an optical path correction plate 81 having the same characteristics as the first wavelength selective filter 71 is symmetrical to the first wavelength selective filter 71. Arrange at an angle of. At this time, light having a wavelength transmitted by the first wavelength selection filter 71 is input to the first fiber collimator 101, and the amount of light output from the second fiber collimator 102 is measured, whereby an optical path correction plate is obtained. Finely adjust 81 and fix.
  • the optical fiber terminal 110 and the collimator lens 120 are arranged in the fourth V-groove 64, and the extension lines of the axes of the third V-groove 63 and the fourth V-groove 64 on the substrate 50 are arranged.
  • a second wavelength selection filter 72 is disposed at the intersecting point, and one of the optical fiber terminal 110 and the collimator lens 120 on the fourth V-groove 64 is fixed.
  • an optical path correction plate 82 having the same characteristics as the second wavelength selection filter 72 is symmetrical between the second wavelength selection filter 72 and the third fiber collimator 103. Insert 'place at an angle that becomes.
  • light having a wavelength reflected by the first wavelength selection filter 71 and transmitted through the second wavelength selection filter 72 is input to the first fiber collimator 101, and the optical fiber terminal on the third V-groove 63 is input.
  • the optical path correction plate 82 is finely adjusted and fixed by measuring the amount of light incident on 110.
  • the optical fiber terminal 110 and the collimator lens 120 are arranged in the fifth V-groove 65, and the extension lines of the axes of the fifth V-groove 65 and the fourth V-groove 64 on the substrate 50 are arranged.
  • a third wavelength selection filter 73 is arranged at the intersection, and one of the optical fiber terminal 110 and the collimator lens 120 on the fifth V-groove 65 is fixed.
  • the first, second, and third wavelength selective filters 7 from the first fiber collimator 101 Input the light of the wavelength reflected by 1, 72, 73 together, the first, second, third wavelength selective filter 7 1, 72, 73 sequentially reflected, and the optical fiber on the fifth V-groove 65
  • the position and orientation of the third wavelength selection filter 73 are adjusted while observing the amount of light incident on the terminal 110.
  • the distance between the optical fiber terminal 110 and the collimator lens 120 on the fifth V-groove 65 is determined and fixed, and the fifth fiber collimator 105 is manufactured.
  • an optical path correction plate 83 that corrects an optical path deviation due to the third wavelength selection filter 71 is connected to the third wavelength selection filter 73. Arrange them at an angle symmetrical to 73.
  • the first fiber collimator 101 receives the light of the wavelength reflected by the first and second wavelength selection filters 71 and 72 and transmitted through the third wavelength selection filter 73, and the fourth fiber.
  • the optical path correction plate 83 is finely adjusted and fixed.
  • the optical fiber terminal 110 and the collimator lens 120 are disposed in the sixth V-groove 66, and the extension lines of the axial lines of the fifth V-groove 65 and the sixth V-groove 66 on the substrate 50 are arranged.
  • a fourth wavelength selection filter 74 is disposed at the intersecting point, and one of the optical fiber terminal 110 and the collimator lens 120 on the sixth V-groove 66 is fixed.
  • an optical path correction plate 84 having the same characteristics as the fourth wavelength selective filter 74 is symmetrical to the fourth wavelength selective filter 74. Insert 'place at an angle that becomes.
  • light having a wavelength that is reflected by the first, second, and third wavelength selection filters 71, 72, and 73 and transmitted through the fourth wavelength selection filter 74 is input to the first fiber collimator 101.
  • the light path correction plate 84 is finely adjusted and fixed by measuring the amount of light incident on the optical fiber terminal 110 on the fifth V groove 65.
  • FIG. 13 shows a configuration of an lch optical wavelength multiplexing / demultiplexing device configured by using two lch optical modules B1.
  • the optical module Bla on the left side of the figure is used as an optical wavelength demultiplexer.
  • the right optical module Bib is used as an optical wavelength multiplexer.
  • the left and right optical modules Bla and Bib can be configured by connecting optical modules B1 having the same force depicted symmetrically in the figure so as to function in the same manner as in the figure.
  • the first fiber collimator 101 of the optical module Bla on the demultiplexer side is the input port (In)
  • the second fiber collimator 102 is the branch port (Drop)
  • the second The third fiber collimator 103 is used as the output port (Out).
  • the first fiber collimator 101 of the optical module Bib on the multiplexer side is the output port (Out)
  • the second fiber collimator 102 is the insertion port (Add)
  • the third fiber collimator 103 is the input port (In).
  • the optical transmission line 1001 of the optical module Bla on the duplexer side (first fiber collimator 101) is connected to the external transmission line, and the branch port (second fiber collimator 102) is connected.
  • the optical transmission line 1002 is connected to the optical switch 2000, and the optical transmission line 1003 of the output port (third fiber collimator 103) is connected to the input port (third fiber collimator 103) of the optical module Bib on the multiplexer / demultiplexer side. )
  • the optical transmission line 1002 of the insertion port (second fiber collimator 102) is connected to the optical switch 2000, and the output port (first fiber collimator 101).
  • Optical transmission line 1001 is connected to the external transmission line.
  • the wavelength of the wavelength multiplexed signal input to the input port (first fiber collimator 101) of the optical module Bla on the external transmission path force demultiplexer side The optical signal other than the specific wavelength multiplexed / demultiplexed by the selection filter 70 is reflected by the wavelength selection filter 70, and the output port (third fiber collimator 103) force is also input to the optical module Bib on the multiplexer side ( Is input to the third fiber collimator 103), reflected by the wavelength selection filter 70, output from the output port (first fiber collimator 101), and returned to the external transmission line.
  • the optical signal of the specific wavelength combined / demultiplexed by the wavelength selection filter 70 is extracted from the branch port (second fiber collimator 102) force of the optical module Bla on the demultiplexer side, and then the optical switch 2000. Is input.
  • the signal is passed as it is and input to the insertion port (second fiber collimator 102) of the optical module Bib on the multiplexer side. Since the optical signal of a specific wavelength in which the force of the insertion port (second fiber collimator 102) is also introduced passes through the wavelength selective filter 70, it is combined with a signal of another wavelength reflected from the surface of the wavelength selective filter 70. Return to the original transmission line from the output port (first fiber collimator 101).
  • the optical switch 2000 takes the signal out of the Drop port, applies the necessary signal processing, and then adds the optical signal from the Add port to the multiplexer side. Return to the original transmission path through the module Bib insertion port.
  • FIG. 14 shows the configuration of a 4-channel optical wavelength multiplexing / de-multiplexing device configured by using two 4-channel optical modules B3.
  • the optical module B3a on the left side of the figure is used as an optical wavelength demultiplexer.
  • the right optical module B3b is used as an optical wavelength multiplexer.
  • the left and right optical modules B3a and B3b can be configured by connecting optical modules B3 having the same force depicted symmetrically in the figure so as to function in the same manner as in the figure.
  • the first fiber collimator 101 of the optical module B3a on the demultiplexer side is the input port (In), and the second to fifth fiber collimators 102 to 105 are branch ports. (Drop), the sixth fiber collimator 106 is set as the output port (Out).
  • the first fiber collimator 101 of the optical module B3b on the multiplexer side is the output port (Out)
  • the second to fifth fiber collimators 102 to 105 are the insertion ports (Add)
  • the collimator 103 is set as an input port (In).
  • optical transmission line 1001 of the optical module B3a on the duplexer side (first fiber collimator 101) is connected to the external transmission line, and the branch port (second to fifth fiber collimators) is connected.
  • optical transmission line 1002—1005 is connected to optical switch 2000, and the optical transmission line 1006 of the output port (sixth fiber collimator 106) is connected to the input port of optical module B3b on the multiplexer / demultiplexer side (No. Connect to optical transmission line 1006 of 6 fiber collimator 106).
  • optical module B3b on the multiplexer / demultiplexer side connect the optical transmission line 1002-1005 of the insertion port (second to fifth fiber collimators 102-105) to the optical switch 2000, and connect it to the output port.
  • the optical transmission line 1001 of the (first fiber collimator 101) is connected to the external transmission line.
  • this optical wavelength multiplexing / demultiplexing device when a wavelength multiplexed signal from an external transmission line is input to the input port of the optical module B3a on the demultiplexer side, all of the wavelength selective filters 71-74 are used for multiplexing / demultiplexing. Signals other than the specific wavelength that are waved are reflected by the wavelength selection filters 71-74, output from the output port of the optical module B3b on the multiplexer side, and return to the external transmission line.
  • the optical signal of each specific wavelength multiplexed / demultiplexed by the wavelength selection filter 71-74 is demultiplexed by each wavelength selection filter 71-74 of the optical module B3a on the demultiplexer side and extracted for each wavelength.
  • the optical switch 2000 when it is not necessary to take out or replace the signal, the signal is passed as it is, and is multiplexed again by the optical module B3b on the multiplexer / demultiplexer side and returned from the output port to the external transmission line. If it is necessary to extract or replace the signal, the optical switch 2000 Take it out from the op port, apply the necessary signal processing, and return it from the Add port to the original transmission line via the insertion port of the optical module B3b on the multiplexer side.
  • two optical modules Bl and B3 of the same type are combined with one dedicated to the demultiplexing device and the other with the dedicated multiplexing device to configure the optical wavelength multiplexing / demultiplexing device. Therefore, unlike the case where a single wavelength selection filter is used for both demultiplexing and multiplexing, it is possible to prevent signal degradation at which there is no possibility that the inserted light and the branched light are mixed.
  • an optical module D1 for lch will be described as an eighth embodiment
  • an optical module D2 for 2ch will be described as an ninth embodiment.
  • multiplexing and demultiplexing are often performed at the same or very close locations.
  • a two-channel demultiplexer and a two-channel multiplexer are prepared separately and interconnected via an optical fiber as shown in FIG. The system had to be configured. In such a situation, the optical modules Dl and D2 of this embodiment are effective.
  • the demultiplexing and multiplexing functions can be performed on the same substrate, so that the intermediate fiber connection portion and the collimator for fiber connection and By omitting the case, etc., a cheaper, smaller and lower loss optical wavelength multiplexing / demultiplexing device is created.
  • FIG. 15 shows the configuration of an optical module D1 used as an optical wavelength multiplexer / demultiplexer for lch.
  • the optical module D1 includes the configuration of the optical module A described above as a basic element.
  • a first fiber collimator 101 and a second fiber collimator 102 are arranged on collimator arrangement surfaces 52 and 53 on both sides of the substrate 50, respectively.
  • the first and second fiber collimators 101 and 102 are disposed in the first V-groove 61 and the second V-groove 62 formed on the same axis, respectively.
  • a wavelength selection filter 70 (A) for demultiplexing that transmits only light of a specific wavelength and reflects light of other wavelengths is arranged, Further, an optical path correction plate 80 for correcting an optical path shift by the wavelength selection filter 70 (A) is connected between the wavelength selection filter 70 (A) and the second fiber collimator 102, and the wavelength selection filter 70 (A). They are arranged at symmetrical angles.
  • a fourth V groove 64 is formed on one collimator arrangement surface 52 of the substrate 50 in parallel with the first V groove 61.
  • a third V groove 63 is formed in parallel with the second V groove 61.
  • the third and fourth V-grooves 63 and 64 are formed on the same axis, and the third and fourth fiber collimators 103 and 104 are arranged in the V-grooves 63 and 64, respectively.
  • a wavelength selection filter 70 (B) for multiplexing is arranged.
  • the wavelength selection filter 70 (A, B) and the optical path correction plate 80 are fixed on the optical element placement surface 51 secured in the center of the substrate 50.
  • the wavelength selection filter 70 (B) for multiplexing is incident from the first fiber collimator 101, reflected by the wavelength selection filter 70 (A) for demultiplexing, and further wavelength selection filter for multiplexing.
  • the reflected light reflected by the surface of the filter 70 (B) is fixed after adjusting the angle so that the reflected light enters the third fiber collimator 103 on the third V-groove 63.
  • the back side of the wavelength selection filter 70 (B) for multiplexing is arranged on the back side of the wavelength selection filter 70 (B) for multiplexing.
  • a fourth fiber collimator 104 that allows light having a wavelength band that can be transmitted to be incident is positioned.
  • an optical path correction plate 80 that corrects an optical path shift by the wavelength selection filter 70 (B) is provided between the fourth fiber collimator 104 and the wavelength selection filter 70 (B) for multiplexing. Arranged at an angle symmetrical to B).
  • the configuration of the optical path correction plate 80 and the optical path correction plate 80 are substantially the same as those described in the optical module of the above-described embodiment except for dimensional elements. Is omitted.
  • the first fiber collimator 101 is an input port (In) for receiving wavelength multiplexed light from the external input optical transmission line 1001
  • the third fiber collimator 103 on the most downstream side is an output port (Out) that emits wavelength multiplexed light to the external output optical transmission line 1003
  • the second fiber collimator 102 is split to the optical transmission line 1002 for branching.
  • the branch port (Drop) to be taken out and the fourth fiber collimator 104 are used as an insertion port (Add) through which insertion light from the insertion transmission lines 1004 and 1006 enters for multiplexing.
  • the optical signal of the specific wavelength ⁇ 1 is transmitted through the wavelength selection filter 70 (A) for demultiplexing. Then, it is taken out from the branch port (second fiber collimator 102).
  • light of wavelengths other than the specific wavelength is sequentially reflected by the wavelength selection filter 70 ( ⁇ ) for demultiplexing and the wavelength selection filter 70 ( ⁇ ) for multiplexing, and is output to the output port (third fiber collimator 103 ) Is taken out to the outside.
  • the signal light of the specific wavelength ⁇ 1 is also inserted into the insertion port (fourth fiber collimator 104), the signal light is transmitted from the back side to the front side of the wavelength selection filter 70 (B) for multiplexing.
  • the output port third fiber collimator 103.
  • the wavelength selection filter 70 ( ⁇ ) for demultiplexing and the wavelength selection filter 70 ( ⁇ ) for multiplexing are By using a wavelength selective filter with the same characteristics, an optical wavelength multiplexing / demultiplexing device for lch is obtained.
  • the demultiplexing wavelength selection filter 70 (A) is a wavelength selection filter that transmits the wavelength of the signal extracted from the branch port.
  • the wavelength selection filter 70 (B) for multiplexing a wavelength selection filter that transmits the wavelength of the signal inserted from the insertion port may be used, and a wavelength selection filter having different characteristics may be used.
  • the wavelength multiplexing function can be exhibited while the wavelength demultiplexing function is exhibited.
  • Ma by using the fiber collimator 101-104 with coreless fiber as the collimator, a low-loss lch type optical wavelength multiplexer / demultiplexer can be provided.
  • each component is fixed on a common board 50 and light is propagated between the components, so there is no need to use unnecessary components. The size can be reduced.
  • all the V-grooves 61-64 are formed in parallel, and the opposing V-grooves 61, 62 and V-grooves 63, 64 are formed on the same axis, making it easy to assemble and process. is there.
  • the D series 2-channel optical module D2 has a demultiplexing function that transmits only light of a specific wavelength and reflects light of other wavelengths in the incident light, and transmission of a specific wavelength that is incident and transmitted from the back side.
  • Wavelength selection filters 71 and 72 having a function of combining light and reflected light of other wavelengths incident and reflected from the surface are provided on the substrate 50.
  • the wavelength selection filters 71 and 72 may be two sets of two having the same characteristics as one set, and in the case of more channels, the number of channels may be set as many as the number of ch.
  • the wavelength selection filters 71 and 72 are set so that the reflected light of the wavelength selection filters 71 and 72 is incident in order from the upstream side to the downstream side in the light traveling direction, and the two wavelengths of each set.
  • the selection filters 71 and 72 are arranged so as to be continuous.
  • the wavelength selection filter 71 for demultiplexing uses a wavelength selection filter that transmits the wavelength of the signal extracted from the branch port.
  • a wavelength selection filter that transmits the wavelength of the signal inserted from the insertion port may be used, and wavelength selection filters having different characteristics may be used.
  • the upstream wavelength selection filter 71 (A) and 72 (A) are for demultiplexing, and the downstream wavelength selection filter 71 in each group (B) and 72 (B) are for multiplexing. And (a) On the optical path of the incident light to the wavelength selection filter 71 (A) for the most upstream demultiplexing,
  • Fiber collimators 101 to 106 are arranged on the optical path of the reflected light of the wavelength selection filter 72 (B) for the most downstream multiplexing, respectively. Since the configuration of each fiber collimator 101-106 is exactly the same as that described above, the description thereof is omitted here.
  • the second wavelength-selective filters 71 (A) and 72 (A) for upstream transmission of each set are located on the optical path of the transmitted light.
  • the first fiber collimator 101 located on the optical path of the incident light of (A) and (c) the wavelength selection filter 71 for multiplexing on the downstream side of each set (B) ), 72 (B), the fourth and fifth fiber collimators 104 and 106 located on the optical path of the incident light are the collimator arrangement surfaces provided on one side and the other side of one substrate 50.
  • optical element arrangement space optical element arrangement surface 51
  • wavelength selection filters 81 and 82 interposed therebetween.
  • the fiber collimators 101 to 106 are arranged and positioned in first to sixth V grooves 61 to 66 formed on the collimator arrangement surfaces 52 and 53 of the substrate 50, respectively.
  • V-grooves 61-66 are formed in parallel to each other, and among these, the first V-groove 61 and the second V-groove 62 are located on the same axis, and the third V-groove 63 And the fourth V-groove 64 are located on the same axis, and the fifth V-groove 65 and the sixth V-groove 66 are located on the same axis.
  • Optical path correction plates 81 and 82 are disposed on the optical path between the fiber collimators facing each other by being disposed in the V-grooves positioned on the same axis.
  • the optical path correction plates 81 and 82 are for correcting the optical path deviation caused by the insertion of the wavelength selection filters 71 and 72, and the wavelength selection filters 71 (A ), 7 2 (A) are arranged on the optical path of the transmitted light and on the optical path of the incident light to the back side of the combined wavelength selection filters 71 (B), 72 (B) on the downstream side of each set Has been. [0222] Next, the case of using the D-series optical module configured as described above will be described by taking the 2-channel optical module D2 as an example.
  • the most upstream fiber collimator 101 is used as the input port (In) for receiving wavelength multiplexed light from the external input optical transmission line 1001, Output port (Out) that emits wavelength multiplexed light from the downstream fiber collimator 105 to the external output optical transmission line 1005.
  • the second fiber collimator 102 and the third fiber collimator 103 are used for branching.
  • the wavelength multiplexed signal that is incident from the input port (first fiber collimator 101) is sequentially branched toward the branch ports (second and third fiber collimators 102, 103). While exhibiting the demultiplexing function, it is possible to exhibit a wavelength multiplexing function for sequentially multiplexing the input signals from the insertion ports (fourth and sixth fiber collimators 104 and 106).
  • the light of wavelength 1, 2 selected by each wavelength selection filter 71 (A), 71 (B) is sequentially extracted. Insert a new wavelength 1 and ⁇ 2 signal from the insertion port (4th and 6th fiber collimators 104, 106) and combine them to output the final signal to the output port (5th fiber collimator 105) It can be taken out more.
  • each component is fixed on a common substrate 50, and light is propagated between the components, so there is no need to use unnecessary components. And miniaturization can be achieved.
  • all V-grooves 61-66 are formed in parallel, and the opposing V-grooves 61 ⁇ 62, 63 ⁇ 64, 65 ⁇ 66 are formed on the same axis, making it easy to process and assemble. is there. For this reason, an optical demultiplexing function with a low insertion loss can be obtained while satisfying a sufficient return loss only by assembly by easy positioning.
  • the optical module D2 shown in FIG. 16 can be manufactured as follows. First, a substrate 50 on which six first and sixth six V-grooves 61-66 are formed is prepared. Here, the first, fourth, and sixth V grooves 61, 64, and 66 are formed in this order on the collimator arrangement surface 52 on one side of the substrate 50, and the second, third, and fifth V grooves 62, 63 and 65 are formed in this order on the collimator arrangement surface 53 on the other side of the substrate 50. These V-grooves 61-66 are formed in parallel with each other on the same plane.
  • first V-groove 61 and the second V-groove 62, the fourth V-groove 64 and the third V-groove 63, the sixth V-groove 66 and the fifth V-groove 65 are on the same axis. It is arranged in.
  • the V-grooves arranged on the same side are arranged at an equal pitch.
  • the optical fiber terminal 110 and the collimator lens 120 are respectively inserted into the first and second V-grooves 61 and 62.
  • the first and second fiber collimators 101 and 102 are produced.
  • a first wavelength selection filter 71 (A) for demultiplexing is arranged at a predesigned angle.
  • the third fiber collimator 103 is temporarily assembled by disposing the optical fiber terminal 110 and the collimator lens 120 in the third V groove 63 adjacent to the second V groove 62.
  • the optical axis of the reflected light reflected by the first wavelength selection filter 71 (A) for demultiplexing and the extension line of the third and fourth V grooves 63 and 64 intersect with each other.
  • the first wavelength selection filter 71 (B) for wave separation is disposed in the first fiber collimator 103 and is input from the first fiber collimator 101 to the third fiber collimator 103. The light that is reflected one after another is made incident on the first wavelength selection filter 71 (B) for multiplexing.
  • a second wavelength selection filter 72 (A) for demultiplexing was designed in advance between the first wavelength selection filter 71 (B) for multiplexing and the third fiber collimator 103. Arrange at an angle. Further, the fifth fiber collimator 105 is temporarily assembled by disposing the optical fiber terminal 110 and the collimator lens 120 in the fifth V groove 65 adjacent to the third V groove 63.
  • a second wavelength selection filter 72 (B) for multiplexing is arranged, and a first wavelength selection filter 71 (A) for demultiplexing is input to the fifth fiber collimator 105 from the first fiber collimator 101.
  • the first wavelength selection filter 71 (B) for multiplexing, the second wavelength selection filter 72 (A) for demultiplexing, and the second wavelength selection filter 72 (B) for multiplexing are reflected one after another. Allow light to enter.
  • the first wavelength collimator 101 reflects both the first wavelength selection filters 71 (A) and 71 (B) and the second wavelength selection filters 72 (A) and 72 (B). Wavelength light is input, and is sequentially reflected by the wavelength selection filters 71 (A), 71 (B), 72 (A), 72 (B) and coupled to the optical fiber terminal 110 of the third fiber collimator 103. While observing the amount of light, the position and orientation of the second wavelength selection filter 72 (B) for multiplexing and the distance between the optical fiber terminal 110 constituting the fifth fiber collimator 105 and the collimator lens 120 are determined and fixed.
  • an optical path correction plate 81 for correcting an optical path shift by the first wavelength selection filter 71 is provided between the first wavelength selection filter 71 (A) for demultiplexing and the second fiber collimator 102. It is arranged at an angle symmetrical to the first wavelength selection filter 71 (A) for demultiplexing. At this time, light having a wavelength that passes through the first wavelength selection filter 71 is input to the first fiber collimator 101, and the optical path correction plate 8 depends on the amount of light output from the optical fiber terminal 110 of the second fiber collimator 102. Adjust the mounting angle of 1 and fix it.
  • an optical path correction plate 82 for correcting the optical path deviation due to the second wavelength selection filter 72 is provided between the second wavelength selection filter 72 (A) for demultiplexing and the third fiber collimator 103. It is arranged at an angle symmetrical to the second wavelength selection filter 72 (A) for demultiplexing. At this time, light having a wavelength reflected by the first wavelength selection filter 71 and transmitted through the second wavelength selection filter 72 is input to the first fiber collimator 101, and the optical fiber of the third fiber collimator 103 is input. Terminal 110 The mounting angle of the optical path correction plate 82 is finely adjusted and fixed according to the amount of light output from.
  • the optical fiber terminal 110 and the collimator lens 120 are arranged in the fourth V groove 64 adjacent to the first V groove 61, and the fourth fiber collimator 104 is temporarily assembled. Further, between the fourth fiber collimator 104 and the first wavelength selection filter 71 (B) for multiplexing, an angle symmetrical to the first wavelength selection filter 71 (B) for multiplexing is used. An optical path correction plate 81 that corrects an optical path shift by the wavelength selection filter 71 of 1 is disposed, and one of the optical fiber terminal 110 or the collimator lens 120 is fixed to the fourth V groove 64.
  • the sixth fiber collimator 106 is temporarily assembled by disposing the optical fiber terminal 110 and the collimator lens 120 in the sixth V groove 66 adjacent to the fourth V groove 64. Further, between the sixth fiber collimator 106 and the second wavelength selection filter 72 (B) for multiplexing, the second wavelength selection filter 72 (B) for multiplexing is symmetric with the second wavelength selection filter 72 (B).
  • the optical path correction plate 82 having the same characteristics as the wavelength selection filter 72 of 2 is disposed, and one of the optical fiber terminal 110 and the collimator lens 120 is fixed to the sixth V groove 66.
  • light having a wavelength that passes through the second wavelength selection filter 72 is input to the optical fiber terminal 110 of the sixth fiber collimator 106, and the optical fiber terminal 110 of the fifth fiber collimator 105 is input. While observing the amount of light to be coupled, finely adjust the distance between the optical fiber terminal 110 of the sixth fiber collimator 106 and the collimator lens 120 and the angle of the optical path correction plate 82, and fix them.
  • an optical module D2 having an optical multiplexing / demultiplexing function that can determine and fix the positions of all members and can be easily assembled with a small size and low loss is completed.
  • all the V-grooves 61-66 are in the same plane, and the V-grooves 61-66 are in the same plane. Since all the optical axes of the collimated light do not come out of this plane, it is easy to achieve low-loss optical coupling by adjusting the two-dimensional optical axis. You can get a good result.
  • the wavelength selection filter is replaced with a filter that performs other functions.
  • a gain equivalent filter or incident light is provided in either or both of the upstream side of the upstream wavelength selective filter and the downstream side of the downstream wavelength selective filter. It is also possible to place a filter to extract only a part of the amount of light and give each function.
  • a fiber collimator with very high straightness is fixed according to the guide (positioning groove) of the common substrate, so that the price of the optical passive module has been large until now.
  • the optical alignment that used to occupy the portion can be greatly reduced, and the price can be reduced.
  • FIG. 1 is a configuration diagram of an optical module A according to a first embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 2 is an enlarged view showing a configuration of a fiber collimator used in the optical module A.
  • FIG. 3 is an enlarged view showing a configuration example of another fiber collimator.
  • FIG. 4 is a configuration diagram of an optical module B 1 according to a second embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 5 shows a usage example of the optical module B1, in which (a) shows a case where it is used as an optical wavelength demultiplexing device, and (b) shows a case where it is used as an optical wavelength multiplexing device.
  • FIG. 6 is a configuration diagram of an optical module B2 of a third embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 7 shows a usage example of the optical module B2, in which (a) shows a case where it is used as an optical wavelength demultiplexing device, and (b) shows a case where it is used as an optical wavelength multiplexing device.
  • FIG. 8 is a configuration diagram of an optical module B3 according to a fourth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 9 shows a usage example of the optical module B3, where (a) shows a case where it is used as an optical wavelength demultiplexing device, and (b) shows a case where it is used as an optical wavelength multiplexing device.
  • FIG. 10 is a configuration diagram of an optical module C1 according to a fifth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 11 is a configuration diagram of an optical module C2 according to a sixth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 12 is a configuration diagram of an optical module C3 according to a seventh embodiment of the present invention, in which (a) is a plan view and (b) is a side view.
  • FIG. 13 is a configuration diagram when an optical wavelength multiplexing / demultiplexing device for lch is configured by combining the optical module B 1 of the second embodiment of the present invention in pairs.
  • FIG. 14 is a configuration diagram in the case where an optical wavelength multiplexing / demultiplexing device for 4 ch is configured by combining the optical module B3 of the fourth embodiment of the present invention in pairs.
  • FIG. 15 is a configuration diagram of an optical module D1 according to an eighth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 16 is a configuration diagram of an optical module D2 according to an eighth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 17 is a schematic configuration diagram of a conventional optical add / drop multiplexer.
  • FIG. 18 is an explanatory diagram of optical axis misalignment of a collimator.
  • FIG. 19 is a diagram showing the optical axis misalignment characteristics of the collimator.
  • FIG. 20 is an explanatory diagram of an optical axis shift of the wavelength selection filter.
  • FIG. 21 is a diagram showing the optical axis misalignment characteristics of the wavelength selection filter.
  • Optical element placement surface optical element placement space
  • Collimator placement surface collimator placement space
  • V groove positioning groove

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

同一基板上にコリメータやフィルタを配し、実用上十分な反射減衰量を確保しながら、煩雑なアライメントを減らし、良好な光結合が得られる光モジュールを提供する。 選択波長の異なる複数の波長選択フィルタ71~74を順番にフィルタ反射光が入射するよう基板50上に配置し、最上流フィルタへの入射光路上、各フィルタの透過光路上、最下流フィルタの反射光路上に、コアレスファイバを先端に付けた光ファイバ端末とレンズの組み合わよりなるファイバコリメータ101~106を配置する。各ファイバコリメータは、光の合分波順序に従って1枚の基板の一方側と他方側に交互に配置し、基板上の同一面内に形成したV溝61~66内に収容した位置決めする。全部のV溝を同一平面内に形成し、基板の一方側と他方側でフィルタを介して対向する関係にあるファイバコリメータの少なくとも1組を同一軸線上に配置した。

Description

明 細 書
光モジュール及び光波長合分波装置
技術分野
[0001] 本発明は、例えば、光通信分野において、中継局に向けて幹線から信号光を分岐 したり、中継局からの信号光を幹線に挿入したりする光波長合分波装置及びそれに 利用される光モジュールに関する。
背景技術
[0002] 波長分割多重 (WDM)を用いた光通信において、特定波長の信号を中継局に分 岐したり特定波長の信号を中継局力 挿入したりする目的で用いられる装置として、 特許文献 1に開示されて ヽるような光分岐挿入装置が知られて ヽる。
[0003] この光分岐挿入装置は、図 17に示すように、入力用光伝送路 1から入力される波 長多重光を各波長の光に分波する光分波器 3と、一旦分波された各波長の光を合 波して出力伝送路 2へと送るための光合波器 4とを有して 、る。この光分岐挿入装置 には、また、光分波器 3で分波された各波長の光を中継局 8の受信機 7へ分岐した上 で中継局 8の送信機 6より送信された信号を新たに挿入するか、あるいは、光分波器 3で分波された各波長の光をそのまま光合波器 4に透過させるかを選択するための 光スィッチ 5が、各波長の光路に対応して複数個備えられている。
[0004] このような分岐挿入装置において、光分波器 3あるいは光合波器 4には、波長選択 フィルタやレンズ等を光ファイバからの出射光路上に固定し、多波長信号から単波長 成分を分離する機能、あるいは、単波長成分を多波長信号に挿入する機能を持たせ たフィルタモジュールが使用されることが多い。
[0005] このようなフィルタモジュールは、例えば、特許文献 2や特許文献 3に記載されてい るように、レンズと光ファイバからなるコリメータを、波長選択フィルタを挟んで、対向さ せて配置した構成をなして 、る。
[0006] 一般には、このようなフィルタモジュールにお!/、ては、波長選択フィルタ、レンズ、及 び光ファイバが、光軸調整された状態で共通の筒状の筐体に挿入固定されて!、る。 このようなモジュールは、一般に、 Add/Drop Multiplexer(ADM)と呼ばれている。 [0007] 図 17の光分岐挿入装置における光分波器 3や光合波器 4は、複数の波長につい て同様の合波あるいは分波を行う必要があるため、異なる波長分離特性を有する上 記フィルタモジュール単体を複数個用い、これらの信号入出射端の光ファイバを順 次融着などの方法で接続することにより構成されている。このようなモジュールは一般 に「Mux/DeMux」と呼ばれて ヽる。光分波器 3あるいは光合波器 4に入力される光は 、上記フィルタモジュールの複数を順次通過することによって、各波長に分波される 力 あるいは、各波長の光が順次合波されるようになされている(例えば、特許文献 4 等参照)。なお、順次接続された複数個の上記単体モジュールは、単体のケースに 装着されて!、るのが一般的である。
[0008] また、これとは別に、ファイバ端面を光軸に対して垂直にしたコリメータの構成として グレーデッドインデックス (GI)ファイバを利用する構造が知られて ヽる(例えば、特許 文献 5参照)。
[0009] 特許文献 1:特開 2000— 183816号公報
特許文献 2:特表平 10-511476号公報
特許文献 3 :特開平 10- 311905号公報
特許文献 4:特開平 11 337765号公報
特許文献 5:特開 2003 - 437270号公報
発明の開示
発明が解決しょうとする課題
[0010] ところで、上述したフィルタモジュールを用いた光分岐挿入装置にぉ 、ては、光通 信に使用するチャンネル数が多くなればなるほど、それに対応して単体のフィルタモ ジュールの使用個数を増やす必要がある。そのため、原材料部品価格が、単体のフ ィルタモジュール価格の倍数以上となってしまう。また、フィルタモジュールの入出力 端の光ファイバを融着する工程を有するため、工程が煩雑でコスト高になると共に、 融着接続時の軸ずれに起因する接続損失が生じてしまう。更に、単体のフィルタモジ ユールは筐体内に固定された構造をなしているため、機能部分以外の無駄な体積を 要し、チャンネルの増大に伴って必要な部品体積も同様に拡大する、等の問題があ つた o [0011] 本発明者らは、これらの問題を解消するため、フィルタモジュールの筐体である外 装体を無くし、上述したような各構成部品を単一基板上に固定し、部品間を光が空 間伝搬する構成とすることにより、無駄な部品を使わず、必要最小限の体積で、光モ ジュールの低価格化、小型化、低損失ィ匕を図ることを試みた。
[0012] しかし、実際にモジュール内の要素部品を分離して基板上に配置する場合、各部 品からの出射光に光軸ずれが発生し、光結合が容易に行えず、期待した性能を得る ことができないということが判明した。
[0013] この、光軸ずれの要因としては、
(1)反射損失低減を目的とするため、光ファイバと屈折率分布型レンズ等の端面を 斜め端面としていること;
(2)出射光の光軸とレンズの光軸にずれが生じて!/、ること;
(3)波長選択フィルタである誘電体多層膜フィルタの基板を光が透過する際に光軸 力 Sずれること;
などが考えられる。
[0014] (1)について詳細を説明すると、近年の光通信分野では、光源として、分布帰還型 レーザが一般的に用いられており、この種のレーザ光源はファイバ内を逆行し光源ま で到達する所謂戻り光により、レーザ発振が不安定になり易ぐ結果として出力パヮ 一の変動が生じ易いという特徴がある。即ち、反射光の増大、言い換えると、反射損 失が小さい場合は、戻り光が大きいことを意味し、出力パワーの変動を増大させること になる。
[0015] 一般的に、ファイバコリメータにおいて、前述したレーザ光源の出力変動を無視で きる程度の大きさに抑制するためには、次の(1)式に示す端面反射損失として、 50d B以上が要求されている。
端面反射損失 =—10 X log (IR ZIO ) … (1)
但し、 IR は反射光量、 IO は入射光量を示す。
[0016] 現状で反射損失を得るための方法として、ファイバ端面を光軸に対し斜めにする方 法が用いられており、このタイプの光ファイバ端末は、ファイバをガラスキヤビラリに挿 入して、キヤビラリごと端面に 4° 一 8° 程度の角度を付けて平面研磨することで得ら れる。これにより、端面における反射光はクラッドモード (clad mode )となって減衰する ため、反射損失を大きくとることができ、更に表面の ARコーティングと合わせて、反射 損失 60dB以上を得ることができる。この方法は極めて簡便な方法であるため、これま で主流の方式である。
[0017] 図 18に現在主流の製法、即ち、ファイバビグティル 11と屈折率分布レンズ 12との 組み合わせで作製されたコリメータを示す。上に述べられている理由により、ビグティ ル 11及びレンズ 12の各端面には約 8° の角度が付けられており、これが原因で、出 射光は入射光の位置に比して、位置ずれ δと角度ずれ Θが発生する。特に角度ず れ 0による光軸ずれ量は、図 19に示すように結合距離 Lが離れるほど大きくなる。従 つて、同一直線上にある V溝等に設置されたコリメータ対は、その間隔が数 mm以上 離れると、光結合がほとんど 0 (ゼロ)となってしまう。
[0018] 上記のような光路ずれをなくすためには、光ファイバ端末及びレンズ端面を全て光 軸に対して垂直にすればよい。し力しこの場合、端面反射は全て戻り光として反映さ れてしまうことになる。ガラス端面と空気の屈折率差で生じる反射損失は 14. 7dBで あり、これに良好な ARコーティング (Rく 0. 2% : 27dB)を施したとしても、端面での 反射損失は約 42dB程度であり、 50dB以上という上記の要求仕様は達成できないこ とになる。
[0019] この点について、特許文献 5に示される構造は、集光機能を有する光ファイバ端部 構造であって、ビームウェスト距離とビームウェスト径とをそれぞれ所望の値に設定で き、つまりそれらを互いに独立して可変できる光ファイバ端部構造を提供できると言わ れて 、るが、同様に一般的に要求される反射減衰量を確保することができな 、と 、う 問題がある。
[0020] 次に(2)について説明すると、コリメートレンズとして通常の屈折率分布レンズを用 いた場合は上記の理由により光軸が曲がる力 このレンズに変えて球面レンズ、非球 面レンズ、球面加工を施した屈折率分布レンズ等を用いた場合、一般的に偏芯と呼 ばれるレンズの外径中心に対するレンズ部分の曲率中心にずれを持っており、また、 ファイバを被うキヤビラリの外径とレンズの外径の公差によって、ファイバ光軸とレンズ 光軸が一致しない。 [0021] 以上のような理由により偏芯の存在するレンズを用いた場合では、仮にファイバ端 面とレンズ端面が光軸に対して垂直になっていた場合でも、以下の出射角度 Θが生 じてしまう。
tan 0 =e/f · ' · (2)
但し、 eは偏芯量、 fは焦点距離を示す。
[0022] 同様に仮にファイバ端面とレンズ端面が光軸に対して垂直になって 、た場合でも、 キヤビラリの外径とレンズの外径の差が数ミクロンあった場合、以下の出射角度 Θが 生じる。
tan 0 =d/ (2 -f) · ' · (3)
但し、 dは外径の差。
[0023] 実際には、偏芯と外径の差が同時に存在し、光軸ずれが増加するため、 V溝上にこ れらのレンズを配置しても十分な光結合を得ることができない。
[0024] 次に(3)について説明すると、波長選択フィルタ等の干渉フィルタは、図 20に示す ように、通常有限の厚みを持つガラス基板 15上に成膜を施すことで作製されており、 発生する膜圧に対する破壊を免れるために約 lmm程度の厚みを持っている。屈折 率 nlの媒質 1から厚み hを持つ屈折率 n2の媒質 2に入射角 Θで入射した光の平行 位置ずれ量 δ ( =媒質 2が無い場合に通るべき光路と実際の光路との差)は、次式( 3)で示すことができる。
[0025] [数 1]
Figure imgf000006_0001
[0026] 図 21は、様々な厚み(0. 5- 1. 5mm)を持つ基板を図 19のように光が通過すると きの、光軸のずれ量 δ m)と入射角 Θ (Degree)との関係を示している。この図に 示すように、基板の厚みと入射角に依存して光軸ずれが発生するので、干渉フィルタ 挿入前に予めコリメータ対の光結合を行った状態にしてあったとしても、フィルタを挿 入するだけで、光路がずれ、損失が大幅に増大ないしは結合不可能となってしまう。 [0027] 以上述べたように、従来の試みのように、同一基板上に形成した部品固定用の各 V 溝にただ単に各部品を平行に並べて配置しただけでは、現実的には、光軸ずれが 大きく十分な光結合が得られな 、と 、う問題があった。
[0028] 本発明は、上述した問題点を解決するためになされたものであり、同一基板上にコ リメータ及びフィルタ機能を有する光学素子を配置した小型で低挿入損失な光モジ ユールにおいて、実用上十分な反射減衰量を確保しながら、煩雑なァライメントを減 らし、良好な光結合が得られる光モジュール、及び、それを使用した光波長合分波 装置を提供することを目的とする。
課題を解決するための手段
[0029] 第 1の発明の光モジュールは、中心部のコア及びその外周部のクラッドを有する光 ファイバの端面に、前記コアと略同一で均一な屈折率を有する材料よりなるコアレス ファイバの一端面を接合し、前記光ファイバの光軸上で前記コアレスファイバの他端 面側にコリメータレンズを配置して構成した第 1、第 2の 2組のファイバコリメータを、同 一軸線上に位置するように 1枚の基板上に形成した第 1、第 2の位置決め溝内に対 向配置すると共に、それらのファイバコリメータの対向面間にフィルタ機能を有した光 学素子を配置したことを特徴とする。
[0030] 第 2の発明の光モジュールは、第 1の発明に記載の光モジュールであって、前記フ アイバコリメータが、端面にコアレスファイバを接合した前記光ファイバの端末と、前記 コリメータレンズとを、前記位置決め溝内に配置することにより構成されていることを特 徴とする。
[0031] 第 3の発明の光モジュールは、第 1の発明に記載の光モジュールであって、前記フ アイバコリメータが、端面にコアレスファイバを接合した前記光ファイバの端末と、前記 コリメータレンズとを、ガラス管内に配置することにより単体の光部品として構成されて おり、当該単体の光部品として構成されたファイバコリメータの前記ガラス管が、前記 位置決め溝内に配置されていることを特徴とする。
[0032] 第 4の発明の光モジュールは、第 1一第 3の発明のいずれかに記載の光モジユー ルであって、前記フィルタ機能を有する光学素子として、前記第 1のファイバコリメ一 タカ 入射される波長多重光のうち特定の波長帯域の光のみを前記第 2のファイバコ リメータに向けて透過し他波長の光を反射する分波機能と、前記第 2のファイバコリメ ータから片面に入射されて透過する特定波長の透過光と他面から入射されて反射す る他波長の反射光を第 1のファイバコリメータへ向けて合波する合波機能と、を有す る波長選択フィルタが設けられると共に、該波長選択フィルタと前記第 2のファイバコ リメータとの間に、光路補正板が設けられて 、ることを特徴とする。
[0033] 第 5の発明の光モジュールは、第 4の発明に記載の光モジュールであって、前記第 1のファイバコリメータから入射され前記波長選択フィルタで反射される反射光の進路 に、前記第 1、第 2のファイバコリメータと同様の構成を持つ第 3のファイバコリメータを 配置し、該第 3のファイバコリメータを、前記基板上の前記第 1、第 2の位置決め溝と 同一平面上に形成した第 3の位置決め溝に配置して位置決めしたことを特徴とする。
[0034] 第 6の発明の光モジュールは、第 5の発明に記載の光モジュールであって、前記第 3の位置決め溝を前記第 1、第 2の位置決め溝と平行に形成し、その第 3の位置決め 溝に配置した前記第 3のファイバコリメータと前記波長選択フィルタとの間に、前記第 1のファイバコリメータと第 3のファイバコリメータとの間で前記波長選択フィルタによる 反射光を相互に結合させる光路補正手段を配置したことを特徴とする。
[0035] 第 7の発明の光モジュールは、第 5または第 6の発明に記載の光モジュールであつ て、前記第 1のファイバコリメータを、外部の入力用光伝送路力 伝送されてくる波長 多重光を前記波長選択フィルタに対し入力光として入射させる入力光用コリメータと し、前記第 2のファイバコリメータを、前記波長選択フィルタに入射され透過した特定 波長帯域の光を外部に取り出すための分岐光用コリメータとし、前記第 3のファイバコ リメータを、前記波長選択フィルタに入射され反射した特定波長帯域以外の光を外 部の出力用光伝送路へ送り出すための出力用コリメータとして利用することで、波長 多重光を分波する光波長分波装置を構成したことを特徴とする。
[0036] 第 8の発明の光モジュールは、第 5または第 6の発明に記載の光モジュールであつ て、前記第 3のファイバコリメータを、外部の入力用光伝送路力 伝送されてくる前記 特定の波長帯域以外の光を前記波長選択フィルタの表面に対し入力光として入射さ せる入力光用コリメータとし、前記第 2のファイバコリメータを、特定の波長帯域の光を 前記波長選択フィルタの裏面に対し挿入光として入射させる挿入光用コリメータとし、 前記第 1のファイバコリメータを、前記波長選択フィルタにて反射する入力光と透過す る挿入光との合波光を外部の出力用光伝送路へ伝送する出力光用コリメータとして 利用することで、光波長合波装置として構成したことを特徴とする。
[0037] 第 9の発明の光モジュールは、入射光の中の特定波長の光のみを透過し他波長の 光を反射する分波機能と、片面から入射されて透過する特定波長の透過光と他面か ら入射されて反射する他波長の反射光を合波する合波機能とを有する波長選択フィ ルタを、前記特定波長を異ならせて複数装備すると共に、前記複数の波長選択フィ ルタを、光の進行方向の上流側から下流側に向力つて順番にフィルタの反射光が入 射するように配置し、最上流の波長選択フィルタへの入射光の光路上と、各波長選 択フィルタの透過光の光路上と、最下流の波長選択フィルタの反射光の光路上と、 にそれぞれコリメータを配置し、それら各コリメータとして、中心部のコア及びその外 周部のクラッドを有する光ファイバの端面に、前記コアと略同一で均一な屈折率を有 する材料よりなるコアレスファイバの一端面を接合し、前記光ファイバの光軸上で前 記コアレスファイバの他端面側にコリメータレンズを配置して構成したファイバコリメ一 タを使用し、これらファイバコリメータを、光の合分波順序に従って 1枚の基板の一方 側と他方側に交互に、且つ前記波長選択フィルタを含む光学素子の配置スペースを 挟んで対向配置すると共に、各ファイバコリメータを、前記基板上の同一面内に形成 した位置決め溝内に配置して位置決めし、更に、前記基板の一方側と他方側で波長 選択フィルタを介して対向する関係にあるファイバコリメータの少なくとも 1組を、同一 軸線上に形成した位置決め溝に配置すると共に、両フアイバコリメータ間の光路上に 光路補正板を配置したことを特徴とする。
[0038] 第 10の発明の光モジュールは、第 9の発明に記載の光モジュールであって、前記 すべての位置決め溝を互いに平行に形成し、平行に形成することで光路補正の生じ た箇所に光路補正手段を介在させたことを特徴とする。
[0039] 第 11の発明の光モジュールは、第 9または第 10の発明に記載の光モジュールであ つて、分波器として使用するときの光の進行方向の最上流のファイバコリメータを、外 部の入力用光伝送路から伝送されてくる波長多重光を最上流の波長選択フィルタに 対し入力光として入射させる入力光用コリメータとし、最下流のファイバコリメータを、 最下流の波長選択フィルタで反射した光を外部の出力用光伝送路へ送り出すため の出力用コリメータとし、それ以外のファイバコリメータを、各波長選択フィルタで透過 した光を外部に取り出すための分岐光用コリメータとして利用することで、波長多重 光を多段に分波する光波長分波装置を構成したことを特徴とする。
[0040] 第 12の発明の光モジュールは、第 9または第 10の発明に記載の光モジュールであ つて、合波器として使用するときの光の進行方向の最上流のファイバコリメータを、外 部の入力用光伝送路から伝送されてくる光を最上流の波長選択フィルタの表面に対 し入力光として入射させる入力光用コリメータとし、最下流のファイバコリメータを、最 下流の波長選択フィルタで反射する反射光と透過する挿入光との合波光を外部の出 力用光伝送路へ伝送する出力光用コリメータとし、それ以外のファイバコリメータを、 各波長選択フィルタの裏面に対し各フィルタごとの特定の波長帯域の挿入光を入射 させる挿入光用コリメータとして利用することで、光波長合波装置として構成したこと を特徴とする。
[0041] 第 13の発明の光モジュールは、第 1一第 3の発明のいずれかに記載の光モジユー ルであって、前記フィルタ機能を有する光学素子として、前記第 1のファイバコリメ一 タカ 入射される波長多重光のうち特定の波長帯域の光のみを前記第 2のファイバコ リメータに向けて透過し他波長の光を反射する分波用の波長選択フィルタを設ける 共に、該波長選択フィルタと前記第 2のファイバコリメータとの間に光路補正板を設け 前記第 1のファイバコリメータ力 入射され前記分波用の波長選択フィルタで反射さ れる反射光の進路に、分波用の波長選択フィルタ力 の反射光を更に自身の表面で 反射すると共に自身の背面から入射されて透過する透過光を前記表面での反射光 に合波させる合波用の波長選択フィルタを配置し、前記第 1のファイバコリメータから 入射され前記分波用の波長選択フィルタで反射され更に前記合波用の波長選択フ ィルタの表面で反射される反射光の進路に、前記第 1、第 2のファイバコリメータと同 様の構成を持つ第 3のファイバコリメータを配置すると共に、前記合波用の波長選択 フィルタの背面側に、当該合波用の波長選択フィルタの背面に対して透過可能な波 長帯域の光を入射させる、前記第 1、第 2のファイバコリメータと同様の構成を持つ第 4のファイバコリメータを配置し、前記第 3、第 4のファイバコリメータをそれぞれ、前記 基板上の前記第 1、第 2の位置決め溝と同一平面内に形成した第 3、第 4の位置決め 溝に配置して位置決めしたことを特徴とする。
[0042] 請求項 14の発明の光モジュールは、請求項 13に記載の光モジュールであって、 前記分波用の波長選択フィルタと合波用の波長選択フィルタとを、同一波長の光の みを透過する同特性の波長選択フィルタとしたことを特徴とする。
[0043] 第 15の発明の光モジュールは、第 13または第 14の発明に記載の光モジュールで あって、前記第 3、第 4の位置決め溝を同一軸線上に位置するように形成し、それら 第 3、第 4の位置決め溝内に、前記合波用の波長選択フィルタを挟んで対向するよう 前記第 3、第 4のファイバコリメータをそれぞれ配置して位置決めし、更に、前記第 4 のファイバコリメータと合波用の波長選択フィルタとの間に光路補正板を配置したこと を特徴とする。
[0044] 第 16の発明の光モジュールは、第 15の発明に記載の光モジュールであって、前 記第 1、第 2の位置決め溝と前記第 3、第 4の位置決め溝とを互いに平行に形成し、 前記第 1の位置決め溝と第 4の位置決め溝とを前記基板の一方側に配置すると共に 、前記第 2の位置決め溝と第 3の位置決め溝とを前記基板の他方側に配置し、基板 の一方側と他方側との間に前記波長選択フィルタの配置スペースを設けたことを特 徴とする。
[0045] 第 17の発明の光モジュールは、入射光の中の特定波長の光のみを透過し他波長 の光を反射する分波機能と、裏面から入射されて透過する特定波長の透過光と表面 から入射されて反射する他波長の反射光を合波する合波機能とを有する波長選択フ ィルタを 2個を 1組とし、且つ、各組ごとに前記特定波長を異ならせて複数組、基板上 に装備すると共に、前記波長選択フィルタを、光の進行方向の上流側から下流側に 向かって順番に波長選択フィルタの反射光が入射するように、且つ、各組の 2個の波 長選択フィルタが連続するように配置し、各組の 2個の波長選択フィルタのうち上流 側の波長選択フィルタは分波用のもの、各組の下流側の波長選択フィルタは合波用 のものとし、
(a)最上流の分波用の波長選択フィルタへの入射光の光路上と、 (b)各組の上流側の分波用の波長選択フィルタの透過光の光路上と、
(C)各組の下流側の合波用の波長選択フィルタの背面への入射光の光路上と、
(d)最下流の合波用の波長選択フィルタの反射光の光路上と、
にそれぞれコリメータを配置し、それら各コリメータとして、中心部のコア及びその外 周部のクラッドを有する光ファイバの端面に、前記コアと略同一で均一な屈折率を有 する材料よりなるコアレスファイバの一端面を接合し、前記光ファイバの光軸上で前 記コアレスファイバの他端面側にコリメータレンズを配置して構成したファイバコリメ一 タを使用し、これらファイバコリメータのうち、前記 (b)各組の上流側の分波用の波長 選択フィルタの透過光の光路上に位置するファイバコリメータ及び前記 (d)最下流の 合波用の波長選択フィルタの反射光の光路上に位置するファイバコリメータと、前記( a)最上流の分波用の波長選択フィルタの入射光の光路上に位置するファイバコリメ ータ及び前記 (c)各組の下流側の合波用の波長選択フィルタの背面への入射光の 光路上に位置するファイバコリメータとを、 1枚の基板の一方側と他方側に、前記波 長選択フィルタを含む光学素子の配置スペースを挟んで対向配置すると共に、各フ アイバコリメータを、前記基板上の同一面内に形成した位置決め溝内に配置して位 置決めし、更に、前記基板の一方側と他方側で波長選択フィルタを介して対向する 関係にあるファイバコリメータの少なくとも 1組を、同一軸線上に形成した前記位置決 め溝に配置すると共に、両フアイバコリメータ間の光路上に光路補正板を配置したこ とを特徴とする。
[0046] 第 18の発明の光モジュールは、第 17の発明に記載の光モジュールであって、前 記各組の分波用の波長選択フィルタと合波用の波長選択フィルタとを、同一波長の 光のみを透過する同特性の波長選択フィルタとしたことを特徴とする。
[0047] 第 19の発明の光モジュールは、第 17または第 18の発明に記載の光モジュールで あって、前記すベての位置決め溝を互いに平行に形成し、平行に形成することで光 路補正の生じた箇所に光路補正手段を介在させたことを特徴とする。
[0048] 第 20の発明の光モジュールは、第 6、第 10、第 19の発明のいずれかに記載の光 モジュールであって、前記光路補正手段として、ミラー、ジンバル機構を有したミラー 、全反射プリズム、屈折型プリズムの少なくともいずれかを使用したことを特徴とする。 [0049] 第 21の発明の光モジュールは、第 1一第 20の発明のいずれかに記載の光モジュ ールであって、前記位置決め溝として、 V溝、丸溝、矩形溝、楕円溝のうちのいずれ かを設けたことを特徴とする。
[0050] 第 22の発明の光モジュールは、第 1一第 3の発明のいずれかに記載の光モジユー ルであって、前記フィルタ機能を有する光学素子として、入射される光の強度が波長 に対して均一でな!、場合に、この強度を平坦ィヒするように光強度を補正する利得等 化フィルタを使用したことを特徴とする。
[0051] 第 23の発明の光モジュールは、第 1一第 3の発明のいずれかに記載の光モジユー ルであって、前記フィルタ機能を有する光学素子として、入射される光の光量の一部 分のみを取り出すためのフィルタを使用したことを特徴とする。
[0052] 第 24の発明の光波長合分波装置は、第 7の発明に記載の光波長分波装置として 構成された光モジュールと、第 8の発明に記載の光波長合波装置として構成された 光モジュールとを、対にして組み合わせたことを特徴とする。
[0053] 第 25の発明の光波長合分波装置は、第 11の発明に記載の光波長分波装置として 構成された光モジュールと、第 12の発明に記載の光波長合波装置として構成された 光モジュールとを、対にして組み合わせたことを特徴とする。
発明の効果
[0054] 第 1の発明によれば、先端にコアレスファイバを配することで光軸ずれを少なくし且 つ十分な反射減衰量を実現できるようにした光ファイバ端末とコリメータレンズを組み 合わせてファイバコリメータを構成し、そのファイバコリメータを、同一軸線上に位置す るように 1枚の基板上に形成した位置決め溝に配置したので、ファイバコリメータ間で 容易に高効率の光結合を得ることができる。し力も、光路にフィルタ機能を有した光 学素子を配置したので、入力光に所望のフィルタリングを施した出力光を低損失で得 ることができる。また、各構成部品を共通基板上に固定し、部品間を光が空間伝搬す る構成としているので、無駄な部品を使わずに済み、必要最小限の体積で、光モジ ユールの低価格ィ匕及び小型化を図ることができる。
[0055] 第 2の発明によれば、基板上の位置決め溝内で光ファイバ端末とレンズを位置合わ せするので、部品点数が少なく低コストィ匕が可能である。 [0056] 第 3の発明によれば、予め光ファイバ端末とコリメータレンズをガラス管内に配置す ることでファイバコリメータを構成し、その上で、それを基板上の位置決め溝に配置す るので、容易な組み立てが可能である。
[0057] 第 4の発明によれば、フィルタ機能を有する光学素子として波長選択フィルタを使 用したので、入力光のうちの特定波長の光だけを出力側のファイバコリメータ力も取り 出すことができる。
[0058] 第 5の発明によれば、波長選択フィルタで反射される反射光の進路に、第 1、第 2の ファイバコリメータと同一平面上に並ぶ第 3のファイバコリメータを配置したので、第 1 一第 3のファイバコリメータ間で容易に高効率の光結合を得ることができる。また、第 1 、第 3のファイバコリメータを入出力ポートとし、第 2のファイバコリメータを分岐挿入ポ ートとすることで、容易に低損失な 1チャンネル型の光分波器または光合波器を得る ことができる。特に、この場合、単一のモジュールは、光分波または光合波のどちらか 専用として利用することになるから、合波のために波長選択フィルタに向けて挿入す る挿入光が、分波された分岐光に僅かながらも反射して混入するといつたおそれもな い。
[0059] 第 6の発明によれば、第 1一第 3の位置決め溝を平行に形成し、各位置決め溝にそ れぞれファイバコリメータを配置し、必要な光路調整を光路補正手段 (例えばミラーや プリズム)で行えばょ 、ので、加工 '組み立てが容易である。
[0060] 第 7の発明によれば、光波長分波装置を構成する場合の 1チャンネル型の光分波 器として簡単に利用することができる。
[0061] 第 8の発明によれば、光波長分波装置を構成する場合の 1チャンネル型の光合波 器として簡単に利用することができる。
[0062] 第 9の発明によれば、複数チャンネル型の光分波器または光合波器として利用する ことができる。しカゝも、通常は 1チャンネル型の合分波器を複数連結することで作製し ていた複数波長合分波器を、同一基板上にコリメータや波長選択フィルタ等の各構 成部品を集積配備し、部品間を光が空間伝搬するものとして構成しているので、無駄 な部品を使わずに必要最小限の体積で、容易に小型且つ低損失な光波長合分波 器を得ることができる。また、各コリメータとして、先端にコアレスファイバを配すること で光軸ずれを少なくし且つ十分な反射減衰量を実現できるようにした光ファイバ端末 とコリメータレンズの組み合わせよりなるファイバコリメータを使用するので、組み立て が容易であり、各ファイバコリメータ間で高効率の光結合を得ることができ、低損失な 光合分波器を得るのに適した複数チャンネル型の光モジュールを提供することがで きる。特に、この場合、単一のモジュールは、光分波または光合波のどちらか専用と して利用することになるから、合波のために波長選択フィルタに向けて挿入する挿入 光が、分波された分岐光に僅かながらも反射して混入するといつたおそれもない。
[0063] 第 10の発明によれば、すべての位置決め溝を平行に形成し、各位置決め溝にそ れぞれファイバコリメータを配置し、必要な光路調整を光路補正手段 (例えばミラーや プリズム)で行えばょ 、ので、加工 '組み立てが容易である。
[0064] 第 11の発明によれば、光波長分波装置を構成する場合の複数チャンネル型の光 分波器として簡単に利用することができる。
[0065] 第 12の発明によれば、光波長合波装置を構成する場合の複数チャンネル型の光 合波器として簡単に利用することができる。
[0066] 第 13の発明によれば、第 1のファイバコリメータを入力ポート、第 3のファイバコリメ ータを出力ポート、第 2のファイバコリメータを分岐ポート、第 4のファイバコリメータを 挿入ポートとすることで、低損失な光波長合分波器として利用することができる。また 、各構成部品を共通基板上に固定し、部品間を光が空間伝搬する構成としているの で、無駄な部品を使わずに済み、必要最小限の体積で、光モジュールの低価格ィ匕 及び小型化を図ることができる。更に、この発明では、単一のモジュールに、光分波 用と光合波用の 2枚の波長選択フィルタを設けているので、合波のために波長選択 フィルタに向けて挿入する挿入光力 分波された分岐光に混入するといつたおそれ がない。
[0067] 第 14の発明によれば、単一のモジュールに、光分波用と光合波用の同一特性の 2 枚の波長選択フィルタを設けているので、第 1のファイバコリメータを入力ポート、第 3 のファイバコリメータを出力ポート、第 2のファイバコリメータを分岐ポート、第 4のフアイ ノコリメータを挿入ポートとすることで、低損失な 1チャンネル型の光波長合分波器と して利用することができる。 [0068] 第 15の発明によれば、第 1と第 2、第 3と第 4の位置決め溝をそれぞれ同一直線上 に形成したので、加工 '組み立てが容易である。
[0069] 第 16の発明によれば、第 1と第 2、第 3と第 4の位置決め溝を更に平行に形成した ので、一層の加工の容易化と精度の向上を図ることができる。
[0070] 第 17の発明によれば、最上流のファイバコリメータを入力ポート、最下流のファイバ コリメータを出力ポート、その他のファイバコリメータを分岐または挿入ポートとすること で、低損失な複数チャンネル型の光波長合分波器として利用することができる。また 、各構成部品を共通基板上に固定し、部品間を光が空間伝搬する構成としているの で、無駄な部品を使わずに済み、必要最小限の体積で、光モジュールの低価格ィ匕 及び小型化を図ることができる。更に、この発明では、単一のモジュールに、光分波 用と光合波用の 2枚の波長選択フィルタを組にして設けているので、合波のために波 長選択フィルタに向けて挿入する挿入光が、分波された分岐光に混入するといつた おそれがない。
[0071] 第 18の発明によれば、単一のモジュールに、各特定波長ごとの光分波用と光合波 用の 2枚の波長選択フィルタを設けているので、合波のために波長選択フィルタに向 けて挿入する挿入光が、分波された分岐光に混入するといつたおそれがない。
[0072] 第 19の発明によれば、すべての位置決め溝を平行に形成し、各位置決め溝にそ れぞれファイバコリメータを配置すればよいので、加工 '組み立てが容易である。
[0073] なお、第 20の発明のように、光路補正手段としては、ミラー、ジンバル機構を有した ミラー、全反射プリズム、屈折型プリズムの少なくともいずれかを使用することができる し、第 21の発明のように、位置決め溝として、通常使用する V溝以外に、丸溝、矩形 溝、楕円溝等も使用することができるし、第 22、第 23の発明のように、フィルタ機能を 有する光学素子として、波長選択フィルタの代わりに、入射される光の強度が波長に 対して均一でない場合にこの強度を平坦ィ匕するように光強度を補正する利得等化フ ィルタや入射される光の光量の一部分のみを取り出すためのフィルタ等を使用するこ とも可能である。
[0074] また、第 24の発明のように、第 7の発明の光モジュールと第 8の光モジュールを組 み合わせて 1チャンネル型の光波長合分波装置を構成することもできるし、第 25の発 明のように、第 11の発明の光モジュールと第 12の光モジュールを組み合わせて複数 チャンネル型の光波長合分波装置を構成することもできる。
発明を実施するための最良の形態
[0075] 以下、本発明の実施形態を図面に基づいて説明する。
まず、最も基本的な構成である第 1実施形態の光モジュール Aについて、図 1を参 照して説明する。
[0076] <光モジュール A (第 1実施形態) >
図 1に示す光モジュール Aは、第 1、第 2の 2組のファイバコリメータ 101、 102を、 1 枚の基板 50上に同一軸線上に位置するように形成した第 1、第 2の位置決め溝 61、 62内に対向配置すると共に、それらのファイバコリメータ 101、 102の対向面間にフィ ルタ機能を有した光学素子 70と光路補正板 80とを配置し、各部品間で光が空間伝 播するように構成したものである。
[0077] 基板 50の中央には、上面を左右両側よりも一段凹ませた光学素子配置面 (光学素 子配置スペース) 51が確保されており、その両側には、光学素子配置面 51よりもや や高いままに残されたコリメータ配置面 52、 53が確保されている。両側のコリメータ 配置面 52、 53は同一面内にあり、光学素子配置面 51とコリメータ配置面 52、 53は、 共に平坦な平行な平面として形成されている。そして、各コリメータ配置面 52、 53上 に、位置決め溝 61、 62として V溝が通しでカ卩ェされている。
[0078] なお、以降に述べる各実施形態においても、中央の光学素子配置面 51と、その両 側のコリメータ配置面 52、 53との関係は、寸法の違いこそあるものの、機能的には全 く同様のものである。従って、特に個別には説明しない。
[0079] この光モジュール Aは、外部入力用光ファイバ 1001から第 1のファイバコリメータ 1 01を通して入力された入力光を、フィルタ機能を有する光学素子 70でフィルタリング して、第 2のファイバコリメータ 102を通して外部出力用光ファイバ 1002に出力する 機能を有したモジュールであり、詳細は以下のように構成されて 、る。
[0080] まず、基板 50はガラス基板よりなり、 2つの位置決め溝 61、 62は、左右のコリメータ 配置面 52、 53の表面に同一軸線上に位置するように形成されている。この場合、 2 つの位置決め溝 61、 62は、同一直線上に位置することから、切り通しで加工されて いる。従って、容易に高い相互位置精度を確保することができる。
[0081] なお、ここで例示する位置決め溝 61、 62の断面形状は、主に V字型 (V溝)である から、以降においては、「位置決め溝」の代わりに「V溝」ということもある。位置決め溝 61、 62の断面形状のその他の例としては、半円型、 U型、矩形などが挙げられる。ま た、基板 50の材料は、ガラス以外に、シリコン、セラミック、金属、榭脂等であってもよ い。これらの点については、以降の各実施形態においても共通であり、特に断らない
[0082] 図 2、図 3は各ファイバコリメータ 101、 102の構成例を示している。
ファイバコリメータ 101、 102を構成する光ファイバ端末 110は、中心部のコア 11 la 及びその外周部のクラッド 11 lbを有する、 125 /z mの標準外径で、任意長さのシン ダルモード光ファイバ(SMF) 111の端面に、前記コア 11 laと同一の均一な屈折率 を有する材料よりなるコアレスファイバ(CLF) 112の一端面を融着接合し、そのコア レスファイバ 112の長さを 350 mに設定した上で、コアレスファイバ 112の他端面を 、光ファイバ 111の光軸と垂直な面に対して 0° に研削'研磨し、更に、これを光モジ ユールの実装で一般的に用いられる外径 1. 249mmの一芯フェルール 115に通し て接着固定し、反射防止膜を設けたものである。但し、これらの光ファイバ 111やフエ ルール 115などの寸法は上記に限られるものではない。
[0083] そして、光ファイバ端末 110の光軸上でコアレスファイバ 112の他端面側にコリメ一 タレンズ 120を配置することで、各ファイバコリメータ 101、 102が構成されている。
[0084] コリメータレンズ 120は、出光側に用いられた場合 (光ファイバ端末の直後に配置さ れる場合)は、光ファイバ端末 110から出射される拡散光を平行光に変換する役目を 果たし、受光側 (入光側)に用いられた場合 (光ファイバ端末の直前に配置される場 合)は、空間伝播してきた光を光ファイバ端末 110に結合する役目を果たすように設 計されたレンズである。この場合のコリメータレンズ 120は、ボールレンズの外周を円 筒形に削ったいわゆるドラム型レンズからなり、光ファイバ端末 110と光軸ずれが生じ ないように、フエノレ一ノレ 115との外形差 2 m以下、レンズ偏芯 1 μ m以下、焦点距離 2. 6mm、外径 1. 249mmとなるよう設計されている。
[0085] 但し、これらのコリメータレンズ 120としては、ドラム型レンズに限らず、球面レンズ、 非球面レンズ、ボールレンズ、及び屈折率分布レンズの出射側端面に曲面加工を施 したレンズ、少なくとも平行光を出射または入射される片面が光軸と垂直な平面となら ないレンズであれば、用いることができる。
[0086] 前記フィルタ機能を有した光学素子 70として、ここでは波長選択フィルタ(以降、断 らない限り同じ符号 70で示す)が用いられている。波長選択フィルタ 70は、入射光中 の特定波長の光のみを透過し他波長の光を反射する分波機能と、片面から入射され て透過する特定波長の光と他面力 入射されて反射する他波長の光を合波する合 波機能とを有するものである。
[0087] 波長選択フィルタ 70は、ガラスゃ榭脂等の透光性基板上に光学多層膜 (例:誘電 体多層膜)を形成し、光学多層膜の材料及び層構造によってフィルタ特性を発揮で きるようにしたものである。光学多層膜は、一般的に、屈折率の小さい材料と屈折率 の大きい材料を交互に積層した構造をなしている。寸法は、例えば、 1. 4 X 1. 4 X 1 . 2mmのものである。
[0088] 光路補正板 80は、両面に反射防止膜を施した平行平板のガラス基板で、材料'寸 法は、前記波長選択フィルタ 70の基板と概ね同様としてある。反射防止膜は、 0. 2 %以下の反射率に抑えるよう設計してある。
[0089] 対向するファイバコリメータ 101、 102の光路間に平行平板の波長選択フィルタ 70 を斜め挿入すると、光はガラス基板の厚みに依存して、元の光軸と平行に位置ずれ が発生する。このずれは、同様のガラス基板を用いて元の光軸に戻すことが可能で、 容易に低損失な結合を維持することができる。そのために、波長選択フィルタ 70と対 にして光路補正板 80を設けて 、る。
[0090] <光モジュール Aの製造手順 >
この光モジュール Aは、次のようにして製造することができる。図 1、図 2を用いて説 明する。
ここでは、 V溝 61、 62内に光ファイバ端末 110及びコリメータレンズ 120を別々に配 置して、ファイバコリメータ 101、 102を作製する場合の例について述べる。
[0091] この場合は、まず、 V溝 (位置決め溝) 61、 62を形成した基板 50を準備する。そし て、この基板 50の第 1の V溝 61内〖こ、光ファイバ端末 110及びコリメータレンズ 120 を配置し調整して、先に片方の第 1のファイバコリメータ 101を作製する。
[0092] その手順として、まず、第 1の V溝 61内に配置した光ファイバ端末 110またはコリメ ータレンズ 120のうちの片方を V溝 61に先に固定する。次に、予め設定したコリメート 状態になるように両者の距離を設定した上で、他方 (先に固定していない方)を固定 する。
[0093] この位置関係の設定は、光ファイバ端末 110に光を入力し、コリメータレンズ 120を 通ったコリメート光を、予め作製されたコリメータで結合し調整する方法を用いる。この 際、調整する部材 (後から固定する光ファイバ端末 110またはコリメータレンズ 120) は、 V溝 61に沿って 1軸方向に位置決めするだけでよいから、調整が簡単にできる。 なお、この距離設定は、遠方にディテクタを置いて調整する方法、両者の距離を画像 認識する方法、レンズから指定距離に置いたミラーの反射光をサーキユレータを用い てモニターし調整する方法、などを用いて行うこともできる。
[0094] 次に、対向するもう一方の第 2の V溝 62に、同じように光ファイバ端末 110及びコリ メータ 120を配置し調整して、第 2のファイバコリメータ 102を作製する。この場合も、 光ファイバ端末 110またはコリメータレンズ 120のうちの片方を V溝 62に先に固定し、 両者の距離をコリメート状態を確認しながら調整した上で、もう一方を後から固定して 、第 2のファイバコリメータ 102を作製する。
[0095] その距離の調整の際に、先に作製してある第 1のファイバコリメータ 101を利用する ことができる。即ち、第 1のファイバコリメータ 101を通して光を入力し、第 1のファイバ コリメータ 101から出射される平行光を、第 2の V溝 62内のコリメータレンズ 120を通 して光ファイバ端末 110に結合させる。そして、コリメータレンズ 120を通して光フアイ バ端末 110が受光した際の受光光量を測定することによって、コリメート状態を確認 しながら、第 2の V溝 62内の光ファイバ端末 110とコリメータレンズ 120の距離を調整 し固定する。この調整も、 V溝 62に沿って 1軸の位置決めをするだけでよいので、簡 単に行うことができる。
[0096] 次に、第 1のファイバコリメータ 101と第 2のファイバコリメータ 102の光路上に位置 するように波長選択フィルタ 70を配置すると共に、波長選択フィルタ 70と第 2のフアイ ノコリメータ 102の間に光路補正板 80を配置し、光モジュール Aを完成させる。 [0097] このように、先端にコアレスファイバ 112を配することで光軸ずれを少なくし且つ十 分な反射減衰量を実現できるようにした光ファイバ端末 110とコリメータレンズ 120を 組み合わせてファイバコリメータ 101、 102を構成し、そのファイバコリメータ 101、 10 2を、同一軸線上に位置するように 1枚の基板 50上に形成した V溝 (位置決め溝) 61 、 62に配置したので、ファイバコリメータ 101、 102間で容易に高効率の光結合を得 ることがでさる。
[0098] し力も、両フアイバコリメータ 101、 102間の光路上に、フィルタ機能を有した光学素 子 70を配置したので、入力光に所望のフィルタリングを施した出力光を低損失で得 ることができる。また、各構成部品を共通の基板 50上に配置固定し、部品間を光が 空間伝搬する構成としているので、無駄な光伝送部品を使わずに済み、必要最小限 の体積で、光モジュール Aの低価格ィ匕及び小型化を図ることができる。
[0099] なお、上記の例では、ファイバコリメータ 101、 102を、光ファイバ端末 110とコリメ一 タレンズ 120を V溝 61、 62内に直接に配置することで構成した場合を示した力 図 3 に示すように、光ファイバ端末 110とコリメータレンズ 120をガラス管 116内に配置す ることで、予めファイバコリメータ 101、 102を単体の光部品として構成しておき、その ファイバコリメータ 101、 102のガラス管 116を V溝 61、 62内に配置してもよい。
[0100] 前者は、部品点数が少なく低コストィ匕が可能であるというメリットが得られ、後者は、 容易な組み立てが可能であるというメリットが得られる。
[0101] また、上記の例では、フィルタ機能を有する光学素子 70として、波長選択フィルタを 使用する場合を示した力 別のフィルタ、例えば、入射される光の強度が波長に対し て均一でな!、場合にこの強度を平坦ィ匕するように光強度を補正する利得等化フィル タゃ、入射される光の光量の一部分のみを取り出すためのフィルタで置き換えること ちでさる。
[0102] <シリーズ B及びシリーズ Cについて >
次に、光波長分波装置または光波長分波装置としての利用を想定した光モジユー ルのシリーズ B及びシリーズ Cについて説明する。シリーズ Bは、 V溝をすベて基板 5 0上の同一平面内に互いに平行に形成したタイプ、シリーズ Cは、 V溝のいくつかは 互いに平行に形成するのもの、残りのいくつかは、平行ではない角度に形成したタイ プである。
[0103] シリーズ Bのように基板 50上に V溝を平行に形成すると、溝加工の際の精度出しが 容易になる利点があるが、光の進行方向を曲げる必要が当然出てくる可能性がある ので、光路補正手段 (ミラーやプリズム)が必要となる。一方、平行にとらわれずに V 溝加工を行う場合は、溝加工時の精度出しに手間が力かる可能性があるが、後段で の光路補正の必要性がなくなる利点がある。
[0104] くシリーズ Bの光モジュールについて >
まず、シリーズ Bについて説明する。
シリーズ Bでは、 V溝をすベて基板 50上の同一平面内に平行に形成してあり、単体 の光モジュール B (B1、 B2、 B3)は、光波長分波装置または光波長分波装置のどち らか一方に専用に使用されることを想定して作られている。
[0105] ここではシリーズ Bのタイプとして、 1チャンネル(ch)用の光モジュール Bl、 2チャン ネル(ch)用の光モジュール B2、 4チャンネル(ch)用の光モジュール B3の各例につ いて順番に説明する。これらの光モジュールは、それぞれ本発明の第 2実施形態、 第 3実施形態、第 4実施形態として挙げる。
[0106] <光モジュール B1 (第 2実施形態) >
まず、図 4及び図 5を用いて、最も基本的な lch用の光モジュール B1について説明 する。
この光モジュール B1は、第 1、第 2の 2組のファイバコリメータ 101、 102を、 1枚の 基板 50上に同一軸線上に位置するように形成した第 1、第 2の位置決め溝 (V溝) 61 、 62内に対向配置すると共に、それらのファイバコリメータ 101、 102の対向面間に 波長選択フィルタ 70と光路補正板 80とを配置し、更に、第 1のファイバコリメータ 101 から入射され波長選択フィルタ 70で反射される反射光の進路に、第 1、第 2のフアイ バコリメータ 101、 102と同様の構成を持つ第 3のファイバコリメータ 103を配置し、そ の第 3のファイバコリメータ 103を、基板 50上の第 1、第 2の位置決め溝 61、 62と同一 平面上に形成した第 3の位置決め溝 (V溝) 63に配置して位置決めし、各部品間で 光が空間伝播するように構成したことを特徴として 、る。
[0107] 第 3の V溝 63は、第 1、第 2の V溝 61、 62と平行に形成されており、第 3の V溝 63に 配置した第 3のファイバコリメータ 103と波長選択フィルタ 70との間には、第 1のフアイ バコリメータ 101と第 3のファイバコリメータ 103との間で波長選択フィルタ 70による反 射光が相互に結合するように、光路補正手段としてのミラー 90が配置されて 、る。
[0108] ここで、各ファイバコリメータ 101— 103の構成、基板 50の構成、波長選択フィルタ 70の構成、光路補正板 80の構成は、主として基板 50の寸法的な違いを除き、図 1 に示したものとそれぞれ同様のものであるので、それらの説明は省略する。
[0109] 本実施形態において使用されている光路補正手段としてのミラー 90は、光路を変 更すると共に、部品の外形精度によって生じる光軸ずれ及び部品通過時の光軸ず れを補正するためのものである。従って、ジンバル (Gimbal)機構を有したミラー力 そ れに準じた調整機構を持つミラーを用いるのが好ま 、。ジンバル機構を有したミラ 一とは、ミラーの 1点(通常中心)を回転中心として、その傾きが調整可能なミラーをい
[0110] これらのミラー 90としては、反射率や耐久性に優れて!/、る点から、アルミニウムや金 等の金属ミラーを用いるのが好適であり、ここでは、サイズ 2 X 5 X 1mmのガラス基板 にアルミニウム及びフッ化マグネシウムの膜を付カ卩したミラーを用いている。また、この 光路補正手段としては、反射ミラーだけでなぐ楔型プリズムを用いることもできる。楔 形プリズムの場合、屈折あるいは全反射によって光路を曲げることが可能であり、光 路補正を行うことができる。
[0111] <光モジュール B1の製造手順 >
この光モジュール B1は、次のようにして製造することができる。
まず、第 1、第 2の V溝 61、 62を同一軸線上に形成し、更に第 1の V溝 61と平行に 第 3の V溝 63を形成した基板 50を準備する。但し、第 3の V溝 63は、第 1の V溝 61と 同じ側に形成する。次いで、前記光モジュール Aの場合と同様に、ファイバ端末 110 及びコリメータレンズ 120をそれぞれ第 1、第 2の V溝 61、 62に配置して位置調整す ることにより、第 1、第 2のファイバコリメータ 101、 102を作製する。
[0112] 次に、第 1のファイバコリメータ 101と第 2のファイバコリメータ 102間の光路上に、予 め設計した角度で波長選択フィルタ 70を配置すると共に、波長選択フィルタ 70と第 2 のファイバコリメータ 102との間に光路補正板 80を、波長選択フィルタ 70と対称とな る角度で配置する。
[0113] 次に、第 3の V溝 63に光ファイバ端末 110及びコリメータレンズ 120を配置して、第 3のファイバコリメータ 103を仮組みする。そして、第 3のファイバコリメータ 103の前に 光路補正手段としてのミラー 90を配置し、その状態で、第 1のファイバコリメータ 101 に、波長選択フィルタ 70で反射する波長の光を入力し、波長選択フィルタ 70で反射 されミラー 90を介して第 3のファイバコリメータ 103に結合される光量を見ながら、ミラ 一 90の位置と向き、及び、第 3のファイバコリメータ 103を構成する光ファイバ端末 11 0とコリメータレンズ 120間の距離を決定し固定する。これにより、光モジュール B1が 得られる。
[0114] この光モジュール B1では、波長選択フィルタ 70で反射される反射光の進路に、第 1、第 2のファイバコリメータ 101、 102と同一平面上に並ぶ第 3のファイバコリメータ 1 03を配置したので、第 1一第 3のファイバコリメータ 101— 103間で容易に高効率の 光結合を得ることができる。また、第 1、第 3のファイバコリメータ 101、 103を入出力ポ ートとし、第 2のファイバコリメータ 102を分岐挿入ポートとすることで、容易に低損失 な 1チャンネル型の光分波器または光合波器を構成することができる。
[0115] 特に、この場合、単一のモジュール B1は、光分波または光合波のどちらか専用とし て利用することになるから、合波のために波長選択フィルタ 70に向けて挿入する挿 入光が、分波された分岐光に僅かながらも反射して混入するといつたおそれがない。
[0116] 次に、この光モジュール B1を、 lch用の光波長分波装置または光波長合波装置と して使用する場合について図 5を用いて説明する。
[0117] <光モジュール B 1を光波長分波装置として使用する場合 >
この光モジュール B1を光波長分波装置として使用する場合は、図 5 (a)に示すよう に、第 1のファイバコリメータ 101の光ファイバ端末 110を、外部の入力用光伝送路 1 001から伝送されてくる波長多重光( λ 1を含む光)を波長選択フィルタ 70に対し入 力光として入射させる入力用端末 (In)とし、第 2のファイバコリメータ 102の光フアイ バ端末 110を、波長選択フィルタ 70に入射され透過した特定波長 λ 1の透過光を外 部の分岐用光伝送路 1002に取り出すための分岐用端末 (Drop)とし、第 3のフアイ ノ コリメータ 103の光ファイバ端末 110を、波長選択フィルタ 70に入射され反射した 特定波長 λ ΐ以外の光を外部の出力用光伝送路 1003へ送り出すための出力用端 末 (Out)として利用する。こうすることで、波長多重光を分波する機能 (ここでは特定 波長 λ 1の光を取り出す機能)を発揮する。
[0118] <光モジュール Β 1を光波長合波装置として使用する場合 >
一方、この光モジュール B1を、光波長合波装置として使用する場合は、図 5 (b)に 示すように、第 3のファイバコリメータ 103の光ファイバ端末 110を、外部の入力用光 伝送路 1003から伝送されてくる特定波長 λ 1以外の光を波長選択フィルタ 70の表 面に対し入力光として入射させる入力用端末 (In)とし、第 2のファイバコリメータ 102 の光ファイバ端末 110を、外部の挿入用光伝送路 1002から送られてくる特定波長 λ 1の挿入光を波長選択フィルタ 70の裏面に対し挿入光として入射させる挿入用端末 (Add)とし、第 1のファイバコリメータ 103の光ファイバ端末 110を、波長選択フィルタ 70にて反射する入力光と透過する挿入光との合波光を外部の出力用光伝送路 100 1へ伝送するための出力用端末 (Out)として利用する。こうすることで、異なる波長の 光を合波する機能 (ここでは特定波長 λ 1を挿入し合波する機能)を発揮する。
[0119] 以上のように、本実施形態の光モジュール B1は、単体部品で、光分波装置または 光合波装置の一方の専用器として使用することもできる。
[0120] <光モジュール Β2 (第 3実施形態)、光モジュール Β3 (第 4実施形態) >
次に、図 6—図 9を用いて、 2ch以上用(2ch用と 4ch用)の光モジュール Β2、 Β3に ついて説明する。図 6及び図 7は 2ch用の光モジュール Β2を示し、図 8及び図 9は 4c h用の光モジュール B3を示している。 2ch以上用の光モジュール B2、 B3は、基本的 に次に述べるように構成されている。なお、 2ch用の光モジュール B2は、 4ch用の光 モジュール B3に基本的な構成が含まれているので、ここでは、 4ch用の光モジユー ル B3について先に述べる。
[0121] まず、図 8に示す 4ch用の光モジュール B3は、入射光の中の特定波長の光のみを 透過し他波長の光を反射する分波機能と、片面から入射されて透過する特定波長の 透過光と他面から入射されて反射する他波長の反射光を合波する合波機能とを有 する波長選択フィルタ 71— 74を、特定波長を異ならせて 4個装備しており、これら 4 個の波長選択フィルタ 71— 74を、光の進行方向の上流側から下流側に向かって順 番に波長選択フィルタ 71— 74の反射光が入射するように配置して 、る。
[0122] そして、ここでは分波の場合の光の進行方向にっ 、て述べる力 最上流の波長選 択フィルタ 71への入射光の光路上と、各波長選択フィルタ 71— 74の透過光の光路 上と、最下流の波長選択フィルタ 74の反射光の光路上と、にそれぞれコリメータを配 置している。
[0123] 各コリメータとしては、図 1一図 4にて説明したものと全く同様のファイバコリメータ 10 1一 106を使用している。これらファイバコリメータ 101— 106は、光の合分波順序に 従って、 1枚の共通の基板 50の一方側と他方側に交互に、且つ、波長選択フィルタ 7 1一 74を含む光学素子の配置スペース (光学素子配置面 51)を挟んで対向配置し ている。
[0124] そして、各ファイバコリメータ 101— 106を、基板 50のコリメータ配置面 52、 53上の 同一面内に形成した V溝 61— 66内にそれぞれ配置して位置決めし、更に基板 50の 一方側と他方側で波長選択フィルタ 71— 74を介して対向する関係にあるファイバコ リメータのいくつかの組 (本例では、第 1、第 2のファイバコリメータ 101と 102、 103と 1 06)を、同一軸線上に形成した V溝 61、 62及び V溝 63、 66に配置している。この場 合、すべての V溝 61— 66は互いに平行に形成してある。また、 V溝 61— 66を平行 に形成することで光路補正の生じた箇所には、光路補正用のミラー 91、 92を配置し ている。また、波長選択フィルタ 71— 74の配置により各ファイバコリメータ 101— 106 への光路補正の生じた箇所、本図示例の場合、波長選択フィルタ 71、 73を配置した 光路上には、波長選択フィルタ 71、 73と対称な角度で光路補正板 81, 82を配置し ている。
[0125] なお、各ファイバコリメータ 101— 106の構成、基板 50の構成、波長選択フィルタ 7 0の構成、光路補正板 80の構成は、主として基板 50の寸法的な違いを除き、図 1に 示したものとそれぞれ同様のものであるので、ここでは説明を省略する。
[0126] また、 2ch用の光モジュール B2は、上述した 4ch用の光モジュール B3の構成から 、第 5、第 6の V溝 65、 66、第 5、第 6のファイノ コリメータ 105、 106、波長選択フィル タ 73、 74、光路補正板 82、ミラー 92を取り除いた構成をなしている。
[0127] <光モジュール B3 (B2含む)の製造手順 > 前記 4ch用の光モジュール B3は、次のようにして製造することができる。
まず、第 1、第 2の V溝 61、 62及び第 3、第 6の V溝 63、 66をそれぞれ同一軸線上 に且つ互いに平行に形成し、更に、第 3の V溝 63と平行に第 5の V溝 65を形成し、 第 2、第 6の V溝 62、 66との間にそれらと平行に第 4の V溝 64を形成した基板 50を準 備する。基板 50の中央部には、左右のコリメータ配置面 52、 53より一段凹んだ光学 素子配置面 51を形成してある。
[0128] この場合の基板 50の寸法は 40 X 14 X 3mmであり、左右幅 9mmのコリメータ配置 面 52、 53上に間隔的に 3本ずつ、計 6本の V溝 61— 66をそれぞれ平行且つ同じ深 さに切ってある。また、中央の光学素子配置面 51は、幅 21mmに平面研削してある 。ここでは、対向する V溝 61、 62及び V溝 63、 66は切り通しでカ卩ェすることが可能で あるため、容易に高精度な加工が可能である。
[0129] 基板 50を準備したら、次に、前記光モジュール A (図 1参照)の場合と同様に、光フ アイバ端末 110及びコリメータレンズ 120をそれぞれ第 1、第 2の V溝 61、 62に配置し て位置調整することにより、第 1、第 2のファイバコリメータ 101、 102を作製する。次い で、第 1のファイバコリメータ 101と第 2のファイバコリメータ 102間の光路上に、予め 設計した角度で第 1の波長選択フィルタ 71を配置すると共に、第 1の波長選択フィル タ 71と第 2のファイバコリメータ 102との間に、第 1の波長選択フィルタ 71による光路 ずれを補正する光路補正板 81を、第 1の波長選択フィルタ 71と対称な角度で配置 する。
[0130] 次に、第 1の V溝 61に隣接する第 3の V溝 63に、光ファイバ端末 110及びコリメータ レンズ 120を配置して第 3のファイバコリメータ 103を仮組みすると共に、第 4の V溝 6 4にファイバ端末 110及びコリメータレンズ 120を配置して第 4のファイバコリメータ 10 4を仮組みする。また、第 1の波長選択フィルタ 71で反射された反射光の光軸と第 4 の V溝 64の軸線の延長線とが交差する点に、第 2の波長選択フィルタ 72を配置し、 第 4のファイバコリメータ 104に、第 1の波長選択フィルタ 71、第 2の波長選択フィルタ 72を次々に反射した光が入射するようにする。
[0131] 次に、第 1のファイバコリメータ 101に、第 1、第 2の波長選択フィルタ 71、 72で共に 反射する波長の光を入力し、波長選択フィルタ 71、 72を経由して第 4のファイバコリ メータ 104の光ファイバ端末 110に結合する光量を見ながら、第 2の波長選択フィル タ 72の位置と向き、第 4のファイバコリメータ 104を構成する光ファイバ端末 110とコリ メータレンズ 120の距離を決定し固定する。
[0132] 次に、第 3のファイバコリメータ 103の前にミラー 91を配置し、その状態で第 1のファ ィバコリメータ 101に、第 1の波長選択フィルタ 71で反射し且つ第 2の波長選択フィル タ 72を透過する波長の光を入力し、第 1の波長選択フィルタ 71で反射され、第 2の波 長選択フィルタ 72を透過し、ミラー 91を介して第 3のファイバコリメータ 103に結合さ れる光量を見ながら、ミラー 91の位置と向き、及び、第 3のファイバコリメータ 103を構 成するファイバ端末 110とコリメータレンズ 120の距離を決定し固定する。
[0133] ここまでの工程で図 6の 2ch用の光モジュール B2はできあがるので、 2ch用の光モ ジュール B2を作る場合は、ここまでの工程で終了する。 4ch用の光モジュール B3を 作る場合は、更に以降の工程を続ける。
[0134] 4ch用の光モジュール B3を作る場合は、前記の工程に続けて、第 2の波長選択フ ィルタ 72で反射して第 4のファイバコリメータ 104に入射する光路上に、予め設計した 角度で第 3の波長選択フィルタ 73を配置し、第 3の波長選択フィルタ 73と第 4のファ ィバコリメータ 104との間に、第 3の波長選択フィルタ 73による光路ずれを補正する 光路補正板 82を、第 3の波長選択フィルタ 73と対称な角度で配置する。
[0135] 次に、第 5の V溝 65にファイバ端末 110及びコリメータレンズ 120を配置して第 5の ファイバコリメータ 105を仮組みすると共に、第 6の V溝 66にファイバ端末 110及びコ リメータレンズ 120を配置して第 6のファイバコリメータ 106を仮組みする。また、第 3 の波長選択フィルタ 73で反射された反射光の光軸と第 6の V溝 66の軸線の延長線と が交差する点に、第 4の波長選択フィルタ 74を配置し、第 6のファイバコリメータ 106 に、第 1の波長選択フィルタ 71、第 2の波長選択フィルタ 72、第 3の波長選択フィルタ 73、第 4の波長選択フィルタ 74を次々に反射した光が入射するようにする。
[0136] 次に、第 1のファイバコリメータ 101に、第 1、第 2、第 3、第 4の波長選択フィルタ 71 、 72、 73、 74で共に反射する波長の光を入力し、波長選択フィルタ 71、 72、 73、 74 を順次反射して第 6のファイバコリメータ 106の光ファイバ端末 110に結合する光量を 見ながら、第 4の波長選択フィルタ 74の位置と向き、第 6のファイバコリメータ 106を 構成する光ファイバ端末 110とコリメータレンズ 120の距離を決定し固定する。
[0137] 次に、第 5のファイバコリメータ 105の前にミラー 92を配置し、その状態で第 1のファ ィバコリメータ 101に、第 1、第 2、第 3の波長選択フィルタ 71、 72、 73で共に反射し、 第 4の波長選択フィルタ 74を透過する波長の光を入力し、第 1、第 2、第 3の波長選 択フィルタ 71、 72、 73で次々に反射され、第 4の波長選択フィルタ 74を透過し、ミラ 一 92を介して第 5のファイバコリメータ 105に結合される光量を見ながら、ミラー 92の 位置と向き、及び、第 5のファイバコリメータ 105を構成する光ファイバ端末 110とコリ メータレンズ 120の距離を決定し固定する。これにより、光モジュール B3が完成する
[0138] 以上においては、 2ch、 4ch用の光モジュール B2、 B3を製造する場合について述 ベたが、 4chを超える ch数を持つ光モジュールについても、同様の手順を繰り返すこ とにより、容易に製造することができる。
[0139] なお、上記において使用する波長選択フィルタ 71— 74の例としては、例えば、寸 法 1. 4 X 1. 4 X 1. 2mmで、それぞれ波長 1511、 1531、 1551、 1571nmの光を 透過し、それ以外の波長を反射するように設計された波長選択フィルタ (WDMフィ ルタ)を挙げることができる。
[0140] また、光路補正板 81、 82の例としては、両面に反射防止膜を施した平行平板のガ ラス基板で、材料、寸法を、その直前に配置した波長選択フィルタの基板と概ね同じ くし、 1450— 1650nmの波長の光を 0. 2%以下の反射率に抑えるように設計された ものを挙げることができる。
[0141] また、光路補正用のミラー 91、 92の例としては、反射率や耐久性に優れている点 から、アルミニウムや金等の金属ミラーを用いるのが好適であり、サイズ 2 X 5 X 1mm でガラス基板にアルミニウム及びフッ化マグネシウムの膜を付加したミラーを挙げるこ とがでさる。
[0142] これらの 2ch用以上の光モジュール B2、 B3は、複数チャンネル型の光分波器また は光合波器として利用することができる。しかも、通常は 1チャンネル型の合分波器を 複数連結することで作製していた複数波長合分波器を、同一基板上にコリメータや 波長選択フィルタ等の各構成部品を集積配備し、部品間を光が空間伝搬するものと して構成しているので、無駄な部品を使わずに、必要最小限の体積で、容易に小型 且つ低損失な光波長合分波器を得ることができる。
[0143] また、各コリメータとして、先端にコアレスファイバを配することで光軸ずれを少なくし 且つ十分な反射減衰量を実現できるようにした光ファイバ端末とコリメータレンズの組 み合わせよりなるファイバコリメータ 101— 106を使用しているので、組み立てが容易 であり、各ファイバコリメータ 101— 106間で高効率の光結合を得ることができ、低損 失な光合分波器を得るのに適した複数チャンネル型の光モジュールを提供すること ができる。
[0144] 特に、この場合、単一の光モジュール B2、 B3は、光分波または光合波のどちらか 専用として利用することになるから、合波のために波長選択フィルタに向けて挿入す る挿入光が、波長選択フィルタで僅かながら反射した結果、分波された分岐光に混 入すると 、つたおそれもな 、。
[0145] 次に、これらの光モジュール Β2·Β3を、 2ch'4ch用の光波長分波装置として使用 する場合につ 、て図 7 (a)、図 9 (a)を用いて説明する。
[0146] <光モジュール B2を光波長分波装置として使用する場合 >
まず、 2ch用の光モジュール B2を光波長分波装置として使用する場合について説 明する。
この場合は、図 7 (a)に示すように、光の進行方向の最上流の第 1のファイバコリメ一 タ 101を、外部の入力用光伝送路 1001から伝送されてくる波長多重光 (波長え 1、 λ 2を含む)を最上流の波長選択フィルタ 71に対し入力光として入射させる入力光用 コリメータ (In)とし、最下流の第 4のファイバコリメータ 104を、最下流の波長選択フィ ルタ 72で反射した光を外部の出力用光伝送路 1004へ送り出すための出力用コリメ ータ(Out)とし、それ以外の第 2、第 3のファイバコリメータ 102、 103を、各波長選択 フィルタ 71、 72で透過した光(それぞれ波長え 1、 λ 2の光)を外部の伝送路 1002、 1003へ取り出すための分岐光用コリメータ(Drop)として利用する。こうすることで、 波長多重光を順次分波 (波長 λ 1、え 2の光信号を分波)する機能を発揮することが できる。
[0147] <光モジュール Β3を光波長分波装置として使用する場合 > 次に、 4ch用の光モジュール B3を光波長分波装置として使用する場合について説 明する。
この場合は、図 9 (a)に示すように、光の進行方向の最上流の第 1のファイバコリメ一 タ 101を、外部の入力用光伝送路 1001から伝送されてくる波長多重光 (波長 λ 1— λ 4を含む)を最上流の波長選択フィルタ 71に対し入力光として入射させる入力光用 コリメータ (In)とし、最下流の第 6のファイバコリメータ 106を、最下流の波長選択フィ ルタ 74で反射した光を外部の出力用光伝送路 1006へ送り出すための出力用コリメ ータ(Out)とし、それ以外の第 2—第 5のファイバコリメータ 102— 105を、各波長選 択フィルタ 71— 74で透過した光(それぞれ波長 λ 1—え 4の光)を外部の伝送路 10 02— 1005に取り出すための分岐光用コリメータ(Drop)として利用する。こうすること で、波長多重光を順次分波 (波長 λ 1— λ 4の光信号を分波)する機能を発揮するこ とがでさる。
[0148] 例を述べると、波長 λ 1 = 1511、 λ 2= 1531、 λ 3 = 1551、 λ 4= 1571、 λ 5 = 1591nmを含む波長多重信号が入出力用の第 1のファイバコリメータ 101の光フアイ バ端末 110に入力された場合、 λ l = 1511nmの波長の光のみが第 1の波長選択フ ィルタ 71を透過して、分岐用の第 2のファイバコリメータ 102の光ファイバ端末 110に 結合される。また、その他の波長え 2= 1531、 3 = 1551、 4= 1571、 5 = 15 91nmの光は、第 2の波長選択フィルタ 72に向けて反射される。
[0149] 同様に、第 2の波長選択フィルタ 72では、 λ 2 = 1531nmの波長の光のみが透過 して、分岐用の第 3のファイバコリメータ 103の光ファイバ端末 110に結合され、その 他の波長え 3 = 1551、 λ 4= 1571、 λ 5 = 1591nmの光は、第 3の波長選択フィル タ 74に向けて反射される。
[0150] 第 3の波長選択フィルタ 73では、 3 = 1551nmの波長の光のみが透過して、分 岐用の第 4のファイバコリメータ 104の光ファイバ端末 110に結合され、その他の波長 14= 1571, 5 = 1591nmの光は、第 4の波長選択フィルタ 74に向けて反射され る。
[0151] 第 4の波長選択フィルタ 74では、 4= 1571nmの波長の光のみが透過して、分 岐用の第 5のファイバコリメータ 105の光ファイバ端末 110に結合され、その他の波長 λ 5 = 1591nmの光は出力用の第 6のファイバコリメータ 106に向けて反射される。こ れにより、各波長の光が順次分波される。
[0152] 実際に、光源として波長可変レーザを用いて第 1のファイバコリメータ 101の光ファ イノく端末 110【こ波長 1511、 1531、 1551、 1571、 1591nmの波長多重光を人力し
、分波されて各ファイバコリメータ 102— 106の光ファイバ端末 110に出射されるそれ ぞれの波長の光強度を測定することで挿入損失を求めたところ、全てのチャンネルで
0. 6dB以下の挿入損失となった。
[0153] また、一般的に用いられる内蔵光源力もの出射端をターミネーシヨンした場合の戻 り光と、測定物をファイバ端につないだ時の戻り光を比較する方式の反射減衰量測 定機を用いて、波長 1550nmの光で各ファイバ端末の反射減衰量を測定したところ
、全てのファイバ端末で一般的に光モジュールで要求される 50dB以上であった。
[0154] 以上のように、本発明の実施形態により、 40x14mmと小型な基板を使用し、容易 な位置決めによる組み立てを行うだけで、十分な反射減衰量を満たしながら低挿入 損失を実現し得る光分波装置を得ることができる。
[0155] 次に、光モジュール Β2·Β3を、 2ch'4ch用の光波長合波装置として使用する場合 について、図 7 (b)、図 9 (b)を用いて説明する。
[0156] <光モジュール B2を光波長合波装置として使用する場合 >
まず、 2ch用の光モジュール B2を光波長合波装置として使用する場合について説 明する。
この場合は、図 7 (b)に示すように、合波するときの光の進行方向の最上流の第 4の ファイバコリメータ 104を、外部の入力用光伝送路 1004から伝送されてくる光を最上 流の第 2の波長選択フィルタ 72の表面に対し入力光として入射させる入力光用コリメ ータ (In)とし、最下流の第 1のファイバコリメータ 101を、最下流の第 1の波長選択フ ィルタ 71で反射する反射光と透過する挿入光との合波光を外部の出力用光伝送路 1001へ伝送する出力光用コリメータ (Out)とし、それ以外の第 3、第 2のファイバコリ メータ 103、 102を、外部の挿入光用伝送路 1003、 1002から各波長選択フィルタ 7 2、 71の裏面に対し各フィルタ 71、 72ごとの特定の波長帯域え 2、 λ 1の挿入光を入 射させる挿入光用コリメータ (Add)として利用する。こうすることで、異なる波長の光( 波長 λ 1、 え 2の光)を順次合波する機能を発揮することができる。
[0157] <光モジュール Β3を光波長合波装置として使用する場合 >
次に、 4ch用の光モジュール Β3を光波長合波装置として使用する場合について説 明する。
この場合は、図 9 (b)に示すように、合波するときの光の進行方向の最上流の第 6の ファイバコリメータ 106を、外部の入力用光伝送路 1006から伝送されてくる光を最上 流の第 4の波長選択フィルタ 74の表面に対し入力光として入射させる入力光用コリメ ータ (In)とし、最下流の第 1のファイバコリメータ 101を、最下流の第 1の波長選択フ ィルタ 71で反射する反射光と透過する挿入光との合波光を外部の出力用光伝送路 1001へ伝送する出力光用コリメータ (Out)とし、それ以外の第 5、 4、 3、 2のファイバ コジメータ 105、 104、 103、 102を、外部の挿入光用伝送路 1005、 1004、 1003、 1 002力ら各波長選択フイノレタ 74、 73、 72、 71の裏面に対し各フイノレタ 74、 73、 72、 71ごとの特定の波長帯域え 4、 λ 3、 λ 2、 λ 1の挿入光を入射させる挿入光用コリメ ータ (Add)として利用する。こうすることで、異なる波長の光 (波長 λ 1—え 4の光)を 順次合波する機能を発揮することができる。
[0158] 例を挙げると、今、波長 λ 1 = 1511、 λ 2= 1531、 λ 3 = 1551、 λ 4= 1571、 λ 5 = 1591nmの光が入力用及び順次揷入用のファイバコリメータ 106— 102に入力 された場合、第 4の波長選択フィルタ 74において波長え 4= 1571、 5 = 1591nm の光が合波され、第 3の波長選択フィルタ 73において波長え 3 = 1551、 14= 157 1、 5 = 1591nmの光が合波され、第 2の波長選択フィルタ 72において波長え 2 = 1531、 λ 3 = 1551、 λ 4= 1571、 λ 5 = 1591nmの光力合波され、第 1の波長選 択フイノレタ 71【こお!ヽて波長 λ 1 = 1511、 2= 1531、 3 = 1551、 4= 1571、 λ 5 = 1591nmの光が合波される。そして、第 1の波長選択フィルタ 71から出た波長 多重光(λ 1—え 5)が、入出力用のファイバコリメータ 101の光ファイバ端末 110に 結合されて、外部の出力用光伝送路 1001に伝送される。
[0159] 以上のように、本発明の実施形態の光モジュール Β2、 Β3は、光分波装置として使 用することもできるし、光合波装置として使用することもできる。この場合の挿入損失 や反射減衰量も当然前記光分波装置として用 ヽた場合と同様である。 [0160] また、これらの光モジュール B2、 B3では、基板 50上に各部品を配置して部品間を 光が空間伝播するように構成して 、るので、従来のように複数のフィルタモジュール を用い、フィルタモジュール間を光ファイバで接続するタイプの光分波装置あるいは 光合波装置と比較して、低損失で小型及び低価格の光分波装置あるいは光合波装 置を得ることができる。特にチャンネル数が多くなればなるほど、本実施形態の光モ ジュールは有利さを発揮できる。上記の例では、 2ch、 4chまでのモジュールについ て示したが、より多チャンネルのモジュールを構成する場合も、以上の繰り返しとして 発展させることができる。
[0161] くシリーズ Cの光モジュールについて >
次に、シリーズ Cの光モジュールについて説明する。
図 10—図 12に示すシリーズ Cの光モジュール C1一 C3では、第 1の V溝 61と同じ 側にある第 3の V溝 63と第 5の V溝 65だけを、第 1の V溝 61と平行ではない所定の角 度で形成してある。その他の構成は、 Bシリーズの光モジュール B1— B3とそれぞれ 対応しているので、細かな説明は省略する。
[0162] <光モジュール C1 (第 5実施形態)について >
図 10の lch用の光モジュール C1の特徴点は、第 1のファイバコリメータ 101から入 射され波長選択フィルタ 70で反射された反射光の進行方向の直線上に第 3のフアイ ノ コリメータ 103が位置するような角度で、第 3の V溝 63を形成していることである。こ うすることにより、光路を曲げる必要がなくなるので、光路補正手段であるミラー(図 4 参照)を省略できる。
[0163] <光モジュール C2 (第 6実施形態)につ 、て >
図 11の 2ch用の光モジュール C2の特徴点は、第 1のファイバコリメータ 101から入 射され第 1の波長選択フィルタ 71で反射された反射光の進行方向の直線上に第 3の ファイバコリメータ 103が位置するような角度で、第 3の V溝 63を形成していること、及 び、第 1の波長選択フィルタ 71と第 3のファイバコリメータ 103の間の光路上に第 2の 波長選択フィルタ 72を配置して 、る関係から、第 3のファイバコリメータ 103と第 2の 波長選択フィルタ 72との間に、ミラーではなぐ第 2の波長選択フィルタ 72による光路 ずれを補正する光路補正板 82を配置していることである。 [0164] <光モジュール C3 (第 7実施形態)について >
図 12の 4ch用の光モジュール C3の特徴点は、第 1のファイバコリメータ 101から入 射され第 1の波長選択フィルタ 71で反射された反射光の進行方向の直線上に第 3の ファイバコリメータ 103が位置するような角度で、第 3の V溝 63を形成していること、ま た、第 1のファイバコリメータ 101から入射され第 1の波長選択フィルタ 71、第 2の波 長選択フィルタ 72、第 3の波長選択フィルタ 73で順次反射された反射光の進行方向 の直線上に第 5のファイバコリメータ 105が位置するような角度で、第 5の V溝 65を形 成していること(この場合、第 3、第 5の V溝 63、 65は互いに平行に形成されている)、 また、第 3のファイバコリメータ 103と第 2の波長選択フィルタ 72との間、及び、第 5の ファイバコリメータ 105と第 4の波長選択フィルタ 74との間に、ミラーではなぐ第 2、第 4の波長選択フィルタ 72、 74それぞれによる光路ずれを補正する光路補正板 82、 8 4を配置して!/、ることである。
[0165] これら Cシリーズの光モジュール C1一 C3は、 Bシリーズの光モジュール B1— B3と 全く同じ使い方をすることができる。従って、使い方についての説明は省略する。
[0166] 次に、 Cシリーズの光モジュール C1一 C3の製造方法について説明する。なお、 lc h用の光モジュール C 1及び 2ch用の光モジュール C2は、 4ch用の光モジュール C3 の製造方法の途中までの工程でできるので、代表して 4ch用の光モジュール C3の 製造方法についてだけ説明する。
[0167] <光モジュール C3の製造方法 >
図 12に示す光モジュール C3は、次のようにして製造することができる。 まず、第 1一第 6の 6本の V溝 61— 66を形成した基板 50を準備する。ここで、奇数 番で呼ぶ第 1、第 3、第 5の V溝 61、 63、 65は、基板 50の一方側のコリメータ配置面 52に形成し、偶数番で呼ぶ第 2、第 4、第 6の V溝 62、 64、 66は、基板 50の他方側 のコリメータ配置面 53に形成する。これら V溝 61— 66は、同一平面上に並ぶよう形 成してある。
[0168] 第 1の V溝 61、第 2の V溝 62、第 4の V溝 64、第 6の V溝 66は、互いに平行で、特 に第 1の V溝 61と第 2の V溝 62は、同軸上に配置してある。第 3の V溝 63は、第 1の V溝 61に対して指定の角度と場所で交差するように形成してある。また、第 5の V溝 6 5は、第 3の V溝 63と平行で、第 4の V溝 64と指定の角度と場所で交差するように形 成してある。
[0169] 基板 50の中央の光学素子配置面 51は、両側の V溝 61— 66に配置したファイバコ リメータ 101— 106の光軸と、光学素子配置面 51に配置する光学素子の中心が合う ような高さに形成してある。この場合の基板 50の寸法は、 35x17x3mmで、両端に 9 mm幅のコリメータ配置面 52、 53を形成してある。そして、左右のコリメータ配置面 52 、 53に 3本ずつの同じ深さの V溝 61— 66を形成し、平行な V溝 62、 64、 66の間隔 は 3mmとしてある。また、中央部の幅 17mmの光学素子配置面 51は、平面研削によ り形成してある。このような基板 50の形状は、前記 Bシリーズの場合と比べて、斜めに V溝 63、 65を加工する分だけ、加工費用が若干上がるが、基板 50を小型化できるメ リットがある。
[0170] 上記の基板 50を用意したら、光ファイバ端末 110及びコリメータレンズ 120を第 1、 第 2の V溝 61、 62に配置して、第 1、第 2のファイバコリメータ 101、 102を作製する。 この作り方は、先に光モジュール Aについて説明したものと全く同様であるので、ここ では説明しない。
[0171] 次に、第 3の V溝 63に光ファイバ端末 110及びコリメータレンズ 120を配置し、基板 50上の第 3の V溝 63と第 1、第 2の V溝 61、 62の軸線の延長線の交差する点に、波 長選択フィルタ 71を配置して、第 3の V溝 63上の光ファイバ端末 110またはコリメ一 タレンズ 120の一方を固定する。
[0172] その状態で、第 1のファイバコリメータ 101から第 1の波長選択フィルタ 71で反射す る波長の光を入力し、第 1の波長選択フィルタ 71で反射し、第 3の V溝 61上の光ファ ィバ端末 110に入射する光量を見ながら、第 1の波長選択フィルタ 71の位置と向きを 調整する。同時に、第 3の V溝 63上の光ファイバ端末 110とコリメータレンズ 120の距 離を決定して固定し、第 3のファイバコリメータ 103を作製する。
[0173] この時、第 1の波長選択フィルタ 71は、各第 1、第 3のファイバコリメータ 101、 103 の光軸の精度が十分に高く維持されて 、るので、容易に光結合が得られる位置に配 置することができる。カロえて、第 1及び第 3の V溝 61、 63が同一平面内にあり、これら V溝 61、 63上のファイバコリメータ 101、 103の光軸が全てこの平面から出ないため 、 1個の波長選択フィルタ 71による 2次元の光軸調整により、低損失な光結合を得る ことができる。
[0174] 次に、第 1の波長選択フィルタ 71と第 2のファイバコリメータ 102の間に、第 1の波長 選択フィルタ 71と同特性の光路補正板 81を、第 1の波長選択フィルタ 71と対称とな る角度で配置する。この時、第 1のファイバコリメータ 101には、第 1の波長選択フィル タ 71で透過する波長の光を入力し、第 2のファイバコリメータ 102から出力される光量 を測定することによって、光路補正板 81を微調整し、固定する。
[0175] 次に、第 4の V溝 64に光ファイバ端末 110及びコリメータレンズ 120を配置すると共 に、基板 50上の第 3の V溝 63と第 4の V溝 64の軸線の延長線の交差する点に、第 2 の波長選択フィルタ 72を配置し、第 4の V溝 64上の光ファイバ端末 110またはコリメ ータレンズ 120の片方を固定する。
[0176] 次にその状態で、第 1のファイバコリメータ 101に、第 1の波長選択フィルタ 71、第 2 の波長選択フィルタ 72で共に反射する波長の光を入力し、これら波長選択フィルタ 7 1、 72で順次反射し第 4の V溝 64上の光ファイバ端末 110に入射する光量を見なが ら、第 2の波長選択フィルタ 72の位置と向き、第 4の V溝 64上の光ファイバ端末 110 とコリメータレンズ 120の距離を決定し固定して、第 4のファイバコリメータ 104を作製 する。
[0177] 次に、第 2の波長選択フィルタ 72と第 3のファイバコリメータ 103の間に、第 2の波長 選択フィルタ 72と同特性の光路補正板 82を、第 2の波長選択フィルタ 72と対称とな る角度で挿入'配置する。このとき、第 1のファイバコリメータ 101に、第 1の波長選択 フィルタ 71で反射し且つ第 2の波長選択フィルタ 72を透過する波長の光を入力し、 第 3の V溝 63上の光ファイバ端末 110に入射される光量を測定することによって、光 路補正板 82を微調整し、固定する。
[0178] 次に、第 5の V溝 65に光ファイバ端末 110及びコリメータレンズ 120を配置すると共 に、基板 50上の第 5の V溝 65と第 4の V溝 64の軸線の延長線の交差する点に、第 3 の波長選択フィルタ 73を配置して、第 5の V溝 65上の光ファイバ端末 110またはコリ メータレンズ 120の片方を固定する。
[0179] その状態で、第 1のファイバコリメータ 101から第 1、第 2、第 3の波長選択フィルタ 7 1、 72、 73で共に反射する波長の光を入力し、第 1、第 2、第 3の波長選択フィルタ 7 1、 72、 73で順次で反射し、第 5の V溝 65上の光ファイバ端末 110に入射する光量 を見ながら、第 3の波長選択フィルタ 73の位置と向きを調整する。同時に、第 5の V溝 65上の光ファイバ端末 110とコリメータレンズ 120の距離を決定して固定し、第 5のフ アイバコリメータ 105を作製する。
[0180] 次に、第 3の波長選択フィルタ 73と第 4のファイバコリメータ 104の間に、第 3の波長 選択フィルタ 71による光路ずれを補正する光路補正板 83を、第 3の波長選択フィル タ 73と対称となる角度で配置する。この時、第 1のファイバコリメータ 101には、第 1、 第 2の波長選択フィルタ 71、 72で反射し、第 3の波長選択フィルタ 73を透過する波 長の光を入力し、第 4のファイバコリメータ 104の光ファイバ端末 110に入射される光 量を測定することによって、光路補正板 83を微調整し、固定する。
[0181] 次に、第 6の V溝 66に光ファイバ端末 110及びコリメータレンズ 120を配置すると共 に、基板 50上の第 5の V溝 65と第 6の V溝 66の軸線の延長線の交差する点に、第 4 の波長選択フィルタ 74を配置し、第 6の V溝 66上の光ファイバ端末 110またはコリメ ータレンズ 120の片方を固定する。
[0182] 次にその状態で、第 1のファイバコリメータ 101に、第 1、第 2、第 3、第 4の波長選択 フィルタ 71、 72、 73、 74で共に反射する波長の光を入力し、これら波長選択フィルタ 71、 72、 73、 74で順次反射し第 6の V溝 66上の光ファイバ端末 110に入射する光 量を見ながら、第 4の波長選択フィルタ 74の位置と向き、第 6の V溝 66上の光フアイ バ端末 110とコリメータレンズ 120の距離を決定し固定して、第 6のファイバコリメータ 104を作製する。
[0183] 次に、第 4の波長選択フィルタ 74と第 5のファイバコリメータ 105の間に、第 4の波長 選択フィルタ 74と同特性の光路補正板 84を、第 4の波長選択フィルタ 74と対称とな る角度で挿入'配置する。このとき、第 1のファイバコリメータ 101に、第 1、第 2、第 3の 波長選択フィルタ 71、 72、 73で反射し且つ第 4の波長選択フィルタ 74を透過する波 長の光を入力し、第 5の V溝 65上の光ファイバ端末 110に入射される光量を測定す ること〖こよって、光路補正板 84を微調整し、固定する。
[0184] 以上のようにして、全ての部材の位置を決定'固定し、小型低損失で容易に組み立 てが可能な光合分波機能を有する光モジュール C3を作製することができる。
[0185] なお、上記の製造工程においては、各部材の位置決めに際して、第 1のファイバコ リメータ 101に光を入力し、各ファイバコリメータ 102— 106の光ファイバ端末 110か らの出力光の光量を測定することにより調整を行った力 第 1のファイバコリメータ 10 1以外の既に位置決めが完了しているファイバコリメータ力 試験光を入力し、下流 側の部品の位置調整を行うこともできる。また、これら全ての部材の配置は、画像処 理ゃ外形を基準とした機械的な操作によって行うことも可能である。
[0186] <複数の光モジュールの組み合わせにつ!/、て >
以上においては、単体の各光モジュールについてそれぞれ説明してきた力 次に、 上述した光モジュールを組み合わせて光波長合分波装置として使用する場合につ いて説明する。ここでは、例として、 Bシリーズの中の lch用の光モジュール B1を一 対(2つ)使用して構成した lch用光波長合分波装置について、また、 4ch用の光モ ジュール B3を一対(2つ)使用して構成した 4ch用光波長合分波装置につ!、て説明 する。
[0187] < lch用光波長合分波装置について >
図 13は、 lch用の光モジュール B 1を 2つ用 、て構成した lch用光波長合分波装 置の構成を示している。図の左側の光モジュール Blaは光波長分波器として使用し
、右側の光モジュール Bibは光波長合波器として使用している。左右の光モジユー ル Bla、 Bibは、図では左右対称に描いてある力 同一の光モジュール B1を、図の ものと同様に機能するように接続して構成することもできる。
[0188] lchの信号処理を行う場合は、分波器側の光モジュール Blaの第 1のファイバコリメ ータ 101を入力ポート(In)、第 2のファイバコリメータ 102を分岐ポート(Drop)、第 3 のファイバコリメータ 103を出力ポート(Out)とする。
[0189] また、合波器側の光モジュール Bibの第 1のファイバコリメータ 101を出力ポート(O ut)、第 2のファイバコリメータ 102を挿入ポート(Add)、第 3のファイバコリメータ 103 を入力ポート (In)とする。
[0190] そして、分波器側の光モジュール Blaの入力ポート(第 1のファイバコリメータ 101) の光伝送路 1001を外部伝送路に接続し、分岐ポート (第 2のファイバコリメータ 102) の光伝送路 1002を光スィッチ 2000に接続し、出力ポート (第 3のファイバコリメータ 1 03)の光伝送路 1003を、分合波器側の光モジュール Bibの入力ポート(第 3のファ ィバコリメータ 103)の光伝送路 1003に接続する。
[0191] また、分合波器側の光モジュール Bibについては、挿入ポート(第 2のファイバコリ メータ 102)の光伝送路 1002を光スィッチ 2000に接続し、出力ポート(第 1のフアイ バコリメータ 101)の光伝送路 1001を外部伝送路に接続する。これにより、光波長合 分波装置ができあがる。
[0192] この光波長合分波装置においては、外部の伝送路力 分波器側の光モジュール B laの入力ポート (第 1のファイバコリメータ 101)に入力される波長多重信号のうち、波 長選択フィルタ 70によって合分波される特定波長以外の光信号は、波長選択フィル タ 70で反射し、出力ポート(第 3のファイバコリメータ 103)力も合波器側の光モジユー ル Bibの入力ポート(第 3のファイバコリメータ 103)に入力して、波長選択フィルタ 70 で反射し、出力ポート (第 1のファイバコリメータ 101)から出力され外部伝送路に戻る
[0193] 一方、波長選択フィルタ 70により合分波される特定波長の光信号は、分波器側の 光モジュール Blaの分岐ポート(第 2のファイバコリメータ 102)力も取り出された後、 光スィッチ 2000に入力される。光スィッチ 2000では、信号の取り出しや入れ替えが 必要でない場合は、そのまま信号を通過させて、合波器側の光モジュール Bibの挿 入ポート(第 2のファイバコリメータ 102)に入力させる。この挿入ポート(第 2のファイバ コリメータ 102)力も導入された特定波長の光信号は、波長選択フィルタ 70を透過す るので、波長選択フィルタ 70の表面で反射する他波長の信号と合波されて、出力ポ ート(第 1のファイバコリメータ 101)から元の伝送路に戻る。
[0194] 特定波長の信号の取り出しや入れ替えが必要な場合は、光スィッチ 2000によって 、信号を Dropポートから外部に取り出し、必要な信号処理を加えた後、 Addポートか ら合波器側の光モジュール Bibの挿入ポートを経て元の伝送路に戻す。
[0195] <4ch用光波長合分波装置について >
図 14は、 4ch用の光モジュール B3を 2つ用 、て構成した 4ch用光波長合分波装 置の構成を示している。図の左側の光モジュール B3aは光波長分波器として使用し 、右側の光モジュール B3bは光波長合波器として使用している。左右の光モジユー ル B3a、 B3bは、図では左右対称に描いてある力 同一の光モジュール B3を、図の ものと同様に機能するように接続して構成することもできる。
[0196] 4chの信号処理を行う場合は、分波器側の光モジュール B3aの第 1のファイバコリメ ータ 101を入力ポート(In)、第 2—第 5のファイバコリメータ 102— 105を分岐ポート( Drop)、第 6のファイバコリメータ 106を出力ポート(Out)とする。
[0197] また、合波器側の光モジュール B3bの第 1のファイバコリメータ 101を出力ポート(O ut)、第 2—第 5のファイバコリメータ 102— 105を挿入ポート(Add)、第 6のファイバ コリメータ 103を入力ポート (In)とする。
[0198] そして、分波器側の光モジュール B3aの入力ポート(第 1のファイバコリメータ 101) の光伝送路 1001を外部伝送路に接続し、分岐ポート (第 2—第 5のファイバコリメ一 タ 102— 105)の光伝送路 1002— 1005を光スィッチ 2000に接続し、出力ポート( 第 6のファイバコリメータ 106)の光伝送路 1006を、分合波器側の光モジュール B3b の入力ポート(第 6のファイバコリメータ 106)の光伝送路 1006に接続する。
[0199] また、分合波器側の光モジュール B3bについては、挿入ポート(第 2—第 5のフアイ バコリメータ 102— 105)の光伝送路 1002— 1005を光スィッチ 2000に接続し、出 力ポート (第 1のファイバコリメータ 101)の光伝送路 1001を外部伝送路に接続する。 これにより、システムとしての光波長合分波装置ができあがる。
[0200] この光波長合分波装置においては、外部伝送路からの波長多重信号を、分波器 側の光モジュール B3aの入力ポートに入力した場合、全部の波長選択フィルタ 71— 74で合分波される特定波長以外の信号は、波長選択フィルタ 71— 74で反射し、合 波器側の光モジュール B3bの出力ポートから出力されて外部伝送路に戻る。
[0201] 一方、波長選択フィルタ 71— 74によって合分波される各特定波長の光信号は、分 波器側の光モジュール B3aの各波長選択フィルタ 71— 74で分波されて波長ごとに 取り出された後、波長ごとに光スィッチ 2000に入力される。光スィッチ 2000では、信 号の取り出しや入れ替えが必要でない場合は、そのまま信号を通過させ、合分波器 側の光モジュール B3bで再び合波させて出力ポートから外部伝送路に戻す。また、 信号の取り出しや入れ替えが必要な場合には、光スィッチ 2000によって、信号を Dr opポートから外部に取り出し、必要な信号処理を加えた後、 Addポートから合波器側 の光モジュール B3bの挿入ポートを経て元の伝送路に戻す。
[0202] 以上のように、 2つの同じタイプの光モジュール Bl、 B3を、一方は分波専用器、他 方は合波専用器と機能分けしながら組み合わせることで光波長合分波装置を構成し ているので、 1個の波長選択フィルタを分波と合波で兼用する場合と違って、挿入光 と分岐光が混じり合うおそれが全くなぐ信号劣化を防ぐことができる。
[0203] <シリーズ Dの光モジュール Dl、 D2 (実施形態 8、 9)について >
次に、分波と合波を同一モジュール内で行えるようにしたシリーズ Dの光モジュール Dl、 D2について説明する。ここでは、 lch用の光モジュール D1を実施形態 8として 、また、 2ch用の光モジュール D2を実施形態 9として説明する。
[0204] 一般的な通信システムでは、合波及び分波を、同一もしくは非常に近接した場所で 行うことが多い。例えば、従来 2チャンネルの波長分岐挿入を行う場合は、 2チャンネ ルの分波器と 2チャンネルの合波器を別々に用意し、図 17に示すように、光ファイバ を介して相互接続してシステムを構成する必要があった。そのような場面において、 本実施形態の光モジュール Dl、 D2が効果を発揮する。即ち、本実施形態の光モジ ユール Dl、 D2では、分波及び合波の機能を同一基板上で行えるようにしており、そ れにより、中間部のファイバ接続部分及びファイバ接続のためのコリメータや筐体等 を省略して、より安価で小型低損失な光波長合分波装置を作り出しているのである。
[0205] 以下、シリーズ Dにおける lch用の光モジュール D1と 2ch用の光モジュール D2と について個別に説明する。
[0206] <光モジュール D1 (実施形態 8)について >
図 15は、 lch用の光波長合分波装置として利用される光モジュール D1の構成を 示している。
この光モジュール D1は、基本的な要素として、先に説明した光モジュール Aの構 成を含んでいる。その光モジュール Aに相当する部分の構成として、基板 50の両側 のコリメータ配置面 52、 53に、それぞれ第 1のファイバコリメータ 101、第 2のファイバ コリメータ 102を配置している。これらの第 1、第 2のファイバコリメータ 101、 102は、 同一軸線上に形成した第 1の V溝 61と第 2の V溝 62内にそれぞれ配置している。そ して、第 1、第 2のファイバコリメータ 101、 102間の光路上に、特定波長の光のみを 透過し他波長の光を反射する分波用の波長選択フィルタ 70 (A)を配置し、また、同 波長選択フィルタ 70 (A)と第 2のファイバコリメータ 102との間に、波長選択フィルタ 7 0 (A)による光路ずれを補正する光路補正板 80を、波長選択フィルタ 70 (A)と対称 な角度で配置している。
[0207] また、光モジュール Aに相当する部分の構成の他に、基板 50の一方のコリメータ配 置面 52には、第 1の V溝 61と平行に第 4の V溝 64を形成し、他方のコリメータ配置面 53には、第 2の V溝 61と平行に第 3の V溝 63を形成している。第 3、第 4の V溝 63、 6 4は同一軸線上に形成してあり、各 V溝 63、 64にはそれぞれ第 3、第 4のファイバコリ メータ 103、 104を配置している。
[0208] また、第 1のファイバコリメータ 101から入射され分波用の波長選択フィルタ 70 (A) で反射される反射光の進路と、第 3、第 4の V溝 63、 64の軸線の延長線との交点に、 分波用の波長選択フィルタ 70 (A)からの反射光を更に自身の表面で反射すると共 に、自身の背面から入射されて透過する透過光を表面での反射光に合波させる合波 用の波長選択フィルタ 70 (B)を配置している。なお、波長選択フィルタ 70 (A、 B)、 光路補正板 80は、基板 50の中央に確保された光学素子配置面 51上に固定してあ る。
[0209] この合波用の波長選択フィルタ 70 (B)は、第 1のファイバコリメータ 101から入射さ れ、分波用の波長選択フィルタ 70 (A)で反射され、更に合波用の波長選択フィルタ 70 (B)の表面で反射された反射光が、第 3の V溝 63上の第 3のファイバコリメータ 10 3に入射するように、角度調整した上で固定してある。この合波用の波長選択フィルタ 70 (B)を配置することにより、その合波用の波長選択フィルタ 70 (B)の背面側に、前 記合波用の波長選択フィルタ 70 (B)の背面に対して透過可能な波長帯域の光を入 射させる第 4のファイバコリメータ 104が位置している。また、第 4のファイバコリメータ 104と合波用の波長選択フィルタ 70 (B)との間に、波長選択フィルタ 70 (B)による光 路ずれを補正する光路補正板 80が、波長選択フィルタ 70 (B)と対称な角度で配置 してある。
[0210] なお、基板 50の構成、各ファイバコリメータ 101— 104の構成、波長選択フィルタ 7 0及び光路補正板 80の構成などにっ 、ては、先に説明した実施形態の光モジユー ルのところで説明したものと、寸法的な要素を除いてはほぼ同様であるので、ここで は説明を省略する。
[0211] この光モジュール D1を光波長合分波装置として使用する場合は、第 1のファイバコ リメータ 101を外部の入力用光伝送路 1001からの波長多重光を受光する入力ポー ト (In)、最下流の第 3のファイバコリメータ 103を外部の出力用光伝送路 1003に波 長多重光を出光する出力ポート (Out)、第 2のファイバコリメータ 102を分岐用光伝 送路 1002へ分波光を取り出す分岐ポート (Drop)、第 4のファイバコリメータ 104を 揷入用伝送路 1004、 1006からの挿入光を合波のために入射する挿入ポート (Add )として使用する。
[0212] こうすることで、入力ポート(第 1のファイバコリメータ 101)力も入射される波長多重 信号のうち、特定波長 λ 1の光信号は、分波用の波長選択フィルタ 70 (A)を透過し て、分岐ポート (第 2のファイバコリメータ 102)より外部に取り出される。また、特定波 長以外の波長光は、分波用の波長選択フィルタ 70 (Α)及び合波用の波長選択フィ ルタ 70 (Β)で順次反射されて、出力ポート (第 3のファイバコリメータ 103)より外部に 取り出される。このとき、挿入ポート(第 4のファイバコリメータ 104)力も特定波長 λ 1 の信号光を挿入すると、その信号光は、合波用の波長選択フィルタ 70 (B)の裏面側 から表面側に透過して、表面で反射される特定波長以外の波長光と合波されて、出 力ポート (第 3のファイバコリメータ 103)より外部に取り出される。
[0213] ここで、分岐ポートより取り出す信号と挿入ポートより挿入する信号が、同一波長の 信号では、分波用の波長選択フィルタ 70 (Α)と合波用の波長選択フィルタ 70 (Β)は 同特性の波長選択フィルタを用いることにより lch用の光波長合分波装置となる。ま た、分岐ポートより取り出す信号と挿入ポートより挿入する信号が、異なる波長の信号 では、分波用の波長選択フィルタ 70 (A)は分岐ポートより取り出す信号の波長を透 過する波長選択フィルタを用い、合波用の波長選択フィルタ 70 (B)は挿入ポートより 挿入する信号の波長を透過する波長選択フィルタを用い、異なる特性の波長選択フ ィルタを用いれば良い。
[0214] 従って、波長分波機能を発揮しながら、波長合波機能を発揮することができる。ま た、コリメータとしてコアレスファイバ付きのファイバコリメータ 101— 104を採用したこ とにより、低損失な lch型の光波長合分波器を提供することができる。また、各構成 部品を共通の基板 50上に固定し、部品間を光が空間伝搬する構成としているので、 無駄な部品を使わずに済み、必要最小限の体積で、光モジュールの低価格ィヒ及び 小型化を図ることができる。また、すべての V溝 61— 64を平行に形成し、更に対向す る V溝 61、 62及び V溝 63、 64をそれぞれ同一軸線上に形成しているので、加工'組 み立てが容易である。
[0215] <光モジュール D2 (実施形態 9)について >
次に、 2ch以上用の合分波装置を説明する。ここでは、図 16に示す 2ch用の光モ ジュール D2を例にとりながら、一般的な 2ch以上用の光モジュールについて、その 構成を説明する。
[0216] Dシリーズの 2ch用の光モジュール D2は、入射光の中の特定波長の光のみを透過 し他波長の光を反射する分波機能と、裏面から入射されて透過する特定波長の透過 光と表面から入射されて反射する他波長の反射光を合波する合波機能とを有する波 長選択フィルタ 71、 72を、基板 50上に装備している。ここで、波長選択フィルタは、 2 chの場合は波長選択フィルタ 71、 72を同特性のもの 2個を 1組として 2組、それより 多 chの場合は ch数分の組とすればよい。また、それら波長選択フィルタ 71、 72を、 光の進行方向の上流側から下流側に向かって順番に波長選択フィルタ 71、 72の反 射光が入射するように、且つ、各組の 2個の波長選択フィルタ 71、 72が連続するよう に配置している。
[0217] また、分岐ポートより取り出す信号と挿入ポートより挿入する信号が異なる波長の信 号では、分波用の波長選択フィルタ 71は分岐ポートより取り出す信号の波長を透過 する波長選択フィルタを用い、合波用の波長選択フィルタ 72は挿入ポートより挿入す る信号の波長を透過する波長選択フィルタを用い、異なる特性の波長選択フィルタを 用いれば良い。
[0218] 各組の 2個の波長選択フィルタ 71、 72のうち、上流側の波長選択フィルタ 71 (A)、 72 (A)は分波用のもの、各組の下流側の波長選択フィルタ 71 (B)、 72 (B)は合波 用のものとしてある。そして、 (a)最上流の分波用の波長選択フィルタ 71 (A)への入射光の光路上と、
(b)各組の上流側の分波用の波長選択フィルタ 71 (A)、 72 (A)の透過光の光路 上と、
(c)各組の下流側の合波用の波長選択フィルタ 71 (B)、 72 (B)の背面への入射光 の光路上と、
(d)最下流の合波用の波長選択フィルタ 72 (B)の反射光の光路上と、 にそれぞれファイバコリメータ 101— 106を配置している。各ファイバコリメータ 101— 106の構成は、先述したものと全く同様であるので、ここでは説明を省略する。
[0219] これらファイバコリメータ 101— 106のうち、前記 (b)各組の上流側の分波用の波長 選択フィルタ 71 (A)、 72 (A)の透過光の光路上に位置する第 2、第 3のファイバコリメ ータ 102、 103及び前記(d)最下流の合波用の波長選択フィルタ 72 (B)の反射光の 光路上に位置する第 5のファイバコリメータ 105と、前記 (a)最上流の分波用の波長 選択フィルタ 71 (A)の入射光の光路上に位置する第 1のファイバコリメータ 101及び 前記 (c)各組の下流側の合波用の波長選択フィルタ 71 (B)、 72 (B)の背面への入 射光の光路上に位置する第 4、第 5のファイバコリメータ 104、 106とは、 1枚の基板 5 0の一方側と他方側に設けたコリメータ配置面 53、 52上に、波長選択フィルタ 81、 8 2を含む光学素子の配置スペース (光学素子配置面 51)を挟んで対向配置されてい る。また、各ファイバコリメータ 101— 106は、基板 50の各コリメータ配置面 52、 53上 に形成した第 1一第 6の V溝 61— 66内に配置して位置決めしてある。
[0220] これらの V溝 61— 66は互いに平行に形成してあり、これらのうち、第 1の V溝 61と 第 2の V溝 62は同一軸線上に位置し、第 3の V溝 63と第 4の V溝 64は同一軸線上に 位置し、第 5の V溝 65と第 6の V溝 66は同一軸線上に位置している。そして、同一軸 線上に位置する V溝にそれぞれ配置することで互いに対向するファイバコリメータ間 の光路上に、光路補正板 81、 82が配置されている。
[0221] 各光路補正板 81、 82は、波長選択フィルタ 71、 72を挿入したことによる光路ずれ を補正するためのものであり、各組の上流側の分波用の波長選択フィルタ 71 (A)、 7 2 (A)の透過光の光路上と、各組の下流側の合波用の波長選択フィルタ 71 (B)、 72 (B)の背面への入射光の光路上と、に配置されている。 [0222] 次に、このように構成された Dシリーズの光モジュールを使用する場合について、 2 ch用の光モジュール D2を例にとって説明する。
この光モジュール D2を 2ch用の波長光合分波装置として使用する場合は、最上流 のファイバコリメータ 101を外部の入力用光伝送路 1001からの波長多重光を受光す る入力ポート (In)、最下流のファイバコリメータ 105を外部の出力用光伝送路 1005 に波長多重光を出光する出力ポート(Out)、その他のファイバコリメータのうち、第 2 のファイバコリメータ 102及び第 3のファイバコリメータ 103を分岐用光伝送路 1002、 1003へ分波光を取り出す分岐ポート (Drop)、第 4のファイバコリメータ 104及び第 6 のファイバコリメータ 106を揷入用伝送路 1004、 1006からの挿入光を入射する挿入 ポート (Add)として使用する。
[0223] こうすることで、入力ポート(第 1のファイバコリメータ 101)から入射される波長多重 信号を、分岐ポート (第 2、第 3のファイバコリメータ 102、 103)に向けて順次分岐す る波長分波機能を発揮しながら、挿入ポート (第 4、第 6のファイバコリメータ 104、 10 6)からの入力信号を順次合波する波長合波機能を発揮することができる。つまり、各 分岐ポート (第 2、第 3のファイバコリメータ 102、 103)から、各波長選択フィルタ 71 ( A)、 71 (B)で選択されるえ 1、 λ 2の波長の光を順次取り出しながら、挿入ポート(第 4、第 6のファイバコリメータ 104、 106)から新たに波長え 1、 λ 2の信号を挿入'合波 させて、最終的な信号を出力ポート(第 5のファイバコリメータ 105)より取り出すことが できる。
[0224] 従って、コリメータとしてコアレスファイバ付きのファイバコリメータ 101— 106を採用 したことにより、低損失な複数 ch型の光波長合分波器を提供することができる。また、 各構成部品を共通の基板 50上に固定し、部品間を光が空間伝搬する構成としてい るので、無駄な部品を使わずに済み、必要最小限の体積で、光モジュールの低価格 化及び小型化を図ることができる。また、すべての V溝 61— 66を平行に形成し、更に 、対向する V溝 61 · 62、 63 · 64、 65 · 66をそれぞれ同一軸線上に形成しているので 、加工 '組み立てが容易である。このため、容易な位置決めによる組立てだけで、十 分な反射減衰量を満たしながら低挿入損失の光分波機能を得ることができる。
[0225] 次に、 Dシリーズの光モジュール Dl、 D2の製造方法について説明する。なお、 lc h用の光モジュール Dlは、 2ch用の光モジュール D2の製造方法の途中までの工程 でできるので、代表して 2ch用の光モジュール D2の製造方法にっ 、てだけ説明する
[0226] <光モジュール D2の製造方法 >
図 16に示す光モジュール D2は、次のようにして製造することができる。 まず、第 1一第 6の 6本の V溝 61— 66を形成した基板 50を準備する。ここで、第 1、 第 4、第 6の V溝 61、 64、 66は、基板 50の一方側のコリメータ配置面 52にこの順に 形成し、第 2、第 3、第 5の V溝 62、 63、 65は、基板 50の他方側のコリメータ配置面 5 3にこの順に形成する。これら V溝 61— 66は、同一平面上に互いに平行に並ぶよう 形成してある。ここで、第 1の V溝 61と第 2の V溝 62、第 4の V溝 64と第 3の V溝 63、 第 6の V溝 66と第 5の V溝 65は、それぞれ同一軸線上に配置してある。また、同じ側 に並んだ V溝は等ピッチで配置してある。
[0227] 基板 50を準備したら、次に、前記光モジュール A (図 1参照)の場合と同様に、光フ アイバ端末 110及びコリメータレンズ 120をそれぞれ第 1、第 2の V溝 61、 62に配置し て位置調整することにより、第 1、第 2のファイバコリメータ 101、 102を作製する。次い で、第 1のファイバコリメータ 101と第 2のファイバコリメータ 102間の光路上に、予め 設計した角度で分波用の第 1の波長選択フィルタ 71 (A)を配置する。
[0228] 次に、第 2の V溝 62に隣接する第 3の V溝 63に、光ファイバ端末 110及びコリメータ レンズ 120を配置して第 3のファイバコリメータ 103を仮組みする。また、分波用の第 1 の波長選択フィルタ 71 (A)で反射された反射光の光軸と第 3、第 4の V溝 63、 64の 軸線の延長線とが交差する点に、合波用の第 1の波長選択フィルタ 71 (B)を配置し 、第 3のファイバコリメータ 103に、第 1のファイバコリメータ 101から入力されて分波用 の第 1の波長選択フィルタ 71 (A)、合波用の第 1の波長選択フィルタ 71 (B)を次々 に反射する光が入射するようにする。
[0229] 次に、第 1のファイバコリメータ 101に、第 1の波長選択フィルタ 71 (A)、 71 (B)で 反射する波長の光を入力し、波長選択フィルタ 71 (A)、 71 (B)を経由して第 3のファ ィバコリメータ 103の光ファイバ端末 110に結合する光量を見ながら、合波用の第 1 の波長選択フィルタ 71 (B)の位置と向き、第 3のファイバコリメータ 103を構成する光 ファイバ端末 110とコリメータレンズ 120の距離を決定し固定する。
[0230] 次に、合波用の第 1の波長選択フィルタ 71 (B)と第 3のファイバコリメータ 103との 間に、分波用の第 2の波長選択フィルタ 72 (A)を予め設計した角度で配置する。ま た、第 3の V溝 63に隣接する第 5の V溝 65に、光ファイバ端末 110及びコリメータレン ズ 120を配置して第 5のファイバコリメータ 105を仮組みする。また、分波用の第 2の 波長選択フィルタ 72 (A)で反射された反射光の光軸と第 5、第 6の V溝 65、 66の軸 線の延長線とが交差する点に、合波用の第 2の波長選択フィルタ 72 (B)を配置し、 第 5のファイバコリメータ 105に、第 1のファイバコリメータ 101から入力されて分波用 の第 1の波長選択フィルタ 71 (A)、合波用の第 1の波長選択フィルタ 71 (B)、分波用 の第 2の波長選択フィルタ 72 (A)、合波用の第 2の波長選択フィルタ 72 (B)を次々 に反射する光が入射するようにする。
[0231] 次に、第 1のファイバコリメータ 101に、第 1の波長選択フィルタ 71 (A)、 71 (B)及 び第 2の波長選択フィルタ 72 (A)、 72 (B)で共に反射する波長の光を入力し、波長 選択フィルタ 71 (A)、 71 (B)、 72 (A)、 72 (B)で順次反射されて第 3のファイバコリメ ータ 103の光ファイバ端末 110に結合する光量を見ながら、合波用の第 2の波長選 択フィルタ 72 (B)の位置と向き、第 5のファイバコリメータ 105を構成する光ファイバ 端末 110とコリメータレンズ 120の距離を決定し固定する。
[0232] 次に、分波用の第 1の波長選択フィルタ 71 (A)と第 2のファイバコリメータ 102の間 に、第 1の波長選択フィルタ 71による光路ずれを補正する光路補正板 81を、分波用 の第 1の波長選択フィルタ 71 (A)と対称な角度で配置する。この時、第 1のファイバコ リメータ 101に、第 1の波長選択フィルタ 71を透過する波長の光を入力し、第 2のファ ィバコリメータ 102の光ファイバ端末 110から出力される光量によって、光路補正板 8 1の取付角度を微調整して固定する。
[0233] 次に、分波用の第 2の波長選択フィルタ 72 (A)と第 3のファイバコリメータ 103の間 に、第 2の波長選択フィルタ 72による光路ずれを補正する光路補正板 82を、分波用 の第 2の波長選択フィルタ 72 (A)と対称な角度で配置する。この時、第 1のファイバコ リメータ 101に、第 1の波長選択フィルタ 71で反射し、且つ、第 2の波長選択フィルタ 72を透過する波長の光を入力し、第 3のファイバコリメータ 103の光ファイバ端末 110 から出力される光量によって、光路補正板 82の取付角度を微調整して固定する。
[0234] 次に、第 1の V溝 61に隣接する第 4の V溝 64に、光ファイバ端末 110及びコリメータ レンズ 120を配置して第 4のファイバコリメータ 104を仮組みする。また、第 4のフアイ ノ コリメータ 104と合波用の第 1の波長選択フィルタ 71 (B)との間に、合波用の第 1の 波長選択フィルタ 71 (B)と対称な角度で、第 1の波長選択フィルタ 71による光路ず れを補正する光路補正板 81を配置し、光ファイバ端末 110またはコリメータレンズ 12 0の片方を第 4の V溝 64に固定する。
[0235] 次に、第 4のファイバコリメータ 104の光ファイバ端末 110に、第 1の波長選択フィル タ 71を透過する波長の光を入力し、第 3のファイバコリメータ 103の光ファイバ端末 1 10に結合する光量を見ながら、第 4のファイバコリメータ 104の光ファイバ端末 110と コリメータレンズ 120の距離及び光路補正板 81の角度を微調整し、これらを固定する
[0236] 次に、第 4の V溝 64に隣接する第 6の V溝 66に、光ファイバ端末 110及びコリメータ レンズ 120を配置して第 6のファイバコリメータ 106を仮組みする。また、第 6のフアイ ノ コリメータ 106と合波用の第 2の波長選択フィルタ 72 (B)との間に、合波用の第 2の 波長選択フィルタ 72 (B)と対称な角度で、第 2の波長選択フィルタ 72と同特性の光 路補正板 82を配置し、光ファイバ端末 110またはコリメータレンズ 120の片方を第 6 の V溝 66に固定する。
[0237] 次に、第 6のファイバコリメータ 106の光ファイバ端末 110に、第 2の波長選択フィル タ 72を透過する波長の光を入力し、第 5のファイバコリメータ 105の光ファイバ端末 1 10に結合する光量を見ながら、第 6のファイバコリメータ 106の光ファイバ端末 110と コリメータレンズ 120の距離及び光路補正板 82の角度を微調整し、これらを固定する
[0238] 以上のようにして、全ての部材の位置を決定'固定し、小型低損失で容易に組み立 てが可能な光合分波機能を有する光モジュール D2ができあがる。この場合、光学素 子である波長選択フィルタ 71、 72、光路補正板 81、 82の位置や角度の調整につい ては、全ての V溝 61— 66が同一平面内にあって V溝 61— 66上のコリメート光の光 軸が全てこの平面から出ないため、 2次元の光軸調整だけで、容易に低損失な光結 合を得ることができる。
[0239] なお、上記においては、 2ch用の光モジュール D2を製造する場合について述べた 力 より多チャンネルィ匕する場合には、単に以上の工程を繰り返せばよい。
また、上記実施形態の全ての部材寸法、仕様は上記に限るものではなぐ組立て方 法も上記に限るものではな 、。
また、前述で波長選択フィルタを他の機能を果たすフィルタで置き換えることを示し たが、上記実施形態全てにおいて、 1つの波長選択フィルタを用いる形態では、その 前後のどちらか一方ある 、は両方に、また複数の波長選択フィルタを用 、る形態で は、最上流の波長選択フィルタの前ある 、は最下流の波長選択フィルタの後ろのど ちらか一方あるいは両方に、利得等価フィルタや、入射される光の光量の一部分の みを取り出すためのフィルタを配置しそれぞれの機能を付与しても良 、。
[0240] 以上説明したように、本発明によれば、直進性の非常に高いファイバコリメータを共 通基板のガイド (位置決め溝)に従って固定することで、これまで光パッシブモジユー ルの価格の大きな部分を占めていた、光学ァライメントを大幅に削減し、低価格化を 実現することができる。また、部品間を光が空間伝搬する構成としているので、無駄な 部品を使わずに済み、必要最小限の体積で、光モジュールの小型化、低損失化を 図ることができる。
図面の簡単な説明
[0241] [図 1]本発明の第 1実施形態の光モジュール Aの構成図で、(a)は平面図、(b)は側 面図である。
[図 2]光モジュール Aに使用するファイバコリメータの構成を示す拡大図である。
[図 3]別のファイバコリメータの構成例を示す拡大図である。
[図 4]本発明の第 2実施形態の光モジュール B1の構成図で、(a)は平面図、(b)は側 面図である。
[図 5]同光モジュール B1の使用例を示し、 (a)は光波長分波装置として使用した場合 、 (b)は光波長合波装置として使用した場合を示す図である。
[図 6]本発明の第 3実施形態の光モジュール B2の構成図で、(a)は平面図、(b)は側 面図である。 [図 7]同光モジュール B2の使用例を示し、 (a)は光波長分波装置として使用した場合 、(b)は光波長合波装置として使用した場合を示す図である。
[図 8]本発明の第 4実施形態の光モジュール B3の構成図で、(a)は平面図、(b)は側 面図である。
[図 9]同光モジュール B3の使用例を示し、 (a)は光波長分波装置として使用した場合 、(b)は光波長合波装置として使用した場合を示す図である。
[図 10]本発明の第 5実施形態の光モジュール C1の構成図で、(a)は平面図、(b)は 側面図である。
[図 11]本発明の第 6実施形態の光モジュール C2の構成図で、(a)は平面図、(b)は 側面図である。
[図 12]本発明の第 7実施形態の光モジュール C3の構成図で、(a)は平面図、(b)は 側面図である。
[図 13]本発明の第 2実施形態の光モジュール B1を対にして組み合わせることで、 lc h用の光波長合分波装置を構成した場合の構成図である。
[図 14]本発明の第 4実施形態の光モジュール B3を対にして組み合わせることで、 4c h用の光波長合分波装置を構成した場合の構成図である。
[図 15]本発明の第 8実施形態の光モジュール D1の構成図で、(a)は平面図、(b)は 側面図である。
[図 16]本発明の第 8実施形態の光モジュール D2の構成図で、(a)は平面図、(b)は 側面図である。
[図 17]従来の光分岐挿入装置の概略構成図である。
[図 18]コリメータの光軸ずれの説明図である。
[図 19]コリメータの光軸ずれの特性を示す図である。
[図 20]波長選択フィルタの光軸ずれの説明図である。
[図 21]波長選択フィルタの光軸ずれの特性を示す図である。
符号の説明
A, Bl, B2, B3, CI, C2, C3, Dl, D2 光モジュール
50 基板 光学素子配置面 (光学素子配置スペース) コリメータ配置面(コリメータ配置スペース) — 66 V溝 (位置決め溝)
, 71— 74 波長選択フィルタ(光学素子), 81, 82 光路補正板
, 91, 92 ミラー (光路補正手段)
1— 106 ファイノくコリメータ
0 光ファイバ端末
1 光ファイバ
1a コア
1b クラッド
0 コリメータレンズ

Claims

請求の範囲
[1] 中心部のコア及びその外周部のクラッドを有する光ファイバの端面に、前記コアと 略同一で均一な屈折率を有する材料よりなるコアレスファイバの一端面を接合し、前 記光ファイバの光軸上で前記コアレスファイバの他端面側にコリメータレンズを配置し て構成した第 1、第 2の 2組のファイバコリメータを、同一軸線上に位置するように 1枚 の基板上に形成した第 1、第 2の位置決め溝内に対向配置すると共に、それらのファ ィバコリメータの対向面間にフィルタ機能を有した光学素子を配置したことを特徴とす る光モジュール。
[2] 請求項 1に記載の光モジュールであって、
前記ファイバコリメータ力 端面にコアレスファイバを接合した前記光ファイバの端末 と、前記コリメータレンズとを、前記位置決め溝内に配置することにより構成されている ことを特徴とする光モジュール。
[3] 請求項 1に記載の光モジュールであって、
前記ファイバコリメータ力 端面にコアレスファイバを接合した前記光ファイバの端末 と、前記コリメータレンズとを、ガラス管内に配置することにより単体の光部品として構 成されており、当該単体の光部品として構成されたファイバコリメータの前記ガラス管 力 前記位置決め溝内に配置されていることを特徴とする光モジュール。
[4] 請求項 1一 3のいずれかに記載の光モジュールであって、
前記フィルタ機能を有する光学素子として、
前記第 1のファイバコリメータ力 入射される波長多重光のうち特定の波長帯域の 光のみを前記第 2のファイバコリメータに向けて透過し他波長の光を反射する分波機 能と、前記第 2のファイバコリメータ力 片面に入射されて透過する特定波長の透過 光と他面力 入射されて反射する他波長の反射光を第 1のファイバコリメータへ向け て合波する合波機能と、を有する波長選択フィルタが設けられると共に、
該波長選択フィルタと前記第 2のファイバコリメータとの間に、光路補正板が設けら れて 、ることを特徴とする光モジュール。
[5] 請求項 4に記載の光モジュールであって、
前記第 1のファイバコリメータから入射され前記波長選択フィルタで反射される反射 光の進路に、前記第 1、第 2のファイバコリメータと同様の構成を持つ第 3のファイバコ リメータを配置し、該第 3のファイバコリメータを、前記基板上の前記第 1、第 2の位置 決め溝と同一平面上に形成した第 3の位置決め溝に配置して位置決めしたことを特 徴とする光モジュール。
[6] 請求項 5に記載の光モジュールであって、
前記第 3の位置決め溝を前記第 1、第 2の位置決め溝と平行に形成し、その第 3の 位置決め溝に配置した前記第 3のファイバコリメータと前記波長選択フィルタとの間に 、前記第 1のファイバコリメータと第 3のファイバコリメータとの間で前記波長選択フィ ルタによる反射光を相互に結合させる光路補正手段を配置したことを特徴とする光モ ジュール。
[7] 請求項 5または 6に記載の光モジュールであって、
前記第 1のファイバコリメータを、外部の入力用光伝送路力 伝送されてくる波長多 重光を前記波長選択フィルタに対し入力光として入射させる入力光用コリメータとし、 前記第 2のファイバコリメータを、前記波長選択フィルタに入射され透過した特定波長 帯域の光を外部に取り出すための分岐光用コリメータとし、前記第 3のファイバコリメ ータを、前記波長選択フィルタに入射され反射した特定波長帯域以外の光を外部の 出力用光伝送路へ送り出すための出力光用コリメータとして利用することで、波長多 重光を分波する光波長分波装置を構成したことを特徴とする光モジュール。
[8] 請求項 5または 6に記載の光モジュールであって、
前記第 3のファイバコリメータを、外部の入力用光伝送路から伝送されてくる前記特 定の波長帯域以外の光を前記波長選択フィルタの表面に対し入力光として入射させ る入力光用コリメータとし、前記第 2のファイバコリメータを、特定の波長帯域の光を前 記波長選択フィルタの裏面に対し挿入光として入射させる挿入光用コリメータとし、前 記第 1のファイバコリメータを、前記波長選択フィルタにて反射する入力光と透過する 挿入光との合波光を外部の出力用光伝送路へ伝送する出力光用コリメータとして利 用することで、光波長合波装置として構成したことを特徴とする光モジュール。
[9] 入射光の中の特定波長の光のみを透過し他波長の光を反射する分波機能と、片 面から入射されて透過する特定波長の透過光と他面から入射されて反射する他波長 の反射光を合波する合波機能とを有する波長選択フィルタを、前記特定波長を異な らせて複数装備すると共に、
前記複数の波長選択フィルタを、光の進行方向の上流側から下流側に向力つて順 番にフィルタの反射光が入射するように配置し、
最上流の波長選択フィルタへの入射光の光路上と、
各波長選択フィルタの透過光の光路上と、
最下流の波長選択フィルタの反射光の光路上と、にそれぞれコリメータを配置し、 それら各コリメータとして、中心部のコア及びその外周部のクラッドを有する光フアイ バの端面に、前記コアと略同一で均一な屈折率を有する材料よりなるコアレスフアイ バの一端面を接合し、前記光ファイバの光軸上で前記コアレスファイバの他端面側 にコリメータレンズを配置して構成したファイバコリメータを使用し、
これらファイバコリメータを、光の合分波順序に従って 1枚の基板の一方側と他方側 に交互に、且つ前記波長選択フィルタを含む光学素子の配置スペースを挟んで対 向配置すると共に、各ファイバコリメータを、前記基板上の同一面内に形成した位置 決め溝内に配置して位置決めし、
更に、前記基板の一方側と他方側で波長選択フィルタを介して対向する関係にあ るファイバコリメータの少なくとも 1組を、同一軸線上に形成した位置決め溝に配置す ると共に、両フアイバコリメータ間の光路上に光路補正板を配置したことを特徴とする 光モジユーノレ。
[10] 請求項 9に記載の光モジュールであって、
前記すベての位置決め溝を互いに平行に形成し、平行に形成することで光路補正 の生じた箇所に光路補正手段を介在させたことを特徴とする光モジュール。
[11] 請求項 9または 10に記載の光モジュールであって、
分波器として使用するときの光の進行方向の最上流のファイバコリメータを、外部の 入力用光伝送路から伝送されてくる波長多重光を最上流の波長選択フィルタに対し 入力光として入射させる入力光用コリメータとし、最下流のファイバコリメータを、最下 流の波長選択フィルタで反射した光を外部の出力用光伝送路へ送り出すための出 力用コリメータとし、それ以外のファイバコリメータを、各波長選択フィルタで透過した 光を外部に取り出すための分岐光用コリメータとして利用することで、波長多重光を 多段に分波する光波長分波装置を構成したことを特徴とする光モジュール。
[12] 請求項 9または 10に記載の光モジュールであって、
合波器として使用するときの光の進行方向の最上流のファイバコリメータを、外部の 入力用光伝送路力 伝送されてくる光を最上流の波長選択フィルタの表面に対し入 力光として入射させる入力光用コリメータとし、最下流のファイバコリメータを、最下流 の波長選択フィルタで反射する反射光と透過する挿入光との合波光を外部の出力用 光伝送路へ伝送する出力光用コリメータとし、それ以外のファイバコリメータを、各波 長選択フィルタの裏面に対し各フィルタごとの特定の波長帯域の挿入光を入射させ る挿入光用コリメータとして利用することで、光波長合波装置として構成したことを特 徴とする光モジュール。
[13] 請求項 1一 3のいずれかに記載の光モジュールであって、
前記フィルタ機能を有する光学素子として、前記第 1のファイバコリメータ力も入射さ れる波長多重光のうち特定の波長帯域の光のみを前記第 2のファイバコリメータに向 けて透過し他波長の光を反射する分波用の波長選択フィルタを設ける共に、該波長 選択フィルタと前記第 2のファイバコリメータとの間に光路補正板を設け、
前記第 1のファイバコリメータ力 入射され前記分波用の波長選択フィルタで反射さ れる反射光の進路に、分波用の波長選択フィルタ力 の反射光を更に自身の表面で 反射すると共に自身の背面から入射されて透過する透過光を前記表面での反射光 に合波させる合波用の波長選択フィルタを配置し、
前記第 1のファイバコリメータ力 入射され前記分波用の波長選択フィルタで反射さ れ更に前記合波用の波長選択フィルタの表面で反射される反射光の進路に、前記 第 1、第 2のファイバコリメータと同様の構成を持つ第 3のファイバコリメータを配置す ると共に、
前記合波用の波長選択フィルタの背面側に、当該合波用の波長選択フィルタの背 面に対して透過可能な波長帯域の光を入射させる、前記第 1、第 2のファイバコリメ一 タと同様の構成を持つ第 4のファイバコリメータを配置し、
前記第 3、第 4のファイバコリメータをそれぞれ、前記基板上の前記第 1、第 2の位置 決め溝と同一平面内に形成した第 3、第 4の位置決め溝に配置して位置決めしたこと を特徴とする光モジュール。
[14] 請求項 13に記載の光モジュールであって、
前記分波用の波長選択フィルタと合波用の波長選択フィルタとを、同一波長の光の みを透過する同特性の波長選択フィルタとしたことを特徴とする光モジュール。
[15] 請求項 13または 14に記載の光モジュールであって、
前記第 3、第 4の位置決め溝を同一軸線上に位置するように形成し、それら第 3、第
4の位置決め溝内に、前記合波用の波長選択フィルタを挟んで対向するよう前記第 3
、第 4のファイバコリメータをそれぞれ配置して位置決めし、更に、前記第 4のファイバ コリメータと合波用の波長選択フィルタとの間に光路補正板を配置したことを特徴とす る光モジュール。
[16] 請求項 15に記載の光モジュールであって、
前記第 1、第 2の位置決め溝と前記第 3、第 4の位置決め溝とを互いに平行に形成 し、前記第 1の位置決め溝と第 4の位置決め溝とを前記基板の一方側に配置すると 共に、前記第 2の位置決め溝と第 3の位置決め溝とを前記基板の他方側に配置し、 基板の一方側と他方側との間に前記波長選択フィルタの配置スペースを設けたこと を特徴とする光モジュール。
[17] 入射光の中の特定波長の光のみを透過し他波長の光を反射する分波機能と、裏 面から入射されて透過する特定波長の透過光と表面から入射されて反射する他波長 の反射光を合波する合波機能とを有する波長選択フィルタを 2個を 1組とし、且つ、 各組ごとに前記特定波長を異ならせて複数組、基板上に装備すると共に、
前記波長選択フィルタを、光の進行方向の上流側から下流側に向力つて順番に波 長選択フィルタの反射光が入射するように、且つ、各組の 2個の波長選択フィルタが 連続するように配置し、
各組の 2個の波長選択フィルタのうち上流側の波長選択フィルタは分波用のもの、 各組の下流側の波長選択フィルタは合波用のものとし、
(a)最上流の分波用の波長選択フィルタへの入射光の光路上と、
(b)各組の上流側の分波用の波長選択フィルタの透過光の光路上と、 (c)各組の下流側の合波用の波長選択フィルタの背面への入射光の光路上と、
(d)最下流の合波用の波長選択フィルタの反射光の光路上と、
にそれぞれコリメータを配置し、
それら各コリメータとして、中心部のコア及びその外周部のクラッドを有する光フアイ バの端面に、前記コアと略同一で均一な屈折率を有する材料よりなるコアレスフアイ バの一端面を接合し、前記光ファイバの光軸上で前記コアレスファイバの他端面側 にコリメータレンズを配置して構成したファイバコリメータを使用し、
これらファイバコリメータのうち、前記 (b)各組の上流側の分波用の波長選択フィル タの透過光の光路上に位置するファイバコリメータ及び前記 (d)最下流の合波用の 波長選択フィルタの反射光の光路上に位置するファイバコリメータと、前記 (a)最上 流の分波用の波長選択フィルタの入射光の光路上に位置するファイバコリメータ及 び前記 (c)各組の下流側の合波用の波長選択フィルタの背面への入射光の光路上 に位置するファイバコリメータとを、 1枚の基板の一方側と他方側に、前記波長選択フ ィルタを含む光学素子の配置スペースを挟んで対向配置すると共に、各ファイバコリ メータを、前記基板上の同一面内に形成した位置決め溝内に配置して位置決めし、 更に、前記基板の一方側と他方側で波長選択フィルタを介して対向する関係にあ るファイバコリメータの少なくとも 1組を、同一軸線上に形成した前記位置決め溝に配 置すると共に、両フアイバコリメータ間の光路上に光路補正板を配置したことを特徴と する光モジュール。
[18] 請求項 17に記載の光モジュールであって、
前記各組の分波用の波長選択フィルタと合波用の波長選択フィルタとを、同一波 長の光のみを透過する同特性の波長選択フィルタとしたことを特徴とする光モジユー ル。
[19] 請求項 17または 18に記載の光モジュールであって、
前記すベての位置決め溝を互いに平行に形成し、平行に形成することで光路補正 の生じた箇所に光路補正手段を介在させたことを特徴とする光モジュール。
[20] 請求項 6、 10、 19のいずれかに記載の光モジュールであって、
前記光路補正手段として、ミラー、ジンバル機構を有したミラー、全反射プリズム、 屈折型プリズムの少なくともいずれかを使用したことを特徴とする光モジュール。
[21] 請求項 1一 20のいずれかに記載の光モジュールであって、
前記位置決め溝として、 V溝、丸溝、矩形溝、楕円溝のうちのいずれかを設けたこと を特徴とする光モジュール。
[22] 請求項 1一 3のいずれかに記載の光モジュールであって、
前記フィルタ機能を有する光学素子として、
入射される光の強度が波長に対して均一でない場合に、この強度を平坦ィ匕するよう に光強度を補正する利得等化フィルタを使用したことを特徴とする光モジュール。
[23] 請求項 1一 3のいずれかに記載の光モジュールであって、
前記フィルタ機能を有する光学素子として、
入射される光の光量の一部分のみを取り出すためのフィルタを使用したことを特徴 とする光モジュール。
[24] 請求項 7に記載の光波長分波装置として構成された光モジュールと、請求項 8に記 載の光波長合波装置として構成された光モジュールとを、対にして組み合わせたこと を特徴とする光波長合分波装置。
[25] 請求項 11に記載の光波長分波装置として構成された光モジュールと、請求項 12 に記載の光波長合波装置として構成された光モジュールとを、対にして組み合わせ たことを特徴とする光波長合分波装置。
PCT/JP2004/007194 2004-05-26 2004-05-26 光モジュール及び光波長合分波装置 WO2006006197A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006527584A JP4311579B2 (ja) 2004-05-26 2004-05-26 光モジュール及び光波長合分波装置
CNB2004800431505A CN100495096C (zh) 2004-05-26 2004-05-26 光模块和光波长合波分波装置
US11/596,052 US20080013955A1 (en) 2004-05-26 2004-05-26 Optical Module and Optical Wavelength Multiplexing and Demultiplexing Device
PCT/JP2004/007194 WO2006006197A1 (ja) 2004-05-26 2004-05-26 光モジュール及び光波長合分波装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/007194 WO2006006197A1 (ja) 2004-05-26 2004-05-26 光モジュール及び光波長合分波装置

Publications (1)

Publication Number Publication Date
WO2006006197A1 true WO2006006197A1 (ja) 2006-01-19

Family

ID=35783563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007194 WO2006006197A1 (ja) 2004-05-26 2004-05-26 光モジュール及び光波長合分波装置

Country Status (4)

Country Link
US (1) US20080013955A1 (ja)
JP (1) JP4311579B2 (ja)
CN (1) CN100495096C (ja)
WO (1) WO2006006197A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212551A (ja) * 2006-02-07 2007-08-23 Yokogawa Electric Corp 光軸調整機構
WO2008035430A1 (fr) * 2006-09-21 2008-03-27 Hoya Corporation Module optique
JP2009210623A (ja) * 2008-02-29 2009-09-17 Kyocera Corp 光複合モジュールおよび光送受信器
JP2013104883A (ja) * 2011-11-10 2013-05-30 Sekisui Chem Co Ltd 光通信モジュールおよびその製造方法
WO2018088537A1 (ja) * 2016-11-10 2018-05-17 三菱電機株式会社 集積型光モジュールの光軸調整方法、製造方法、および光軸調整装置
WO2020016932A1 (ja) * 2018-07-17 2020-01-23 三菱電機株式会社 集積光モジュール及び集積光モジュールの製造方法
CN111239908A (zh) * 2020-02-10 2020-06-05 青岛青源峰达太赫兹科技有限公司 一种紧凑型高速振荡光纤延迟线

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003226A1 (de) * 2010-03-24 2011-09-29 Cube Optics Ag Multiplexer/Demultiplexer mit Justierspiegel
CN102511137B (zh) * 2011-12-02 2014-09-17 华为技术有限公司 光收发模块、无源光网络系统和设备
US10564348B2 (en) * 2013-06-14 2020-02-18 Chiral Photonics, Inc. Passive aligning optical coupler array
US11156781B2 (en) * 2013-06-14 2021-10-26 Chiral Photonics, Inc. Passive aligning optical coupler array
US10914891B2 (en) * 2013-06-14 2021-02-09 Chiral Photonics, Inc. Multichannel optical coupler
US11966091B2 (en) * 2013-06-14 2024-04-23 Chiral Photonics, Inc. Multichannel optical coupler array
US10838155B2 (en) 2013-06-14 2020-11-17 Chiral Photonics, Inc. Multichannel optical coupler
WO2015035624A1 (zh) * 2013-09-14 2015-03-19 华为技术有限公司 光器件、装置以及光网络系统
US10187175B2 (en) * 2016-11-18 2019-01-22 Kohoku Kogyo Co., Ltd. Optical multiplexer/demultiplexer and optical transceiver
JP6826496B2 (ja) * 2017-06-07 2021-02-03 タツタ電線株式会社 光干渉ユニットおよび光干渉測定装置
CN110412693B (zh) * 2019-08-02 2020-12-01 深圳市飞宇光纤系统有限公司 一种小型化单纤双透无源光学模块
US12143202B2 (en) * 2019-09-06 2024-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Optical node and optical transceiver for auto tuning of operational wavelength
CN110927911A (zh) * 2019-11-19 2020-03-27 嘉兴旭锐电子科技有限公司 前端定位的定位块准直器及多功能光学模组
US12210185B2 (en) 2020-02-24 2025-01-28 Chiral Photonics, Inc. Wavelength division multiplexers for space division multiplexing (SDM-WDM devices)
CN114553313B (zh) * 2021-12-31 2023-11-17 华为技术有限公司 一种光信号传输装置及光传输系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281493A (ja) * 2000-03-28 2001-10-10 Fdk Corp 波長分波合波モジュール
JP2003107276A (ja) * 2001-10-01 2003-04-09 Matsushita Electric Ind Co Ltd 光ファイバコリメータ及び光ファイバコリメータ用レンズ並びに光結合部品
JP2004094242A (ja) * 2002-08-15 2004-03-25 Hoya Corp 光モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790314A (en) * 1997-01-31 1998-08-04 Jds Fitel Inc. Grin lensed optical device
US5943149A (en) * 1998-02-18 1999-08-24 Cearns; Kevin J. Optical multiplexor/demultiplexor using a narrow band filter followed by a wideband filter
US6454465B1 (en) * 2000-03-31 2002-09-24 Corning Incorporated Method of making an optical fiber collimating device
US20040212802A1 (en) * 2001-02-20 2004-10-28 Case Steven K. Optical device with alignment compensation
US20020168139A1 (en) * 2001-03-30 2002-11-14 Clarkson William Andrew Optical fiber terminations, optical couplers and optical coupling methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281493A (ja) * 2000-03-28 2001-10-10 Fdk Corp 波長分波合波モジュール
JP2003107276A (ja) * 2001-10-01 2003-04-09 Matsushita Electric Ind Co Ltd 光ファイバコリメータ及び光ファイバコリメータ用レンズ並びに光結合部品
JP2004094242A (ja) * 2002-08-15 2004-03-25 Hoya Corp 光モジュール

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212551A (ja) * 2006-02-07 2007-08-23 Yokogawa Electric Corp 光軸調整機構
WO2008035430A1 (fr) * 2006-09-21 2008-03-27 Hoya Corporation Module optique
JP2009210623A (ja) * 2008-02-29 2009-09-17 Kyocera Corp 光複合モジュールおよび光送受信器
JP2013104883A (ja) * 2011-11-10 2013-05-30 Sekisui Chem Co Ltd 光通信モジュールおよびその製造方法
CN109891287A (zh) * 2016-11-10 2019-06-14 三菱电机株式会社 集成型光模块的光轴调整方法、制造方法以及光轴调整装置
JPWO2018088537A1 (ja) * 2016-11-10 2019-03-07 三菱電機株式会社 集積型光モジュールの光軸調整方法、製造方法、および光軸調整装置
WO2018088537A1 (ja) * 2016-11-10 2018-05-17 三菱電機株式会社 集積型光モジュールの光軸調整方法、製造方法、および光軸調整装置
US10768383B2 (en) 2016-11-10 2020-09-08 Mitsubishi Electric Corporation Optical axis adjustment method, manufacturing method, and optical axis adjustment device for integrated optical module
WO2020016932A1 (ja) * 2018-07-17 2020-01-23 三菱電機株式会社 集積光モジュール及び集積光モジュールの製造方法
JPWO2020016932A1 (ja) * 2018-07-17 2020-12-17 三菱電機株式会社 集積光モジュールの製造方法
US11256034B2 (en) 2018-07-17 2022-02-22 Mitsubishi Electric Corporation Method for manufacturing integrated optical module
CN111239908A (zh) * 2020-02-10 2020-06-05 青岛青源峰达太赫兹科技有限公司 一种紧凑型高速振荡光纤延迟线
CN111239908B (zh) * 2020-02-10 2024-06-04 青岛青源峰达太赫兹科技有限公司 一种紧凑型高速振荡光纤延迟线

Also Published As

Publication number Publication date
CN1957278A (zh) 2007-05-02
JP4311579B2 (ja) 2009-08-12
US20080013955A1 (en) 2008-01-17
CN100495096C (zh) 2009-06-03
JPWO2006006197A1 (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4311579B2 (ja) 光モジュール及び光波長合分波装置
JP4554132B2 (ja) 予め形成された光学部品が受動的に位置合わせされる、光波長分割マルチプレクサー/デマルチプレクサー
EP0722101A1 (en) Optical fiber ferrule and optical coupler constructed using the optical fiber ferrule
US11474299B2 (en) Wavelength-division multiplexing devices with modified angles of incidence
KR20040016406A (ko) 광 모듈
US10469923B2 (en) Routing band-pass filter for routing optical signals between multiple optical channel sets
JP2008209520A (ja) 光フィルタモジュール
US7039271B2 (en) Reduced element optical add-drop multiplexer
EP0463779A1 (en) Fibre optic waveguide beam splitter
US7184620B1 (en) 3-port optical add-drop multiplexer (OADM)
JPS6046682B2 (ja) 光ビ−ム用光波多重分波回路
JP2019139147A (ja) 光モジュール
JP3985576B2 (ja) 光コネクタ、光配線システム及び光コネクタの製造方法
JP2000131542A (ja) 光送受信モジュール
JP4632227B2 (ja) 光モジュール
JP2003107276A (ja) 光ファイバコリメータ及び光ファイバコリメータ用レンズ並びに光結合部品
US20040086221A1 (en) Low cost, hybrid integrated dense wavelength division multiplexer/demultiplexer for fiber optical networks
WO2001010069A2 (en) Polarization-independent, dense wavelength division multiplexer (dwdm)
JP4319067B2 (ja) 光合分波器
US6952506B2 (en) Device for adding and dropping optical signals
JP3120624U (ja) 光合分波器
JPH0735931A (ja) 光機能部品及びその製造方法
CN117687151A (zh) 单侧自由空间波分多路复用器装置
JP2007272001A (ja) 多段型光合分波器
JPH0886932A (ja) 光合分波器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043150.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006527584

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 11596052

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11596052

Country of ref document: US