WO2006010267A1 - Systeme de distribution d'energie centralise et procede associe - Google Patents
Systeme de distribution d'energie centralise et procede associe Download PDFInfo
- Publication number
- WO2006010267A1 WO2006010267A1 PCT/CA2005/001185 CA2005001185W WO2006010267A1 WO 2006010267 A1 WO2006010267 A1 WO 2006010267A1 CA 2005001185 W CA2005001185 W CA 2005001185W WO 2006010267 A1 WO2006010267 A1 WO 2006010267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- power
- power supply
- network
- regulating means
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000001105 regulatory effect Effects 0.000 claims abstract description 85
- 238000012546 transfer Methods 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/10—Adaptations for transmission by electrical cable
- H04N7/102—Circuits therefor, e.g. noise reducers, equalisers, amplifiers
Definitions
- the present invention relates to a system and method for delivering controlled electrical power, and more specifically to a system and method for providing a continuous, reliable and inexpensive supply of utility and emergency power to a cable network for use by a plurality of active components in the network.
- CATV cable television
- AC network power supply typically the standard ferroresonant regulating transformer since it provides both voltage regulation and high isolation of the cable plant from the utility grid. Switchmode network power supplies may also be used.
- Each network powering system has its own respective advantages.
- single transformer network power supplies are mounted along the cable run at the pole or on the ground. Power is decreased to 110/220 volts of alternating current (VAC) at the public utility transformer and sent to the network power supply 10 located near the active components in the network. It passes through a disconnect switch 11 and into the network power supply 10 to further decrease the voltage to the 30, 63, 75 or 87 VAC specification required by the active components in the network. Next, it is routed by coaxial cable wire 12 into a nearby power inserter 13 where it is provided to the active components in the network. A bank of battery cells 14 at the network power supply provides emergency power on a temporary basis when the power is interrupted.
- Figure 1 illustrates the configuration of equipment at a typical distributed powering system location.
- Figure 2 illustrates the distribution of several network power supplies within a wider conventional distributed powering network system.
- the layout of power segments is nonetheless constrained by some limiting considerations.
- the layout design must compensate forthe voltage drop resulting from the natural impedance of the coaxial cable.
- the distributed powering system minimizes impedance losses by locating the network power supply and power inserter together, thereby minimizing the length of coaxial cable required to connect these units to the network.
- the centralized powering system is the other standard network architecture configuration.
- the network power supplies are installed away from the local poles at a central location 15 with the back-up generators and fuel.
- Figure 2a illustrates the distribution of several network power supplies within the central powering system network.
- FIG. 3 The configuration of equipment at a typical centralized powering system location is illustrated in Figure 3.
- Power from the public utility enters the central location 15 and is distributed through an automatic transfer switch (ATS) 16 to the breaker panel 17 and to several centralized network power supplies 18 where the voltage is decreased to the appropriate 30, 63, 75 or 87 VAC specification.
- the power is then distributed by coaxial cable 19 to the power inserter 20 at the local pole where it is provided to the active components in the network.
- the network power supplies 18 at the central location 15 are provided with a battery bank which takes over the power load on a temporary basis in the event of a power outage.
- the emergency power source 21 at the central location 15 then provides emergency power through the automatic transfer switch (ATS) 16 and into the breaker panel 17 and network power supply 18 in the usual manner.
- ATS automatic transfer switch
- the configuration of the centralized powering system improves the reliability of continuous power supply in the event of a power outage.
- the installation of the battery bank, generators and fuel at one central site facilitates easy access and reduces security risk.
- Another disadvantage is the weight and number of coaxial cables required in the traditional centralized power system.
- one coaxial cable is run to each local satellite network power supply.
- a corresponding number of coaxial cables are required. This creates installation difficulties and future concerns related to maintenance and repairs due to environmental factors such as ice loading.
- a further disadvantage is the inability of the traditional centralized powering solution to function with cable networks configured to operate at 87 VAC.
- the maximum output voltage of a network power supply is 87 VAC, this voltage will decrease before it enters the cable network due to the inherent voltage drop in the coaxial cable.
- the output voltage received at the cable network is insufficient for proper operation of active components in the network because they are configured to operate at 87 VAC.
- United States Patent No. 5,677,974 to Elms et al. discloses a network and method of distributing power and optical signals that includes installing a hybrid communications and power cable between a source location and another relatively remote location.
- the network for distributing power and optical signals to the remote location includes a centrally located alternating current power supply; a hybrid cable for providing optical signals and for transmitting power from the centrally located power supply to the remote location; a terminal located at the remote location for isolating the power from the optical signals; and a power supply in communication with the terminal, for receiving the power transmitted by the hybrid cable for use in powering active components in the network.
- a system for providing power from a utility power source to remote active components in a cable network the active components requiring a predetermined voltage for their operation.
- the system comprises a first voltage regulating means having an input side connected to the power source and an output voltage side connected to a second voltage regulating means disposed proximate to said active components in said network.
- the first voltage means is capable of regulating a source voltage to an intermediate voltage.
- the second voltage regulating means has an input side for receiving power at the intermediate voltage from the first voltage regulating means and an output side connected to the active components in the network.
- the output side of the second voltage regulating means supplies the predetermined voltage for operation of the active components in the network.
- At least one dedicated cable for connecting the first voltage regulating means to the second voltage regulating means is provided.
- the first voltage regulating means is typically housed in a centralized location relative to a number of active components in a network.
- the first voltage regulating means will also commonly comprise an incoming alternating current power supply, an alternating current power generator, an automatic transfer switch, at least one uninterrupted power supply means, a transformer, and a power distribution panel configured for regulating the source voltage to an intermediate voltage.
- the output of the first voltage regulating means is preferably a regulated three-phase alternating current power supply.
- the output voltage may be advantageously maintained within local regulations, for example, at 300 VAC in Canada.
- the dedicated cable for transmission of electrical power is a damage-resistant cable, e.g. a protected cable.
- the dedicated cable for transmission of electrical power is adapted for the distribution of regulated three-phase 300 VAC power supply.
- the dedicated cable may be an armored cable comprising 4-conductor aluminum, #2 gauge wires with a rubberized outer jacket.
- the second voltage regulating means generally comprises at least one rectifier, at least one inverter, and means for actively correcting the incoming power supply.
- An output side of the second voltage regulating means may advantageously provide a single phase 110 VAC power supply, a single phase 220 VAC power supply, or both.
- the output side may provide one or a combination of the following: 30, 63, 75, and 87 volts quasi square wave power supply.
- the output side of may provide a combination of single phase alternating current power supply and quasi square wave power supply.
- the location of the second voltage regulating means may be configured such that the intermediate voltage from the first voltage regulating means received at the input side of the second voltage regulating means is above a threshold voltage, for instance, the threshold voltage may be 170 VAC.
- a method for providing power from a utility power source to one or more remote active components in a cable network comprising the steps of: regulating a source voltage to produce an intermediate-voltage power; distributing said intermediate-voltage powerto said remote active components in said network; and, actively correcting said intermediate-voltage power at a location proximate to said active components to a predetermined voltage for the operation of said active components in said network.
- the intermediate voltage power is advantageously sent through a dedicated single and/or a multi-conductor damage resistant line.
- Figure 1 is a schematic diagram showing the configuration of equipment at a typical conventional distributed powering system location.
- Figure 2 is a schematic diagram showing the distribution of several power supplies within the wider distributed powering network system.
- Figure 2a is a schematic diagram showing the distribution of several network power supplies within the central powering system network.
- Figure 3 is a schematic diagram showing the configuration of equipment at a typical centralized powering system location.
- Figure 4 is a schematic diagram showing the configuration of equipment at a new centralized powering system location according to an embodiment of the present invention.
- Figure 5 is a schematic diagram showing the configuration of equipment at a new centralized powering system location according to another embodiment of the present invention.
- the present invention relates to a centralized powering method which utilizes power distribution and transmission equipment configured to provide a continuous and reliable power to a cable network.
- the centralized powering method utilizes a equipment configuration at the central location 15 so as to provide a continuous and reliable power to a cable network.
- the first voltage regulating means 100 comprises a transformer 22 such as an AC to AC converter which is installed immediately after the automatic transfer switch 16 and prior to the breaker panel or a power distribution panel 17.
- Power at a voltage of V1 VAC from a utility power source flows through the automatic transfer switch 16 and into the transformer 22.
- the output of the transformer 22 is typically a regulated three-phase alternating current power supply at an intermediate voltage of V2 VAC.
- the regulated three-phase alternating current power supply is then distributed to a cable network via the breaker panel 17 by means of a dedicated cable 23 in order to power remote active components (not shown here) in a cable network.
- an input side of the second voltage regulating means 27 receives a regulated three-phase alternating current power supply at a voltage of V4 VAC.
- An output side of the second voltage regulating means 27 provides a predetermined voltage sufficient for the operation of the active components in the network.
- the voltage V4 VAC received at the input side of the second voltage regulating means 27 may be different from the intermediate voltage V2 VAC at the output side of the first voltage regulating means 100 due to several factors such as, transmission loss, network load, etc.
- the location of the second voltage regulating means 27 may be strategically positioned such that the intermediate voltage V4 from the first voltage regulating means 100 received at the input side of the second voltage regulating means 27 is above a threshold voltage.
- the automatic transfer switch 16 automatically supplies power to the transformer 22 from the back-up generator 21 until normalcy is restored.
- the back-up generator 21 may supply power at a voltage of V3 VAC.
- the transformer 22 will force the output to a regulated three-phase alternating current power supply at an intermediate voltage of V2 VAC prior to distribution.
- 110/220 VAC power from a utility power source flows through the automatic transfer switch 16 in a typical manner, then enters the transformer 22 where it is regulated to 87 VAC.
- the regulated power is then distributed through the breaker panel 17 into a dedicated cable 23 such as a protected cable, and routed away from the central location 15 to the remote network power supplies 10 at the poles.
- the current drawn through the cable is limited by ensuring that the input voltage at the remote location always exceeds a threshold voltage, for example, 50 VAC.
- the protected cable 23 comprises three conductor wires and one common neutral wire, enabling the power to be further distributed into three smaller cables 24, 25, and 26 which service individual remote power supplies 10.
- the regulated 87 VAC power is actively corrected and is increased to 110/220 VAC by the second voltage regulating means 27.
- the increased voltage is then routed in the usual manner through the disconnect switch 11 and into the network power supply 10 and power inserter 13, 20 as described in Figures 1 and 3.
- the first voltage regulating means 100 further comprises one or more uninterrupted power supplies (UPS) 28 disposed between the automatic transfer switch 16 and the transformer 22.
- UPS uninterrupted power supplies
- the UPS 28 provides the power supply to the transformer 22 until such time as the output of the back-up generator 21 has stabilized.
- the output V2 of the first voltage regulating means 100 may be advantageously maintained within local regulations, for example, at 300 VAC in Canada.
- the second voltage regulating means 27 may be positioned such that the intermediate voltage V4 from the first voltage regulating means 100 received at the input side of the second voltage regulating means 27 is above a threshold voltage, for instance, the threshold voltage may be 170 VAC.
- the second voltage regulating means 27 generally comprises at least one rectifier, at least one inverter, and means for actively correcting the incoming power supply.
- the components of the second voltage regulating means 27 are commercially available and may be configured using common methods known in the art.
- the output side of the second voltage regulating means 27 may advantageously provide a single phase 110 VAC power supply, a single phase 220 VAC power supply, or both.
- the output side may provide one or a combination of the following: 30, 63, 75, and 87 volts quasi square wave power supply.
- the output side may provide a combination of single phase alternating current power supply and quasi square wave power supply.
- Implementation of the present invention allows the amount of equipment installed at the central location 15 to be minimized.
- Site requirements may be limited to the first voltage regulating means 100 comprising the generator 21 , the ATS 16, the transformer 22 and the breaker panel 17.
- One or more uninterrupted power supplies 28 may preferably be included in the first voltage regulating means 100.
- the disconnect switch 11 , network power supply 10 and battery bank 14 may remain at the local pole as illustrated in detail in Figure 1 and more generally in Figure 2. As a result, the land use requirement at each central location 15 is reduced.
- the distributed powering system equipment and configuration at the local pole locations can also be quickly and readily utilized with minor modifications.
- the existing disconnect switch 11 , power supply 10, coaxial cable 12, power inserter 13, and battery banks 14 can be used without modification because the voltage of alternating current is regulated to 110/220 VAC by the second voltage regulating means 27.
- Standard 30, 63, 75 or 87 VAC power is then produced and supplied to the power inserter 13 in the typical manner as described previously.
- Cable materials and installation labor expenses can also be reduced by as much as sixty-seven percent (67%).
- the coaxial cable 19 typically used in the centralized powering system shown in Figure 3 is replaced with conductors in dedicated cable 23, as illustrated in Figure 4. Since the conductors are further separated and routed to three separate local network power supplies 10, the length of the cable is reduced. The number of central locations 15 required to feed the local network power supplies 10 is also decreased.
- the present invention enables the reliability of uninterrupted power to be improved with several design considerations.
- the risk of line failure is reduced by the use of strengthened dedicated cable 23 to distribute power out from the central location 15.
- equipment usage is optimized by locating the generator 21 off-site at the secure central location 15 and placing the battery banks 14 at the pole. This ensures timely access to battery power by the active components in the network. It also minimizes the length of transmission wire required between the battery and the active components, thereby reducing the risk of line failure in this final portion of the network power supply route.
- the conventional power distribution methods typically require manual adjustment or configuration to the power supply. Consequently, the input side of the power supplies in conventional systems must be manually reconfigured when there are significant (but not necessarily large) changes to either the power distribution network or to the cable network. For example, extension of the power distribution network may change the received voltages at other points (remote locations) in the power distribution network. The changes may also affect the received voltage at the remote locations.
- the system and method according to the present invention actively corrects forthese circumstances and the supply of regulated three-phase power provides for an inherently balanced power distribution network.
- Advantages of the present invention include increased reliability of network power supply for cable users who rely on the utility power grid for the amplifier signal and the cable power network for the RF signal. Benefits derived from the use of the present invention can also be enjoyed in a wide range of fields, including electrically powered security cameras and traffic lights.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2005266806A AU2005266806A1 (en) | 2004-07-30 | 2005-07-29 | Centralized powering system and method |
EP20050772097 EP1779542A1 (fr) | 2004-07-30 | 2005-07-29 | Systeme de distribution d'energie centralise et procede associe |
CA002550019A CA2550019C (fr) | 2004-07-30 | 2005-07-29 | Systeme de distribution d'energie centralise et procede associe |
US11/658,410 US20090015065A1 (en) | 2004-07-30 | 2005-07-29 | Centralized powering system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2,476,331 | 2004-07-30 | ||
CA002476331A CA2476331A1 (fr) | 2004-07-30 | 2004-07-30 | Nouvelle methode d'alimentation centralisee |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006010267A1 true WO2006010267A1 (fr) | 2006-02-02 |
Family
ID=35767534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2005/001185 WO2006010267A1 (fr) | 2004-07-30 | 2005-07-29 | Systeme de distribution d'energie centralise et procede associe |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090015065A1 (fr) |
EP (1) | EP1779542A1 (fr) |
AU (1) | AU2005266806A1 (fr) |
CA (1) | CA2476331A1 (fr) |
WO (1) | WO2006010267A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7910134B2 (en) | 2007-10-29 | 2011-03-22 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8431141B2 (en) | 2007-10-29 | 2013-04-30 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8475815B2 (en) | 2007-10-29 | 2013-07-02 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8709395B2 (en) | 2007-10-29 | 2014-04-29 | Ayman Boutros | Method for repairing or replacing damaged tissue |
US8815228B2 (en) | 2010-04-30 | 2014-08-26 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9673661B2 (en) | 2013-10-24 | 2017-06-06 | Kohler, Co. | Transfer switch with monitor on load side |
CN109546685B (zh) * | 2018-12-26 | 2022-06-14 | 武汉大学 | 一种分布式电源分组合作的配电网分布式优化控制方法 |
CN110854994A (zh) * | 2019-11-08 | 2020-02-28 | 中广核研究院有限公司 | 一种移动柴油发电机组快速接入装置及方法 |
CN114709871B (zh) * | 2022-04-22 | 2023-11-28 | 珠海科创储能科技有限公司 | 一种具有并离网切换功能的储能系统 |
CN117955525A (zh) * | 2022-10-19 | 2024-04-30 | 广州视源电子科技股份有限公司 | 一种通信电路和电器设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868815A (en) * | 1986-12-19 | 1989-09-19 | Sharp Kabushiki Kaisha | Power transmission system |
US5329224A (en) * | 1993-10-20 | 1994-07-12 | Ford Motor Company | Automotive voltage regulator circuit including serial voltage regulators |
WO2000054471A1 (fr) * | 1999-03-09 | 2000-09-14 | Albright Loren O | Systeme d'alimentation a distance pour adaptateur de reseau sans fil utilisant des paires de conducteurs inutilisees d'un cable de reseau ethernet |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647933A (en) * | 1984-10-31 | 1987-03-03 | The United States Of America As Represented By The Secretary Of Commerce | Phased antenna array for wind profiling applications |
US5048033A (en) * | 1990-09-04 | 1991-09-10 | Coherent, Inc. | Method and apparatus for controlling the power supply of a laser operating in a pulse mode |
US5388032A (en) * | 1993-05-04 | 1995-02-07 | Ibus Technologies, Inc. | Computer equipment monitor and discriminator |
US5532525A (en) * | 1994-06-02 | 1996-07-02 | Albar, Inc. | Congeneration power system |
US5903643A (en) * | 1995-06-02 | 1999-05-11 | Teleport Communications Group, Inc. | Multi-line station interface |
NL1000914C2 (nl) * | 1995-08-01 | 1997-02-04 | Geb Zuid Holland West Nv | Werkwijze en inrichting voor continue instelling en regeling van een transformatoroverzetverhouding, alsmede transformator voorzien van een dergelijke inrichting. |
US5912553A (en) * | 1997-01-17 | 1999-06-15 | Schott Corporation | Alternating current ferroresonant transformer with low harmonic distortion |
US5929537A (en) * | 1997-06-30 | 1999-07-27 | Sundstrand Corporation | PMG main engine starter/generator system |
US6937623B2 (en) * | 1997-10-22 | 2005-08-30 | Texas Instruments Incorporated | Method and apparatus for coordinating multi-point to point communications in a multi-tone data transmission system |
US6201374B1 (en) * | 1998-05-14 | 2001-03-13 | 3Com Corporation | Voltage regulation and power switching system |
FI107418B (fi) * | 1998-05-22 | 2001-07-31 | Muuntolaite Oy | Menetelmä ja laitteisto teholähdejärjestelmän ohjaamiseksi |
US6094110A (en) * | 1998-11-18 | 2000-07-25 | National Electronic Devices, Inc. | RF choke with windings located at two different core diameters |
DE19963816C2 (de) * | 1999-12-30 | 2002-09-26 | Siemens Ag | Verfahren und Vorrichtung zur Umsetzung eines bidirektionalen Datenstroms über eine So-Schnittstelle für eine Übermittlung über ein Niederspannungsstromnetz |
US6965302B2 (en) * | 2000-04-14 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method of using the same |
US7187907B2 (en) * | 2000-05-09 | 2007-03-06 | Bernard Widrow | Simultaneous two-way transmission of information signals in the same frequency band |
US20020135232A1 (en) * | 2000-10-13 | 2002-09-26 | Xantrex International | Method and apparatus for distributing electric power |
EP1410490B1 (fr) * | 2001-07-23 | 2013-09-04 | Northern Power Systems Utility Scale, Inc. | Systeme de commande d'un convertisseur de courant et procede de commande du fonctionnement d'un convertisseur de puissance |
US6747368B2 (en) * | 2001-08-30 | 2004-06-08 | Harold M. Jarrett, Jr. | Wireless control of power transfer switches for electrical load management |
US20030048005A1 (en) * | 2001-09-12 | 2003-03-13 | Goldin Andrew B. | Advanced power distribution system |
US20060022524A1 (en) * | 2003-02-10 | 2006-02-02 | Bryde Jan H | Distributed power generation, conversion, and storage system |
US8294297B2 (en) * | 2007-08-03 | 2012-10-23 | Ragingwire Enterprise Solutions, Inc. | Scalable distributed redundancy |
US8723362B2 (en) * | 2009-07-24 | 2014-05-13 | Facebook, Inc. | Direct tie-in of a backup power source to motherboards in a server system |
US8937405B2 (en) * | 2009-12-31 | 2015-01-20 | Facebook, Inc. | Data center using fuel cells in place of diesel generators for backup power |
-
2004
- 2004-07-30 CA CA002476331A patent/CA2476331A1/fr not_active Abandoned
-
2005
- 2005-07-29 WO PCT/CA2005/001185 patent/WO2006010267A1/fr active Application Filing
- 2005-07-29 EP EP20050772097 patent/EP1779542A1/fr not_active Withdrawn
- 2005-07-29 US US11/658,410 patent/US20090015065A1/en not_active Abandoned
- 2005-07-29 AU AU2005266806A patent/AU2005266806A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868815A (en) * | 1986-12-19 | 1989-09-19 | Sharp Kabushiki Kaisha | Power transmission system |
US5329224A (en) * | 1993-10-20 | 1994-07-12 | Ford Motor Company | Automotive voltage regulator circuit including serial voltage regulators |
WO2000054471A1 (fr) * | 1999-03-09 | 2000-09-14 | Albright Loren O | Systeme d'alimentation a distance pour adaptateur de reseau sans fil utilisant des paires de conducteurs inutilisees d'un cable de reseau ethernet |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7910134B2 (en) | 2007-10-29 | 2011-03-22 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8431141B2 (en) | 2007-10-29 | 2013-04-30 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8475815B2 (en) | 2007-10-29 | 2013-07-02 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8709395B2 (en) | 2007-10-29 | 2014-04-29 | Ayman Boutros | Method for repairing or replacing damaged tissue |
US8956632B2 (en) | 2007-10-29 | 2015-02-17 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US8962002B2 (en) | 2007-10-29 | 2015-02-24 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
US9295691B2 (en) | 2007-10-29 | 2016-03-29 | Ayman Boutros | Method for repairing or replacing damaged tissue |
US8815228B2 (en) | 2010-04-30 | 2014-08-26 | Ayman Boutros | Alloplastic injectable dermal filler and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2476331A1 (fr) | 2006-01-30 |
EP1779542A1 (fr) | 2007-05-02 |
AU2005266806A1 (en) | 2006-02-02 |
US20090015065A1 (en) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7072407B2 (en) | Combination power and full duplex data cable | |
EP3455638B1 (fr) | Procédés et équipement de fourniture d'alimentation de secours dans des stations de base cellulaires | |
KR20210078441A (ko) | 전기 그리드를 자력 기동하는 방법 | |
CN105556861A (zh) | 用于到塔式安装和其他远程安装的远程无线电头的加强的电力传递的方法和相关联的系统及电力线缆 | |
CA2593903A1 (fr) | Utilisation de reseau de transmission en courant continu pour ameliorer la stabilite de la transmission en courant alternatif, la capacite de distribution et la regulation du fluxde courant | |
US20090015065A1 (en) | Centralized powering system and method | |
US3909560A (en) | Method and system for providing power to booster amplifiers in h.f. cable network | |
US20210288492A1 (en) | Safe and resilient energy distribution for a highly efficient microgrid | |
CA2550019C (fr) | Systeme de distribution d'energie centralise et procede associe | |
Schulz | ETSI standards and guides for efficient powering of telecommunication and datacom | |
US11818518B2 (en) | Methods and equipment for reducing power loss in cellular systems | |
Hariharan et al. | Powering outdoor small cells over twisted pair or coax cables | |
EP3879661B1 (fr) | Système de distribution d'énergie sûr et résistant pour un micro-réseau très efficace | |
Cividino | Power system architecture's for the emerging information highway | |
WO2021180638A1 (fr) | Système sûr et résilient de distribution d'énergie pour miniréseau à haute efficacité | |
EP1181168B1 (fr) | Systeme d'alimentation en courant alternatif de traction | |
US7233744B1 (en) | Power feed arrangement using aggregate segments | |
US11611214B2 (en) | Power isolation systems and devices for micro grids for information and communication technology infrastructure and related methods of providing power to micro grids | |
EP1069665A3 (fr) | Ligne de transmission à haute tension et procédé de commande | |
WO2023177504A1 (fr) | Boîtier composite à transformation de puissance pour sites de télécommunication à distance | |
Foucault et al. | 400VDC Remote Powering as an alternative for power needs in new fixed and radio access networks | |
Elms | A unique approach to powering HFC networks that combines high reliability with low maintenance costs | |
KR200355774Y1 (ko) | 가구 밀집형 증폭 분배기로의 유선방송 선로 분기장치 | |
Kaveh | Powering large scale HFC network | |
KR200355773Y1 (ko) | 유선방송용 가구 밀집형 증폭 분배장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2550019 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11658410 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005772097 Country of ref document: EP Ref document number: 2005266806 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2005266806 Country of ref document: AU Date of ref document: 20050729 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005266806 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005772097 Country of ref document: EP |