[go: up one dir, main page]

WO2006011370A1 - Polarization modulating laser device - Google Patents

Polarization modulating laser device Download PDF

Info

Publication number
WO2006011370A1
WO2006011370A1 PCT/JP2005/013032 JP2005013032W WO2006011370A1 WO 2006011370 A1 WO2006011370 A1 WO 2006011370A1 JP 2005013032 W JP2005013032 W JP 2005013032W WO 2006011370 A1 WO2006011370 A1 WO 2006011370A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
modulation
layer
laser device
absorption
Prior art date
Application number
PCT/JP2005/013032
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Koumoto
Shigeo Sugou
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006529137A priority Critical patent/JP4946439B2/en
Publication of WO2006011370A1 publication Critical patent/WO2006011370A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • H01S5/0609Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch acting on an absorbing region, e.g. wavelength convertors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation

Definitions

  • the present invention relates to a laser device, and more particularly to a polarization-modulated laser device that can modulate the polarization direction of laser light at high speed.
  • the surface emitting laser is easier to integrate than the conventional edge emitting laser, and has advantages such as low power consumption and low cost.
  • surface emitting lasers are positioned as important light emitting elements even in optical interconnection, which is optical communication between computer boards or chips.
  • optical interconnection which is optical communication between computer boards or chips.
  • optical interconnection it is necessary to mount an optical transmission module densely in a small area, so it is considered essential to use a surface-emitting laser with low power consumption characteristics.
  • surface-emitting lasers are used for optical interconnection, it is required to further expand the modulation band without reducing power consumption and optical output.
  • Japanese Examined Patent Publication No. 7-93473 (see paragraph 0004) describes a modulator integrated surface emitting laser having an absorption modulator by applying an electric field outside an optical resonator.
  • this modulator-integrated surface-emitting laser element does not vary greatly in the optical density and carrier density in the optical resonator, but in order to obtain a sufficient extinction ratio, the thickness, absorption layer, or many Since a large number of absorption layers is required, a large modulation voltage is required.
  • Japanese Patent Laid-Open No. 5-152674 (see paragraph 0005) describes an optical resonator structure in an absorption modulator provided outside the optical resonator.
  • a surface emitting semiconductor laser provided with a structure to increase the effective light absorption amount and to achieve a low voltage operation of the optical modulator.
  • this surface emitting semiconductor laser employs a composite resonator structure, the laser oscillation itself becomes unstable.
  • polarization-modulated surface-emitting lasers that switch the polarization direction of a laser beam in accordance with an input signal, in contrast to an intensity-modulated surface-emitting laser such as a direct current modulation type or a modulator integrated type.
  • the polarization-modulated surface-emitting laser has a larger amount of injected current than that of a direct-current-modulated surface-emitting laser or a modulator-integrated surface-emitting laser in which an absorption modulator is provided outside or inside the resonator.
  • the optical density and carrier density in the laser resonator where the change of the laser beam is small can be made almost constant.
  • a polarization-modulated surface emitting laser if a polarization-modulated surface emitting laser is used, a higher modulation speed can be obtained as compared with the case where an intensity-modulated surface emitting laser is used. In other words, if a polarization-modulated surface emitting laser is used, the three characteristics of low current or low voltage modulation, high-speed modulation, and stable laser oscillation can be realized simultaneously.
  • Japanese Laid-Open Patent Publication No. 10-261842 (see paragraphs 0007-0011 and FIG. 2) describes a surface-type optical device using a polarization-modulated surface-emitting laser. With reference to FIGS. 1A and 1B, the structure of this polarization-modulated surface-emitting laser device will be described.
  • FIG. 1A is a cross-sectional view showing the structure of a polarization-modulated surface-emitting laser device described in Japanese Patent Application Laid-Open No. 10-261842.
  • the polarization-modulated surface-emitting laser device includes a first n-clad layer 202, a first quantum wire active layer 203, a p-clad layer 204, and a second quantum layer on an n-type substrate 201.
  • the thin-wire active layer 205, the second n-cladding layer 206, the contact layer 207, and the first dielectric multilayer mirror 208 are sequentially formed.
  • the second dielectric multilayer mirror 209 is in contact with the first n-clad layer 202 through the n-type substrate 201. Formed!
  • the polarization-modulated surface-emitting laser device is in contact with the p-electrode 211 force contact layer 207 so as to be in contact with the first n-electrode 210 force p-cladding layer 204 so as to contact the n-type substrate 201
  • a second n-electrode 212 is formed respectively.
  • FIG. 1B is a perspective view showing the structure of the quantum wire active layer of the polarization modulation surface emitting laser device shown in FIG. 1A. As shown in FIG. 1B, in the polarization-modulated surface emitting laser device, the first quantum wire active layer 203 and the second quantum wire active layer 205 are perpendicular to each other. It is arranged in a direction.
  • a laser resonator is formed by two dielectric multilayer mirrors 208 and 209.
  • currents are allowed to flow independently between the first n-electrode 210 and p-electrode 211 and between the second n-electrode 212 and p-electrode 211, respectively.
  • the gains of the first quantum wire active layer 203 and the second quantum wire active layer 205 can be independently controlled. In this case, the gain at the band edge of the quantum wire is maximized for linearly polarized light parallel to the quantum wire.
  • the DC bias currents of the two quantum wire active layers 203 and 205 are adjusted, and the laser modulation current is changed to the first quantum wire active layer.
  • Either 203 or the second quantum wire active layer 205 is implanted, or both the two quantum wire active layers 203 and 205 are implanted.
  • a laser beam polarized in parallel to the quantum wire of the first quantum wire active layer 203 and a laser beam polarized in parallel to the quantum wire of the second quantum wire active layer 205 orthogonal to the first quantum wire active layer 203 thus, the polarization direction of the laser beam is modulated.
  • FIG. 2 is a cross-sectional view showing the structure of a polarization-modulated surface-emitting laser device described in JP-A-6-232501.
  • the polarization-modulated surface emitting laser device includes a first p-type Bragg reflection mirror 301, an i-AlGaAs layer 302, a fractional layer superlattice 303, an n + -AlGaAs layer, and an i-A1 GaAs layer.
  • an n-contact Z high-resistance layer 304 composed of an n + -AlGaAs layer, a variable optical path length medium 305, and a second p-type Bragg reflection mirror 306 are sequentially formed.
  • the fractional layer superlattice 303 has a structure in which an A10.5GaO.5AsZGaAs superlattice is erected perpendicularly to the Bragg reflection mirror surface.
  • a first p-electrode 307 is formed so as to be in contact with the first p-type Bragg reflection mirror 301
  • a second p-electrode 308 is formed so as to be in contact with the second p-type Bragg reflection mirror 306.
  • An n electrode (not shown) is formed so as to be in contact with the two n + —AlGa As layers of the n contact Z high resistance layer 304.
  • the optical path length variable medium 305 is a medium whose refractive index changes when an electric field is applied.
  • i-AlGaAs is used as the optical path length variable medium 305.
  • the forward direction is between the p electrode 307 and the n contact Z high resistance layer 304 and the n + —AlGaAs layer on the fractional superlattice 303 side.
  • a bias voltage 310 By applying a bias voltage 310, a laser can be oscillated by supplying a DC bias current.
  • a modulation bias voltage 309 is applied between the p-electrode 308 and the n + -AlGaAs layer on the optical path length variable medium 305 side of the n-contact Z high-resistance layer 304. By doing so, the resonance peak wavelength of the laser resonator can be varied.
  • the gain peak wavelength for linearly polarized light perpendicular to the superlattice layer surface of the fractional layer superlattice 303 is relatively shorter than the gain peak wavelength for linearly polarized light parallel to the superlattice layer. Therefore, when the resonance peak wavelength is changed to the relatively short wavelength side, the polarization modulation surface emitting laser device emits laser light having a polarization perpendicular to the superlattice layer surface of the fractional layer superlattice 303. Further, when the resonance peak wavelength is changed to the relatively long wavelength side, the polarization modulation surface emitting laser device emits laser light having a polarization parallel to the superlattice layer surface of the fractional layer superlattice 303. In this way, the polarization direction of the laser light is modulated by changing the resonance peak wavelength.
  • in-plane polarization anisotropy is necessary to obtain the optical gain of the active layer. It is.
  • a quantum wire with a minimum in-plane structure dimension on the order of 10 nm, a fractional layer superlattice, an in-plane shape anisotropy Dots or the like are used.
  • the polarization-modulated surface-emitting laser device described in Japanese Patent Laid-Open Nos. 10-261842 and 6-232501 has a high-performance surface emission that outputs high-efficiency laser light with a practical low threshold current. It is difficult to realize a laser.
  • an object of the present invention is to provide a polarization-modulated surface-emitting laser device that can output laser light with low threshold current and high efficiency and stable output intensity.
  • a polarization-modulated laser device is a polarization-modulated laser device that modulates and outputs laser light, and is realized by a first reflection mirror (for example, an n-type Bragg reflection mirror 2 shown in FIG. 3). And a layer including a gain medium for obtaining optical gain (for example, realized by the quantum well active layer 9 shown in FIG. 3), and a second reflecting mirror (for example, P-type shown in FIG. 3).
  • An output unit for example, realized by the aperture 14 shown in FIG.
  • First polarization control structure to be fixed (For example, realized by the quantum wire absorption modulation layer 4 shown in FIG. 3) and the second polarization control structure for directing the output laser light in a second polarization direction different from the first polarization direction (For example, it is realized by forming a portion where the quantum well active layer 9, the p-type AlGaAs layer 12 and the p-type Bragg reflection mirror 13 shown in FIG. 3 are stacked in a predetermined post structure).
  • the first polarization control structure includes an absorption modulation structure (for example, realized by a quantum wire, a quantum dot, or a fractional layer superlattice) that changes an optical absorption coefficient for laser light by an electric means, and absorbs modulation.
  • the structure has optical anisotropy in the light absorption coefficient in a plane parallel to the plane perpendicular to the laser beam output direction, and the absorption modulation structure and the layer containing the gain medium are electrically separated.
  • the absorption modulation structure may change the light absorption coefficient with respect to the laser beam by applying an electric field as an electrical means.
  • the second polarization control structure has an optical waveguide (for example, a portion where the quantum well active layer 9, the p-type AlGaAs layer 12, and the p-type Bragg reflection mirror 13 shown in FIG.
  • the optical waveguide has a rectangular cross section in a plane perpendicular to the traveling direction of the laser light, and the long side of the rectangular shape is realized by forming a post structure having an elliptical cross sectional shape).
  • the long side direction in which the optical waveguide loss on the side is larger than the optical waveguide loss on the short side may be arranged in a direction not parallel to the first polarization direction! /.
  • the absorption modulation structure may have a minimum dimension of 50 nm or less in a plane parallel to a plane perpendicular to the laser light output direction.
  • the absorption modulation structure may include a quantum wire, a quantum dot, or a fractional layer superlattice.
  • the first reflection mirror and the second reflection mirror have a multilayer film structure, and the absorption modulation structure included in the layer including the gain medium and the first polarization control structure is a semiconductor layer.
  • the absorption modulation structure included in the layer including the gain medium and the first polarization control structure is a semiconductor layer.
  • a first reflection mirror, a second reflection mirror, a layer including a gain medium, and an absorption modulation structure may be laminated on a substrate.
  • the first reflection mirror and the second reflection mirror may have a semiconductor multilayer structure.
  • the substrate on which the first reflection mirror, the second reflection mirror, the layer including the gain medium, and the absorption modulation structure are stacked may be a semiconductor substrate.
  • the polarization modulation laser device includes an absorption modulation structure that changes an optical absorption coefficient for laser light by an electric means inside a laser resonator having an active medium sandwiched between two reflection mirrors. It has been.
  • the polarization modulation laser device modulates the polarization of the laser light by modulating the light absorption coefficient of the absorption modulation structure.
  • a structure having anisotropy in the light absorption coefficient in a plane parallel to the plane perpendicular to the output direction of the laser beam is used as the absorption modulation structure.
  • quantum wires are used as the absorption modulation structure.
  • the polarization-modulated laser device generates laser light by the two reflection mirrors and the active medium sandwiched between the two reflection mirrors. If the other laser components of the polarization modulation laser apparatus have no optical anisotropy with respect to the laser light, the polarization direction of the generated laser light is determined by applying an electric field to the absorption modulation structure. The first polarization direction with the smallest absorption coefficient is fixed.
  • the polarization modulation laser device provides the second laser structure that controls the laser beam in a polarization direction different from the direction in which the polarization direction is fixed when an electric field is applied, in the above laser structure when no electric field is applied.
  • Polarization control structure Introduce construction.
  • the polarization modulation laser device has a rectangular cross-sectional shape as the second polarization control structure, and the optical waveguide loss on the long side of the cross section is appropriately larger than the optical waveguide loss on the short side. Includes an optical waveguide arranged in a direction not parallel to the first polarization direction.
  • the polarization modulation laser apparatus has a specific polarization fixed direction that becomes the polarization direction only when an electric field is applied to the absorption modulation structure. Can do.
  • the polarization fixing direction is determined by the relationship between the first polarization direction and the polarization control characteristics of the second polarization control structure. Therefore, when the second polarization control structure is introduced, the polarization fixing direction when the electric field is applied tl to the absorption modulation structure is the same as the first polarization direction when the second polarization control structure is not introduced. Not necessarily the same.
  • the active medium and the absorption modulation structure are electrically separated, even if a modulation voltage is applied to the absorption modulation layer, the number of carriers in the active medium varies. Can be kept low. Therefore, it is possible to reduce the fluctuation of the average output intensity of the laser beam.
  • a gain medium of the laser of the polarization modulation laser apparatus a generally used high-quality and easily formed material and structure such as a multiple quantum well are used.
  • the polarization modulation laser device also includes an absorption modulation structure that does not need to be of higher quality than the active layer. Further, the layer including the gain medium and the absorption modulation structure are electrically separated, so that the carrier fluctuation in the gain medium can be suppressed to a low level. Therefore, while the polarization modulation laser device can be easily manufactured, the polarization modulation laser device can output a laser beam having a low threshold current and a high efficiency and a stable output intensity.
  • FIG. 1A is an explanatory view showing an example of the structure of a conventional polarization modulation surface emitting laser device.
  • FIG. 1B is an explanatory diagram showing an example of the structure of a conventional polarization modulation surface emitting laser device.
  • FIG. 2 is a cross-sectional view showing another structural example of a conventional polarization modulation surface emitting laser device.
  • FIG. 3A is an explanatory view showing an example of the structure of a polarization modulation laser device according to the present invention.
  • FIG. 3B is an explanatory diagram showing an example of the structure of the polarization modulation laser device according to the present invention.
  • Second quantum wire active layer 6 Second n-clad layer 7 Contact layer
  • FIG. 3A and 3B are diagrams for explaining an example of the structure of the polarization modulation laser device according to the present invention.
  • FIG. 3A is a cross-sectional view showing an example of the structure of the polarization modulation laser device.
  • the polarization modulation laser device is a polarization modulation surface emitting laser device.
  • the polarization modulation laser device includes a high-resistance GaAs substrate 1, an n-type Bragg reflection mirror 2, a first n-cladding layer 3, a quantum wire absorption modulation layer 4, a barrier layer 5, 1 p-cladding layer 6, high-resistance AlGaAs layer 7, second n-cladding layer 8, quantum well active layer 9, second p-cladding layer 10, p-type AlGaAs layer 12, and p-type Bragg reflector 13 were stacked Includes structure.
  • the p-type Bragg reflecting mirror 13 includes an opening 14 that emits laser light.
  • the portion where the quantum well active layer 9, the p-type AlGaAs layer 12 and the p-type Bragg reflector 13 are stacked is processed into a rectangular shape when viewed from the opening 14 side (X direction shown in FIG. 3A).
  • the shape of the portion where the quantum well active layer 9, the p-type AlGaAs layer 12, and the p-type Bragg reflection mirror 13 are stacked, as viewed from the opening 14 side, is a rectangular post. Also called.
  • the portion where the quantum well active layer 9, the p-type AlGaAs layer 12, and the p-type Bragg reflector 13 are stacked has a rectangular cross-sectional shape, so that the optical waveguide on the long side of the cross-section is provided.
  • An optical waveguide whose loss is appropriately larger than the optical waveguide loss on the short side is formed.
  • a high resistance layer 11 is formed outside the p-type AlGaAs layer 12.
  • the polarization-modulated laser device includes, as electrodes, a P-electrode 15 provided in contact with the surface of the p-type Bragg reflector 13 and a ring-shaped n provided in contact with the second n-cladding layer 8.
  • Electrode 16, ring-shaped p-electrode 17 provided in contact with first p-cladding layer 6, and ring-shaped n-electrode 18 provided in contact with first n-cladding layer 3 in total includes electrodes.
  • FIG. 3B is a plan view of the polarization-modulated laser device shown in FIG. 3A as viewed from the opening 14 side (X direction shown in FIG. 3A).
  • Fig. 3B shows a rectangular boosted structure in which a quantum well active layer 9, a p-type AlGaAs layer 12 and a p-type Bragg reflector 13 processed into a rectangular shape are stacked, and a quantum wire absorption modulation layer 4 The relationship of the direction is shown.
  • the vertical and horizontal dimensions of the rectangle of the rectangular post are, for example, about 6 microns x 4 microns.
  • the quantum wire absorption modulation layer 4 is disposed between the two Bragg reflection mirrors 2 and 1 3 at a position where the light intensity becomes maximum.
  • the absorption modulation structure of the quantum wire absorption modulation layer 4 has a minimum dimension of 50 nm or less in a plane parallel to a plane perpendicular to the traveling direction of the laser beam.
  • the thin wire width of the quantum wire that is an absorption modulation structure is lOnm, and as shown in FIG. 3B, in the quantum wire absorption modulation layer 4, the extension direction of the quantum wire is parallel to the long-side direction of the rectangle post rectangle. It is arranged to be.
  • the quantum well active layer 9 emits light by applying a DC noise voltage as a forward bias between the p-electrode 15 and the n-electrode 16.
  • the n-type Bragg reflection mirror 2 and the p-type black reflection mirror 13 form a resonator, and the polarization modulation laser device oscillates when a current exceeding the oscillation threshold current is applied.
  • the polarization modulation laser device changes the light absorption coefficient of the quantum wire absorption modulation layer 4 with respect to the laser light.
  • the polarization-modulated laser device emits polarization-modulated laser light. Further, by arranging a polarizer above the opening 14, the laser beam polarized and modulated by the polarization modulation laser device can be extracted as an intensity-modulated laser beam. In this case, depending on how the polarizers are arranged, either laser light having a polarization parallel to the long side of the rectangular post or laser light having a polarization parallel to the short side is appropriately selected and taken out. Can do.
  • the polarization modulation laser device as a gain medium of the laser of the quantum well active layer 9, for example, a multi-quantum well or the like, which is generally used, can be easily formed with high quality. Materials and structures can be used.
  • the polarization modulation laser device includes the quantum wire absorption modulation layer 4 as the absorption modulation structure.
  • the quantum wire absorption modulation layer 4 is not an active layer.
  • the quantum wire absorption modulation layer 4 does not have to be of high quality. Therefore, according to the present embodiment, when the polarization modulation laser device is applied to a semiconductor surface emitting laser, it is possible to realize a polarization modulation surface emitting laser device that is easy to manufacture and that has a low threshold current and high efficiency.
  • the active medium of the quantum well active layer 9 and the absorption modulation structure of the quantum wire absorption modulation layer 4 are electrically separated. For this reason, even when a modulation voltage is applied to the absorption modulation layer, the variation in the number of carriers in the active medium can be suppressed low, and the variation in the average output intensity of the laser light can be reduced. Therefore, polarization modulation with stable output intensity Laser light can be obtained. Therefore, while the polarization modulation laser device can be easily manufactured, the polarization modulation laser device can output a laser beam having a low threshold current and high efficiency and stable output intensity.
  • the quantum wire absorption modulation layer 4 including quantum wires is used as the absorption modulation structure.
  • the in-plane parallel to the surface perpendicular to the laser light output direction is described.
  • Other structures may be used as long as they have anisotropy in the light absorption coefficient.
  • an absorption modulation structure a fractional layer superlattice may be used, and in-plane shapes and quantum dots with anisotropic strain distribution may be used.
  • Other post structures such as the layer 12 and the p-type Bragg reflection mirror 13 may be laminated and the portion may have an elliptical cross-sectional shape.
  • the height of the rectangular post is not limited to the case shown in the present embodiment. For example, instead of making all the parts of the quantum well active layer 9, the p-type AlGaAs layer 12 and the p-type Bragg reflection mirror 13 rectangular, the part up to the middle of the p-type Bragg reflection mirror 13 is rectangular. Post height may be adjusted
  • a substrate having absorption anisotropy in a plane typified by (311) B surface or (311) A surface is used.
  • a structure having a post shape formed thereon may be used.
  • a structure using an in-plane anisotropic electrode, a high resistance layer, or an active layer may be used.
  • a structure provided with an absorption modulation structure that is electrically separated from the quantum wire absorption modulation layer 4 may be used. If such an anisotropic substrate, electrode, high resistance layer or active layer is used, or a structure with another absorption modulation structure is provided, the post shape is made cylindrical and external optics such as laser light and fiber are used. The coupling rate with the system can be increased.
  • the quantum wire absorption modulation layer 4 includes two blocks. Although it is preferable to arrange at a position where the light intensity is maximum between the lag reflecting mirrors 2 and 13, it may be arranged at another position.
  • the quantum wire absorption modulation layer 4 may be arranged inside the n-type Bragg reflection mirror 2 or the p-type Bragg reflection mirror 13!
  • the high resistance AlGaAs layer 7 may be an n-type or p-type semiconductor layer, or an n-type layer. It is also possible to eliminate the high-resistance AlGaAs layer 7 that can be a stacked structure of n-type and p-type layers (underlying n-type) or an insulating layer. In this case, for example, an Fe-doped AlGaAs layer can be used as the high-resistance AlGaAs layer 7.
  • an insulating layer formed by oxidizing an AlAs layer or an A1-rich AlGaAs layer may be used.
  • the high-resistance GaAs substrate 1 is used as the substrate, but an n-type substrate may be used as the substrate.
  • a p-type substrate may be used as a substrate on the condition that appropriate substitution is performed for the conductivity type of the semiconductor layer on the substrate. If a conductive substrate is used as the substrate, the n-electrode 18 may be formed on the back surface of the substrate.
  • the quantum well active layer 9, the quantum well active layer 9 Various materials can be used as the material of the thin wire absorption modulation layer 4 and the Bragg reflection mirrors 2 and 13.
  • the n-type Bragg reflection mirror 2 and the p-type Bragg reflection mirror 13 may be configured to have a multilayer film structure such as a semiconductor multilayer film structure.
  • the quantum well active layer 9 and the quantum wire absorption modulation layer 4 may be configured as a semiconductor layer.
  • the laser device may be configured in a near-infrared surface emitting laser structure, or in a visible surface emitting laser structure such as InGaP or AlGalnP. It may be configured.
  • a long wave surface emitting laser structure may be configured by using an active layer such as InGaAsP or InAlGaAs on an InP substrate or GaAsSb, GalnNAs or InAs quantum dots on a GaAs substrate.
  • a surface emitting laser structure for blue or ultraviolet light may be configured by using a material such as GaN or ZnSe.
  • use a Si-based or Si compound-based material or an organic material for the active layer to form a surface-emitting laser structure.
  • the quantum wire absorption modulation layer 4 may be appropriately selected from the same compound semiconductor, dielectric, elemental semiconductor, and organic material as the quantum well active layer 9.
  • the quantum well active layer 9, quantum wire absorption modulation layer 4, and Bragg reflection mirrors 2 and 13 may be selected and set as appropriate depending on the structural thickness and the number of in-plane Z layers.
  • the polarization modulation laser device is a surface emitting laser device
  • the configuration of the polarization modulation laser device shown in the present embodiment is other than the surface emitting laser device.
  • the present invention can also be applied to the case where the laser apparatus of the form performs polarization modulation.
  • the present invention can be applied to a use of a polarization-modulated laser device that emits laser light by surface emission, polarization-modulates and outputs the laser light.
  • the polarization-modulated laser device can output a laser beam having a low threshold current, a high efficiency, and a stable output intensity, while making the polarization-modulated laser device easy. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A polarization modulation laser device which outputs a laser beam having stable output intensity on a low-threshold current with high efficiency and can be easily fabricated . The polarization modulation laser device comprises a quantum line absorption modulation layer (4) (first polarization control structure) for fixing the polarization direction of the laser beam to a first polarization direction by means of electrical means and a rectangular post structure (second polarization control structure) for controlling the polarization direction of the laser beam to a direction other than the first polarization direction. The quantum line absorption modulation layer (4) includes an absorption modulation structure for varying the light absorption coefficient to the laser beam by means of electrical means. The quantum line absorption modulation layer (4) has an anisotropic light absorption coefficient in the plane perpendicular to the output direction of the laser beam of the absorption modulation structure. In the polarization modulating laser device, the absorption modulation structure of the quantum line absorption modulation layer (4) is electrically isolated form the quantum well active layer (9) (layer containing a gain medium).

Description

明 細 書  Specification
偏光変調レーザ装置  Polarization modulation laser device
技術分野  Technical field
[0001] 本発明は、レーザ装置に関し、特にレーザ光の偏光方向を高速に変調できる偏光 変調レーザ装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a laser device, and more particularly to a polarization-modulated laser device that can modulate the polarization direction of laser light at high speed.
背景技術  Background art
[0002] 近年の技術の発展に伴い、実用的な面発光レーザ装置が開発され、様々な光通 信用途への適用が検討されている。面発光レーザは、従来の端面発光レーザに比 ベて集積ィ匕が容易であり、低消費電力や安価である等のメリットがある。また、そのよ うな特性によって、面発光レーザは、コンピュータのボード間あるいはチップ間光通 信である光インタコネクションにお 、ても重要な発光素子と位置づけられて 、る。特に チップ間光通信では、小さい領域に密に光送信モジュールを実装する必要があるの で、低消費電力の特性をもつ面発光レーザを用いることが必須と考えられている。面 発光レーザを光インタコネクションに用いる場合、低消費電力性や光出力を低下させ ることなく、変調帯域を更に拡大させることが求められる。  [0002] With the development of technology in recent years, a practical surface-emitting laser device has been developed, and its application to various optical communication applications is being studied. The surface emitting laser is easier to integrate than the conventional edge emitting laser, and has advantages such as low power consumption and low cost. In addition, due to such characteristics, surface emitting lasers are positioned as important light emitting elements even in optical interconnection, which is optical communication between computer boards or chips. In particular, in inter-chip optical communication, it is necessary to mount an optical transmission module densely in a small area, so it is considered essential to use a surface-emitting laser with low power consumption characteristics. When surface-emitting lasers are used for optical interconnection, it is required to further expand the modulation band without reducing power consumption and optical output.
[0003] 面発光レーザをレーザ光強度の変調方式によって分類すると、電流直接変調型と 変調器集積型とに分類される。電流直接変調型の面発光レーザでは、注入電流量 を大きく変化させるので、レーザ光共振器内の光密度及びキャリア密度が大きく変動 する。そのため、電流直接変調型の面発光レーザでは、変調帯域が制限されてしま  [0003] When surface emitting lasers are classified according to the modulation method of laser light intensity, they are classified into a direct current modulation type and a modulator integrated type. In a direct current modulation surface emitting laser, the amount of injected current is greatly changed, so that the optical density and carrier density in the laser optical resonator vary greatly. As a result, the modulation bandwidth is limited in the direct current modulation type surface emitting laser.
[0004] 特公平 7— 93473号公報 (段落 0004参照)には、光共振器外部に電界印加による 吸収型変調器を備えた変調器集積型の面発光レーザが記載されている。しかし、こ の変調器集積型の面発光レーザ素子は、光共振器内の光密度やキャリア密度の大 きな変動はな 、が、充分な消光比を得るために厚 、吸収層あるいは多くの吸収層数 を要するので、大きな変調電圧が必要になる。 Japanese Examined Patent Publication No. 7-93473 (see paragraph 0004) describes a modulator integrated surface emitting laser having an absorption modulator by applying an electric field outside an optical resonator. However, this modulator-integrated surface-emitting laser element does not vary greatly in the optical density and carrier density in the optical resonator, but in order to obtain a sufficient extinction ratio, the thickness, absorption layer, or many Since a large number of absorption layers is required, a large modulation voltage is required.
[0005] 大きな変調電圧が必要になるという問題を回避するために、特開平 5— 152674号 公報 (段落 0005参照)には、光共振器外部に設けた吸収型変調器にも光共振器構 造を設け、実効的な光吸収量を増強して光変調器の低電圧動作化を図った面発光 半導体レーザが記載されている。しかし、この面発光半導体レーザは、複合共振器 構造を採用して ヽるので、レーザ発振自体が不安定になる。 In order to avoid the problem that a large modulation voltage is required, Japanese Patent Laid-Open No. 5-152674 (see paragraph 0005) describes an optical resonator structure in an absorption modulator provided outside the optical resonator. There is described a surface emitting semiconductor laser provided with a structure to increase the effective light absorption amount and to achieve a low voltage operation of the optical modulator. However, since this surface emitting semiconductor laser employs a composite resonator structure, the laser oscillation itself becomes unstable.
[0006] また、電流直接変調型や変調器集積型等の強度変調方式の面発光レーザに対し て、入力信号に応じてレーザ光の偏光方向を切り替える偏光変調面発光レーザもあ る。偏光変調面発光レーザは、電流直接変調型の面発光レーザや、共振器外部や 共振器内部に吸収型変調器を設けた変調器集積型の面発光レーザと比べて、変調 時の注入電流量の変化が小さぐレーザ共振器内の光密度やキャリア密度を殆ど一 定にすることができる。そのため、偏光変調面発光レーザを用いれば、強度変調方 式の面発光レーザを用いる場合と比較して、より大きな変調速度が得られる。すなわ ち、偏光変調型の面発光レーザを用いれば、低電流又は低電圧変調、高速変調及 び安定したレーザ発振の 3つの特性を同時に実現することが可能である。  There are also polarization-modulated surface-emitting lasers that switch the polarization direction of a laser beam in accordance with an input signal, in contrast to an intensity-modulated surface-emitting laser such as a direct current modulation type or a modulator integrated type. The polarization-modulated surface-emitting laser has a larger amount of injected current than that of a direct-current-modulated surface-emitting laser or a modulator-integrated surface-emitting laser in which an absorption modulator is provided outside or inside the resonator. The optical density and carrier density in the laser resonator where the change of the laser beam is small can be made almost constant. Therefore, if a polarization-modulated surface emitting laser is used, a higher modulation speed can be obtained as compared with the case where an intensity-modulated surface emitting laser is used. In other words, if a polarization-modulated surface emitting laser is used, the three characteristics of low current or low voltage modulation, high-speed modulation, and stable laser oscillation can be realized simultaneously.
[0007] 特開平 10— 261842号公報(段落 0007— 0011および図 2参照)には、偏光変調 型の面発光レーザを用いた面型光デバイスが記載されて 、る。図 1 Aおよび図 1Bを 参照して、この偏光変調面発光レーザ装置の構造を説明する。  Japanese Laid-Open Patent Publication No. 10-261842 (see paragraphs 0007-0011 and FIG. 2) describes a surface-type optical device using a polarization-modulated surface-emitting laser. With reference to FIGS. 1A and 1B, the structure of this polarization-modulated surface-emitting laser device will be described.
[0008] 図 1Aは、特開平 10— 261842号公報に記載された偏光変調面発光レーザ装置 の構造を示す断面図である。図 1 Aに示すように、偏光変調面発光レーザ装置は、 n 型基板 201上に、第 1の nクラッド層 202、第 1の量子細線活性層 203、 pクラッド層 2 04、第 2の量子細線活性層 205、第 2の nクラッド層 206、コンタクト層 207及び第 1の 誘電体多層膜ミラー 208が順次形成された構造を有する。第 1の nクラッド層 202〖こ 対して n型基板 201の反対面側では、 n型基板 201をくり貫いて第 2の誘電体多層膜 ミラー 209が第 1の nクラッド層 202に接するように形成されて!、る。  FIG. 1A is a cross-sectional view showing the structure of a polarization-modulated surface-emitting laser device described in Japanese Patent Application Laid-Open No. 10-261842. As shown in FIG. 1A, the polarization-modulated surface-emitting laser device includes a first n-clad layer 202, a first quantum wire active layer 203, a p-clad layer 204, and a second quantum layer on an n-type substrate 201. The thin-wire active layer 205, the second n-cladding layer 206, the contact layer 207, and the first dielectric multilayer mirror 208 are sequentially formed. On the opposite side of the first n-clad layer 202 from the n-type substrate 201, the second dielectric multilayer mirror 209 is in contact with the first n-clad layer 202 through the n-type substrate 201. Formed!
[0009] また、偏光変調面発光レーザ装置は、電極として、 n型基板 201に接するように第 1 の n電極 210力 pクラッド層 204に接するように p電極 211力 コンタクト層 207に接 するように第 2の n電極 212がそれぞれ形成されて 、る。  In addition, the polarization-modulated surface-emitting laser device is in contact with the p-electrode 211 force contact layer 207 so as to be in contact with the first n-electrode 210 force p-cladding layer 204 so as to contact the n-type substrate 201 A second n-electrode 212 is formed respectively.
[0010] 図 1Bは、図 1Aに示す偏光変調面発光レーザ装置の量子細線活性層の構造を示 す斜視図である。図 1Bに示すように、偏光変調面発光レーザ装置において、第 1の 量子細線活性層 203と第 2の量子細線活性層 205とは、量子細線が互いに直交す る向きに配置されている。 FIG. 1B is a perspective view showing the structure of the quantum wire active layer of the polarization modulation surface emitting laser device shown in FIG. 1A. As shown in FIG. 1B, in the polarization-modulated surface emitting laser device, the first quantum wire active layer 203 and the second quantum wire active layer 205 are perpendicular to each other. It is arranged in a direction.
[0011] 図 1Aおよび図 1Bに示した偏光変調面発光レーザ装置では、 2つの誘電体多層膜 ミラー 208, 209によってレーザ共振器が形成されている。この偏光変調面発光レー ザ装置を動作させる場合、第 1の n電極 210と p電極 211との間、及び第 2の n電極 21 2と p電極 211との間にそれぞれ独立に電流を流すことによって、第 1の量子細線活 性層 203及び第 2の量子細線活性層 205の利得をそれぞれ独立に制御できる。この 場合、量子細線のバンド端での利得は、量子細線に平行な直線偏光に対して最大と なる。  In the polarization-modulated surface-emitting laser device shown in FIGS. 1A and 1B, a laser resonator is formed by two dielectric multilayer mirrors 208 and 209. When operating this polarization-modulated surface emitting laser device, currents are allowed to flow independently between the first n-electrode 210 and p-electrode 211 and between the second n-electrode 212 and p-electrode 211, respectively. Thus, the gains of the first quantum wire active layer 203 and the second quantum wire active layer 205 can be independently controlled. In this case, the gain at the band edge of the quantum wire is maximized for linearly polarized light parallel to the quantum wire.
[0012] また、図 1Aおよび図 1Bに示した偏光変調面発光レーザ装置では、 2つの量子細 線活性層 203, 205の DCバイアス電流を調節し、レーザ変調電流を第 1の量子細線 活性層 203又は第 2の量子細線活性層 205のいずれか〖こ注入したり、 2つの量子細 線活性層 203, 205の両方に注入したりする。そのようにすることによって、第 1の量 子細線活性層 203の量子細線に平行な偏光のレーザ光と、それに直交する第 2の 量子細線活性層 205の量子細線に平行な偏光のレーザ光との切り替えが可能となり 、これによりレーザ光の偏光方向を変調する。  In addition, in the polarization-modulated surface emitting laser device shown in FIGS. 1A and 1B, the DC bias currents of the two quantum wire active layers 203 and 205 are adjusted, and the laser modulation current is changed to the first quantum wire active layer. Either 203 or the second quantum wire active layer 205 is implanted, or both the two quantum wire active layers 203 and 205 are implanted. By doing so, a laser beam polarized in parallel to the quantum wire of the first quantum wire active layer 203 and a laser beam polarized in parallel to the quantum wire of the second quantum wire active layer 205 orthogonal to the first quantum wire active layer 203 Thus, the polarization direction of the laser beam is modulated.
[0013] 特開平 6— 232501号公報(段落 0012— 0016および図 3参照)には、偏光変調 型の面発光レーザを用いた偏光スイッチングレーザが記載されている。図 2は、特開 平 6— 232501号公報に記載された偏光変調面発光レーザ装置の構造を示す断面 図である。図 2に示すように、偏光変調面発光レーザ装置は、第 1の p型ブラッグ反射 ミラー 301と、 i— AlGaAs層 302と、分数層超格子 303と、 n+— AlGaAs層、 i— A1 GaAs層及び n+—AlGaAs層カゝら成る nコンタクト Z高抵抗層 304と、光路長可変 媒質 305と、第 2の p型ブラッグ反射ミラー 306とが順次形成された構造を有する。  [0013] Japanese Unexamined Patent Publication No. 6-232501 (see paragraphs 0012-0016 and FIG. 3) describes a polarization switching laser using a polarization-modulated surface emitting laser. FIG. 2 is a cross-sectional view showing the structure of a polarization-modulated surface-emitting laser device described in JP-A-6-232501. As shown in FIG. 2, the polarization-modulated surface emitting laser device includes a first p-type Bragg reflection mirror 301, an i-AlGaAs layer 302, a fractional layer superlattice 303, an n + -AlGaAs layer, and an i-A1 GaAs layer. And an n-contact Z high-resistance layer 304 composed of an n + -AlGaAs layer, a variable optical path length medium 305, and a second p-type Bragg reflection mirror 306 are sequentially formed.
[0014] 分数層超格子 303は、 A10. 5GaO. 5AsZGaAs超格子をブラッグ反射ミラー面に 垂直に立てた構造を有する。電極として、第 1の p型ブラッグ反射ミラー 301に接する ように第 1の p電極 307が、第 2の p型ブラッグ反射ミラー 306に接するように第 2の p電 極 308がそれぞれ形成されている。 nコンタクト Z高抵抗層 304の 2つの n+— AlGa As層に接するように、それぞれ n電極(図示せず)が形成されて!ヽる。  [0014] The fractional layer superlattice 303 has a structure in which an A10.5GaO.5AsZGaAs superlattice is erected perpendicularly to the Bragg reflection mirror surface. As electrodes, a first p-electrode 307 is formed so as to be in contact with the first p-type Bragg reflection mirror 301, and a second p-electrode 308 is formed so as to be in contact with the second p-type Bragg reflection mirror 306. . An n electrode (not shown) is formed so as to be in contact with the two n + —AlGa As layers of the n contact Z high resistance layer 304.
[0015] 図 2に示した偏光変調面発光レーザ装置では、 2つのブラッグ反射ミラー 301, 306 によってレーザ共振器が形成されている。光路長可変媒質 305は、電界印加によつ て屈折率が変化する媒質である。例えば、光路長可変媒質 305として、 i-AlGaAs が用いられる。 In the polarization modulation surface emitting laser device shown in FIG. 2, two Bragg reflection mirrors 301 and 306 are used. As a result, a laser resonator is formed. The optical path length variable medium 305 is a medium whose refractive index changes when an electric field is applied. For example, i-AlGaAs is used as the optical path length variable medium 305.
[0016] 図 2に示した偏光変調面発光レーザ装置を動作させる場合、 p電極 307と nコンタク ト Z高抵抗層 304の分数層超格子 303側の n +— AlGaAs層との間に順方向バイァ ス電圧 310を印加することよって、 DCバイアス電流を流してレーザ発振させることが できる。この場合、 p電極 308と nコンタクト Z高抵抗層 304の光路長可変媒質 305側 の n+—AlGaAs層との間に変調用のバイアス電圧 309を印加する。そのようにする ことによって、レーザ共振器の共振ピーク波長を変動させることができる。  When operating the polarization-modulated surface-emitting laser device shown in FIG. 2, the forward direction is between the p electrode 307 and the n contact Z high resistance layer 304 and the n + —AlGaAs layer on the fractional superlattice 303 side. By applying a bias voltage 310, a laser can be oscillated by supplying a DC bias current. In this case, a modulation bias voltage 309 is applied between the p-electrode 308 and the n + -AlGaAs layer on the optical path length variable medium 305 side of the n-contact Z high-resistance layer 304. By doing so, the resonance peak wavelength of the laser resonator can be varied.
[0017] 分数層超格子 303の超格子層面に垂直な直線偏光に対する利得ピーク波長は、 超格子層に平行な直線偏光に対する利得ピーク波長よりも相対的に短 、。そのため 、共振ピーク波長を相対的に短波長側に変動させた場合、偏光変調面発光レーザ 装置は、分数層超格子 303の超格子層面に垂直な偏光をもつレーザ光を出射する 。また、共振ピーク波長を相対的に長波長側に変動させた場合、偏光変調面発光レ 一ザ装置は、分数層超格子 303の超格子層面に平行な偏光をもつレーザ光を出射 する。このように共振ピーク波長を変動させることによって、レーザ光の偏光方向を変 調する。  [0017] The gain peak wavelength for linearly polarized light perpendicular to the superlattice layer surface of the fractional layer superlattice 303 is relatively shorter than the gain peak wavelength for linearly polarized light parallel to the superlattice layer. Therefore, when the resonance peak wavelength is changed to the relatively short wavelength side, the polarization modulation surface emitting laser device emits laser light having a polarization perpendicular to the superlattice layer surface of the fractional layer superlattice 303. Further, when the resonance peak wavelength is changed to the relatively long wavelength side, the polarization modulation surface emitting laser device emits laser light having a polarization parallel to the superlattice layer surface of the fractional layer superlattice 303. In this way, the polarization direction of the laser light is modulated by changing the resonance peak wavelength.
発明の開示  Disclosure of the invention
[0018] 特開平 10— 261842号公報ゃ特開平 6— 232501号公報に記載された偏光変調 面発光レーザ装置を用いる場合、活性層の光学的利得を得るために面内偏光異方 性が必要である。この様な異方性を有する活性層を具体的に実現するために、面内 構造寸法の最小値が 10nmオーダである量子細線や、分数層超格子、面内形状に 異方性のある量子ドット等が用いられる。しかし、このような量子微細構造を高品質且 つ高密度に形成し、量子井戸と同等の面発光レーザ性能を実現することは一般に困 難である。そのため、特開平 10— 261842号公報ゃ特開平 6— 232501号公報に記 載された偏光変調面発光レーザ装置では、実用的な低閾値電流で高効率のレーザ 光を出力する高性能な面発光レーザを実現するのは困難である。  [0018] In the case of using the polarization-modulated surface-emitting laser device described in JP-A-10-261842 or JP-A-6-232501, in-plane polarization anisotropy is necessary to obtain the optical gain of the active layer. It is. In order to concretely realize such an active layer having anisotropy, a quantum wire with a minimum in-plane structure dimension on the order of 10 nm, a fractional layer superlattice, an in-plane shape anisotropy Dots or the like are used. However, it is generally difficult to form such a quantum microstructure with high quality and high density, and to realize surface emitting laser performance equivalent to that of a quantum well. Therefore, the polarization-modulated surface-emitting laser device described in Japanese Patent Laid-Open Nos. 10-261842 and 6-232501 has a high-performance surface emission that outputs high-efficiency laser light with a practical low threshold current. It is difficult to realize a laser.
[0019] そこで、本発明は、上記課題を解決するためになされたものであって、作製が容易 でありながら、低閾値電流で高効率且つ出力強度の安定したレーザ光を出力できる 偏光変調面発光レーザ装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and is easy to manufacture. However, an object of the present invention is to provide a polarization-modulated surface-emitting laser device that can output laser light with low threshold current and high efficiency and stable output intensity.
[0020] 本発明による偏光変調レーザ装置は、レーザ光を偏光変調して出力する偏光変調 レーザ装置であって、第 1の反射ミラー(例えば、図 3に示す n型ブラッグ反射ミラー 2 によって実現される)と、光学的利得を得るための利得媒質を含む層(例えば、図 3に 示す量子井戸活性層 9によって実現される)と、第 2の反射ミラー (例えば、図 3に示 す P型ブラッグ反射ミラー 13によって実現される)と、第 1の反射ミラーと第 2の反射ミ ラーとによって形成される共振器と利得媒質を含む層とによって発振したレーザ光を 、第 1の反射ミラー又は第 2の反射ミラーの面に対して垂直方向に出力する出力部( 例えば、図 3に示す開口 14によって実現される)と、出力するレーザ光を、電気的な 手段によって第 1の偏光方向に固定する第 1の偏光制御構造 (例えば、図 3に示す 量子細線吸収変調層 4によって実現される)と、出力するレーザ光を、第 1の偏光方 向とは別の第 2の偏光方向に向ける第 2の偏光制御構造 (例えば、図 3に示す量子 井戸活性層 9、 p型 AlGaAs層 12及び p型ブラッグ反射ミラー 13が積層されて ヽる部 分を所定のポスト構造に形成することによって実現される)とを備え、第 1の偏光制御 構造は、レーザ光に対する光吸収係数を電気的な手段によって変化させる吸収変調 構造 (例えば、量子細線や量子ドット、分数層超格子によって実現される)を含み、吸 収変調構造は、レーザ光の出力方向に垂直な面に対して平行な面内における光吸 収係数に光学的な異方性を有し、吸収変調構造と利得媒質を含む層とが電気的に 分離して!/ヽることを特徴とする。  A polarization-modulated laser device according to the present invention is a polarization-modulated laser device that modulates and outputs laser light, and is realized by a first reflection mirror (for example, an n-type Bragg reflection mirror 2 shown in FIG. 3). And a layer including a gain medium for obtaining optical gain (for example, realized by the quantum well active layer 9 shown in FIG. 3), and a second reflecting mirror (for example, P-type shown in FIG. 3). A laser beam oscillated by a layer including a resonator and a gain medium formed by the first reflecting mirror and the second reflecting mirror, and the first reflecting mirror or An output unit (for example, realized by the aperture 14 shown in FIG. 3) that outputs in a direction perpendicular to the surface of the second reflecting mirror and an output laser beam in the first polarization direction by electrical means. First polarization control structure to be fixed (For example, realized by the quantum wire absorption modulation layer 4 shown in FIG. 3) and the second polarization control structure for directing the output laser light in a second polarization direction different from the first polarization direction (For example, it is realized by forming a portion where the quantum well active layer 9, the p-type AlGaAs layer 12 and the p-type Bragg reflection mirror 13 shown in FIG. 3 are stacked in a predetermined post structure). The first polarization control structure includes an absorption modulation structure (for example, realized by a quantum wire, a quantum dot, or a fractional layer superlattice) that changes an optical absorption coefficient for laser light by an electric means, and absorbs modulation. The structure has optical anisotropy in the light absorption coefficient in a plane parallel to the plane perpendicular to the laser beam output direction, and the absorption modulation structure and the layer containing the gain medium are electrically separated. And!
[0021] また、吸収変調構造は、電気的な手段として、電界の印加によってレーザ光に対す る光吸収係数を変化させるものであってもよ 、。  In addition, the absorption modulation structure may change the light absorption coefficient with respect to the laser beam by applying an electric field as an electrical means.
[0022] また、第 2の偏光制御構造は、光導波路 (例えば、図 3に示す量子井戸活性層 9、 p 型 AlGaAs層 12及び p型ブラッグ反射ミラー 13が積層されて ヽる部分が、矩形ゃ楕 円形の断面形状を有するポスト構造に形成されることによって実現される)を含み、光 導波路は、レーザ光の進行方向に対して垂直な面の断面が矩形であり、矩形の長辺 側の光導波損失が短辺側の光導波損失より大きぐ長辺方向が第 1の偏光方向と平 行にならない向きに配置されて 、るものであってもよ!/、。 [0023] また、吸収変調構造は、レーザ光の出力方向に垂直な面に対して平行な面内にお ける最小寸法が 50nm以下であるものであってもよい。 [0022] The second polarization control structure has an optical waveguide (for example, a portion where the quantum well active layer 9, the p-type AlGaAs layer 12, and the p-type Bragg reflection mirror 13 shown in FIG. The optical waveguide has a rectangular cross section in a plane perpendicular to the traveling direction of the laser light, and the long side of the rectangular shape is realized by forming a post structure having an elliptical cross sectional shape). The long side direction in which the optical waveguide loss on the side is larger than the optical waveguide loss on the short side may be arranged in a direction not parallel to the first polarization direction! /. [0023] The absorption modulation structure may have a minimum dimension of 50 nm or less in a plane parallel to a plane perpendicular to the laser light output direction.
[0024] また、吸収変調構造は、量子細線、量子ドット又は分数層超格子を含むものであつ てもよい。 [0024] Further, the absorption modulation structure may include a quantum wire, a quantum dot, or a fractional layer superlattice.
[0025] また、第 1の反射ミラー及び第 2の反射ミラーは、多層膜構造を有し、利得媒質を含 む層及び第 1の偏光制御構造が有する吸収変調構造は、半導体層であり、偏光変 調レーザ装置は、第 1の反射ミラーと、第 2の反射ミラーと、利得媒質を含む層と、吸 収変調構造とが、基板上に積層されているものであってもよい。  [0025] The first reflection mirror and the second reflection mirror have a multilayer film structure, and the absorption modulation structure included in the layer including the gain medium and the first polarization control structure is a semiconductor layer. In the polarization modulation laser device, a first reflection mirror, a second reflection mirror, a layer including a gain medium, and an absorption modulation structure may be laminated on a substrate.
[0026] また、第 1の反射ミラー及び第 2の反射ミラーは、半導体多層膜構造を有するもので あってもよい。  [0026] The first reflection mirror and the second reflection mirror may have a semiconductor multilayer structure.
[0027] また、第 1の反射ミラーと、第 2の反射ミラーと、利得媒質を含む層と、吸収変調構造 とが積層される基板は、半導体基板であるものであってもよ 、。  [0027] The substrate on which the first reflection mirror, the second reflection mirror, the layer including the gain medium, and the absorption modulation structure are stacked may be a semiconductor substrate.
[0028] 本発明による偏光変調レーザ装置は、 2つの反射ミラーに挟まれた活性媒質を有 するレーザ共振器内部に、電気的な手段によってレーザ光に対する光吸収係数を 変化させる吸収変調構造が設けられている。そして、偏光変調レーザ装置は、吸収 変調構造の光吸収係数を変調することによって、レーザ光の偏光変調を行う。この場 合、吸収変調構造として、レーザ光の出力方向に垂直な面に対して平行な面内にお ける光吸収係数に異方性を有する構造を用いる。例えば、吸収変調構造として量子 細線を用いる。  The polarization modulation laser device according to the present invention includes an absorption modulation structure that changes an optical absorption coefficient for laser light by an electric means inside a laser resonator having an active medium sandwiched between two reflection mirrors. It has been. The polarization modulation laser device modulates the polarization of the laser light by modulating the light absorption coefficient of the absorption modulation structure. In this case, a structure having anisotropy in the light absorption coefficient in a plane parallel to the plane perpendicular to the output direction of the laser beam is used as the absorption modulation structure. For example, quantum wires are used as the absorption modulation structure.
[0029] 上記の構成によって、偏光変調レーザ装置は、 2つの反射ミラーと、 2つの反射ミラ 一に挟まれた活性媒質とによってレーザ光を発生する。また、仮に偏光変調レーザ 装置の他のレーザ構成要素にレーザ光に対する光学的異方性が無いとすると、発生 したレーザ光の偏光方向は、吸収変調構造への電界印加によって、吸収変調構造 の光吸収係数が最も小さい第 1の偏光方向に固定される。  [0029] With the above configuration, the polarization-modulated laser device generates laser light by the two reflection mirrors and the active medium sandwiched between the two reflection mirrors. If the other laser components of the polarization modulation laser apparatus have no optical anisotropy with respect to the laser light, the polarization direction of the generated laser light is determined by applying an electric field to the absorption modulation structure. The first polarization direction with the smallest absorption coefficient is fixed.
[0030] しかし、上記の構成のみでは、電界印加がない場合の偏光方向が電界印加のある 場合の偏光方向と偶然に一致してしまう可能性がある。そこで、本発明による偏光変 調レーザ装置は、上記のレーザ構造に、電界印加のない場合に、電界印加時に偏 光方向を固定する方向とは別の偏光方向にレーザ光を制御する第 2の偏光制御構 造を導入する。例えば、偏光変調レーザ装置は、第 2の偏光制御構造として、矩形断 面形状を有し、その断面の長辺側の光導波損失が短辺側の光導波損失より適度に 大きぐ長辺方向が第 1の偏光方向と平行とならない向きに配置された光導波路を含 む。 However, with only the above configuration, there is a possibility that the polarization direction when no electric field is applied coincides with the polarization direction when an electric field is applied. In view of this, the polarization modulation laser device according to the present invention provides the second laser structure that controls the laser beam in a polarization direction different from the direction in which the polarization direction is fixed when an electric field is applied, in the above laser structure when no electric field is applied. Polarization control structure Introduce construction. For example, the polarization modulation laser device has a rectangular cross-sectional shape as the second polarization control structure, and the optical waveguide loss on the long side of the cross section is appropriately larger than the optical waveguide loss on the short side. Includes an optical waveguide arranged in a direction not parallel to the first polarization direction.
[0031] 偏光変調レーザ装置は、第 2の偏光制御構造を導入することによって、吸収変調構 造に電界を印加した場合だけその偏光方向となるような、ある特定の偏光固定方向 を存在させることができる。この場合、偏光固定方向は、第 1の偏光方向と、第 2の偏 光制御構造による偏光制御特性との関係によって決定される。従って、第 2の偏光制 御構造を導入した場合、吸収変調構造に電界を印力 tlした時の偏光固定方向は、第 2 の偏光制御構造を導入しな 、場合の第 1の偏光方向と必ずしも同一ではな 、。  [0031] By introducing the second polarization control structure, the polarization modulation laser apparatus has a specific polarization fixed direction that becomes the polarization direction only when an electric field is applied to the absorption modulation structure. Can do. In this case, the polarization fixing direction is determined by the relationship between the first polarization direction and the polarization control characteristics of the second polarization control structure. Therefore, when the second polarization control structure is introduced, the polarization fixing direction when the electric field is applied tl to the absorption modulation structure is the same as the first polarization direction when the second polarization control structure is not introduced. Not necessarily the same.
[0032] また、本発明による偏光変調レーザ装置は、活性媒質と吸収変調構造とが電気的 に分離されているので、吸収変調層に変調電圧を加えても、活性媒質中のキャリア 数の変動を低く抑えることができる。従って、レーザ光の平均出力強度の変動を少な くすることがでさる。  In the polarization modulation laser device according to the present invention, since the active medium and the absorption modulation structure are electrically separated, even if a modulation voltage is applied to the absorption modulation layer, the number of carriers in the active medium varies. Can be kept low. Therefore, it is possible to reduce the fluctuation of the average output intensity of the laser beam.
[0033] 本発明によれば、偏光変調レーザ装置のレーザの利得媒質として、多重量子井戸 等の一般に用いられる高品質で形成の容易な材料及び構造を用いる。また、偏光変 調レーザ装置は、活性層よりも高品質である必要のない吸収変調構造を含む。また、 利得媒質を含む層と吸収変調構造とが電気的に分離されており、利得媒質中のキヤ リアの変動を低く抑えることができる。従って、偏光変調レーザ装置の作製が容易で ありながら、偏光変調レーザ装置が低閾値電流で高効率且つ出力強度の安定したレ 一ザ光を出力することができる。  [0033] According to the present invention, as a gain medium of the laser of the polarization modulation laser apparatus, a generally used high-quality and easily formed material and structure such as a multiple quantum well are used. The polarization modulation laser device also includes an absorption modulation structure that does not need to be of higher quality than the active layer. Further, the layer including the gain medium and the absorption modulation structure are electrically separated, so that the carrier fluctuation in the gain medium can be suppressed to a low level. Therefore, while the polarization modulation laser device can be easily manufactured, the polarization modulation laser device can output a laser beam having a low threshold current and a high efficiency and a stable output intensity.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1A]従来の偏光変調面発光レーザ装置の構造の一例を示す説明図である。 FIG. 1A is an explanatory view showing an example of the structure of a conventional polarization modulation surface emitting laser device.
[図 1B]従来の偏光変調面発光レーザ装置の構造の一例を示す説明図である。  FIG. 1B is an explanatory diagram showing an example of the structure of a conventional polarization modulation surface emitting laser device.
[図 2]従来の偏光変調面発光レーザ装置の他の構造例を示す断面図である。  FIG. 2 is a cross-sectional view showing another structural example of a conventional polarization modulation surface emitting laser device.
[図 3A]本発明による偏光変調レーザ装置の構造の一例を示す説明図である。  FIG. 3A is an explanatory view showing an example of the structure of a polarization modulation laser device according to the present invention.
[図 3B]本発明による偏光変調レーザ装置の構造の一例を示す説明図である。  FIG. 3B is an explanatory diagram showing an example of the structure of the polarization modulation laser device according to the present invention.
符号の説明 高抵抗 GaAs基板 n型ブラッグ反射ミラー 第 1の nクラッド層 量子細線吸収変調層 バリア層 Explanation of symbols High-resistance GaAs substrate n-type Bragg reflection mirror First n-clad layer Quantum wire absorption modulation layer Barrier layer
第 1の pクラッド層 高抵抗 AlGaAs層 第 2の nクラッド層 量子井戸活性層 第 2の pクラッド層 高抵抗層 First p-clad layer High-resistance AlGaAs layer Second n-clad layer Quantum well active layer Second p-clad layer High-resistance layer
p型 AlGaAs層 p型ブラッグ反射ミラー 開口 p-type AlGaAs layer p-type Bragg reflector mirror aperture
. 17 p電極17 p electrode
. 18 n電極18 n electrode
1 n型基板1 n-type substrate
2 第 1の nクラッド層3 第 1の量子細線活性層4 Pクラッド、層2 First n-clad layer 3 First quantum wire active layer 4 P-clad layer
5 第 2の量子細線活性層6 第 2の nクラッド層7 コンタクト層5 Second quantum wire active layer 6 Second n-clad layer 7 Contact layer
8 第 1の誘電体多層膜ミラ9 第 2の誘電体多層膜ミラ0 第 1の n電極8 1st dielectric multilayer mirror 9 2nd dielectric multilayer mirror 0 1st n electrode
1 ρ電極1 rho electrode
2 第 2の n電極 301 第 1の p型ブラッグ反射ミラー 2 Second n-electrode 301 First p-type Bragg reflector mirror
302 i— AlGaAs層  302 i— AlGaAs layer
303 分数層超格子  303 fractional superlattice
304 nコンタクト Z高抵抗層  304 n contact Z high resistance layer
305 光路長可変媒質  305 Optical path length variable medium
306 第 2の p型ブラッグ反射ミラー  306 Second p-type Bragg reflector mirror
307 p電極  307 p electrode
308 p電極  308 p electrode
309 バイアス電圧  309 Bias voltage
310 バイアス電圧  310 Bias voltage
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、本発明の実施の形態を図面を参照して説明する。図 3Aおよび図 3Bは、本 発明による偏光変調レーザ装置の構造の一例を説明するための図である。図 3Aは 、偏光変調レーザ装置の構造の一例を示す断面図である。なお、本実施の形態では 、偏光変調レーザ装置が偏光変調型の面発光レーザ装置である場合を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. 3A and 3B are diagrams for explaining an example of the structure of the polarization modulation laser device according to the present invention. FIG. 3A is a cross-sectional view showing an example of the structure of the polarization modulation laser device. In the present embodiment, a case where the polarization modulation laser device is a polarization modulation surface emitting laser device will be described.
[0037] 図 3Aに示すように、偏光変調レーザ装置は、高抵抗 GaAs基板 1、 n型ブラッグ反 射ミラー 2、第 1の nクラッド層 3、量子細線吸収変調層 4、バリア層 5、第 1の pクラッド 層 6、高抵抗 AlGaAs層 7、第 2の nクラッド層 8、量子井戸活性層 9、第 2の pクラッド 層 10、 p型 AlGaAs層 12及び p型ブラッグ反射ミラー 13を積層した構造を含む。  [0037] As shown in FIG. 3A, the polarization modulation laser device includes a high-resistance GaAs substrate 1, an n-type Bragg reflection mirror 2, a first n-cladding layer 3, a quantum wire absorption modulation layer 4, a barrier layer 5, 1 p-cladding layer 6, high-resistance AlGaAs layer 7, second n-cladding layer 8, quantum well active layer 9, second p-cladding layer 10, p-type AlGaAs layer 12, and p-type Bragg reflector 13 were stacked Includes structure.
[0038] p型ブラッグ反射ミラー 13は、レーザ光を放射する開口 14を含む。量子井戸活性 層 9、 p型 AlGaAs層 12及び p型ブラッグ反射ミラー 13が積層されている部分は、開 口 14側(図 3Aに示す X方向)から見た場合に矩形形状に加工されている。以下、開 口 14側から見た場合に矩形形状に形成されている、量子井戸活性層 9、 p型 AlGaA s層 12及び p型ブラッグ反射ミラー 13が積層されて ヽる部分の形状を矩形ポストとも いう。本実施の形態では、量子井戸活性層 9、 p型 AlGaAs層 12及び p型ブラッグ反 射ミラー 13が積層されている部分は、矩形断面形状を有することによって、その断面 の長辺側の光導波損失が短辺側の光導波損失よりも適度に大きい光導波路を形成 して 、る。 p型 AlGaAs層 12の外側には高抵抗層 11が形成されて!、る。 [0039] また、偏光変調レーザ装置は、電極として、 p型ブラッグ反射ミラー 13表面に接する ように設けられた P電極 15、第 2の nクラッド層 8に接するように設けられたリング状の n 電極 16、第 1の pクラッド層 6に接するように設けられたリング状の p電極 17、および第 1の nクラッド層 3に接するように設けられたリング状の n電極 18の、計 4つの電極を含 む。 [0038] The p-type Bragg reflecting mirror 13 includes an opening 14 that emits laser light. The portion where the quantum well active layer 9, the p-type AlGaAs layer 12 and the p-type Bragg reflector 13 are stacked is processed into a rectangular shape when viewed from the opening 14 side (X direction shown in FIG. 3A). . In the following, the shape of the portion where the quantum well active layer 9, the p-type AlGaAs layer 12, and the p-type Bragg reflection mirror 13 are stacked, as viewed from the opening 14 side, is a rectangular post. Also called. In the present embodiment, the portion where the quantum well active layer 9, the p-type AlGaAs layer 12, and the p-type Bragg reflector 13 are stacked has a rectangular cross-sectional shape, so that the optical waveguide on the long side of the cross-section is provided. An optical waveguide whose loss is appropriately larger than the optical waveguide loss on the short side is formed. A high resistance layer 11 is formed outside the p-type AlGaAs layer 12. [0039] In addition, the polarization-modulated laser device includes, as electrodes, a P-electrode 15 provided in contact with the surface of the p-type Bragg reflector 13 and a ring-shaped n provided in contact with the second n-cladding layer 8. Electrode 16, ring-shaped p-electrode 17 provided in contact with first p-cladding layer 6, and ring-shaped n-electrode 18 provided in contact with first n-cladding layer 3 in total Includes electrodes.
[0040] 図 3Bは、図 3Aに示す偏光変調レーザ装置を、開口 14側(図 3Aに示す X方向)か ら見た場合の平面図である。図 3Bには、矩形形状に加工された量子井戸活性層 9、 p型 AlGaAs層 12及び p型ブラッグ反射ミラー 13とが積層されて ヽる部分の矩形ボス ト構造と、量子細線吸収変調層 4との方向の関係が示されている。矩形ポストの矩形 の縦及び横の寸法は、例えば 6ミクロン X 4ミクロン程度である。  FIG. 3B is a plan view of the polarization-modulated laser device shown in FIG. 3A as viewed from the opening 14 side (X direction shown in FIG. 3A). Fig. 3B shows a rectangular boosted structure in which a quantum well active layer 9, a p-type AlGaAs layer 12 and a p-type Bragg reflector 13 processed into a rectangular shape are stacked, and a quantum wire absorption modulation layer 4 The relationship of the direction is shown. The vertical and horizontal dimensions of the rectangle of the rectangular post are, for example, about 6 microns x 4 microns.
[0041] 本実施の形態において、量子細線吸収変調層 4は、 2つのブラッグ反射ミラー 2, 1 3の間で光強度が極大になる位置に配置されて 、る。量子細線吸収変調層 4の吸収 変調構造は、レーザ光の進行方向に垂直な面に対して平行な面内における最小寸 法が 50nm以下である。例えば、吸収変調構造である量子細線の細線幅は lOnmで あり、図 3Bに示すように、量子細線吸収変調層 4は、量子細線の延長方向が矩形ポ ストの矩形の長辺方向と平行になるように配置されている。  In the present embodiment, the quantum wire absorption modulation layer 4 is disposed between the two Bragg reflection mirrors 2 and 1 3 at a position where the light intensity becomes maximum. The absorption modulation structure of the quantum wire absorption modulation layer 4 has a minimum dimension of 50 nm or less in a plane parallel to a plane perpendicular to the traveling direction of the laser beam. For example, the thin wire width of the quantum wire that is an absorption modulation structure is lOnm, and as shown in FIG. 3B, in the quantum wire absorption modulation layer 4, the extension direction of the quantum wire is parallel to the long-side direction of the rectangle post rectangle. It is arranged to be.
[0042] 次に、本実施の形態の偏光変調レーザ装置の動作について説明する。図 3Aに示 す構造の偏光変調レーザ装置において、 p電極 15と n電極 16との間に DCノ ィァス 電圧を順バイアスとして印加することによって、量子井戸活性層 9が発光する。また、 n型ブラッグ反射ミラー 2と p型ブラック反射ミラー 13とによって共振器が形成されてお り、偏光変調レーザ装置は、発振閾値電流以上の電流を印加するとレーザ発振する  Next, the operation of the polarization modulation laser device of the present embodiment will be described. In the polarization modulation laser device having the structure shown in FIG. 3A, the quantum well active layer 9 emits light by applying a DC noise voltage as a forward bias between the p-electrode 15 and the n-electrode 16. The n-type Bragg reflection mirror 2 and the p-type black reflection mirror 13 form a resonator, and the polarization modulation laser device oscillates when a current exceeding the oscillation threshold current is applied.
[0043] また、 p電極 17と n電極 18との間に逆電圧 Vmを印加することによって、偏光変調レ 一ザ装置は、量子細線吸収変調層 4のレーザ光に対する光吸収係数を変化させる。 本実施の形態では、量子細線吸収変調層 4は、 Vm=0の時にレーザ光に対する光 吸収係数がほぼ 0になり、 Vm≠0の時に光吸収が起こるように、形状、寸法及び組 成が調整されている。 Further, by applying a reverse voltage Vm between the p electrode 17 and the n electrode 18, the polarization modulation laser device changes the light absorption coefficient of the quantum wire absorption modulation layer 4 with respect to the laser light. In this embodiment, the quantum wire absorption modulation layer 4 has a shape, size, and composition so that the light absorption coefficient with respect to the laser light becomes almost 0 when Vm = 0, and light absorption occurs when Vm ≠ 0. It has been adjusted.
[0044] 例えば、 Vm=0にするとレーザ光の偏光方向は、矩形ポストの矩形の長辺に平行 になる。これは、この偏光方向で導波損失が最も小さいためである。また、 Vm≠0に すると量子細線吸収変調層 4の延長方向の吸収係数が最大となり、量子細線に対し て垂直方向の吸収係数が最小となる。そのため、 Vm≠0にすると、レーザ光の偏光 方向は、矩形ポストの矩形の短辺方向に平行になる。この場合、矩形ポストの矩形の 長辺に平行な偏光とする場合と短辺に平行な偏光とする場合とを比較すると、偏光 に対する損失及び閾値電流の差が小さい。従って、変調電圧 Vmが小さくて済み、レ 一ザ共振器内の光密度とキャリア密度とが殆ど変化しな!、ので、大きな偏光変調速 度が得られる。 [0044] For example, when Vm = 0, the polarization direction of the laser light is parallel to the long side of the rectangular post. become. This is because the waveguide loss is the smallest in this polarization direction. When Vm ≠ 0, the absorption coefficient in the extension direction of the quantum wire absorption modulation layer 4 is maximized, and the absorption coefficient in the direction perpendicular to the quantum wire is minimized. Therefore, when Vm ≠ 0, the polarization direction of the laser light is parallel to the short side direction of the rectangular post. In this case, when the polarization parallel to the long side of the rectangular post and the polarization parallel to the short side are compared, the difference in loss and threshold current with respect to the polarization is small. Therefore, the modulation voltage Vm can be small, and the light density and carrier density in the laser resonator hardly change! Therefore, a large polarization modulation speed can be obtained.
[0045] 以上のように動作することによって、偏光変調レーザ装置は、偏光変調したレーザ 光を放射する。また、開口 14の上部に偏光子を配置することによって、偏光変調レー ザ装置によって偏光変調されたレーザ光を、強度変調されたレーザ光として取り出す ことができる。この場合、偏光子の配置の仕方によって、矩形ポストの矩形の長辺に 平行な偏光をもつレーザ光と、短辺に平行な偏光をもつレーザ光とのいずれかを適 宜選択して取り出すことができる。  [0045] By operating as described above, the polarization-modulated laser device emits polarization-modulated laser light. Further, by arranging a polarizer above the opening 14, the laser beam polarized and modulated by the polarization modulation laser device can be extracted as an intensity-modulated laser beam. In this case, depending on how the polarizers are arranged, either laser light having a polarization parallel to the long side of the rectangular post or laser light having a polarization parallel to the short side is appropriately selected and taken out. Can do.
[0046] 以上のように、本実施の形態によれば、偏光変調レーザ装置において、量子井戸 活性層 9のレーザの利得媒質として、例えば多重量子井戸等の一般に用いられる高 品質で形成の容易な材料及び構造を用いることができる。また、本実施の形態によ れば、偏光変調レーザ装置は、吸収変調構造として量子細線吸収変調層 4を含む。 一般に光学的異方性のある吸収変調構造として最小寸法が lOnmオーダの量子細 線等を用いる必要があるが、本実施の形態によれば、量子細線吸収変調層 4は活性 層ではないので、量子細線吸収変調層 4が高品質である必要はない。よって、本実 施の形態によれば、偏光変調レーザ装置を半導体面発光レーザに適用した場合、 作製が容易且つ低閾値電流で高効率な偏光変調面発光レーザ装置を実現すること ができる。  [0046] As described above, according to the present embodiment, in the polarization modulation laser device, as a gain medium of the laser of the quantum well active layer 9, for example, a multi-quantum well or the like, which is generally used, can be easily formed with high quality. Materials and structures can be used. According to the present embodiment, the polarization modulation laser device includes the quantum wire absorption modulation layer 4 as the absorption modulation structure. In general, it is necessary to use a quantum wire having a minimum dimension of lOnm order as an absorption modulation structure having optical anisotropy, but according to the present embodiment, the quantum wire absorption modulation layer 4 is not an active layer. The quantum wire absorption modulation layer 4 does not have to be of high quality. Therefore, according to the present embodiment, when the polarization modulation laser device is applied to a semiconductor surface emitting laser, it is possible to realize a polarization modulation surface emitting laser device that is easy to manufacture and that has a low threshold current and high efficiency.
[0047] また、本実施の形態によれば、量子井戸活性層 9の活性媒質と量子細線吸収変調 層 4の吸収変調構造とが電気的に分離されている。そのため、吸収変調層に変調電 圧を加えても、活性媒質中のキャリア数の変動を低く抑えることができ、レーザ光の平 均出力強度の変動を少なくすることができる。よって、安定した出力強度の偏波変調 レーザ光を得ることができる。従って、偏光変調レーザ装置の作製が容易でありなが ら、偏光変調レーザ装置が低閾値電流で高効率且つ出力強度の安定したレーザ光 を出力することができる。 Furthermore, according to the present embodiment, the active medium of the quantum well active layer 9 and the absorption modulation structure of the quantum wire absorption modulation layer 4 are electrically separated. For this reason, even when a modulation voltage is applied to the absorption modulation layer, the variation in the number of carriers in the active medium can be suppressed low, and the variation in the average output intensity of the laser light can be reduced. Therefore, polarization modulation with stable output intensity Laser light can be obtained. Therefore, while the polarization modulation laser device can be easily manufactured, the polarization modulation laser device can output a laser beam having a low threshold current and high efficiency and stable output intensity.
[0048] なお、本実施の形態では、吸収変調構造として量子細線を含む量子細線吸収変 調層 4を用いる場合を説明したが、レーザ光の出力方向に垂直な面に対して平行な 面内における光吸収係数に異方性があるものであれば他の構造を用いてもよい。例 えば、吸収変調構造として、分数層超格子を用いてもよぐ面内の形状や歪分布に 異方性のある量子ドット等を用いてもょ ヽ。  In this embodiment, the case where the quantum wire absorption modulation layer 4 including quantum wires is used as the absorption modulation structure has been described. However, the in-plane parallel to the surface perpendicular to the laser light output direction is described. Other structures may be used as long as they have anisotropy in the light absorption coefficient. For example, as an absorption modulation structure, a fractional layer superlattice may be used, and in-plane shapes and quantum dots with anisotropic strain distribution may be used.
[0049] また、 Vm=0の時に偏光方向を制御できる構造として、矩形ポスト構造に限らず、 中心対称性のない形状であれば楕円型ポスト(すなわち、量子井戸活性層 9、 p型 A1 GaAs層 12及び p型ブラッグ反射ミラー 13が積層されて 、る部分が、楕円形の断面 形状を有する)等他のポスト構造を用いてもよい。また、矩形ポストの高さも、本実施 の形態で示した場合に限られない。例えば、量子井戸活性層 9、 p型 AlGaAs層 12 及び p型ブラッグ反射ミラー 13の部分の全てを矩形にするのでなく、 p型ブラッグ反射 ミラー 13の途中までの部分を矩形にする等、適宜矩形ポストの高さを調節してもよい  [0049] In addition, the structure in which the polarization direction can be controlled when Vm = 0 is not limited to the rectangular post structure, but an elliptical post (ie, quantum well active layer 9, p-type A1 GaAs if the shape has no central symmetry. Other post structures such as the layer 12 and the p-type Bragg reflection mirror 13 may be laminated and the portion may have an elliptical cross-sectional shape. Further, the height of the rectangular post is not limited to the case shown in the present embodiment. For example, instead of making all the parts of the quantum well active layer 9, the p-type AlGaAs layer 12 and the p-type Bragg reflection mirror 13 rectangular, the part up to the middle of the p-type Bragg reflection mirror 13 is rectangular. Post height may be adjusted
[0050] また、 Vm=0の時に偏光方向を制御できる構造として、(311) B面や(311)A面等 に代表される面内で吸収異方性のある基板を用いて、その基板上にポスト形状を形 成した構造を用いてもよい。また、面内形状に異方性のある電極や高抵抗層、活性 層を用いた構造としてもよい。また、量子細線吸収変調層 4とは別に電気的に分離さ れた吸収変調構造を設けた構造を用いてもよい。そのように異方性のある基板、電極 、高抵抗層又は活性層を用いたり、別の吸収変調構造を設けた構造とすれば、ポスト 形状を円柱形にしてレーザ光とファイバ等の外部光学系との結合率を高めることがで きる。 [0050] Further, as a structure capable of controlling the polarization direction when Vm = 0, a substrate having absorption anisotropy in a plane typified by (311) B surface or (311) A surface is used. A structure having a post shape formed thereon may be used. Further, a structure using an in-plane anisotropic electrode, a high resistance layer, or an active layer may be used. Further, a structure provided with an absorption modulation structure that is electrically separated from the quantum wire absorption modulation layer 4 may be used. If such an anisotropic substrate, electrode, high resistance layer or active layer is used, or a structure with another absorption modulation structure is provided, the post shape is made cylindrical and external optics such as laser light and fiber are used. The coupling rate with the system can be increased.
[0051] また、量子細線吸収変調層 4が自発的な内部電界を有するようにしてもよい。その ようにすれば、偏光変調レーザ装置は、 Vm=0で吸収係数が大きぐ V≠0で吸収 係数が小さくなるように変調動作することができる。  [0051] The quantum wire absorption modulation layer 4 may have a spontaneous internal electric field. By doing so, the polarization-modulated laser device can perform a modulation operation so that the absorption coefficient is large when Vm = 0 and the absorption coefficient is small when V ≠ 0.
[0052] また、本実施の形態で示したように、量子細線吸収変調層 4については、 2つのブ ラッグ反射ミラー 2, 13の間で光強度が極大になる位置に配置することが好ましいが 、他の位置に配置してもよい。例えば、量子細線吸収変調層 4を、 n型ブラッグ反射ミ ラー 2又は p型ブラッグ反射ミラー 13の内部に配置するようにしてもよ!、。 [0052] As shown in the present embodiment, the quantum wire absorption modulation layer 4 includes two blocks. Although it is preferable to arrange at a position where the light intensity is maximum between the lag reflecting mirrors 2 and 13, it may be arranged at another position. For example, the quantum wire absorption modulation layer 4 may be arranged inside the n-type Bragg reflection mirror 2 or the p-type Bragg reflection mirror 13!
[0053] また、量子細線吸収変調層 4と量子井戸活性層 9との直流的な分離が可能なもの であれば、高抵抗 AlGaAs層 7を n型又は p型半導体層にしたり、 n型層と p型層との 積層構造(下層が n型)や絶縁層にしてもよぐ高抵抗 AlGaAs層 7を無くしてもょ ヽ。 この場合、高抵抗 AlGaAs層 7として、例えば、 Feドープの AlGaAs層を用いることが できる。また、 Feドープの AlGaAs層に代えて、高抵抗 AlGaAs層 7として、例えば、 AlAs層や A1リッチ AlGaAs層を酸ィ匕して形成される絶縁層を用いてもょ ヽ。  [0053] If the quantum wire absorption modulation layer 4 and the quantum well active layer 9 can be separated in a direct current, the high resistance AlGaAs layer 7 may be an n-type or p-type semiconductor layer, or an n-type layer. It is also possible to eliminate the high-resistance AlGaAs layer 7 that can be a stacked structure of n-type and p-type layers (underlying n-type) or an insulating layer. In this case, for example, an Fe-doped AlGaAs layer can be used as the high-resistance AlGaAs layer 7. Instead of the Fe-doped AlGaAs layer, as the high-resistance AlGaAs layer 7, for example, an insulating layer formed by oxidizing an AlAs layer or an A1-rich AlGaAs layer may be used.
[0054] また、本実施の形態では、基板として高抵抗 GaAs基板 1を用いたが、基板として n 型基板を用いてもよい。また、基板上の半導体層の導電型ついて適当な置換を行う ことを条件に、基板として p型基板を用いてもよい。また、基板として導電型基板を用 V、る場合、 n電極 18を基板裏面に形成するようにしてもょ 、。  In the present embodiment, the high-resistance GaAs substrate 1 is used as the substrate, but an n-type substrate may be used as the substrate. In addition, a p-type substrate may be used as a substrate on the condition that appropriate substitution is performed for the conductivity type of the semiconductor layer on the substrate. If a conductive substrate is used as the substrate, the n-electrode 18 may be formed on the back surface of the substrate.
[0055] また、本実施の形態で示した量子井戸活性層 9、量子細線吸収変調層 4及びブラ ッグ反射ミラー 2, 13の特性を実現する材料であれば、量子井戸活性層 9、量子細線 吸収変調層 4及びブラッグ反射ミラー 2, 13の材料として種々の材料を用いることが できる。例えば、 n型ブラッグ反射ミラー 2や p型ブラッグ反射ミラー 13を半導体多層 膜構造等の多層膜構造を有するように構成してもよい。また、例えば、量子井戸活性 層 9や量子細線吸収変調層 4を半導体層として構成してもよい。  [0055] Further, if the material that realizes the characteristics of the quantum well active layer 9, the quantum wire absorption modulation layer 4, and the Bragg reflection mirrors 2 and 13 shown in the present embodiment, the quantum well active layer 9, the quantum well active layer 9, Various materials can be used as the material of the thin wire absorption modulation layer 4 and the Bragg reflection mirrors 2 and 13. For example, the n-type Bragg reflection mirror 2 and the p-type Bragg reflection mirror 13 may be configured to have a multilayer film structure such as a semiconductor multilayer film structure. For example, the quantum well active layer 9 and the quantum wire absorption modulation layer 4 may be configured as a semiconductor layer.
[0056] 例えば、量子井戸活性層 9の材料として GaAs又は InGaAsを用いて、レーザ装置 を近赤外用の面発光レーザ構造に構成してもよいし、 InGaPや AlGalnP等の可視 面発光レーザ構造に構成してもよい。また、 InP基板上の InGaAsP又は InAlGaAs や、 GaAs基板上の GaAsSb、 GalnNAs又は InAs量子ドット等の活性層を用いて、 長波帯の面発光レーザ構造を構成してもよい。また、 GaN系や ZnSe系等の材料を 用いて、青色又は紫外線用の面発光レーザ構造を構成するようにしてもよい。更に、 Si系及び Si化合物系材料や有機材料を活性層に用いて、面発光レーザ構造を構成 するようにしてちょい。  [0056] For example, using GaAs or InGaAs as the material of the quantum well active layer 9, the laser device may be configured in a near-infrared surface emitting laser structure, or in a visible surface emitting laser structure such as InGaP or AlGalnP. It may be configured. Also, a long wave surface emitting laser structure may be configured by using an active layer such as InGaAsP or InAlGaAs on an InP substrate or GaAsSb, GalnNAs or InAs quantum dots on a GaAs substrate. Alternatively, a surface emitting laser structure for blue or ultraviolet light may be configured by using a material such as GaN or ZnSe. In addition, use a Si-based or Si compound-based material or an organic material for the active layer to form a surface-emitting laser structure.
[0057] また、量子井戸活性層 9に用いた活性層材料に応じて、量子細線吸収変調層 4の 吸収変調構造ゃブラッグ反射ミラー 2, 13等の材料や組成を、量子井戸活性層 9と 同様な化合物半導体や誘電体、元素半導体、有機材料から適宜選択してもよい。ま た、量子井戸活性層 9や量子細線吸収変調層 4、ブラッグ反射ミラー 2, 13の構造厚 さや面内形状 Z層数にっ ヽても適宜選択し設定するようにしてもょ ヽ。 [0057] Further, depending on the active layer material used for the quantum well active layer 9, the quantum wire absorption modulation layer 4 The material and composition of the absorption modulation structure, such as the Bragg reflection mirrors 2 and 13, may be appropriately selected from the same compound semiconductor, dielectric, elemental semiconductor, and organic material as the quantum well active layer 9. The quantum well active layer 9, quantum wire absorption modulation layer 4, and Bragg reflection mirrors 2 and 13 may be selected and set as appropriate depending on the structural thickness and the number of in-plane Z layers.
[0058] また、本実施の形態では、偏光変調レーザ装置が面発光レーザ装置である場合を 説明したが、本実施の形態で示した偏光変調レーザ装置の構成は、面発光レーザ 装置以外の他の形態のレーザ装置が偏光変調を行う場合にも適用可能である。 産業上の利用可能性 Further, in the present embodiment, the case where the polarization modulation laser device is a surface emitting laser device has been described, but the configuration of the polarization modulation laser device shown in the present embodiment is other than the surface emitting laser device. The present invention can also be applied to the case where the laser apparatus of the form performs polarization modulation. Industrial applicability
[0059] 本発明は、レーザ光を面発光し偏光変調して出力する偏光変調レーザ装置の用途 に適用できる。特に、本発明による偏光変調レーザ装置を用いることによって、偏光 変調レーザ装置の作製が容易でありながら、偏光変調レーザ装置が低閾値電流で 高効率且つ出力強度の安定したレーザ光を出力することができる。 [0059] The present invention can be applied to a use of a polarization-modulated laser device that emits laser light by surface emission, polarization-modulates and outputs the laser light. In particular, by using the polarization-modulated laser device according to the present invention, the polarization-modulated laser device can output a laser beam having a low threshold current, a high efficiency, and a stable output intensity, while making the polarization-modulated laser device easy. it can.

Claims

請求の範囲 The scope of the claims
[1] レーザ光を偏光変調して出力する偏光変調レーザ装置であって、  [1] A polarization-modulated laser device that modulates and outputs a laser beam,
第 1の反射ミラーと、  A first reflecting mirror;
光学的利得を得るための利得媒質を含む層と、  A layer containing a gain medium to obtain optical gain;
第 2の反射ミラーと、  A second reflecting mirror;
前記第 1の反射ミラーと前記第 2の反射ミラーとによって形成される共振器と前記利 得媒質を含む層とによって発振したレーザ光を、前記第 1の反射ミラー又は前記第 2 の反射ミラーの面に対して垂直方向に出力する出力部と、  Laser light oscillated by a resonator formed by the first reflecting mirror and the second reflecting mirror and a layer including the gain medium is transmitted to the first reflecting mirror or the second reflecting mirror. An output unit that outputs in a direction perpendicular to the surface;
前記出力するレーザ光を、電気的な手段によって第 1の偏光方向に固定する第 1 の偏光制御構造と、  A first polarization control structure for fixing the output laser beam in a first polarization direction by an electrical means;
前記出力するレーザ光を、前記第 1の偏光方向とは別の第 2の偏光方向に向ける 第 2の偏光制御構造とを備え、  A second polarization control structure for directing the output laser light in a second polarization direction different from the first polarization direction;
前記第 1の偏光制御構造は、前記レーザ光に対する光吸収係数を電気的な手段 によって変化させる吸収変調構造を含み、  The first polarization control structure includes an absorption modulation structure that changes a light absorption coefficient for the laser light by an electric means,
前記吸収変調構造は、前記レーザ光の出力方向に垂直な面に対して平行な面内 における光吸収係数に光学的な異方性を有し、  The absorption modulation structure has optical anisotropy in a light absorption coefficient in a plane parallel to a plane perpendicular to the output direction of the laser beam,
前記吸収変調構造と前記利得媒質を含む層とが電気的に分離していることを特徴 とする偏光変調レーザ装置。  The polarization modulation laser apparatus, wherein the absorption modulation structure and the layer including the gain medium are electrically separated.
[2] 吸収変調構造は、電気的な手段として、電界の印加によってレーザ光に対する光 吸収係数を変化させる請求項 1記載の偏光変調レーザ装置。 2. The polarization modulation laser device according to claim 1, wherein the absorption modulation structure changes an optical absorption coefficient with respect to the laser light by applying an electric field as an electrical means.
[3] 第 2の偏光制御構造は、光導波路を含み、 [3] The second polarization control structure includes an optical waveguide,
前記光導波路は、レーザ光の進行方向に対して垂直な面の断面が矩形であり、当 該矩形の長辺側の光導波損失が短辺側の光導波損失より大きぐ前記長辺方向が 第 1の偏光方向と平行にならない向きに配置されている請求項 1又は請求項 2記載 の偏光変調レーザ装置。  The optical waveguide has a rectangular cross section perpendicular to the traveling direction of the laser light, and the long side direction in which the optical waveguide loss on the long side of the rectangle is larger than the optical waveguide loss on the short side is The polarization-modulated laser device according to claim 1 or 2, wherein the polarization-modulated laser device is disposed in a direction not parallel to the first polarization direction.
[4] 吸収変調構造は、レーザ光の出力方向に垂直な面に対して平行な面内における 最小寸法が 50nm以下である請求項 1から請求項 3のうちのいずれ力 1項に記載の 偏光変調レーザ装置。 [4] The polarization according to any one of claims 1 to 3, wherein the absorption modulation structure has a minimum dimension of 50 nm or less in a plane parallel to a plane perpendicular to the output direction of the laser beam. Modulation laser device.
[5] 吸収変調構造は、量子細線、量子ドット又は分数層超格子を含む請求項 1から請 求項 4のうちのいずれか 1項に記載の偏光変調レーザ装置。 [5] The polarization-modulated laser device according to any one of claims 1 to 4, wherein the absorption modulation structure includes a quantum wire, a quantum dot, or a fractional layer superlattice.
[6] 第 1の反射ミラー及び第 2の反射ミラーは、多層膜構造を有し、 [6] The first reflecting mirror and the second reflecting mirror have a multilayer structure,
利得媒質を含む層及び第 1の偏光制御構造が有する吸収変調構造は、半導体層 であり、 前記第 1の反射ミラーと、前記第 2の反射ミラーと、前記利得媒質を含む層 と、前記吸収変調構造とが、基板上に積層されている請求項 1から請求項 5のうちの いずれか 1項に記載の偏光変調レーザ装置。  The layer including the gain medium and the absorption modulation structure included in the first polarization control structure are semiconductor layers, the first reflecting mirror, the second reflecting mirror, the layer including the gain medium, and the absorption The polarization-modulated laser device according to claim 1, wherein the modulation structure is laminated on a substrate.
[7] 第 1の反射ミラー及び第 2の反射ミラーは、半導体多層膜構造を有する請求項 6記 載の偏光変調レーザ装置。 7. The polarization-modulated laser device according to claim 6, wherein the first reflection mirror and the second reflection mirror have a semiconductor multilayer film structure.
[8] 第 1の反射ミラーと、第 2の反射ミラーと、利得媒質を含む層と、吸収変調構造とが 積層される基板は、半導体基板である請求項 6記載の偏光変調レーザ装置。 8. The polarization modulation laser device according to claim 6, wherein the substrate on which the first reflection mirror, the second reflection mirror, the layer including the gain medium, and the absorption modulation structure are stacked is a semiconductor substrate.
PCT/JP2005/013032 2004-07-30 2005-07-14 Polarization modulating laser device WO2006011370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006529137A JP4946439B2 (en) 2004-07-30 2005-07-14 Polarization modulation laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004223015 2004-07-30
JP2004-223015 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006011370A1 true WO2006011370A1 (en) 2006-02-02

Family

ID=35786120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013032 WO2006011370A1 (en) 2004-07-30 2005-07-14 Polarization modulating laser device

Country Status (2)

Country Link
JP (1) JP4946439B2 (en)
WO (1) WO2006011370A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300308B2 (en) 2013-10-16 2016-03-29 Seiko Epson Corporation Light emitting device and atomic oscillator
JP2020507202A (en) * 2016-12-29 2020-03-05 エックス デベロップメント エルエルシー Integrated digital laser
US11575246B2 (en) * 2018-11-09 2023-02-07 Meta Platforms Technologies, Llc Wafer level optic and zoned wafer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144183A (en) * 1990-10-04 1992-05-18 Seiko Epson Corp Surface light emitting type semiconductor laser
JPH05308173A (en) * 1992-04-30 1993-11-19 Nec Corp Semiconductor laser
JPH06177480A (en) * 1992-10-09 1994-06-24 Sharp Corp Semiconductor laser device and manufacturing method thereof
JPH08181391A (en) * 1994-10-24 1996-07-12 Nec Corp Surface emitting laser, surface emitting laser array, and optical information processing equipment
JPH09214047A (en) * 1996-02-01 1997-08-15 Fujitsu Ltd Surface emitting semiconductor laser
JPH09260765A (en) * 1996-03-18 1997-10-03 Olympus Optical Co Ltd Surface-emitting semiconductor laser
JPH1022571A (en) * 1996-07-02 1998-01-23 Canon Inc Polarization modulation semiconductor laser with TE mode loss selective control
JP2001168461A (en) * 1999-10-01 2001-06-22 Fuji Xerox Co Ltd Surface-emitting semiconductor laser and laser array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144183A (en) * 1990-10-04 1992-05-18 Seiko Epson Corp Surface light emitting type semiconductor laser
JPH05308173A (en) * 1992-04-30 1993-11-19 Nec Corp Semiconductor laser
JPH06177480A (en) * 1992-10-09 1994-06-24 Sharp Corp Semiconductor laser device and manufacturing method thereof
JPH08181391A (en) * 1994-10-24 1996-07-12 Nec Corp Surface emitting laser, surface emitting laser array, and optical information processing equipment
JPH09214047A (en) * 1996-02-01 1997-08-15 Fujitsu Ltd Surface emitting semiconductor laser
JPH09260765A (en) * 1996-03-18 1997-10-03 Olympus Optical Co Ltd Surface-emitting semiconductor laser
JPH1022571A (en) * 1996-07-02 1998-01-23 Canon Inc Polarization modulation semiconductor laser with TE mode loss selective control
JP2001168461A (en) * 1999-10-01 2001-06-22 Fuji Xerox Co Ltd Surface-emitting semiconductor laser and laser array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CITRIN D.S.: "[Polarization selective electro-optic effect in a coupled quantum wire array", APPLIED PHYSICS LETTERS, vol. 59, no. 5, 29 July 1991 (1991-07-29), pages 582 - 584, XP000233676 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300308B2 (en) 2013-10-16 2016-03-29 Seiko Epson Corporation Light emitting device and atomic oscillator
JP2020507202A (en) * 2016-12-29 2020-03-05 エックス デベロップメント エルエルシー Integrated digital laser
US11575246B2 (en) * 2018-11-09 2023-02-07 Meta Platforms Technologies, Llc Wafer level optic and zoned wafer

Also Published As

Publication number Publication date
JPWO2006011370A1 (en) 2008-05-01
JP4946439B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
US7809038B2 (en) Electro-absorption optical modulator integrated with a laser to produce high speed, uncooled, long distance, low power, 1550 nm optical communication device with optimized parameters
US7772606B2 (en) Light-emitting photonic device
US6798804B2 (en) Laser apparatus including surface-emitting semiconductor excited with semiconductor laser element, and directly modulated
KR102368946B1 (en) Tunable laser device and method for manufacturing the same
JP2004146833A (en) Electrically pumped vertical cavity surface emitting laser with multiple active regions.
JP2001281473A (en) Photonic crystal and its manufacturing method, optical module and optical system
JP2004273993A (en) Tunable distributed reflection type semiconductor laser device
JP2010232424A (en) Semiconductor optical amplifier and optical module
JP6939411B2 (en) Semiconductor optical device
JP2019008179A (en) Semiconductor optical device
US6714575B2 (en) Optical modulator system
JP4439199B2 (en) Vertical cavity surface emitting semiconductor laser device, optical logic operation device, wavelength converter, optical pulse waveform shaping device, and optical transmission system using the same
JPH0732279B2 (en) Semiconductor light emitting element
US4817105A (en) Integrated laser device with refractive index modulator
US10243330B2 (en) Optoelectronic device with resonant suppression of high order optical modes and method of making same
JP2002217488A (en) Surface emitting laser element, surface emitting laser system, wavelength adjusting method, surface emitting laser array, optical interconnection system, and local area network system
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
JP4946439B2 (en) Polarization modulation laser device
JP2011040557A (en) Polarization modulating laser device, and method of manufacturing the same
JPH0563301A (en) Semiconductor optical element and optical communication system
US6734464B2 (en) Hetero-junction laser diode
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP2002261400A (en) Laser, laser device, and optical communication system
JPH04107976A (en) Semiconductor laser device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase