[go: up one dir, main page]

WO2006006667A1 - 多孔質ハニカム構造体の製造方法 - Google Patents

多孔質ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2006006667A1
WO2006006667A1 PCT/JP2005/013035 JP2005013035W WO2006006667A1 WO 2006006667 A1 WO2006006667 A1 WO 2006006667A1 JP 2005013035 W JP2005013035 W JP 2005013035W WO 2006006667 A1 WO2006006667 A1 WO 2006006667A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
honeycomb
fired body
porous
cooling
Prior art date
Application number
PCT/JP2005/013035
Other languages
English (en)
French (fr)
Inventor
Tomoo Nakamura
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2006529139A priority Critical patent/JPWO2006006667A1/ja
Priority to US11/631,192 priority patent/US7914728B2/en
Publication of WO2006006667A1 publication Critical patent/WO2006006667A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a method for manufacturing a porous honeycomb structure suitably used, for example, as a filter for collecting dust, and more specifically, a porous honeycomb that can effectively prevent generation of cracks during manufacturing.
  • the present invention relates to a method for manufacturing a structure.
  • a porous honeycomb structure made of a ceramic having excellent properties and corrosion resistance is used.
  • a high temperature, corrosive gas atmosphere such as a diesel particulate filter (DPF: Diesel Particulate Filter) that collects particulate matter (PM) emitted from diesel engines such as automobile diesel engines.
  • DPF diesel particulate filter
  • PM particulate matter
  • a porous honeycomb structure is suitably used as a dust collection filter used underneath
  • honeycomb filter As a filter using a porous honeycomb structure (hereinafter referred to as “honeycomb filter”), for example, a honeycomb filter 1 as shown in FIG. 1 (a) and FIG.
  • the inlet side end face B and the outlet side end face C of the many cells 4 are alternately plugged by the plugging portions 8.
  • symbol 12 is an outer wall as a reinforcement member.
  • the honeycomb filter 1 having such a structure the gas G to be treated is introduced into the cell 4a from the end face B on the inlet side.
  • the porous honeycomb structure as described above is obtained by mixing and kneading, for example, a clay raw material containing aggregate raw material particles, a pore former, an organic binder and the like together with a dispersion medium.
  • the kneaded clay is molded to obtain a molded body, and then the molded body is dried to obtain a dried body. Then, the dried body is further manufactured by a method such as firing. In such a manufacturing method,
  • the obtained porous honeycomb structure has a problem that firing cracks occur.
  • the occurrence of the cracks occurs during the temperature rising process when the dried body (fired body) is fired, and the combustible material contained in the fired body burns, and the internal temperature of the fired body is reduced. It is thought to be caused by a sudden rise. That is, in the above temperature rising process, the outer peripheral temperature of the fired body rises at a substantially constant rate following the temperature rise of the firing atmosphere, while the central temperature of the fired body remains in the fired body. As the pore former contained in the flammable material burns combustibles such as organic binders, it rises at a rapid rate exceeding the temperature rise in the firing atmosphere. Therefore, the temperature difference between the inside and outside of the body to be fired increases, and it is considered that cracks are generated in the porous honeycomb structure due to thermal stress.
  • the temperature rise rate of the firing atmosphere is strictly controlled so that there is no difference in temperature between the inside and outside of the fired body during the temperature raising process when firing the fired body. Control methods have been adopted.
  • the applicant can also burn the organic binder in a firing atmosphere where the rate of temperature rise is kept low (ie, the temperature is gradually raised) in the temperature range where the organic binder burns (about 180 to 300 ° C).
  • Proposal has already been made of a method that allows the process to proceed as slowly as possible, and a method for manufacturing a porous ceramic structure that raises the temperature within a predetermined temperature range while substantially synchronizing the ambient temperature to the center temperature of the body to be fired. (For example, see Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent No. 2543565
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-212672
  • any of the above methods is a very effective method from the viewpoint of preventing the occurrence of cracks during firing of the object to be fired, these methods are employed.
  • the current situation is that the cracks generated in the porous honeycomb structure are surely prevented.
  • the present invention has been made to solve the above-described problems of the prior art, and is advantageous compared to the conventional method that can more reliably prevent the occurrence of cracks.
  • the present invention provides a method for producing a porous honeycomb structure that exhibits a good effect.
  • [0012] [1] Mixing and kneading a kneaded material containing aggregate raw material particles together with a dispersion medium to obtain a kneaded clay, and molding the kneaded material to partition a large number of cells by partition walls. ⁇ Forming a formed honeycomb molded body and drying the honeycomb molded body to obtain a honeycomb dried body ⁇ Drying step and firing the honeycomb dried body to obtain a honeycomb fired body.
  • a method for producing a porous honeycomb structure comprising: a firing step for obtaining a porous honeycomb structure by cooling; and a cooling step, wherein the honeycomb fired body is cooled to a firing temperature of at least 800 ° C or less.
  • the temperature decreasing rate is such that the temperature difference between the center temperature of the honeycomb fired body and the ambient temperature of the cooling atmosphere is maintained within 250 ° C.
  • the temperature decreasing rate is such that the temperature difference between the center temperature of the honeycomb fired body and the ambient temperature of the cooling atmosphere is maintained within 200 ° C.
  • the honeycomb fired body is cooled in a cooling atmosphere with a temperature drop rate of 200 ° CZ hours or less, and in the temperature range of 800 ° C or less.
  • the honeycomb fired body is cooled in a cooling atmosphere with a temperature drop rate of 200 ° C / hour or less, and the temperature range is 800 ° C or less.
  • a number of cells are defined and formed by the honeycomb fired body strength S and the partition walls, and one opening portion and the other opening portion of the plurality of cells are plugged into each other.
  • the method for manufacturing a porous honeycomb structure of the present invention includes a temperature drop for cooling the obtained fired body. Since cracks that occur in the process can be effectively prevented, there is an advantageous effect that the generation of cracks can be more reliably prevented as compared with conventional methods.
  • Fig. 1 (a) is a schematic view showing an embodiment of a conventional plugged honeycomb structure, and is a front view of the plugged honeycomb structure as viewed from the end surface of the cell opening.
  • FIG. 1 (b) is a schematic view showing an embodiment of a conventional plugged honeycomb structure, and is a cross-sectional view taken along the line AA ′ of FIG. 1 (a).
  • FIG. 2 (a) is a schematic view showing an example of a porous honeycomb structure, and is a front view of the porous honeycomb structure as viewed from the cell opening end face direction.
  • FIG. 2 (b) is a schematic view showing an example of a porous honeycomb structure, and is a perspective view of the porous honeycomb structure.
  • FIG. 3 (a) is a schematic diagram showing the arrangement position of thermocouples in the honeycomb fired body, and is a schematic view of the honeycomb fired body as viewed from the cell opening end face direction.
  • FIG. 3 (b) is a schematic diagram showing a thermocouple arrangement position in the honeycomb fired body, and is a cross-sectional view taken along the line AA ′ of FIG. 3 (a).
  • FIG. 4 is a schematic diagram showing a method for inspecting a porous honeycomb structure.
  • the present inventor In developing the method for manufacturing the porous honeycomb structure of the present invention, the present inventor first generates cracks even if the heating rate of the firing atmosphere is strictly controlled in the conventional manufacturing method. We examined the reason why it was not possible to reliably prevent this. As a result, it was found that cracks in the porous honeycomb structure occurred not only during the temperature rising process when firing the fired body, but also during the temperature lowering process when cooling the fired body obtained.
  • the present inventors have prepared a porous honeycomb obtained by mixing, kneading, molding, drying and firing a clay raw material containing cordierite light raw material particles as aggregate raw material particles together with a dispersion medium.
  • a clay raw material containing cordierite light raw material particles as aggregate raw material particles together with a dispersion medium.
  • many fine cracks due to the breakage of the cordierite crystal particles were observed.
  • cordierite has not yet been synthesized, and cordierite crystal particles should not exist, so the above-mentioned fine crack is obtained after the cordierite is synthesized by firing. This was considered to have occurred during the cooling process of cooling the fired body.
  • the temperature lowering rate of the cooling atmosphere is strictly controlled in the temperature lowering process for cooling the obtained fired body.
  • the X-ray transmission type particle size distribution is detected by the X-ray transmission method based on the measurement principle of the liquid phase sedimentation method of the stowage. It means the value of 50% particle diameter measured by a measuring device (for example, trade name: Cedigraph 5000-02 type, manufactured by Shimadzu Corporation).
  • the "average pore diameter” is a pore diameter measured by a silver injection method using the following formula (1) as a principle formula, and mercury that is pressed into a porous body. It means the pore diameter calculated from the pressure P when the total volume of the porous material becomes 50% of the total pore volume.
  • the term “porosity” refers to the total pore volume V of the porous body obtained by the mercury intrusion method and the true specific gravity d (cordielite of the cordierite) of the constituent material of the porous body.
  • the porosity P calculated from the following formula (2) from 2.52 g / cm 3 ) is meant.
  • honeycomb fired body the structure immediately after firing the honeycomb dried body
  • porous honeycomb structure the structure immediately after cooling the honeycomb dried body
  • the first step in the production method of the present invention is a mixing and kneading step in which a clay is obtained by mixing and kneading a clay raw material containing aggregate raw material particles together with a dispersion medium.
  • Aggregate raw material particles are particles that serve as raw materials for aggregate particles that are the main constituent components of a porous honeycomb structure (sintered body).
  • various ceramic or metal particles that have been conventionally used as a constituent of a porous honeycomb structure are used. A child can be used individually or in mixture.
  • a cordierite raw material, mullite, alumina, aluminum titanate, lithium aluminum silicate, silicon carbide, silicon nitride, or metal silicon particles are used, high heat resistance can be imparted to the resulting porous honeycomb structure. It is preferable in terms.
  • metallic silicon is not a ceramic, for example, it may be an aggregate particle of a metallic silicon bonded silicon carbide (Si—SiC) sintered body.
  • the aggregate raw material particles may contain components other than those described above, from the viewpoint of reliably imparting heat resistance to the resulting porous honeycomb structure.
  • the ratio of the total mass of the above eight components to the total mass of the aggregate raw material particles is preferably 50% by mass or more.
  • cordierite raw material particles means particles of a substance that can be converted into cordierite by firing.
  • particles made of silica, alumina, magnesia, or their precursors hereinafter referred to as “silica source”, “alumina source”, or “magnesia source”
  • silica As used herein, the term “cordierite raw material particles” means particles of a substance that can be converted into cordierite by firing.
  • a mixture of 32 to 38% by mass, magnesia: 12 to 16% by mass is preferably used.
  • Silica sources include silica (SiO) itself including quartz, kaolin (Al 2 O ⁇
  • talc or kaolin As will be described later, as a method of forming a honeycomb structure, extrusion molding that is extruded from a die having a slit having a shape complementary to a partition wall to be formed is generally used, but talc and kaolin, which are plate-like crystals, Since the plate-like crystals are oriented when passing through the slit of the die, a preferable effect is achieved in that the porous honeycomb structure finally obtained has a low thermal expansion.
  • the average particle diameter of the silica source particles is not particularly limited. However, 5 to 50 zm for quartz particles, 2 to 10 ⁇ m for kaolin particles, and 5 to 40 ⁇ m for talc particles. In the case of mullite particles, particles of about 2 to 20 ⁇ m are preferably used.
  • the alumina source in addition to alumina itself, it is converted to alumina by firing a composite oxide containing alumina such as kaolin and mullite, or aluminum hydroxide (A1 ( ⁇ H)).
  • alumina or aluminum hydroxide from which a commercially available product with few impurities can be obtained, and it is more preferable to use alumina and aluminum hydroxide in combination.
  • the average particle diameter of the alumina source particles is not particularly limited. However, particles having an alumina particle size of about 1 to 10 zm and aluminum hydroxide particles of about 0.2 to 10 zm are preferably used.
  • magnesia sources include magnesia itself, composite oxides containing magnesia such as talc, or substances that are converted to magnesia by firing magnesite (MgCO), etc.
  • the average particle size of the magnesia source particles is not particularly limited, but if it is magnesite particles, particles of about 4 to 8 ⁇ m are preferably used.
  • the cordierite rice bran raw material particles include silica particles (average particle size 5-50 ⁇ m), kaolin particles (average particle size 2-10 ⁇ m), alumina particles (Average particle size 1 to 10 ⁇ m), aluminum hydroxide particles (average particle size 0 ⁇ 2 to 10 ⁇ m), talc particles (average particle size 10 to 30 / im) It is preferable to use those mixed at a ratio of mass%, 0 to 40 mass%, 5 to 35 mass%, 0 to 25 mass%, and 35 to 45 mass%.
  • Examples of the dispersion medium used for mixing and kneading together with the aggregate raw material particles include water or a mixed solvent of water and an organic solvent such as alcohol, and water is particularly preferably used.
  • the pore former is an additive for obtaining a porous structure having a high porosity by burning out the honeycomb dried body to form pores and thereby increasing the porosity. It is necessary to be a combustible material that burns away when firing.
  • a combustible material that burns away when firing.
  • carbon such as graphite, wheat flour, starch, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, and the like
  • Microcapsules that have organic resin strength such as acrylic resin can be used particularly suitably. Since microcapsules are hollow particles, high porosity can be achieved by adding a small amount that has a high pore-forming effect per unit mass. In addition to obtaining a two-cam structure, there is an advantage that generation of thermal stress with less heat generation during firing can be reduced.
  • the organic binder is an additive that imparts fluidity to the clay during the formation of the honeycomb, becomes a gel in the dried honeycomb body before firing, and functions as a reinforcing agent that maintains the mechanical strength of the dried body. is there. Therefore, as the organic binder, for example, hydroxypropyl methylenorerose, methinoresenorelose, hydroxyethinorenorose, strong levoxino retinocellulose, or polybulu alcohol can be preferably used.
  • the dispersant is an additive for promoting the dispersion of the aggregate raw material particles in the dispersion medium and obtaining a homogeneous clay. Accordingly, as the dispersing agent, a substance having a surface active effect, such as ethylendol, dextrin, fatty acid sarcophagus, polyalcohol or the like can be preferably used.
  • the aggregate raw material particles, dispersion medium, additives and the like can be mixed and kneaded by a conventionally known mixing and kneading method.
  • the mixing can be performed by a conventionally known mixer such as a sigma kneader or a ribbon mixer.
  • the kneading can be carried out by a conventionally known kneader, for example, a sigma kneader, a Banno-kuri mixer, a screw type extrusion kneader or the like.
  • a kneading machine such as a so-called vacuum kneader or a biaxial continuous kneading extrusion molding machine
  • a vacuum decompression device for example, a vacuum pump
  • kneading with a sigma kneader is performed, and further, kneading is performed with a screw-type extrusion kneader equipped with a vacuum decompression device, so that the clay extruded into a cylindrical shape is obtained. Les, preferred to get.
  • the kneaded clay is molded to obtain a honeycomb molded body in which a large number of cells are defined by partition walls, and the honeycomb molded body is dried to obtain the honeycomb dried body. Obtaining molding ⁇ Drying process.
  • Heneycomb refers to, for example, the porous hanica shown in Fig. 2 (a) and Fig. 2 (b). It means a shape in which a large number of cells 4 are defined by a very thin partition wall 2 like a structure 6.
  • the overall shape of the honeycomb formed body is not particularly limited.
  • shapes such as a quadrangular prism shape and a triangular prism shape may be mentioned. it can.
  • the cell shape of the honeycomb formed body (cell shape in a cross section perpendicular to the cell forming direction) is not particularly limited.
  • the rectangular shape as shown in FIGS. 2 (a) and 2 (b) In addition to the cells, it is possible to raise the shape of hexagonal cells, triangular cells, etc.
  • the molding method is not particularly limited, and the kneaded material prepared as described above is formed even in the force capable of using conventionally known molding methods such as extrusion molding, injection molding, and press molding. It is preferable to form by an extrusion method in which extrusion is performed from a die having a slit having a shape complementary to the power partition. Such a method is preferable in that a honeycomb formed body having a desired cell shape, partition wall thickness, and cell density can be easily obtained.
  • the drying method is not particularly limited, and a conventionally known drying method such as hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, freeze drying, etc. can be used.
  • a drying method in which hot air drying and microwave drying or dielectric drying are combined is preferable in that the whole can be quickly and uniformly dried.
  • the third step in the production method of the present invention is a firing / cooling step in which a dried honeycomb body is fired to obtain a honeycomb fired body, and the honeycomb fired body is cooled to obtain a porous honeycomb structure.
  • Firing means an operation for sintering and densifying the aggregate raw material particles to ensure a predetermined strength.
  • the firing may be performed in accordance with a conventionally known firing method, but the firing conditions (temperature and time) vary depending on the type of aggregate raw material particles constituting the honeycomb dried body. Appropriate conditions will be selected according to the type. For example, when a cordierite raw material is used as an aggregate raw material particle, it is preferably fired at a temperature of 1410 to 1440 ° C. for 3 to 12 hours. If the firing condition (temperature 'time) is less than the above range, sintering of the aggregate raw material particles may be insufficient, and if it exceeds the above range, the cordierite produced may be melted. smell It is not preferable.
  • combustibles organic binder, pore former, dispersant, etc.
  • the combustion temperature of the organic binder is about 180 to 300 ° C
  • the maximum combustion temperature of the pore former is about 400 ° C
  • the calcining temperature should be about 200 to 1000 ° C.
  • the calcining time is not particularly limited, but is usually about 10 to about 150 hours.
  • the honeycomb fired body obtained by firing as described above is cooled to the normal temperature by cooling from the firing temperature to room temperature, and the production method of the present invention provides the obtained fired body. It is characterized in that the cooling rate of the cooling atmosphere is strictly controlled during the cooling process. Specifically, when the honeycomb fired body is cooled from the firing temperature, it is necessary to cool the honeycomb fired body in a cooling atmosphere with a temperature drop rate of 100 ° C / hour or less in a temperature range of at least 800 ° C or less. It is. By doing so, cracks that occur during the temperature lowering process can be effectively prevented, so that it is possible to more reliably prevent the occurrence of cracks compared to the conventional method.
  • the honeycomb fired body is cooled in a predetermined temperature region in a cooling atmosphere in which the rate of temperature decrease is 100 ° CZ hours or less, thereby preventing cracks generated in the temperature decrease process.
  • the honeycomb fired body is cooled in a cooling atmosphere at a temperature lowering speed so that the temperature difference between the center temperature of the honeycomb fired body and the atmosphere temperature of the cooling atmosphere is kept within 250 ° C. It is more preferable to cool the honeycomb fired body in a cooling atmosphere at a temperature lowering rate so that the temperature is maintained within 200 ° C.
  • the temperature of the center of the honeycomb fired body and the cooling atmosphere is as close to o ° c as possible.
  • the temperature difference is 5 ° C or more, which is not practical to make the temperature difference smaller than 5 ° C.
  • honeycomb fired body type of aggregate raw material particles, etc.
  • structure apparent volume, porosity, partition wall thickness, cell density, bulk density, etc.
  • the temperature lowering rate of the cooling atmosphere is controlled so as to fall within a temperature range of at least 800 ° C or lower.
  • the starting point for controlling the temperature drop rate was set to 800 ° C because the difference in temperature between the inside and outside of the honeycomb fired body was difficult at the beginning of cooling (from the firing temperature to 800 ° C) as the cooling progressed. This is because the temperature cannot follow the decrease in the outer peripheral temperature, and the difference between the internal and external temperatures exceeds the allowable level.
  • the end point of the temperature drop rate control is preferably as low as possible from the viewpoint of suppressing the generation of cracks. Specifically, it is preferable to control to 150 ° C, and it is more preferable to control to 100 ° C.
  • the production method of the present invention prevents cracks that occur in the temperature-falling process for cooling the obtained fired body.
  • a method of strictly controlling the temperature rise rate of the firing atmosphere so as not to cause a temperature difference between the inside and outside of the fired body in the temperature raising process when firing the fired body is adopted. I prefer it.
  • a method of extremely increasing the temperature increase rate of the firing atmosphere in the binder combustion temperature range is also preferable so as to follow the rapid temperature increase in the center of the body to be fired due to the combustion of the organic binder.
  • the temperature increase rate of the firing atmosphere from the combustion start temperature of the organic binder contained in the object to be fired (usually within the range of 180 to 300 ° C) to 300 ° C is 25 (° CZ time)
  • the method described above may be used.
  • Such a method can maintain the temperature difference between the inside and outside of the body to be fired within 80 ° C, and within 50 ° C depending on the conditions, so that cracks in the temperature rising process can be effectively prevented.
  • the productivity can be improved.
  • talc when included as the aggregate raw material particles, it is also preferable to adopt a method of strictly controlling the heating rate of the firing atmosphere in the talc dehydration temperature range (800 to 1000 ° C). This is one of the preferred embodiments.
  • the temperature of the outer periphery of the fired body rises at a substantially constant rate following the temperature rise of the firing atmosphere.
  • the temperature at the center of the body suddenly drops due to dehydration (endothermic reaction) from talc so that it goes against the temperature rise in the firing atmosphere. Therefore, the temperature difference between the inside and outside of the body to be fired increases, and cracks may occur due to thermal stress.
  • the temperature increase rate of the firing atmosphere in the temperature range of 1000 ° C is 40
  • Such a method can maintain the temperature difference between the inside and outside of the body to be fired within 60 ° C, and within 40 ° C depending on the conditions, and therefore has a favorable effect of effectively preventing cracks in the temperature rising process. Play.
  • it can be suitably used for producing a porous honeycomb structure made of cordierite that uses talc as one of the aggregate particle raw materials.
  • the manufacturing method of the present invention can be particularly preferably used when the honeycomb fired body has a structure that hardly imparts mechanical strength. This is because the honeycomb fired body having such a structure is remarkably cracked during the temperature lowering process, and thus can enjoy more of the merit of the manufacturing method of the present invention.
  • structures that are difficult to impart mechanical strength include those provided with plugging portions, those having a thin partition wall thickness, and those having a high porosity.
  • the non-plugged portion is weaker than the plugged portion, and stress concentration tends to occur in the portion, so that it is difficult to impart mechanical strength. It can be said that it is a structure. Therefore, if the honeycomb fired body is further provided with a plugging portion that plugs one opening portion and the other opening portion of many cells, cracks in the cooling process are effective. The advantages of the production method of the present invention that can be easily prevented can be enjoyed more.
  • the honeycomb fired body provided with the plugged portion is, for example, a pressure-sensitive adhesive sheet adhered to one end surface of the dried honeycomb body, and the pressure-sensitive adhesive sheet of the honeycomb fired body is subjected to image processing using a laser cage or the like.
  • a hole is made only in a portion corresponding to a cell to be plugged to make a mask, and the end face of the dried honeycomb body in which the mask is occupied is immersed in the ceramic slurry, and the dried honeycomb body is immersed in the ceramic slurry.
  • a cell to be plugged is filled with a ceramic slurry to form a plugged portion. After the same process is performed on the other end face of the honeycomb dried body, the plugged portion is dried, It is possible to obtain this strength by firing it.
  • the honeycomb fired body having a high porosity has a structure in which mechanical strength is difficult to be imparted because the partition wall itself ensuring mechanical strength is fragile. Therefore, when the dried honeycomb body has a high porosity of 50% or more, particularly 60% or more, the merit of the manufacturing method of the present invention that effectively prevents cracks in the temperature lowering process is further increased. You can enjoy it.
  • the upper limit of the porosity is not particularly limited, but is preferably 65% or less from the viewpoint of production and the mechanical strength of the honeycomb fired body.
  • the porosity is 50% or higher, the porosity is high, and the honeycomb fired body is, for example, an aggregate raw material if a commercially available acrylic resin microcapsule is used as the pore former. It can be obtained by molding clay containing 5 parts by mass or more of microcapsules with respect to 100 parts by mass of particles to obtain a honeycomb formed body, drying it, and firing it.
  • the honeycomb fired body with thin partition walls has a structure in which mechanical strength is difficult to be imparted because the partition walls themselves that ensure mechanical strength are fragile. Therefore, when the dried honeycomb body has a large number of cells defined by the partition walls, and the partition wall thickness is 150 / im or less, the cracks in the cooling process are effectively prevented. It is possible to enjoy more of the merit of the manufacturing method of the present invention.
  • the lower limit of the partition wall thickness is not particularly limited, and may be appropriately determined in consideration of the ability to produce a die having a slit, the formability and drying characteristics of the honeycomb formed body. However, from the viewpoint of making it easy to mold industrially, it is preferable to set it to 40 am or more.
  • a honeycomb fired body with a thin partition wall having a partition wall thickness of 150 xm or less is formed by, for example, an extrusion molding method in which the clay is extruded from a die having a slit having a shape complementary to the thin partition wall.
  • the body can be obtained and dried and fired.
  • the manufacturing method of the present invention can be particularly preferably used when the honeycomb fired body has a structure in which a difference in temperature between the inside and outside is easy to occur.
  • the structure is easy to have a temperature difference between inside and outside. Therefore, when the honeycomb fired body is a large one having an apparent volume of 5 liters or more, especially 10 liters or more, the merit of the manufacturing method of the present invention that effectively prevents cracks in the temperature lowering process is further improved. You can enjoy a lot.
  • the upper limit of the apparent volume is not particularly limited, but it is preferable that the manufacturing viewpoint is 75 liters or less.
  • the "apparent volume” means a volume including the cell space of the honeycomb fired body.
  • a honeycomb fired body having an outer diameter of 250 mm ⁇ and a length of 300 mm has an apparent volume of about 15 liters regardless of the cell structure.
  • the honeycomb fired body with thick partition walls has a large heat capacity, and the temperature of the cooling atmosphere is difficult to be conducted to the central part, so that it can be said to have a structure in which the temperature difference between the inside and outside is likely to occur. Therefore, when the honeycomb fired body is a thick wall having a partition wall thickness of 300 / im or more, it is possible to receive more of the merit of the manufacturing method of the present invention that effectively prevents cracks in the temperature lowering process. it can.
  • Porous honeycomb structures having the structures shown in Tables 1 to 3 were manufactured by the following method.
  • Aggregate particle materials include kaolin (average particle size 11 ⁇ m), talc (average particle size 21 ⁇ m), aluminum hydroxide (average particle size 2 ⁇ m), alumina (average particle size 7 ⁇ m), silica
  • the force (average particle diameter 25 ⁇ ) was prepared in a ratio of 18.5: 40: 15: 14: 12.5.
  • these particles those obtained by removing coarse particles having a particle diameter of 100 ⁇ m or more by wind classification using an Alpine classifier were used.
  • methyl cellulose as an organic binder is added to 100 parts by mass of the aggregate particle raw material and mixed for 3 minutes.
  • a commercially available acrylic resin is used as a pore former in the mixture.
  • 1.0 part by mass of the microcapsules made was added and mixed for 3 minutes, and further 25 parts by mass of water was added to this mixture while spraying and mixed for 3 minutes.
  • the above mixture was kneaded with a sigma kneader for 60 minutes to obtain a clay, and the clay was further kneaded with a vacuum kneader under a vacuum condition of an absolute pressure of 8 kPa, and extruded.
  • a clay molded into a cylindrical shape (outer diameter 300 mm ⁇ ) was obtained.
  • the columnar clay is complementary to the partition walls to be formed so as to obtain a porous honeycomb structure having the apparent volume, partition wall thickness, and cell density described in Tables 1 to 3.
  • a honeycomb formed body in which a large number of cells were defined by partition walls was obtained by a method of extrusion molding using a die formed with a slit having a shape. Specifically, the clay was extruded using a die in which slits having a width corresponding to the partition wall thickness were arranged in a grid at predetermined intervals so that the cell shape was a square. This molding was performed by a ram type extrusion molding machine.
  • the honeycomb formed body was microwave-dried and further dried with hot air to obtain a dried honeycomb.
  • the dried honeycomb body is cut to a predetermined size, and an adhesive sheet is attached to one end face thereof, and holes are formed only in portions corresponding to the cells to be plugged of the adhesive sheet by laser processing using image processing.
  • Open the mask to make a mask, and immerse the end face of the dried honeycomb body, to which the mask is attached, in the ceramic slurry, and fill the cells to be plugged in the dried honeycomb body with the ceramic slurry and plug it. After the same process was performed on the other end face of the honeycomb dried body, the plugged portion was fired together with the honeycomb dried body.
  • the same aggregate particle raw material as that used in the production of the porous honeycomb structure is used as the aggregate particle raw material, and 100 parts by mass of the aggregate particle raw material is used.
  • 0.5 parts by weight of methylcellulose as a binder, 0.3 parts by weight of a special carboxylic acid type polymer surfactant as a dispersant, and 50 parts by weight of water as a dispersion medium were added and mixed for 30 minutes. It was. Its viscosity was 25 Pa's.
  • the firing conditions were 1420 ° C and 6 hours. In this way, a honeycomb fired body further provided with plugging portions that plugged alternately with one opening and the other opening of many cells was obtained.
  • the honeycomb fired body was cooled from the firing temperature to 100 ° C to obtain a porous honeycomb structure.
  • the porosity of these porous honeycomb structures was 50%.
  • the cooling rate was controlled as described in Tables 1 to 3.
  • 10 porous honeycomb structures were produced under the respective conditions.
  • 10 Hani For one of the cam fired bodies, a thermocouple is placed at the positions Pl and P2 shown in Fig. 3 (a) and Fig. 3 (b), and the ambient temperature is set at the position P2 by the thermocouple placed at the P1 position.
  • the center temperature of the honeycomb fired body 21 was measured by a thermocouple arranged in Specifically, P1 is a position 30 mm away from the outer peripheral surface of the honeycomb fired body 31, and P2 is an intermediate point of the flow path of the cell located in the center of the honeycomb fired body 21.
  • the maximum temperature difference between the two positions in the cooling process was expressed as “internal / external temperature difference”.
  • the ratio (percentage) of the porous honeycomb structures in which cracks occurred in the 10 porous honeycomb structures manufactured under the respective conditions was determined as “class.
  • the crack generation rate (%) was calculated, and the crack prevention effect was evaluated based on the “crack generation rate (%)”.
  • the presence or absence of cracks was confirmed by the following method using the inspection instrument 31 shown in FIG.
  • the inspection instrument 31 shown in FIG. 4 includes a hollow cylindrical guide tube 34 projecting from a pedestal 32, and a bullet-shaped weight 36 that can be loosened in the cylinder of the guide tube 34. It is an instrument, and is configured such that the weight 36 can be pulled up to a desired height along the guide cylinder 34 and can be naturally dropped onto the pedestal 32.
  • the lower mat 40 made of urethane, the black drawing paper 42, and the porous honeycomb structure 44 to be inspected are sequentially stacked on the upper surface of the surface plate 38, Further, the inspection instrument 31 was placed on the upper surface of the upper mat 46 and fixed. Next, the weight 36 of the inspection tool 31 was pulled up to a height of 30 mm from the upper surface of the pedestal 32 and allowed to fall naturally on the pedestal 32, so that the porous honeycomb structure 44 was lightly impacted.
  • Table 2 summarizes the effect of the apparent volume of the honeycomb fired body on the occurrence of cracks.
  • Table 2 summarizes the effect of the apparent volume of the honeycomb fired body on the occurrence of cracks.
  • the temperature difference between the inside and outside could not be maintained within 250 ° C even when the temperature drop rate of 800 ° C or less was 100 ° CZ time.
  • the temperature drop rate of 800 ° C or less was 50 ° C / hour, the temperature difference between the inside and outside was kept within 200 ° C, and the generation of cracks was completely prevented (Example 9). That is, the production method of the present invention was proved to be particularly effective for a relatively large size honeycomb fired body having an apparent volume of 5 liters or more, especially 10 liters or more.
  • Table 3 summarizes the influence of the partition wall thickness of the honeycomb fired body on the occurrence of cracks.
  • a thick-walled honeycomb structure with a partition wall thickness of 300 zm or more has a large heat capacity, so if the temperature drop rate of 800 ° C or less is equal to the temperature drop rate from the firing temperature to 800 ° C, the internal and external temperatures The difference cannot be maintained within 250 ° C, and cracks occur in all porous honeycomb structures (Comparative Examples 6 to 8).
  • Table 4 also summarizes the influence of the partition wall thickness of the fired honeycomb body on the occurrence of cracks. As is clear from Table 4, for honeycomb fired bodies with a partition wall thickness of 150 / im or less, the partition wall itself, which guarantees mechanical strength, is fragile. If it is equivalent to the temperature drop rate up to ° C, the internal / external temperature difference cannot be maintained within 200 ° C, and cracks occur in many porous honeycomb structures (Comparative Examples 9 to 11). ).
  • the production method of the present invention is particularly effective for a relatively thin-walled honeycomb fired body having a partition wall thickness of 150 ⁇ m or less.
  • Table 5 summarizes the influence of the porosity of the honeycomb fired body on the occurrence of cracks.
  • honeycomb fired bodies with a porosity of 50% or more the partition walls themselves that ensure mechanical strength are fragile. If the temperature drop rate is the same as before, the temperature difference between the inside and outside cannot be maintained within 250 ° C, and cracks occur in the porous honeycomb structure (Comparative Examples 2, 12, and 13). In particular, for the porous honeycomb structure having a porosity of 60% or more, cracks occurred in all the porous honeycomb structures (Comparative Examples 12 and 13).
  • the method for manufacturing a porous honeycomb structure of the present invention can effectively prevent cracks that occur in the temperature-falling process of cooling the obtained fired body, so that the generation of cracks is more reliable compared to conventional methods. There is an advantageous effect that it can be prevented. Therefore, for example, a porous honeycomb structure having a structure that is difficult to impart mechanical strength (with a plugged portion, a thin partition wall thickness, a thing with a high porosity, etc.), and an internal / external temperature difference. It can be used particularly suitably when producing an easily structured porous honeycomb structure (large size, partition wall thickness is thick, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)

Abstract

 混合・混練工程と、成形・乾燥工程と、ハニカム乾燥体を焼成してハニカム焼成体を得、そのハニカム焼成体を冷却することによって多孔質ハニカム構造体を得る焼成・冷却工程とを備え、ハニカム焼成体を焼成温度から冷却する際に、少なくとも800°C以下の温度領域において、降温速度が100°C/時間以下の冷却雰囲気下でハニカム焼成体を冷却する多孔質ハニカム構造体の製造方法。

Description

明 細 書
多孔質ハニカム構造体の製造方法
技術分野
[0001] 本発明は、例えば、集塵用のフィルタとして好適に用いられる多孔質ハニカム構造 体の製造方法に関し、詳しくは、製造時におけるクラックの発生を有効に防止するこ とができる多孔質ハニカム構造体の製造方法に関する。
背景技術
[0002] 化学、電力、鉄鋼、産業廃棄物処理をはじめとする様々な分野において、公害防 止等の環境対策、高温ガスからの製品回収等の用途で用いられる集塵用のフィルタ として、耐熱性、耐食性に優れるセラミックからなる多孔質ハニカム構造体が用いられ ている。例えば、自動車のディーゼルエンジン等のディーゼル機関から排出される粒 子状物質(PM: Particulate Matter)を捕集するディーゼルパティキュレートフィル タ(DPF : Diesel Particulate Filter)のように、高温、腐食性ガス雰囲気下におい て使用される集塵用フィルタとして、多孔質ハニカム構造体が好適に用いられている
[0003] 多孔質ハニカム構造体を用いたフィルタ(以下、「ハニカムフィルタ」と記す)としては 、例えば、図 1 (a)及び図 1 (b)に示すハニカムフィルタ 1のように、隔壁 2によって多 数のセル 4が区画.形成された多孔質ハニカム構造体 6において、その多数のセル 4 の入口側端面 Bと出口側端面 Cとを互い違いに目封止部 8によって目封止した構造 のものが挙げられる(なお、符号 12は、補強部材としての外壁である)。このような構 造のハニカムフィルタ 1によれば、被処理ガス Gを入口側端面 Bからセル 4aに導入
1
すると、粒子状物質等の夾雑物が隔壁 2において捕捉される一方、多孔質の隔壁 2 を透過して隣接するセル 4bに流入した処理済ガス Gが出口側端面 C力 排出される
2
ため、被処理ガス G中の粒子状物質が分離された処理済ガス Gを得ること力 Sできる
1 2
[0004] 上記のような多孔質ハニカム構造体は、例えば、骨材原料粒子、造孔材、有機バイ ンダ等を含む坏土原料を分散媒とともに混合 ·混練することによって坏土を得、その 坏土を成形して成形体を得、次いで、その成形体を乾燥して乾燥体を得た後、更に 、その乾燥体を焼成する方法等により製造されるが、このような製造方法においては 、得られた多孔質ハニカム構造体に少なからず焼成割れ (クラック)が発生するという 問題があった。
[0005] 上記クラックの発生は、乾燥体 (被焼成体)を焼成する際の昇温過程にぉレ、て、被 焼成体中に含まれる可燃物が燃焼し、被焼成体の内部温度が急激に上昇すること が原因であると考えられている。即ち、上記の昇温過程においては、被焼成体の外 周部温度は焼成雰囲気の温度上昇に追従してほぼ一定の速度で上昇する一方で、 被焼成体の中心部温度は被焼成体中に含まれる造孔材ゃ有機バインダ等の可燃物 の燃焼に伴って、焼成雰囲気の温度上昇を上回る急激な速度で上昇する。従って、 被焼成体の内外温度差が大きくなり、熱応力によって多孔質ハニカム構造体にクラッ クが発生すると考えられるのである。
[0006] 上記のような問題を解決する方策として、従来は、被焼成体を焼成する際の昇温過 程において被焼成体の内外温度差が生じないように焼成雰囲気の昇温速度を厳密 に制御する方法が採用されてきた。本出願人も、有機バインダが燃焼する温度域(1 80〜300°C程度)において昇温速度を低く抑えた(即ち、徐々に昇温する)焼成雰 囲気下で、有機バインダの燃焼を可能な限り緩やかに進行させる方法や、所定の温 度範囲で、雰囲気温度を被焼成体の中心部温度に実質的に同期させながら昇温す る多孔質セラミックス構造体の製造方法等を既に提案している (例えば、特許文献 1、 及び 2参照)。
[0007] 特許文献 1:特許第 2543565号公報
特許文献 2 :特開 2003— 212672号公報
発明の開示
[0008] し力しながら、上記のいずれの方法も、被焼成体を焼成する際におけるクラックの発 生を防止するという観点からは非常に有効な方法ではあるものの、これらの方法を採 用してもなお多孔質ハニカム構造体に発生するクラックを確実に防止するところまで には至ってレ、なレ、のが現状である。
[0009] 特に、近年にぉレ、ては、ガスが隔壁を透過する際の圧力損失を低減させ、フィルタ の処理能力を向上させることを目的として、多孔質ハニカム構造体の隔壁の薄壁化 や高気孔率化が急速に進行しており、その構造上、従来と比較してクラックがより発 生し易い状況となっている。このような状況の下、クラックの発生による製造歩留まり の低下やフィルタの濾過性能 (捕集効率)の低下が極めて深刻な問題となりつつあり 、クラックの発生をより確実に防止することができる多孔質ハニカム構造体の製造方 法を創出することが産業界から切望されている。
[0010] 本発明は、上述のような従来技術の課題を解決するためになされたものであり、クラ ックの発生をより確実に防止することができるという、従来の方法と比較して有利な効 果を奏する多孔質ハニカム構造体の製造方法を提供するものである。
[0011] 本発明者等は、上述の課題を解決するべく鋭意研究した結果、被焼成体を焼成す る際の昇温過程のみならず、得られた焼成体を冷却する降温過程においてもクラック が発生しているという新たな知見を得た。そして、得られた焼成体を冷却する降温過 程において冷却雰囲気の降温速度を厳密に制御するという従来にない新規な構成 によって、上記課題を解決し得ることに想到して、本発明を完成させた。即ち、本発 明によれば、以下の多孔質ハニカム構造体の製造方法が提供される。
[0012] [1] 骨材原料粒子を含む坏土原料を分散媒とともに混合'混練することによって坏 土を得る混合'混練工程と、前記坏土を成形して、隔壁によって多数のセルが区画 · 形成されたハニカム成形体を得、そのハニカム成形体を乾燥することによってハニカ ム乾燥体を得る成形 ·乾燥工程と、前記ハニカム乾燥体を焼成してハニカム焼成体 を得、そのハニカム焼成体を冷却することによって多孔質ハニカム構造体を得る焼成 •冷却工程とを備えた多孔質ハニカム構造体の製造方法であって、前記ハニカム焼 成体を焼成温度から冷却する際に、少なくとも 800°C以下の温度領域において、降 温速度が 100°C/時間以下の冷却雰囲気下で前記ハニカム焼成体を冷却する多 孔質ハ二カム構造体の製造方法。
[0013] [2] 少なくとも 800°C以下の温度領域において、前記ハニカム焼成体の中心部温 度と前記冷却雰囲気の雰囲気温度との温度差が 250°C以内に保持されるような降温 速度の冷却雰囲気下で前記ハニカム焼成体を冷却する上記 [1]に記載の多孔質ハ 二カム構造体の製造方法。 [0014] [3] 少なくとも 800°C以下の温度領域において、前記ハニカム焼成体の中心部温 度と前記冷却雰囲気の雰囲気温度との温度差が 200°C以内に保持されるような降温 速度の冷却雰囲気下で前記ハニカム焼成体を冷却する上記 [1]に記載の多孔質ハ 二カム構造体の製造方法。
[0015] [4] 焼成温度から 800°Cに至るまでの温度領域においては、降温速度が 200°CZ 時間以下の冷却雰囲気下で前記ハニカム焼成体を冷却し、 800°C以下の温度領域 においては、降温速度が 100°C/時間以下の冷却雰囲気下で前記ハニカム焼成体 を冷却する上記 [1]〜 [3]のレ、ずれかに記載の多孔質ハニカム構造体の製造方法。
[0016] [5] 焼成温度から 800°Cに至るまでの温度領域においては、降温速度が 200°C/ 時間以下の冷却雰囲気下で前記ハニカム焼成体を冷却し、 800°C以下の温度領域 においては、降温速度が 50°C/時間以下の冷却雰囲気下で前記ハニカム焼成体 を冷却する上記 [1]〜 [3]のレ、ずれかに記載の多孔質ハニカム構造体の製造方法。
[0017] [6] 前記骨材原料粒子として、シリカ(Si〇)粒子、カオリン粒子、アルミナ (Al O ) 粒子、水酸化アルミニウム(Al (OH) )粒子、及びタルク(3MgO '4Si〇 ·Η Ο)粒子 力もなるコージエライト(2MgO ' 2Al O - 5SiO 匕原料粒子を用いる上記 [1]〜[5] のいずれかに記載の多孔質ハニカム構造体の製造方法。
[0018] [7] 前記ハニカム焼成体力 S、隔壁によって多数のセルが区画 ·形成され、前記多数 のセルの一方の開口部と他方の開口部とを互レ、違いに目封止する目封止部を更に 備えたものである上記 [1]〜 [5]のいずれかに記載の多孔質ハニカム構造体の製造 方法。
[0019] [8] 前記ハニカム焼成体が、 5リットル以上の見かけ体積を有するものである上記 [1
]〜 [5]のレ、ずれかに記載の多孔質ハニカム構造体の製造方法。
[0020] [9] 前記ハニカム焼成体力 気孔率 50%以上のものである上記 [1]〜[5]のいず れかに記載の多孔質ハニカム構造体の製造方法。
[0021] [10] 前記ハニカム焼成体力 隔壁によって多数のセルが区画 *形成され、前記隔 壁の厚さが 150 μ m以下のものである上記 [1]〜 [5]のいずれかに記載の多孔質ハ 二カム構造体の製造方法。
[0022] 本発明の多孔質ハニカム構造体の製造方法は、得られた焼成体を冷却する降温 過程において発生するクラックを有効に防止し得るため、従来の方法と比較して、ク ラックの発生をより確実に防止することができるという有利な効果を奏するものである。 図面の簡単な説明
[0023] [図 1(a)]従来の目封止ハニカム構造体の一の実施形態を示す模式図であり、 目封止 ハニカム構造体をセル開口端面方向から見た正面図である。
[図 1(b)]従来の目封止ハニカム構造体の一の実施形態を示す模式図であり、図 1 (a) の A— A'断面図である。
[図 2(a)]多孔質ハニカム構造体の一例を示す模式図であり、多孔質ハニカム構造体 をセル開口端面方向から見た正面図である。
[図 2(b)]多孔質ハニカム構造体の一例を示す模式図であり、多孔質ハニカム構造体 の斜視図である。
[図 3(a)]ハニカム焼成体における熱電対の配置位置を示す模式図であり、ハニカム 焼成体をセル開口端面方向から見た模式図である。
[図 3(b)]ハニカム焼成体における熱電対の配置位置を示す模式図であり、図 3 (a)の A— A'断面図である。
[図 4]多孔質ハニカム構造体の検査方法を示す模式図である。
符号の説明
[0024] 1:ハニカムフィルタ、 2:隔壁、 4, 4a, 4b:セル、 6:多孔質ハニカム構造体、 8:目封 止部、 12 :外壁、 21 :ハニカム焼成体、 31 :検査器具、 32 :台座、 34 :ガイド筒、 36 : 重錘、 38:定盤、 40:下部マット、 42:黒色画用紙、 44:多孔質ハニカム構造体、 46: 上部マット、 B:入口側端面、 C:出口側端面、 G:被処理ガス、 G:処理済ガス。
1 2
発明を実施するための最良の形態
[0025] 本発明者は、本発明の多孔質ハニカム構造体の製造方法を開発するに際し、まず 、従来の製造方法において、焼成雰囲気の昇温速度を厳密に制御してもなおクラッ クの発生を確実に防止するところまでには至らない理由を検討した。その結果、多孔 質ハニカム構造体のクラックは、被焼成体を焼成する際の昇温過程のみならず、得ら れた焼成体を冷却する降温過程においても発生しているという事実を見出した。
[0026] 従来、多孔質ハニカム構造体のクラックは、被焼成体を焼成する際の昇温過程に おいて、被焼成体中に含まれる可燃物が燃焼し、被焼成体の内部温度が急激に上 昇することが原因であると考えられており、被焼成体の内外温度差が生じないように 焼成雰囲気の昇温速度を厳密に制御することによってクラックの発生を防止すること ができるとされてきた。
[0027] し力 ながら、本発明者が、骨材原料粒子として、コージヱライトイ匕原料粒子を含む 坏土原料を分散媒とともに混合 '混練し、成形し、乾燥し、焼成してなる多孔質ハニカ ム構造体を分析したところ、コージエライト結晶粒子の破断による微細クラックが多数 観察された。焼成温度に至るまでの昇温過程においては、コージヱライトは未だ合成 されておらず、コージエライト結晶粒子は存在しないはずであるから、上記の微細クラ ックは、焼成によりコージヱライトが合成された後、得られた焼成体を冷却する降温過 程において発生しているものと考えられた。
[0028] より詳細に検討したところ、昇温過程において発生するクラックの場合には、クラック 部分に結晶粒子の破断は観察されず、一旦クラックが発生すると焼成収縮によってク ラックが進展し、大きく口が開くという特徴があるのに対し、降温過程において発生す るクラックの場合には結晶粒子の破断が認められる力 そのクラックは目視できない 程の微細クラックであることが判明した。
[0029] 既に述べてきたように、従来、多孔質ハニカム構造体のクラックは、被焼成体を焼成 する際の昇温過程において発生すると考えられており、焼成雰囲気の昇温速度につ レ、ては厳密に制御していたものの、冷却過程においてクラックが発生するという知見 がなかったために、得られた焼成体については生産性を重視して急速に冷却する冷 却雰囲気下で冷却を行うというのが当業者の技術常識であった。即ち、従来は、冷 却雰囲気の降温速度については全く着目していなかったために、クラックの発生を確 実に防止することができなかったのである。
[0030] そこで、本発明においては、得られた焼成体を冷却する降温過程において冷却雰 囲気の降温速度を厳密に制御することとした。このような方法を採ることにより、得られ た焼成体を冷却する降温過程において発生するクラックを有効に防止し得るため、 従来の方法と比較して、クラックの発生をより確実に防止することが可能となる。以下 、本発明の多孔質ハニカム構造体の製造方法を実施するための最良の形態につい て具体的に説明するが、本発明は以下の形態に限定されるものではない。
[0031] なお、本明細書において「平均粒子径」とレ、うときは、スト一タスの液相沈降法を測 定原理とし、 X線透過法により検出を行う、 X線透過式粒度分布測定装置 (例えば、 商品名:セディグラフ 5000— 02型、(株)島津製作所製等)により測定した 50 %粒子 径の値を意味するものとする。
[0032] また、本明細書において「平均細孔径」というときは、下記式(1 )を原理式とする水 銀圧入法により測定された細孔径であって、多孔質体に圧入された水銀の累積容量 力 多孔質体の全細孔容積の 50 %となった際の圧力 Pから算出された細孔径を意味 するものとする。
d = - y X cos θ /Ρ : ( 1 )
(但し、 d :細孔径、 γ:液体一空気界面の表面張力、 Θ:接触角、 Ρ :圧力)
[0033] 更に、本明細書において「気孔率」というときは、上記水銀圧入法により得られる多 孔質体の全細孔容積 Vと、その多孔質体の構成材料の真比重 d (コージエライトの場 合であれば、 2. 52g/cm3)とから、下記式(2)に基づいて算出される気孔率 Pを意 味するものとする。
P =V/ (V + l /d ) X 100 : (2)
(但し、 P:気孔率、 V:全細孔容積、 d:真比重)
[0034] 更にまた、本明細書においては、説明の便宜上、ハニカム乾燥体を焼成した直後 の構造体を「ハニカム焼成体」、これを冷却した構造体を「多孔質ハニカム構造体」と 文言上区別しているが、両者は温度状態が異なることを除き、その構造等は全く同じ ものである。
[0035] ( 1 )混合'混練工程:
本発明の製造方法における第 1の工程は、骨材原料粒子を含む坏土原料を分散 媒とともに混合 ·混練することによって坏土を得る混合 ·混練工程である。
[0036] (i)骨材原料粒子:
骨材原料粒子とは、多孔質ハニカム構造体 (焼結体)の主たる構成成分となる骨材 粒子の原料となる粒子である。本発明における骨材原料粒子としては、従来、多孔質 ハニカム構造体の構成成分として用いられてきた、種々のセラミック、又は金属の粒 子を単独で或いは混合して用いることができる。中でも、コージヱライトイ匕原料、ムライ ト、アルミナ、アルミニウムチタネート、リチウムアルミニウムシリケート、炭化珪素、窒化 珪素、又は金属珪素の粒子を用いると、得られる多孔質ハニカム構造体に高い耐熱 性を付与することができる点において好ましい。金属珪素は、セラミックではないが、 例えば、金属珪素結合炭化珪素 (Si— SiC)焼結体の骨材粒子となる場合等がある。
[0037] 本発明の製造方法においては、骨材原料粒子が上記以外の成分を含むものであ つてもょレ、が、得られる多孔質ハニカム構造体に確実に耐熱性を付与する観点から、 骨材原料粒子の全質量に対する上記 8成分の合計質量の比率が 50質量%以上で あることが好ましい。
[0038] 本明細書にいう「コージェライトイ匕原料粒子」とは、焼成によりコージエライトに変換さ れ得る物質の粒子を意味する。通常は、コージエライトの構成成分となるシリカ、アル ミナ、マグネシア、又はこれらの前駆物質(以下、「シリカ源」、「アルミナ源」、又は「マ グネシァ源」と記す)からなる粒子を、焼成後の組成がコージエライトの理論組成(2M g〇' 2Al〇 ' SSiO )となるように、より具体的には、シリカ: 47〜53質量0 /0、アルミナ
: 32〜38質量%、マグネシア: 12〜: 16質量%の比率となるように混合したものが好 適に用いられる。
[0039] シリカ源としては、石英をはじめとするシリカ(Si〇)そのものの他、カオリン (Al O ·
2SiO · 2Η 0)、タルク(3Mg〇'4SiO ·Η〇)、若しくはムライト(3A1 O - 2SiO )等 のシリカを含む複合酸化物、又は焼成によりシリカに変換される物質等が挙げられる
[0040] 中でも、タルク、又はカオリンを用いることが好ましい。後述するように、ハニカム構 造体の成形方法としては、形成すべき隔壁と相補的な形状のスリットを有する口金か ら押し出す押出成形が汎用されるが、板状結晶であるタルクやカオリンは、 口金のス リットを通過する際に板状結晶が配向するため、最終的に得られる多孔質ハニカム構 造体を低熱膨張化させるという好ましい効果を奏する。
[0041] シリカ源粒子の平均粒子径は特に限定されなレ、が、石英粒子であれば 5〜50 z m 、カオリン粒子であれば 2〜10 μ m、タルク粒子であれば 5〜40 μ m、ムライト粒子で あれば 2〜20 μ m程度のものが好適に用いられる。 [0042] アルミナ源としては、アルミナそのものの他、カオリン、ムライト等のアルミナを含む 複合酸化物、又は水酸化アルミニウム (A1 (〇H) )等の焼成によりアルミナに変換さ
3
れる物質等が挙げられる。但し、不純物が少ない市販品を入手できる、アルミナ、又 は水酸化アルミニウムを用いることが好まし アルミナと水酸化アルミニウムを併用 することが更に好ましい。アルミナ源粒子の平均粒子径は特に限定されなレ、が、アル ミナ粒子であれば l〜10 z m、水酸化アルミニウム粒子であれば 0. 2〜10 z m程度 のものが好適に用いられる。
[0043] マグネシア源としては、マグネシアそのものの他、タルク等のマグネシアを含む複合 酸化物、又はマグネサイト(MgCO )等の焼成によりマグネシアに変換される物質等
3
力 s挙げられる。マグネシア源粒子の平均粒子径は特に限定されないが、マグネサイト 粒子であれば 4〜8 μ m程度のものが好適に用いられる。
[0044] 以上のことを総合的に勘案すると、コージェライトイ匕原料粒子としては、シリカ粒子( 平均粒子径 5〜50 μ m)、カオリン粒子(平均粒子径 2〜10 μ m)、アルミナ粒子(平 均粒子径 1〜: 10 μ m)、水酸化アルミニウム粒子(平均粒子径 0· 2〜10 μ m)、タル ク粒子(平均粒子径 10〜30 /i m)の各粒子力 5〜25質量%、 0〜40質量%、 5〜 35質量%、 0〜25質量%、 35〜45質量%の比率で混合されたものを用いることが 好ましい。
[0045] (ii)分散媒:
骨材原料粒子とともに混合 ·混練に供する分散媒としては、水、或いは水とアルコ ール等の有機溶媒との混合溶媒等が挙げられ、特に、水が好適に用いられる。
[0046] (iii)添加剤:
造孔材は、ハニカム乾燥体を焼成する際に焼失して気孔を形成させることによって 、気孔率を増大させ、高気孔率の多孔質ハニカム構造体を得るための添加剤であり 、ハニカム乾燥体を焼成する際に焼失する可燃物である必要がある。例えば、グラフ アイト等のカーボン、小麦粉、澱粉、フエノール樹脂、ポリメタクリル酸メチル、ポリェチ レン、又はポリエチレンテレフタレート等が挙げられる力 アクリル樹脂等の有機樹脂 力もなるマイクロカプセルを特に好適に用いることができる。マイクロカプセルは中空 粒子であるために、単位質量当たりの造孔効果が高ぐ少量の添加で高気孔率のハ 二カム構造体を得られることに加え、焼成時の発熱が少なぐ熱応力の発生を低減す ることができるとレ、う利点がある。
[0047] 有機バインダは、ハニカム成形時に坏土に流動性を付与し、焼成前のハニカム乾 燥体においてゲル状となり、乾燥体の機械的強度を維持する補強剤としての機能を 果たす添加剤である。従って、有機バインダとしては、例えば、ヒドロキシプロピルメチ ノレセノレロース、メチノレセノレロース、ヒドロキシェチノレセノレロース、力ノレボキシノレメチノレ セルロース、又はポリビュルアルコール等を好適に用いることができる。
[0048] 分散剤は、骨材原料粒子等の分散媒への分散を促進し、均質な坏土を得るための 添加剤である。従って、分散剤としては、界面活性効果を有する物質、例えば、ェチ レンダリコール、デキストリン、脂肪酸石鹼、ポリアルコール等を好適に用いることがで きる。
[0049] (iv)混合'混練:
上記骨材原料粒子、分散媒、添加剤等は、従来公知の混合 ·混練方法によって、 混合 ·混練することができる。
[0050] 混合については、従来公知の混合機、例えば、シグマニーダ、リボンミキサ等により 行うことができる。混練については、従来公知の混練機、例えば、シグマニーダ、バン ノくリーミキサ、スクリュー式の押出混練機等により行うことができる。特に、真空減圧装 置 (例えば、真空ポンプ等)を備えた混練機 ( 、わゆる真空土練機や二軸連続混練 押出し成形機等)を用いると、欠陥が少なぐ成形性の良好な坏土を得ることができる 点において好ましい。
[0051] 本発明の製造方法においては、まず、シグマニーダによる混練を行レ、、更に、真空 減圧装置を備えたスクリュー式の押出混練機による混練を行って、円柱状に押し出さ れた坏土を得ることが好ましレ、。
[0052] (2)成形 ·乾燥工程:
本発明の製造方法における第 2の工程は、坏土を成形して、隔壁によって多数の セルが区画'形成されたハニカム成形体を得、そのハニカム成形体を乾燥することに よってハニカム乾燥体を得る成形 ·乾燥工程である。
[0053] 本明細書にいう「ハニカム」とは、例えば、図 2 (a)及び図 2 (b)に示す多孔質ハニカ ム構造体 6のように、極めて薄い隔壁 2によって多数のセル 4が区画 '形成されている 形状を意味する。ハニカム成形体の全体形状については特に限定されるものではな ぐ例えば、図 2 (a)及び図 2 (b)に示すような円柱状の他、四角柱状、三角柱状等の 形状を挙げることができる。また、ハニカム成形体のセル形状 (セルの形成方向に対 して垂直な断面におけるセル形状)についても特に限定はされず、例えば、図 2 (a) 及び図 2 (b)に示すような四角形セルの他、六角形セル、三角形セル等の形状を挙 げること力 Sできる。
[0054] 成形の方法は、特に限定されるものではなぐ押出成形、射出成形、プレス成形等 の従来公知の成形法を用いることができる力 中でも、上述のように調製した坏土を、 形成すべき隔壁と相補的な形状のスリットを有する口金から押し出す押出成形法に より成形することが好ましい。このような方法は、所望のセル形状、隔壁厚さ、セル密 度を有するハニカム成形体を簡便に得ることができる点において好ましい。
[0055] 乾燥の方法も特に限定されず、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、 真空乾燥、凍結乾燥等の従来公知の乾燥法を用いることができるが、中でも、ハニカ ム成形体全体を迅速かつ均一に乾燥することができる点で、熱風乾燥とマイクロ波乾 燥又は誘電乾燥とを組み合わせた乾燥方法が好ましい。
[0056] (3)焼成'冷却工程:
本発明の製造方法における第 3の工程は、ハニカム乾燥体を焼成してハニカム焼 成体を得、そのハニカム焼成体を冷却することによって多孔質ハニカム構造体を得る 焼成 ·冷却工程である。
[0057] 焼成とは、骨材原料粒子を焼結させて緻密化し、所定の強度を確保するための操 作を意味する。本発明の製造方法においては、焼成は従来公知の焼成方法に準じ て行えばよいが、焼成条件 (温度 ·時間)は、ハニカム乾燥体を構成する骨材原料粒 子の種類により異なるため、その種類に応じて適当な条件を選択することになる。例 えば、コ一ジヱライトイ匕原料を骨材原料粒子として用いる場合には、 1410〜1440°C の温度で、 3〜: 12時間焼成することが好ましい。焼成条件(温度'時間)が上記範囲 未満であると、骨材原料粒子の焼結が不十分となるおそれがある点において好ましく なぐ上記範囲を超えると、生成したコージエライトが溶融するおそれがある点におい て好ましくない。
[0058] なお、焼成の前、或いは焼成の昇温過程において、ハニカム乾燥体中の可燃物( 有機バインダ、造孔材、分散剤等)を燃焼させて除去する操作 (仮焼)を行うと、可燃 物の除去をより促進させることができる点において好ましい。有機バインダの燃焼温 度は 180〜300°C程度、造孔材の燃焼温度も最高で 400°C程度であるので、仮焼 温度は 200〜: 1000°C程度とすればよい。仮焼時間は特に限定されないが、通常は 、 10〜: 150時間程度である。
[0059] 上記のような焼成により得られたハニカム焼成体は焼成温度から常温まで冷却する ことによって最終製品である多孔質ハニカム構造体とするが、本発明の製造方法は、 得られた焼成体を冷却する降温過程において冷却雰囲気の降温速度を厳密に制御 する点に特徴がある。具体的には、ハニカム焼成体を焼成温度から冷却する際に、 少なくとも 800°C以下の温度領域において、降温速度が 100°C/時間以下の冷却 雰囲気下でハニカム焼成体を冷却することが必要である。こうすることにより、降温過 程において発生するクラックを有効に防止し得るため、従来の方法と比較して、クラッ クの発生をより確実に防止することが可能となる。
[0060] 上述の如ぐ本発明の製造方法では、所定の温度領域において、降温速度が 100 °C /時間以下の冷却雰囲気下でハニカム焼成体を冷却することが必要である力 降 温過程において発生するクラックを確実に防止するためには、降温速度が 50°C/時 間以下の冷却雰囲気下でハニカム焼成体を冷却することが好ましい。降温速度の下 限は特に限定されないが、生産性を考慮して 20°CZ時間以上とすることが好ましレ、
[0061] なお、本発明の製造方法では、所定の温度領域において、降温速度が 100°CZ 時間以下の冷却雰囲気下でハニカム焼成体を冷却することにより、降温過程におい て発生するクラックを防止する効果を得ることができるが、ハニカム焼成体の中心部 温度と冷却雰囲気の雰囲気温度との温度差が 250°C以内に保持されるような降温速 度の冷却雰囲気下でハニカム焼成体を冷却することが好ましぐ 200°C以内に保持 されるような降温速度の冷却雰囲気下でハニカム焼成体を冷却することが更に好まし い。勿論、クラック防止の観点からすれば、ハニカム焼成体の中心部温度と冷却雰囲 気の雰囲気温度との温度差を限りなく o°cに近づけることが好ましい。但し、生産性の 観点からすれば、温度差を 5°Cより小さくすることは実用的ではなぐ温度差を 5°C以 上とすることが一般的である。
[0062] ハニカム焼成体の材質 (骨材原料粒子の種類等)や構造 (見かけ体積、気孔率、隔 壁厚さ、セル密度、嵩密度等)といった諸条件により、最適な降温速度の条件は異な る。クラックの発生を防止するためには、熱応力の発生を抑制するべぐ当該ハニカ ム焼成体の内外温度差に基づいて降温速度を決定することが最も合理的だからであ る。
[0063] 「ハニカム焼成体の中心部温度と冷却雰囲気の雰囲気温度との温度差が 250°C ( なレ、しは 200°C)以内に保持されるような降温速度」とするためには、ハニカム焼成体 の中心部温度と冷却雰囲気の雰囲気温度とを熱電対等により測定し、ハニカム焼成 体の中心部温度の挙動に応じて、両温度の差が 250°C (ないしは 200°C)以内に保 持されるように降温速度を調整すればよい。このようにして、そのハニカム焼成体に おける最適な降温速度が一旦決定できれば、材質や構造といった諸条件を同じくす るハニカム焼成体の温度挙動は同様であるとみなすことができるので、各ハニカム焼 成体毎に降温速度を調整する必要はない。即ち、当初決定した最適な降温速度の 条件を利用して連続的な製造 (量産)を行うことが可能である。
[0064] 上述の如ぐ本発明の製造方法では、所定の温度領域において、降温速度が 100 °CZ時間以下の冷却雰囲気下でハニカム焼成体を冷却することが必要であるが、焼 成温度から 800°Cに至るまでの温度領域においては、必ずしもこのような降温速度に 制御する必要はない。
[0065] 焼成温度から 800°Cに至るまでの温度領域において、降温速度が 100°C/時間 以下の冷却雰囲気下でハニカム焼成体を冷却しても、冷却当初のこの温度領域で は焼成体の内外温度差がつき難くクラックの発生頻度が低いため、降温速度を厳密 に制御する実益がないためである。従って、焼成温度から 800°Cに至るまでの温度 領域における降温速度にっレ、ては、生産性や焼結体の特性制御等の観点から適切 な降温速度を適宜設定すればよい。通常、この温度領域においては、降温速度が 5 0〜200°C/時間の冷却雰囲気下でハニカム焼成体を冷却することが好ましい。 [0066] 本発明の製造方法においては、冷却雰囲気の降温速度を、少なくとも 800°C以下 の温度領域にぉレ、て制御する。降温速度の制御の開始点を 800°Cとしたのは、冷却 当初(焼成温度から 800°Cに至るまで)はハニカム焼成体の内外温度差がつき難い 力 冷却が進行するに連れて中心部温度が外周部温度の低下に追従できなくなり内 外温度差が許容レベルを超えてしまうからである。降温速度の制御の終了点はクラッ クの発生を抑止するという観点からはできる限り低温とすることが好ましい。具体的に は、 150°Cまで制御することが好ましぐ 100°Cまで制御することが更に好ましい。
[0067] なお、本発明の製造方法は得られた焼成体を冷却する降温過程において発生す るクラックを防止するものであるところ、焼成の昇温工程におけるクラックの発生を防 止するためには、従来行われてきたように、被焼成体を焼成する際の昇温過程にお いて被焼成体の内外温度差が生じないように焼成雰囲気の昇温速度を厳密に制御 する方法を採用することが好ましレ、。
[0068] 例えば、本出願人が既に提案したように、有機バインダが燃焼する温度域(180〜 300°C程度)において昇温速度を低く抑えた(即ち、徐々に昇温する)焼成雰囲気下 で、有機バインダの燃焼を可能な限り緩やかに進行させる方法 (例えば、特許第 254 3565号公報参照)や、所定の温度範囲で、雰囲気温度を被焼成体の中心部温度に 実質的に同期させながら昇温する多孔質セラミックス構造体の製造方法 (例えば、特 開 2003— 212672号公報参照)等を好適に用いることができる。
[0069] また、有機バインダの燃焼による被焼成体中心部の急激な温度上昇に追従させる ように、バインダ燃焼温度域における焼成雰囲気の昇温速度を極端に上昇させる方 法も好ましい。例えば、被焼成体に含有される有機バインダの燃焼開始温度(通常、 180〜300°Cの範囲内にある)から 300°Cに至るまでの焼成雰囲気の昇温速度を 25 (°CZ時間)以上とする方法を用いてもよい。このような方法は、被焼成体の内外温度 差を 80°C以内、条件によっては 50°C以内に保持することができるため、昇温過程に おけるクラックを有効に防止可能であることに加え、従来に比して焼成時間を大幅に 短縮することができ、生産性を向上させることができる点において好ましい。
[0070] 更に、骨材原料粒子としてタルクを含む場合に、タルク脱水温度域(800〜1000 °C)における焼成雰囲気の昇温速度を厳密に制御する方法を採用することも好まし い実施形態の一つである。骨材原料粒子としてタルクを含む場合、 800〜1000°Cの 温度範囲においては、被焼成体の外周部温度は焼成雰囲気の温度上昇に追従して ほぼ一定の速度で上昇する一方で、被焼成体の中心部温度はタルクからの脱水(吸 熱反応)によって、焼成雰囲気の温度上昇とは逆行するように急激に温度が低下す る。従って、被焼成体の内外温度差が大きくなり、熱応力によってクラックが発生する 場合がある。
[0071] 従って、吸熱反応による被焼成体中心部の急激な温度低下に対応するように、 80
0〜: 1000°Cの温度範囲(タルク脱水温度域)における焼成雰囲気の昇温速度を 40
°C /時間以下に低く抑える(即ち、徐々に昇温する)ことが好ましい。このような方法 は、被焼成体の内外温度差を 60°C以内、条件によっては 40°C以内に保持すること ができるため、昇温過程におけるクラックを有効に防止可能であるという好ましい効果 を奏する。特に、骨材粒子原料の一つとしてタルクを汎用するコージヱライト製の多 孔質ハ二カム構造体を製造する場合に好適に用いることができる。
[0072] なお、本発明の製造方法は、ハニカム焼成体が機械的強度を付与し難い構造であ る場合に特に好適に用いることができる。このような構造のハニカム焼成体は降温過 程においてクラックが特に顕著に発生するため、本発明の製造方法のメリットをより多 く享受できるからである。機械的強度を付与し難い構造としては、例えば、 目封止部 を備えたもの、隔壁厚さが薄いもの、気孔率が高いもの等が挙げられる。
[0073] 目封止部を備えたハニカム焼成体は、 目封止部に比して非目封止部が脆弱であり 、その部分に応力集中が起こり易いため、機械的強度を付与し難い構造であるとい える。従って、ハニカム焼成体が、多数のセルの一方の開口部と他方の開口部と互 い違いに目封止する目封止部を更に備えたものである場合には、降温過程における クラックを有効に防止するという本発明の製造方法のメリットをより多く享受することが できる。
[0074] なお、 目封止部を備えたハニカム焼成体は、例えば、ハニカム乾燥体の一方の端 面に、粘着シートを貼着し、画像処理を利用したレーザカ卩ェ等によりその粘着シート の目封止すべきセルに対応する部分のみに孔開けをしてマスクとし、そのマスクが貝占 着されたハニカム乾燥体の端面をセラミックスラリー中に浸漬し、ハニカム乾燥体の 目封止すべきセルにセラミックスラリーを充填して目封止部を形成し、これと同様のェ 程をハニカム乾燥体の他方の端面についても行った後、 目封止部を乾燥した後、こ れを焼成することにより得ること力 Sできる。
[0075] 気孔率が高いハニカム焼成体は、機械的強度を担保する隔壁自体が脆弱であるた め、機械的強度を付与し難い構造であるといえる。従って、ハニカム乾燥体が、気孔 率 50%以上、特に 60%以上という気孔率が高いものである場合には、降温過程に おけるクラックを有効に防止するという本発明の製造方法のメリットをより多く享受する ことができる。気孔率の上限は特に限定されないが、製造上の観点及びハニカム焼 成体の機械的強度の観点から 65%以下とすることが好ましい。
[0076] なお、気孔率が 50%以上とレ、う気孔率が高レ、ハニカム焼成体は、例えば、造孔材 として、市販のアクリル樹脂製マイクロカプセルを用いる場合であれば、骨材原料粒 子 100質量部に対して、マイクロカプセルを 5質量部以上添加した坏土を成形してハ 二カム成形体を得、これを乾燥し、焼成することにより得ることができる。
[0077] 隔壁が薄いハニカム焼成体は、機械的強度を担保する隔壁自体が脆弱であるため 、機械的強度を付与し難い構造であるといえる。従って、ハニカム乾燥体が、隔壁に よって多数のセルが区画'形成され、その隔壁の厚さが 150 /i m以下という隔壁が薄 レ、ものである場合には、降温過程におけるクラックを有効に防止するという本発明の 製造方法のメリットをより多く享受することができる。隔壁の厚さの下限は特に制限さ れず、スリットを有する口金の作製能力、及びハニカム成形体の成形性や乾燥特性 等を考慮して適宜決定すればよい。但し、工業的に容易に成形可能とするという観 点からは、 40 a m以上とすることが好ましレ、。
[0078] なお、隔壁の厚さが 150 x m以下という隔壁が薄いハニカム焼成体は、例えば、坏 土を、薄い隔壁と相補的な形状のスリットを有する口金から押し出す押出成形法によ りハニカム成形体を得、これを乾燥し、焼成することにより得ること力できる。
[0079] また、本発明の製造方法は、ハニカム焼成体が内外温度差のつき易い構造である 場合に特に好適に用いることができる。内外温度差のつき易い構造としては、例えば 、大型のもの、隔壁が厚レ、もの等が挙げられる。
[0080] 大型のハニカム焼成体は、冷却雰囲気の温度が中心部にまで伝導され難いため、 内外温度差のつき易い構造であるといえる。従って、ハニカム焼成体が、 5リットル以 上、中でも 10リットル以上の見かけ体積を有するという大型のものである場合には、 降温過程におけるクラックを有効に防止するという本発明の製造方法のメリットをより 多く享受することができる。見かけ体積の上限は特に限定されないが、製造上の観点 力も 75リットル以下とすることが好ましレ、。
[0081] なお、本明細書において「見かけ体積」というときは、ハニカム焼成体のセル空間も 含めた体積を意味する。例えば、外径が 250mm φ、長さが 300mmのハニカム焼成 体はそのセル構造の如何に拘わらず、見かけ体積は約 15リットルとなる。
[0082] 隔壁が厚いハニカム焼成体は熱容量が大きぐ冷却雰囲気の温度が中心部にまで 伝導され難いため、内外温度差のつき易い構造であるといえる。従って、ハニカム焼 成体が、隔壁厚さ 300 /i m以上の厚壁のものである場合には、降温過程におけるク ラックを有効に防止するという本発明の製造方法のメリットをより多く享受することがで きる。
実施例
[0083] 以下、多孔質ハニカム構造体を製造した実施例、及び比較例により、本発明を更 に具体的に説明する。但し、本発明はこれらの実施例によって何ら制限を受けるもの ではない。
[0084] [多孔質ハニカム構造体の製造]
表 1〜表 3に記載の構造を有する多孔質ハニカム構造体を以下の方法により製造 した。骨材粒子原料としては、カオリン(平均粒子径 11 μ m)、タルク(平均粒子径 21 μ m)、水酸化アルミニウム(平均粒子径 2 μ m)、アルミナ(平均粒子径 7 μ m)、シリ 力(平均粒子径 25 μ ηι)を、 18. 5 : 40 : 15 : 14 : 12. 5の比率で含むものを用意した 。これらの粒子については、アルピネ分級機を用いた風簸分級により粒子径 100 μ m以上の粗粒子を除去したものを使用した。
[0085] そして、この骨材粒子原料 100質量部に対して、有機バインダとしてメチルセル口 ース 5質量部を添加して 3分間混合し、次いで、この混合物に造孔材として市販のァ クリル樹脂製マイクロカプセル 1. 0質量部を添加して 3分間混合し、更に、この混合 物に水 25質量部を噴霧しながら添加して 3分間混合した。 [0086] その後、上記の混合物をシグマ型ニーダにより 60分間混練して坏土を得、その坏 土を絶対圧 8kPaの真空条件下で、更に真空土練機により混練し、押し出すことによ り、円柱状 (外径 300mm φ )に成形された坏土を得た。
[0087] 上記の円柱状坏土を、表 1〜表 3に記載の見かけ体積、隔壁厚さ、セル密度を有 する多孔質ハニカム構造体を得られるように、形成すべき隔壁と相補的な形状のスリ ットが形成された口金を用いて押出成形する方法により、隔壁によって多数のセルが 区画'形成されたハニカム成形体を得た。具体的には、セル形状が正方形となるよう に、隔壁厚さに対応する幅のスリットが所定の間隔で格子状に配置された口金を用 いて、坏土を押出成形した。この成形はラム式押出し成形機により行った。
[0088] 上記のハニカム成形体をマイクロ波乾燥し、更に熱風乾燥することによってハニカ ム乾燥体を得た。このハニカム乾燥体を所定寸法に切断し、その一方の端面に、粘 着シートを貼着し、画像処理を利用したレーザ加工によりその粘着シートの目封止す べきセルに対応する部分のみに孔開けをしてマスクとし、そのマスクが貼着されたハ 二カム乾燥体の端面を、セラミックスラリー中に浸漬し、ハニカム乾燥体の目封止す べきセルにセラミックスラリーを充填して目封止部を形成し、これと同様の工程をハニ カム乾燥体の他方の端面についても行った後、ハニカム乾燥体とともに目封止部を 焼成した。
[0089] 目封止部形成用のセラミックスラリーとしては、骨材粒子原料として多孔質ハニカム 構造体の製造に用いたものと同じ骨材粒子原料を使用し、骨材粒子原料 100質量 部に対し、バインダとしてメチルセルロース 0. 5質量部、分散剤として特殊カルボン 酸型高分子界面活性剤 0. 3質量部、分散媒として水 50質量部を加えて 30分間混 合することにより調製したものを用いた。その粘度は 25Pa ' sであった。また、焼成条 件は 1420°C、 6時間とした。このようにして、多数のセルの一方の開口部と他方の開 口部と互い違いに目封止する目封止部を更に備えたハニカム焼成体を得た。
[0090] 上記のハニカム焼成体を焼成温度から 100°Cに至るまで冷却することにより多孔質 ハニカム構造体を得た。これらの多孔質ハニカム構造体の気孔率は 50%であった。 降温速度については、表 1〜表 3に記載の通りに制御した。実施例、比較例につい ては各々の条件で 10基の多孔質ハニカム構造体を製造した。この際、 10基のハニ カム焼成体のうちの一基について、図 3 (a)及び図 3 (b)に示す位置 Pl, P2に熱電 対を配置し、 P1の位置に配置した熱電対により雰囲気温度を、 P2の位置に配置した 熱電対によりハニカム焼成体 21の中心部温度を測定した。具体的には、 P1は、ハニ カム焼成体 31の外周面から 30mm離れた位置とし、 P2は、ハニカム焼成体 21の中 心に位置するセルの流路の中間点とした。そして、冷却過程における両位置の最大 温度差を「内外温度差」として表記した。
[表 1]
Figure imgf000021_0001
:カム焼成体の構造 気孔率 降温速度 内外温度差 クラック発生率 見かけ体積 隔壁厚さ セル密度 焼成温度〜 800°C 800°C以下
(D ( μ m) (セル/ ^m2) (%) (°CZ時間) (°C/時間) (°C) (%) 比較例 1 10 300 50 50 200 300 350 100 比較例 2 10 300 50 50 200 200 280 80 実施例 1 10 300 50 50 200 100 140 0 実施例 2 10 300 50 50 200 50 60 0
ニカム焼成体の構造 気孔率 降温速度 内外温度差 クラック発生率 見かけ体積 隔壁厚さ セル密度 焼成温度〜 800°C 800°C以下
(D ( m) (セル/ cm2) (%) (°C/時間) (°CZ時間) (。C) (%) 比較例 3 1 300 100 50 200 200 50 0 比較例 4 5 300 100 50 200 200 180 0 比較例 5 10 300 100 50 200 200 260 40 比較例 6 25 300 50 50 200 200 420 100 実施例 3 1 300 100 50 200 100 20 0 実施例 4 5 300 100 50 200 100 50 0 実施例 5 10 300 100 50 200 100 140 0 実施例 6 14 300 100 50 200 100 180 0 実施例 7 17 300 50 50 200 100 240 20 実施例 8 25 300 50 50 200 100 260 60 実施例 9 25 300 50 50 200 50 200 0 実施例 10 50 300 50 50 200 25 140 0 実施例 11 75 300 50 50 200 25 200 5
Figure imgf000023_0001
: :カム焼成体の構造 気孔率 降温速度 内外温度差 クラック宪生率 見かけ体積 隔壁厚さ セル密度 焼成温度〜 800°C 800°C以下
(L) m) (セル/ cm2) (%) (°CZ時間) (°CZ時間) (°C) (%) 比較例 6 25 300 50 50 200 200 420 100 比較例 7 25 350 50 50 200 200 440 100 比較例 8 25 425 50 50 200 200 480 100 実施例 8 25 300 50 50 200 100 260 40 実施例 12 25 350 50 50 200 100 280 60 実施例 13 25 425 50 50 200 100 300 80 実施例 14 25 300 50 50 200 50 140 0 実施例 15 25 350 50 50 200 50 150 0 実施例 16 25 425 50 50 200 50 190 0
Figure imgf000024_0001
ニカム焼成体の構造 気孔率 降温速度 內外温度差 クラック発生率 見かけ体積 隔壁厚さ セル密度 焼成温度〜 800°C 800°C以下
(D m) (セル Zcm2) (%) (°CZ時間) (°C/時間) (°C) (%) 比較例 9 10 100 50 30 200 200 210 40 比較例 10 10 125 50 30 200 200 230 30 比較例 11 10 150 50 30 200 200 260 30 実施例 17 10 100 50 30 200 100 130 0 実施例 18 10 125 50 30 200 100 140 0 実施例 19 10 150 50 30 200 100 160 0
Figure imgf000025_0001
[多孔質ハニカム構造体の評価]
実施例、及び比較例については、各々の条件で製造された 10基の多孔質ハニカ ム構造体においてクラックが発生した多孔質ハニカム構造体の比率(百分率)を「クラ ック発生率(%)」として算出し、この「クラック発生率(%)」により、クラックの防止効果 を評価した。なお、クラックの有無については、図 4に示す検查器具 31を用い、以下 の方法により確認した。
[0097] 図 4に示す検查器具 31は、台座 32に突設された中空筒状のガイド筒 34と、ガイド 筒 34の筒内に緩揷され得る砲弾状の重錘 36から構成された器具であり、重錘 36を ガイド筒 34に沿って所望の高さまで引き上げ、台座 32上に自然落下させることが可 能なように構成されている。
[0098] 検査の方法としては、まず、定盤 38の上面に、ウレタン製の下部マット 40、黒色画 用紙 42、検査対象となる多孔質ハニカム構造体 44を順次積層するように載置し、更 に、上部マット 46の上面に検査器具 31を載置して固定した。次いで、検査器具 31の 重錘 36を台座 32上面から 30mmの高さまで引き上げ、台座 32上に自然落下させ、 多孔質ハニカム構造体 44に軽レ、衝撃をカ卩えた。
[0099] 製造過程において多孔質ハニカム構造体 44にクラックが発生している場合には、 この衝撃によって、クラック部分に由来する破砕片が黒色画用紙 42上に落下するた め、多孔質ハニカム構造体 44のクラックの軌跡が黒色画用紙 42上に転写される。こ のクラックの軌跡を目視により確認し、長さ 10mm以上の軌跡が認められる多孔質ハ 二カム構造体をクラック発生、長さ 10mm以上の軌跡が認められない多孔質ハニカ ム構造体をクラック未発生として、「クラック発生率(%)」を算出した。
[0100] 表 1に示すように、 800°C以下の降温速度を、焼成温度から 800°Cに至るまでの降 温速度より大きくする(即ち、 800°C以下では急速に冷却する)従来の方法において は全ての多孔質ハニカム構造体にクラックの発生が認められた(比較例 1)。また、 80
0°C以下の降温速度を、焼成温度から 800°Cに至るまでの降温速度と同等とする(即 ち、焼成温度から均一な降温速度で冷却する)方法ではクラックの発生がやや抑制 されたものの、それでも 80%の多孔質ハニカム構造体にクラックの発生が認められた (比較例 2)。これらの方法では、 800°C以下の温度領域において、内外温度差を 25 0°C以内に保持することができなかった。
[0101] これに対し、 800°C以下の降温速度を 100°CZ時間以下とする方法では、 800°C 以下の温度領域において、内外温度差を 200°C以内に保持することができ、多孔質 ハニカム構造体にはクラックの発生が全く認められなかった(実施例 1 , 2)。
[0102] 表 2は、ハニカム焼成体の見かけ体積がクラックの発生に及ぼす影響についてまと めたものである。表 2から明らかなように、見かけ体積が 1〜5リットルと比較的小さレヽ サイズのハニカム構造体については、ハニカム焼成体中心部にまで速やかに熱が伝 導されるため、 800°C以下の降温速度を、焼成温度から 800°Cに至るまでの降温速 度と同等とした場合でも、内外温度差が 200°C以内に保持されており、クラックの発 生は全く認められなかった(比較例 3, 4)。
[0103] しかしながら、見かけ体積が 10リットル以上の比較的大きいサイズのハニカム焼成 体については、ハニカム焼成体中心部にまで熱が伝導され難いため、 800°C以下の 降温速度を、焼成温度から 800°Cに至るまでの降温速度と同等とすると、内外温度 差を 250°C以内に保持することができず、多数の多孔質ハニカム構造体にクラックが 発生してしまう(比較例 5, 6)。
[0104] これに対し、 800°C以下の降温速度を 100°C/時間としたところ、見かけ体積が 1 〜 14リットルの多孔質ハニカム構造体においてクラックの発生を完全に防止すること ができた他(実施例 3〜6)、見かけ体積が 17〜75リットルの大型の多孔質ハニカム 構造体にっレ、てもクラック発生率が顕著に低下した(実施例 7〜: 11)。
[0105] また、見かけ体積が 25リットルのハニカム構造体については、 800°C以下の降温速 度を 100°CZ時間としても内外温度差を 250°C以内に保持することができなかった ため、 800°C以下の降温速度を 50°C/時間としたところ、内外温度差を 200°C以内 に保持することができ、クラックの発生を完全に防止することができた(実施例 9)。即 ち、本発明の製造方法は、見かけ体積が 5リットル以上、中でも 10リットル以上の比較 的大きいサイズのハニカム焼成体に対して特に有効であることが立証された。
[0106] 表 3は、ハニカム焼成体の隔壁厚さがクラックの発生に及ぼす影響についてまとめ たものである。隔壁厚さが 300 z m以上の厚壁のハニカム構造体は、熱容量が大き いため、 800°C以下の降温速度を、焼成温度から 800°Cに至るまでの降温速度と同 等とすると、内外温度差を 250°C以内に保持することができず、全ての多孔質ハニカ ム構造体にクラックが発生してしまう(比較例 6〜8)。
[0107] これに対し、 800°C以下の降温速度を 100°C/時間としたところ、隔壁厚さが 300 μ m以上の厚壁のハニカム構造体においてクラック発生率が顕著に低下した(実施 例 8, 12, 13)。また、隔壁厚さが 300 z m以上の厚壁のハニカム構造体については 、 800°C以下の降温速度を 100°C/時間としても内外温度差を 250°C以内に保持 することができなかったため、 800°C以下の降温速度を 50°C/時間としたところ、内 外温度差を 200°C以内に保持することができ、クラックの発生を完全に防止すること ができた(実施例 14〜: 16)。即ち、本発明の製造方法は、隔壁厚さが 300 z m以上 の比較的厚壁のハニカム焼成体に対して特に有効であることがわかる。
[0108] 表 4も、ハニカム焼成体の隔壁厚さがクラックの発生に及ぼす影響についてまとめ たものである。表 4から明らかなように、隔壁厚さが 150 /i m以下のハニカム焼成体に ついては、機械的強度を担保する隔壁自体が脆弱であるため、 800°C以下の降温 速度を、焼成温度から 800°Cに至るまでの降温速度と同等とすると、内外温度差を 2 00°C以内に保持することができず、多数の多孔質ハニカム構造体にクラックが発生 してしまう(比較例 9〜 11)。
[0109] これに対し、 800°C以下の降温速度を 100°C/時間としたところ、クラックの発生を 完全に防止することができた (実施例 17〜: 19)。即ち、本発明の製造方法は、隔壁 厚さが 150 μ m以下の比較的薄壁のハニカム焼成体に対して特に有効であることが わ力る。
[0110] 表 5は、ハニカム焼成体の気孔率がクラックの発生に及ぼす影響についてまとめた ものである。表 5から明らかなように、気孔率が 50%以上のハニカム焼成体について は、機械的強度を担保する隔壁自体が脆弱であるため、 800°C以下の降温速度を、 焼成温度から 800°Cに至るまでの降温速度と同等とすると、内外温度差を 250°C以 内に保持することができず、多孔質ハニカム構造体にクラックが発生してしまう(比較 例 2, 12, 13)。特に、気孔率が 60%以上の多孔質ハニカム構造体については、全 ての多孔質ハニカム構造体にクラックが発生してしまった(比較例 12, 13)。
[0111] これに対し、 800°C以下の降温速度を 100°CZ時間としたところ、クラックの発生を 完全に防止することができた (実施例 8, 20, 21)。即ち、本発明の製造方法は、気 孔率が 50%以上、中でも 60%以上の気孔率が高いハニカム焼成体に対して特に有 効であることがわかる。 産業上の利用可能性
本発明の多孔質ハニカム構造体の製造方法は、得られた焼成体を冷却する降温 過程において発生するクラックを有効に防止し得るので、従来の方法と比較して、ク ラックの発生をより確実に防止することができるという有利な効果を奏するものである。 従って、例えば、機械的強度を付与し難い構造の多孔質ハニカム構造体(目封止部 を備えたもの、隔壁厚さが薄レ、もの、気孔率が高いもの等)、内外温度差がつき易い 構造の多孔質ハニカム構造体 (大型のもの、隔壁厚さが厚レ、もの等)を製造する際に 特に好適に用いることができる。

Claims

請求の範囲
[1] 骨材原料粒子を含む坏土原料を分散媒とともに混合'混練することによって坏土を 得る混合'混練工程と、前記坏土を成形して、隔壁によって多数のセルが区画,形成 されたハニカム成形体を得、そのハニカム成形体を乾燥することによってハニカム乾 燥体を得る成形 ·乾燥工程と、前記ハニカム乾燥体を焼成してハニカム焼成体を得、 そのハニカム焼成体を冷却することによって多孔質ハニカム構造体を得る焼成 ·冷却 工程とを備えた多孔質ハニカム構造体の製造方法であって、
前記ハニカム焼成体を焼成温度から冷却する際に、少なくとも 800°C以下の温度 領域において、降温速度が 100°C/時間以下の冷却雰囲気下で前記ハニカム焼成 体を冷却する多孔質ハニカム構造体の製造方法。
[2] 少なくとも 800°C以下の温度領域において、前記ハニカム焼成体の中心部温度と 前記冷却雰囲気の雰囲気温度との温度差が 250°C以内に保持されるような降温速 度の冷却雰囲気下で前記ハニカム焼成体を冷却する請求項 1に記載の多孔質ハニ カム構造体の製造方法。
[3] 少なくとも 800°C以下の温度領域において、前記ハニカム焼成体の中心部温度と 前記冷却雰囲気の雰囲気温度との温度差が 200°C以内に保持されるような降温速 度の冷却雰囲気下で前記ハニカム焼成体を冷却する請求項 1に記載の多孔質ハニ カム構造体の製造方法。
[4] 焼成温度から 800°Cに至るまでの温度領域においては、降温速度が 200°CZ時間 以下の冷却雰囲気下で前記ハニカム焼成体を冷却し、 800°C以下の温度領域にお いては、降温速度が 100°C/時間以下の冷却雰囲気下で前記ハニカム焼成体を冷 却する請求項 1〜3のいずれか一項に記載の多孔質ハニカム構造体の製造方法。
[5] 焼成温度から 800°Cに至るまでの温度領域においては、降温速度が 200°C/時間 以下の冷却雰囲気下で前記ハニカム焼成体を冷却し、 800°C以下の温度領域にお レ、ては、降温速度が 50°C/時間以下の冷却雰囲気下で前記ハニカム焼成体を冷 却する請求項 1〜3のいずれか一項に記載の多孔質ハニカム構造体の製造方法。
[6] 前記骨材原料粒子として、シリカ(Si〇 )粒子、カオリン粒子、アルミナ (A1〇 )粒子
、水酸化アルミニウム(Al (OH) )粒子、及びタルク(3MgO '4Si〇 ·Η Ο)粒子から なるコージヱライト(2Mg〇' 2Al〇 - 5SiO M匕原料粒子を用いる請求項 1〜5のいず れか一項に記載の多孔質ハニカム構造体の製造方法。
[7] 前記ハニカム焼成体が、隔壁によって多数のセルが区画 ·形成され、前記多数の セルの一方の開口部と他方の開口部とを互い違いに目封止する目封止部を更に備 えたものである請求項 1〜5のいずれか一項に記載の多孔質ハニカム構造体の製造 方法。
[8] 前記ハニカム焼成体が、 5リットノレ以上の見かけ体積を有するものである請求項 1〜
5のいずれか一項に記載の多孔質ハニカム構造体の製造方法。
[9] 前記ハニカム焼成体が、気孔率 50%以上のものである請求項 1〜5のいずれか一 項に記載の多孔質ハニカム構造体の製造方法。
[10] 前記ハニカム焼成体が、隔壁によって多数のセルが区画 ·形成され、前記隔壁の 厚さが 150 μ m以下のものである請求項 1〜5のいずれか一項に記載の多孔質ハニ カム構造体の製造方法。
PCT/JP2005/013035 2004-07-14 2005-07-14 多孔質ハニカム構造体の製造方法 WO2006006667A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006529139A JPWO2006006667A1 (ja) 2004-07-14 2005-07-14 多孔質ハニカム構造体の製造方法
US11/631,192 US7914728B2 (en) 2004-07-14 2005-07-14 Method for manufacturing porous honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-207308 2004-07-14
JP2004207308 2004-07-14

Publications (1)

Publication Number Publication Date
WO2006006667A1 true WO2006006667A1 (ja) 2006-01-19

Family

ID=35784003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013035 WO2006006667A1 (ja) 2004-07-14 2005-07-14 多孔質ハニカム構造体の製造方法

Country Status (4)

Country Link
US (1) US7914728B2 (ja)
JP (1) JPWO2006006667A1 (ja)
CN (1) CN100554217C (ja)
WO (1) WO2006006667A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119666A (ja) * 2006-11-15 2008-05-29 Denso Corp 排ガス浄化フィルタの製造方法
JP2008119663A (ja) * 2006-11-15 2008-05-29 Denso Corp 排ガス浄化フィルタの製造方法
WO2010098348A1 (ja) * 2009-02-25 2010-09-02 住友化学株式会社 チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体
CN112047720A (zh) * 2020-09-18 2020-12-08 常州浩蔚环保科技有限公司 高孔隙率颗粒捕捉器制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808601B2 (en) * 2008-05-30 2014-08-19 Corning Incorporated Method for manufacturing ceramic filter
US9005517B2 (en) 2012-05-16 2015-04-14 Corning Incorporated Single-fire two-step soak method
US10358821B2 (en) 2015-03-02 2019-07-23 The Boeing Company Thermoplastic truss structure for use in wing and rotor blade structures and methods for manufacture
EP3844125A1 (en) 2018-08-31 2021-07-07 Corning Incorporated Methods of making honeycomb bodies having inorganic filtration deposits
JP7660500B2 (ja) 2018-08-31 2025-04-11 コーニング インコーポレイテッド 無機濾過堆積物を有するハニカム体の製造方法
KR102745958B1 (ko) 2018-09-03 2024-12-26 코닝 인코포레이티드 다공성 재료를 갖는 허니컴 바디
CN111393155A (zh) * 2020-01-10 2020-07-10 重庆奥福精细陶瓷有限公司 一种薄壁大孔径的堇青石蜂窝陶瓷载体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039764A (ja) * 1999-07-29 2001-02-13 Kyocera Corp コージェライト質セラミックスおよびその製造方法
WO2001077042A1 (en) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Cordierite ceramic honeycomb of low thermal expansion and method for manufacturing the same
WO2001077043A1 (fr) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Procede de fabrication de structure ceramique en nid d'abeilles de cordierite
JP2003238270A (ja) * 2002-02-20 2003-08-27 Noritake Co Ltd 多孔質セラミック材の製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105239A (en) * 1980-12-22 1982-06-30 Kobe Steel Ltd Honeycomb type catalyst carrier comprising vitreous carbonacious substance
US4490319A (en) * 1983-10-26 1984-12-25 General Electric Company Rapid rate sintering of ceramics
JPS62225249A (ja) * 1985-12-27 1987-10-03 Ngk Insulators Ltd コ−ジエライトハニカム構造触媒担体及びその製造方法
US4877670A (en) * 1985-12-27 1989-10-31 Ngk Insulators, Ltd. Cordierite honeycomb structural body and method of producing the same
JPS62191048A (ja) * 1986-02-14 1987-08-21 Toyota Motor Corp モノリス触媒担体およびその製造方法
US4869944A (en) * 1987-02-12 1989-09-26 Ngk Insulators, Ltd. Cordierite honeycomb-structural body and a method for producing the same
JPH01215765A (ja) * 1988-02-25 1989-08-29 Ngk Insulators Ltd セラミックハニカム構造体の焼成法
JP2543565B2 (ja) 1988-03-31 1996-10-16 日本碍子株式会社 セラミックスの焼成に用いるトンネル炉
JP2981034B2 (ja) * 1991-09-30 1999-11-22 日本碍子株式会社 セラミックハニカム構造体の焼成方法
US5258150A (en) * 1991-12-06 1993-11-02 Corning Incorporated Fabrication of low thermal expansion, high porosity cordierite body
DE4339167B4 (de) * 1992-11-20 2006-09-14 Corning Inc. Verfahren zur Herstellung von Cordieritkörpern
DE4428322A1 (de) * 1993-08-11 1995-02-23 Technology Co Ag Cordieritaggregat mit geringer thermischer Ausdehnung und daraus hergestellter Verbundkörper
US5427721A (en) * 1993-10-29 1995-06-27 W. R. Grace & Co.-Conn. Method of making microcellular ceramic bodies
JP2981107B2 (ja) * 1994-03-07 1999-11-22 日本碍子株式会社 コージェライトハニカムセラミックスの製造方法
ES2192001T3 (es) * 1998-08-05 2003-09-16 Corning Inc Estructuras de cordierita.
US6238618B1 (en) * 1998-10-01 2001-05-29 Corning Incorporated Production of porous mullite bodies
JP3340689B2 (ja) * 1999-02-03 2002-11-05 日本碍子株式会社 コージェライト質セラミックハニカム構造体の製造方法
BR0001560B1 (pt) * 1999-04-09 2010-04-06 processo para produzir um corpo cerámico-catalisador, e, corpo cerámico-catalisador.
US6576579B2 (en) * 2000-10-03 2003-06-10 Corning Incorporated Phosphate-based ceramic
JP2002160976A (ja) * 2000-11-21 2002-06-04 Hitachi Metals Ltd セラミックハニカム構造体の製造方法
JP4222588B2 (ja) * 2000-11-24 2009-02-12 日本碍子株式会社 ハニカムフィルター及びその製造方法
JP4094830B2 (ja) * 2000-11-24 2008-06-04 日本碍子株式会社 多孔質ハニカムフィルター及びその製造方法
US6455124B1 (en) * 2000-12-01 2002-09-24 Corning Incorporated Method for extruding ceramic honeycombs
JP2002326881A (ja) * 2001-04-27 2002-11-12 Hitachi Metals Ltd 多孔質セラミックスの製造方法
JP4091763B2 (ja) * 2001-12-13 2008-05-28 日本碍子株式会社 ハニカム構造体及び製造方法
JP2003277162A (ja) * 2002-01-21 2003-10-02 Ngk Insulators Ltd 多孔質ハニカム構造体、その用途及びその製造方法
JP2003212672A (ja) * 2002-01-21 2003-07-30 Ngk Insulators Ltd 多孔質セラミックス構造体の製造方法
JP4471556B2 (ja) * 2002-06-07 2010-06-02 株式会社ノリタケカンパニーリミテド 多孔質セラミック材及びその製造方法
JP4394408B2 (ja) * 2002-11-08 2010-01-06 日本碍子株式会社 ハニカム構造体のセルを封止する方法及びハニカム封止体の製造方法
JP4222600B2 (ja) * 2003-01-07 2009-02-12 日本碍子株式会社 セラミックハニカム構造体の焼成方法
US6864198B2 (en) * 2003-01-30 2005-03-08 Corning Incorporated Cordierite ceramic body and method
JP4456077B2 (ja) * 2003-08-20 2010-04-28 日本碍子株式会社 ハニカム成形体の製造方法、ハニカムフィルタの製造方法、及びハニカムフィルタ
JP2005349269A (ja) * 2004-06-09 2005-12-22 Ngk Insulators Ltd 目封止ハニカム構造体及びその製造方法
JP4528153B2 (ja) * 2005-02-23 2010-08-18 日本碍子株式会社 目封止ハニカム構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039764A (ja) * 1999-07-29 2001-02-13 Kyocera Corp コージェライト質セラミックスおよびその製造方法
WO2001077042A1 (en) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Cordierite ceramic honeycomb of low thermal expansion and method for manufacturing the same
WO2001077043A1 (fr) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Procede de fabrication de structure ceramique en nid d'abeilles de cordierite
JP2003238270A (ja) * 2002-02-20 2003-08-27 Noritake Co Ltd 多孔質セラミック材の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119666A (ja) * 2006-11-15 2008-05-29 Denso Corp 排ガス浄化フィルタの製造方法
JP2008119663A (ja) * 2006-11-15 2008-05-29 Denso Corp 排ガス浄化フィルタの製造方法
WO2010098348A1 (ja) * 2009-02-25 2010-09-02 住友化学株式会社 チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体
JP2010195634A (ja) * 2009-02-25 2010-09-09 Sumitomo Chemical Co Ltd チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体
CN112047720A (zh) * 2020-09-18 2020-12-08 常州浩蔚环保科技有限公司 高孔隙率颗粒捕捉器制备方法

Also Published As

Publication number Publication date
JPWO2006006667A1 (ja) 2008-05-01
US20080029938A1 (en) 2008-02-07
US7914728B2 (en) 2011-03-29
CN1984854A (zh) 2007-06-20
CN100554217C (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
CN100410206C (zh) 蜂窝结构体及其制造方法
EP1997788B1 (en) Process for producing a cordierite-based honeycomb structure
JP5835395B2 (ja) セラミックハニカム構造体の製造方法
EP1452512A1 (en) Method for producing porous ceramic article
JP2005530616A (ja) Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
JP2011521877A (ja) 低背圧の多孔質ハニカムおよびその製造方法
US20080124516A1 (en) Method for Producing Porous Ceramic Structure
US8591800B2 (en) Method for producing cordierite-based honeycomb structure
JP4495152B2 (ja) ハニカム構造体及びその製造方法
JP5584417B2 (ja) セラミックス坏土、及び、その利用
US8974723B2 (en) Process for producing honeycomb structure
WO2005005019A1 (ja) 排ガス浄化ハニカムフィルタ及びその製造方法
WO2004037745A1 (ja) 多孔質ハニカム構造体の製造方法、及びハニカム成形体
WO2004060830A1 (ja) セラミックハニカム構造体の焼成方法
WO2006006667A1 (ja) 多孔質ハニカム構造体の製造方法
JP2009262125A (ja) 多孔質ハニカム構造体及びその製造方法
JP2009227502A (ja) コーディエライトセラミックスおよびその製造方法
KR20100117215A (ko) 플라이 애쉬를 이용한 다공성 코디어라이트 세라믹 허니컴 및 그 제조방법
JP4847339B2 (ja) ハニカム構造体の製造方法及びハニカム構造体
JP2007045686A (ja) 多孔質セラミックス構造体の製造方法
JP2010260787A (ja) 多孔質ハニカム構造体の製造方法
JP2008207978A (ja) ハニカム構造体及びその製造方法
JPH11114336A (ja) 排ガスフィルタおよびその製造方法
JP2005324154A (ja) セラミックハニカム構造体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11631192

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006529139

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580023549.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11631192

Country of ref document: US