[go: up one dir, main page]

WO2006011620A1 - 機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着方法 - Google Patents

機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着方法 Download PDF

Info

Publication number
WO2006011620A1
WO2006011620A1 PCT/JP2005/014001 JP2005014001W WO2006011620A1 WO 2006011620 A1 WO2006011620 A1 WO 2006011620A1 JP 2005014001 W JP2005014001 W JP 2005014001W WO 2006011620 A1 WO2006011620 A1 WO 2006011620A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
functional
membrane
mea
metal
Prior art date
Application number
PCT/JP2005/014001
Other languages
English (en)
French (fr)
Inventor
Nobuyoshi Tsuji
Original Assignee
Techno Bank Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Bank Co., Ltd. filed Critical Techno Bank Co., Ltd.
Priority to JP2006527885A priority Critical patent/JPWO2006011620A1/ja
Priority to US11/658,376 priority patent/US20090035623A1/en
Publication of WO2006011620A1 publication Critical patent/WO2006011620A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the production and use of nanometer-size fine powders of functional substances, which can enhance the functions of functional substance treatment apparatuses and functional body application apparatuses, and reduce the weight and the weight of apparatuses using functional bodies. Regarding cost and diversification. Background art
  • Activation of the case of the hydrogen storage alloy is generally a hydrogen pressure of 1 40kgZ cm 2 or more high pressure cylinder with hydrogen pressure device of activated vacuum adjusted to about 30KgZcm 2 used in activation, the anti-fire For this reason, hydrogen is released from the hydrogen storage alloy into the atmosphere after activation and enclosed with an inert gas for transport. In this case, hydrogen is released into the atmosphere after being used for activation, but in order to return the hydrogen once brought to normal pressure to the original high hydrogen pressure, high-cost electric energy must be input and disposed of. However, there is a problem of wasting hydrogen.
  • the hydrogen storage alloy powder is activated and the hydrogen storage alloy is stored in the apparatus in a state where hydrogen is stored. If installed, there is a danger that hydrogen will ignite due to the reaction of oxygen in the air and metal powder during work.
  • an adhesive or the like is used as a binder for the functional substance powder used for the electrodes.
  • Japanese Patent Publication 2002-1 10244, Japanese Patent Publication 2005-44672, etc. are well known.
  • the volume changes when the functional material, which is an active material attached to the positive and negative electrodes during charge and discharge, absorbs and releases hydrogen and lithium.
  • the functional material is pulverized due to the repeated expansion and contraction of the volume, the electrical resistance increases, or the functional material drops off from the electrode foil, causing a reduction in life.
  • negative electrode materials for lithium-based batteries have hindered the use of functional materials such as tin (Sn) and silicon (Si), which can achieve high electrical energy density.
  • functional materials such as tin (Sn) and silicon (Si), which can achieve high electrical energy density.
  • polymer adhesives with excellent resistance to acids and alkalis and high temperatures are used, but this polymer adhesive has poor thermoplasticity in the low temperature range, so it is not suitable for rapid volume expansion and contraction. It is not possible to withstand and the connective tissue is destroyed.
  • a method for forming an active material layer of an electrode that solves this problem, a plating method, a vacuum evaporation method, and the like have been tried, but it takes time and manufacturing cost is high.
  • the present invention is a nanometer-sized fine powder of functional material, which is a problem of the prior art, and is safe to fire and not poisoned or scattered even if it is exposed to the atmosphere for a long time.
  • Functional materials that can be worn with good functions are provided.
  • Another object of the present invention is to provide an apparatus for treating a functional substance capable of producing hydrogenated fine powder containing metal crystals of metal hydride and metal powder reduced from the metal compound by utilizing natural or renewable energy.
  • Another object of the present invention is to manufacture and use a metal hydride functional substance in nanometer-scale fine powders. Especially, hydrogen that does not deplete resources and harms the environment and polymer electrolyte fuel cells.
  • a storage device that can safely store and transport hydrogen using magnesium fluoride, etc., a hydrogen generation container that can generate a large amount of hydrogen gas, safely supply it to hydrogen consumers, and give a reduction potential to the aqueous solution, hydrogen generator Is to provide etc.
  • Another object of the present invention is to improve the catalytic function by using fine powders of functional materials in the nanometer range, as well as a reversible fuel cell without a separator such as a gas sensor or a secondary battery having a long life. Is to provide etc. Disclosure of the invention
  • the functional body uses a functional body means in which the functional substance is a fine powder in the nanometer range or the fine powder in which the functional substance is in the nanometer range is combined with a coating material to form a solid or granular film.
  • the functional material processing apparatus one or a plurality of processing container means provided with a flange and a jacket and a temperature control part in a pressure vessel, a hydrogen filling means provided with a deaeration device and a hydrogen storage / release device in the pressure container, and a pressure container And hydrogen storage / release device And a heating / cooling means provided with an apparatus and a cooling device, a processing container means and a hydrogen filling means, and an electronic control means for automatically controlling the heating / cooling means.
  • the functional body storage device is composed of energy conversion storage means for hermetically storing a functional body that has been reduced and hydrogenated by natural or renewable energy in a waterproof container or bag.
  • Molded articles, coating materials, coating materials, or injections that use functional bodies are composed of catalyst means in which functional materials are dispersed by mixing materials and binders with functional bodies having catalytic functions.
  • a hydrogen solubilizer using a functional substance is composed of a hydrogen dissolving means in which a functional substance or a functional substance of a hydrogenated functional substance is mixed into a powder, solid or viscous drug, food, or film, or filled in a container.
  • the raw water supply means that uses the water generated as the hydrogen generation means and the electronic control means by electronic control including the detection system constitute an integrated device.
  • the electronic control means includes an electronic control unit including a Thomson effect control system including a power source for controlling the composite element means and a Seebeck effect control system.
  • an electrode means formed using a functional material of an active material and a low-temperature thermoplastic coating material, and a power generation element composed of a negative electrode, a positive electrode, and a separation film of the electrode means are joined to form an insulating film. Consists of covered integrated means.
  • MEA membrane-electrode assembly
  • MEA membrane-electrode assembly
  • Body plate means and a single MEA (membrane-electrode assembly) plate or two MEA (membrane-electrode assembly) plates, or a MEA (membrane-electrode assembly) force set, or its MEA (membrane-one electrode) MEA (Membrane-Electrode Assembly)
  • MEA membrane-electrode Assembly
  • MEA membrane-electrode Assembly
  • MEA membrane-Electrode Assembly
  • MEA membrane or laminated MEA (Membrane-Electrode) Joined around the cassette It is characterized in that the inside of the pole side or the negative side is sealed and separated, and is constituted by a sealing means provided with each nozzle for fluid in two flow paths.
  • the functional substance of the functional body means is finely pulverized to a nanometer size through a pulverization process within 1 nm from the final particle size that is naturally pulverized by use.
  • the interfacial reaction per unit mass can be remarkably promoted by eliminating the adverse effects caused by micronization and increasing the surface area per unit mass of the functional substance.
  • the best particle size is in the range of 3 mm or less to 1 nm.
  • this fine powder it is easy to wear, prevent scattering and poisoning, heat and electrical conductivity, and permeability of specific materials of coating materials. Ingenuity to resolve various issues is indispensable.
  • various problems can be solved by thinly coating the surface of the manufactured fine powder of the functional substance with a thermoplastic polymer resin as a coating material.
  • the functional substance is a hydrogen storage alloy, it is possible to prevent oxygen, carbon dioxide, nitrogen, moisture, etc. from directly contacting the surface of the hydrogen storage alloy. Can be prevented.
  • heat and electrical conductivity can be improved by collecting fine powders of functional substances into solid bodies or coarse particles.
  • the coating material is coated with a low-temperature thermoplastic polymer resin, such as an aliphatic polyester-based resin that is a water-soluble polymer resin and molecules are fluidized at 70 ° C or lower, it is a functional material. Therefore, the fine powder can be kept in close contact with each other without causing any cracks in the film.
  • a water-soluble or organic solvent-soluble polymer resin can be easily formed into a thin film with water or a solvent.
  • a polymer resin generally called silicon rubber (a silicon resin) of polymers having a Si—O bond as a main chain
  • This silicon rubber material is also suitable as a material for solid adhesion of a granular functional body that changes in volume.
  • the functional substance in the form of a solid or coarse particle formed by coating a fine powder in the nanometer range or fine powder in the nanometer range of this functional substance with a coating material is used as a material for moldings or as a catalyst.
  • the injection agent is a reinforcing product in addition to catalytic functions such as decomposition, antiseptic, deodorization, etc., such as molded products made of fibrous materials such as paper and leather, furniture cut from wood, containers and construction materials made of solid concrete and waste chips, etc. In order to improve durability, etc., it is injected or applied to the inside at the final stage of the component manufacturing process, and products with high functionality can be manufactured at low cost.
  • high functionality can be achieved by mixing the functional body into a powder, solid, or viscous drug, food, or film, or filling the container.
  • a functional substance in the nanometer range such as a metal hydride hydrogen storage alloy or magnesium hydride such as a trace amount of metal or metal hydride is added to solid chemicals and foods such as powders and tablets, the metal will become an aqueous solution as a mineral.
  • it dissolves in water, and if it is magnesium hydride, etc., water from eating and drinking generates hydrogen from both hydrogen and metal hydride by hydrolysis, and the hydrogen dissolves in the aqueous solution.
  • the hydrogen generated by hydrolysis is dissolved in the aqueous solution. It can also be used as functional water with a reduction potential and alkaline pH value.
  • the hydrogen generation container uses the exhaust heat of the hydrogen demand body.
  • a large amount of hydrogen gas can be generated by heating and pumping water into the hydrogen generation container.
  • a functional body of magnesium hydride is used as a safe metal hydride, and water is applied to a functional body coated with an emulsion type polymer in which an aliphatic polyester polymer resin exhibiting low temperature thermoplasticity is dispersed in water.
  • the polymer resin allows a proper amount of water to permeate, generating a large amount of hydrogen from both hydrolysis and metal hydride.
  • hydrogen can be supplied to peripheral devices without causing deterioration damage due to acid or alkali.
  • the hydrogen consumer supplied with this hydrogen produces water by the combination of oxygen and hydrogen. Since this water does not contain an acid'alkali, it can be directly circulated inside the hydrogen generation vessel, and raw water used for hydrolysis can be obtained without supplying water from the outside.
  • magnesium hydroxide prevents the hydrolysis reaction by reducing the particle size of magnesium hydride to a minimum size in the nanometer range and coating it with a water-permeable coating material. This technology completes the reaction before reaching the desired film thickness.
  • a functional substance corresponding to the detection gas can be selected and used as a gas reactant.
  • a hydrogen storage alloy functional body coated on the outer periphery of a conductor junction is attached, poisoning is prevented even if it is left in the atmosphere for a long time, so if hydrogen is mixed in the surrounding atmosphere, It can function as a hydrogen center by selectively storing hydrogen and detecting the hydrogenation heat of the hydrogen storage alloy with a thermocouple.
  • various nanometer range functions such as coated nanometer range magnesium nitride and lithium nitride complex materials, etc.
  • the material and binder are mixed and solidified in the device, or if the material is solid-adhered in the device, it will be free from expansion and breakage due to vibrational bias and will remain covered even if left in the atmosphere for a long time. Poison can be prevented and activation and hydrogen filling can be performed intensively.
  • Other large-scale hydrogen storage such as hydrogen containers and hydrogen storage facilities for the purpose of hydrogen storage Even in the case of a container, it is also possible to load the same material, which is a mixture of various functional materials in the form of a coating, and a binder, packed inside or outside the pipe in the apparatus.
  • the coated granular functional substance or the coated granular functional substance and a binder are mixed and solidified.
  • a fine powder of functional substance or a coated granular functional substance and a hydrogen purification membrane material are mixed and formed into a pipe shape or a sheet shape and activated in advance. It can be attached to the device after it is converted. In addition to selective adsorption of methane gas, it can be applied to equipment for purification and storage.
  • the coated granular hydrogen storage alloy or the coated granular hydrogen storage alloy and the binder are mixed and solidified. Can be pre-activated and then packed inside or outside of the pipe in the device or inside the device, or solidly bonded inside or outside the pipe in the device or inside the device, into the groove of the corrugated plate It is also easy and does not require activation after installation in a large device, so it does not need to be a container that is robust against pressure.
  • the coated granular hydrogen storage alloy and binder are mixed. It can be solidified and pre-activated before being stuffed inside or outside of the pipe in the device or in the device, or inside or outside the pipe in the device or inside the device, in the groove of the corrugated plate Solid bonding is also easy.
  • a hydrogen storage / release device equipped with these hydrogen storage alloys can be used as a functional material treatment device in combination with a pressure vessel.
  • the hydrogen pressure is increased to about 30 kgZcm 2 by heating with low-temperature exhaust heat, and the function in the pressure vessel is activated, and in the hydrogen storage process, cooling is performed by the cooling medium.
  • the hydrogen stored by the functional body at the time of activation in the pressure vessel can be returned to the hydrogen storage / release device and recycled for the next activation hydrogen release process. Even if hydrogen is repeatedly used, the purity of hydrogen does not decrease.
  • functional materials of hydrogenated fine powders in the nanometer range can be obtained with high efficiency by using this functional substance processing apparatus. This is done by putting coarse particles of functional materials such as metals and alloys into the pressure vessel and introducing high-pressure hydrogen, and selecting and providing heating wires, electric plugs, laser radiation plugs, etc. in the temperature control section. By igniting by heating one third of the sample at a high temperature, combustion synthesis utilizing self-heating by the hydrogenation reaction can be performed, so that hydrogenated fine powders containing metal crystals in the nanometer range can be easily obtained at low cost.
  • functional materials of hydrogenated fine powders in the nanometer range can be obtained with high efficiency by using this functional substance processing apparatus. This is done by putting coarse particles of functional materials such as metals and alloys into the pressure vessel and introducing high-pressure hydrogen, and selecting and providing heating wires, electric plugs, laser radiation plugs, etc. in the temperature control section. By igniting by heating one third of the sample at a high temperature, combustion synthesis utilizing self-heating
  • the metal when a laser radiation plug is used in this functional substance processing apparatus, the metal can be reduced by a method in which a material such as a metal compound is heated at a high temperature, gasified and separated, and then cooled.
  • a material such as a metal compound
  • coarse particles such as magnesium oxide are placed in a pressure-resistant container, and a laser made from renewable energy including natural or nuclear fusion is irradiated from the laser radiation plug of the temperature control unit to apply magnesium oxide.
  • Particulate metal can be produced by heating and gasifying at high temperature, releasing oxygen and cooling the magnesium gas.
  • a functional body manufactured by reducing or hydrogenating this functional substance with natural or renewable energy is sealed and stored in a waterproof container or bag so that it can be natural or renewable. Energy can be stored and transported as a high-density safe substance.
  • a low-temperature thermoplastic polymer resin is used as the coating material and a functional material in the nanometer range is attached to the electrode foil of a nickel metal hydride battery or lithium metal battery as an active material, the active material absorbs and releases hydrogen and lithium. It is possible to prevent pulverization due to expansion and contraction caused by spillage, and to prevent the dropout of the secondary battery. Longer service life can be realized.
  • the functional body and binder material pasted with a solvent can be applied to the surface for easy installation. Therefore, a reversible fuel cell using a corrugated electrode plate can be realized.
  • a functional substance suitable for each membrane layer of the MEA (membrane-one electrode assembly) power generation element is selected and used, so a single MEA (membrane-one electrode assembly) plate or MEA (membrane-one electrode) MEA (membrane-electrode assembly) cassette with two plates bonded together, or a stack of the MEA (membrane-electrode assembly) cassette, or a single MEA (membrane-electrode assembly) plate Or MEA (Membrane-Electrode Assembly) cassette with outer membrane or laminated MEA
  • FIG. 1 is a system diagram of one embodiment of the present invention and shows an overall outline of a functional substance treatment apparatus.
  • FIG. 2 shows a mounting cross section of a functional body in one embodiment of the present invention.
  • 3 and 4 show a plate in one embodiment of the present invention.
  • FIG. 5 shows the production process of the laminate in one embodiment of the present invention.
  • FIG. 6 shows an overview of the entire hydrogen demanding apparatus of one embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of one embodiment of the present invention, showing a cross section of a gas sensor.
  • FIG. 8 is a development view of one embodiment of the present invention and shows a cylindrical secondary battery.
  • FIG. 1 is a system diagram of one embodiment of the present invention and shows an overall outline of a functional substance treatment apparatus.
  • FIG. 2 shows a mounting cross section of a functional body in one embodiment of the present invention.
  • 3 and 4 show a plate in one embodiment of the present invention.
  • FIG. 5 shows the production process of the laminate in one embodiment
  • FIG. 9 is a cross-sectional view of one embodiment of the present invention, showing a cross section of a power generating element of a secondary battery.
  • FIG. 10 is a cross-sectional view of one embodiment of the present invention and shows a MEA (membrane-electrode assembly) plate.
  • Example 1 As illustrated by the example in Fig. 2, a functional material 22 of coarse particles in which a plurality of particles of a nanometer region, which is a functional substance, are combined with a low-temperature thermoplastic polymer resin and coated. 22a is fixed by a bonding material 23 such as a silicon rubber material, and is attached to the inside of the device by being adhered.
  • a bonding material 23 such as a silicon rubber material
  • Transition elements of the fourth period such as titanium, chromium, manganese, iron and nickel, transition elements of the fifth period such as zirconium, ruthenium and palladium, and transition elements of the sixth period such as lanthanum, tantalum and platinum
  • transition elements of the seventh period such as thorium, and these transition elements, alloys or compounds thereof.
  • One or more kinds of these materials are selected and used as functional substances as required.
  • Carbonaceous materials and metals are used for fine powder treatment processes such as pulverization of functional substances from 3 U m to 1 nm to the desired particle size, hydrogenation treatment, or gas phase synthesis treatment.
  • a functional material by mechanically pulverizing particles in an atmosphere such as hydrogen, for example, graphite particles, metal lithium particles, and steel balls are placed in a steel milling vessel equipped with a hydrogen introduction valve. After enclosing a plurality and degassing the container, hydrogen is introduced at I.OMpa. Then, the fine powder of the functional material into which lattice defects are introduced is produced by milling the steel milling vessel at room temperature for 80 to 100 hours.
  • magnesium gas or magnesium 'nickel gas metal particles generated at a temperature higher than the boiling point is introduced from one of the reactors, and hydrocarbons are decomposed from the other. A mixed gas of carbon and hydrogen is introduced.
  • a fine powder of a functional substance composed of magnesium and nickel fine particles and a carbon material is produced by a gas phase reaction.
  • a functional substance is produced by a gas phase reaction
  • a carbon-based material and an alkali metal are placed in a reactor at a distance and sealed in a vacuum. Reaction occurs by controlling the temperature of the carbon-based material and the alkali metal separately, and functional metal fines are produced by inserting alkali metal metal atoms between the planar molecular layers of the carbon-based material.
  • a hydrogen storage alloy material is used.
  • Ca, La, Mg, Nu Ti, and other elements such as the third element V are also known.
  • La- ⁇ and Mg- ⁇ alloys After the production of a forged hydrogen storage alloy, etc., hydrogen is stored, and a fine powder of hydrogen storage material is manufactured by initial pulverization or mechanical pulverization.
  • a metal or alloy powder or Mg powder is placed in a pressure vessel and high-pressure hydrogen is introduced, and one end of the functional substance powder is heated to high temperature and ignited for hydrogenation reaction.
  • Fine powder is produced.
  • fine powder is produced by cooling a gasified material heated at high temperature by laser irradiation.
  • a hydrogen adsorbing material and a hydrogen storage alloy for example, a graphite material or an amorphous carbon material powder, and a hydrogen storage alloy, carbide, or oxide are used.
  • a fine powder in the nanometer region of a functional substance is produced by mixing a plurality of kinds of powders and mechanically pulverizing using an inert gas or the like, and is also produced in the same manner for general known catalyst materials.
  • the manufactured functional material of the fine powder in the nanometer range goes through a coating process.
  • a coating material low-temperature thermoplastic aliphatic polyester (such as Terramac Kunichika) or polyolefin (such as Aloibase Tunica) as well as tetrafluorinated titanium, water (dispersed emulsion type)
  • water-soluble polymer resin After diluting with water and kneading with fine powder of functional substance, the coating material is heated and dried at 110 ° C to 150 ° C for glass transition and crystallization Growth with a thickness of 1-5 j «m is performed.
  • the film material is glass-transduced by heat treatment at 110 ° C. to 150 ° C. to form a film by crystallization.
  • water-soluble polymer resins such as tetrafluorinated styrene, and after kneading these solutions and diluting with water and fine powders of functional substances, they are placed in a heat dryer and crystallized. It is also effective to manufacture by manufacturing.
  • organic polymer resins which are generally referred to as plastic raw materials, they are diluted with an organic solvent and kneaded with fine powder in the nanometer range of functional substances, and then heat treated or the organic polymer is finely divided into functional materials. It is manufactured in the same manner, for example, by mixing with a fine powder of the above and heat-treating it. Solid bodies formed into a film by these coating methods are also produced as coarse particles pulverized to an arbitrary particle size depending on the purpose of use.
  • a functional substance of a functional substance is produced in this way, even if it is a fine powder of a functional substance in the nanometer range, the fine powder is formed in close contact due to the adhesive effect of the polymer resin, and poisoning and flying are performed.
  • the functional body is provided as an arbitrary particle size or solid body of several tens of microns to several millimeters without scattering, and heat and electrical conductivity can be enhanced by close contact between the fine powders.
  • the crack can be easily self-repaired by exhaust heat during operation if the polymer is low temperature thermoplastic.
  • Other methods include coating the electrodes inside or outside the pipe for the purpose of the pace ⁇ ⁇ where the fine powder of the nanometer range of the functional substance and the binder are kneaded, or inside the groove of the corrugated plate, or the electrode. Then, after drying, heating and solid adhesion, a water-soluble or organic solvent-soluble low-temperature thermoplastic polymer resin diluted with a solvent is applied to the solidified surface to form a film.
  • a paste obtained by kneading a fine powder of a functional substance in a nanometer region and a coating material diluted with a solvent is applied to a target apparatus or an electrode, and then dried by heating and solid-bonded. Then, it is press-bonded as necessary.
  • binder examples include polytetrafluoroethylene (PTFE) and polychloro J fluoroethylene.
  • Fluorine resins such as Len (PCTFE) and polyvinylidene fluoride (PVDF), and known polymer resins such as styrene butadiene rubber and carboxycellulose can be used.
  • polymers with Si—O bonds as the main chain which are generally high-molecular resins called silicon rubber (silicone resin)
  • silicon rubber silicon rubber
  • a solvent is added to the mixture of the functional material and the silicon rubber material.
  • the paste is kneaded in the same way using paste. For example, even when adopting a hydrogen storage method using a complex such as magnesium amide lithium hydride, fine powders such as magnesium nitride and lithium nitride in the nanometer range are mixed and molded, and similarly adhered in the apparatus. Used.
  • liquids that are diluted after placing a molded product made of a fibrous material such as paper or leather, a furniture part cut from wood, or a molded product made of solid waste chips into a container and then vacuuming it. It is effective to dry after injecting the liquid injection. For concrete such as buildings, it is recommended to apply a liquid injectant from the surface and soak it after it has been dried and solidified.
  • the functional body or the functional body made of a hydrogenated functional substance is mixed with powder, solid, or viscous drug, food, or film, or filled into a container. Is done.
  • powders, tablets, jelly-like medicines or foods, etc. functional materials using metal hydrides such as trace amounts of metal in the nanometer range or hydrogenated magnesium are added to the material.
  • functional bodies are mixed with materials, and the mixture is made of an organic polymer material of a film material. Manufactured by solidifying or grinding after solidification It is.
  • the coating material of the functional body when it is related to food and drink is preferably an organic polymer material as a known food.
  • Tablets are manufactured by mixing powders of target materials such as foods, nutrients or drugs, functional bodies and powders obtained by drying coating materials, stirring them, and compressing them with a mold, followed by heating. Alternatively, these materials are mixed and stirred, compressed into tablets with a mold and molded, and then a liquid organic high molecular weight material is applied to the tablets and then heated.
  • target materials such as foods, nutrients or drugs, functional bodies and powders obtained by drying coating materials, stirring them, and compressing them with a mold, followed by heating.
  • these materials are mixed and stirred, compressed into tablets with a mold and molded, and then a liquid organic high molecular weight material is applied to the tablets and then heated.
  • hydrogen is contained in the hydrogen generation container provided with a plurality of fine holes through which water can enter.
  • the fine powder and aliphatic polyester resin of M g by mixing the powder obtained by drying, after solidified perform glass transition while dried 1 1 0 ° C heating, and ground into suitable particle size It is manufactured by filling a hydrogen generation container. .
  • a device using a functional body there are secondary batteries such as a fuel cell, a water electrolysis device, a Nigel hydrogen battery, or a lithium metal battery, and a positive electrode, a negative electrode, a separation membrane, Is manufactured using an optimum functional body for each membrane layer of the electrolyte. These details will be described in the examples described later.
  • hydrogen storage / release devices have a high thermal conductivity, so that the functional body has high thermal conductivity.
  • the re-efficiency is improved because the time required for release is short.
  • the hydrogen storage alloy of a lithium battery or the functional materials such as Sn and Si of a lithium metal battery may fall off due to repeated pulverization of hydrogen and lithium. It can prevent a decrease in electrical conductivity.
  • FIG. 4 shows a cross section at the X-ray position in FIG.
  • One plate 30 is formed by opening a hydrogen hole 42 in the flat portions 40 and 41 recessed at both ends of a rectangular metal plate surface, and a hydrogen induction groove 35 in the longitudinal center and 45 degrees with respect to the hydrogen induction groove 35.
  • a corrugated portion 32 is formed which has corrugated grooves 33 in which a plurality of rows are provided in parallel on the entire surface of the plate.
  • the other plate 30a has a corrugated surface provided in the plate 30 with a hydrogen hole 42a in the center in the vertical direction by opening a hydrogen hole 42a in the flat portions 40a and 41a projecting at both ends of a rectangular metal plate surface.
  • a corrugated portion 32a is formed in which a groove that is linear in a direction of 45 degrees with respect to the hydrogen guiding groove 35a and provided with a plurality of rows in parallel on the entire surface of the plate.
  • the metal plate is formed by pressing using a mold.
  • the plate 69 is placed between the plate 30 and the plate 30a, and a thin film material for attaching a mouth is placed between the plates and between the plates.
  • the surfaces to be joined such as the planes 40 and 40a and the peaks and valleys of the corrugated grooves 33 and 33a, are brazed to form a plate cassette.
  • the plate 69 is joined in parallel to both ends on the long side, and when plate cassettes are stacked, it forms a flow path for the heat medium in the long side direction and functions as a pressure-proof reinforcement for the hydrogen chamber.
  • the paste 55 which is made by mixing and kneading the granular functional bodies coated with the binder into the corrugated grooves formed on the corrugated portions on both sides of the plate cassette, is applied and solid-bonded. Installed. In this case, a hydrogen storage alloy that matches the operating temperature range is selected and used as the functional unit.
  • the end plate 70 in which the flat plate and the corrugated plate one side are joined is laminated on the upper and lower ends of the laminated body in which the required number of plate cassettes to which the coated functional bodies are attached are laminated.
  • the laminated body is manufactured by welding the side periphery of the laminated body where the plate cassettes are overlapped and joined to each other to seal the hydrogen chamber. Next, caps provided with heat medium nozzles are attached to both ends on the short side of the laminate, and hydrogen nozzles are attached to one hydrogen hole in the end plate 70 on the upper surface, and then from both the upper and lower sides of the laminate.
  • a constraining plate 74 is provided via a heat insulating plate, and is tightened through a communication hole 75 with bolts and nuts to constitute a hydrogen storage / release device. In the hydrogen storage / release device, only one hydrogen hole is necessary and the other hydrogen hole is not necessary, so that it is closed.
  • the end plate 70 on the upper surface of the laminate has one hydrogen hole.
  • This hydrogen storage / release device is composed of pipes inside the container, and is packed with a coarse functional body coated inside or outside the pipe, or a mixture of solid functional bodies and a solid material mixed with a binder. Even an attached device functions in the same way.
  • This hydrogen storage / release device is functionally and structurally similar to hydrogen storage, heat pumps, and hydrogen purification devices. However, hydrogen purification equipment can be equipped with hydrogen nozzles at both ends of the hydrogen chamber if it is necessary to allow the gas mixture to pass through.
  • the functional substance treatment apparatus 1 is a system diagram of the whole, and includes a pressure vessel 2, a deaeration device 5, a hydrogen storage / release device 6, hydrogen or an inert gas. Feeding device 9, force Heating device 7, cooling device 8 force, solenoid valve 1 2, 1 3, 1 3b, 1 4, 1 4b, decompression regulating valve 1 1, heat medium pump 1 8, 1 9 It consists of control devices including sensors, and performs metal reduction, hydrocrushing of functional substances, activation of functional bodies, hydrogen filling of hydrogen storage containers, and the like.
  • the pressure vessel 2 is a container that can handle high pressures of 30 kg / cm 2 or more, and is equipped with a heating medium jacket 4, flanges, heating wires, heating plugs, laser radiation plugs, and other equipment as needed.
  • a temperature control unit is provided, and the flange lid 3 can be opened and closed hydraulically or electrically by a flange for taking in and out contents such as metals, functional substances and hydrogen storage containers.
  • the jacket 4 has a heating medium from the heating device 7 and the cooling device 8 connected by piping.
  • the contents of the pressure vessel 2 are heated to, for example, about 80 ° C in the case of a deaeration process, and the hydrogen pressure is increased by electronically controlling the solenoid valves 14 and 14b that connect the body and cooling medium to the piping. In the process, it is cooled to about 5 ° C.
  • the gas sockets are solenoid valves connected to the piping of the degassing system 5 and the hydrogen storage / release device 6 connected by piping and the piping of the hydrogen or inert gas system 17 from the hydrogen storage / release device 6.
  • the contents of the pressure vessel 2 are evacuated to about 3 Toor by the vacuum pump of the deaeration device 5 if it is a degassing process, and the hydrogen storage / release device is used for the hydrogen pressurization process. 6 30kgZcm 2 or more hydrogen pressure is performed by, for ambient air dissipate unwanted gas if metal reduction.
  • the pressure vessel 2 configured as described above is operated with a single unit or a plurality of units.
  • the hydrogen storage / release device 6 has the structure described in the embodiment of FIGS. 3, 4, and 5 and is heated from the heating device 7 and the cooling device 8 that are piped to the heat medium nozzles at both ends of the stack.
  • the solenoid valves 14 and 14b connected to the piping of the medium and the cooling medium are electronically controlled, so that if the contents of the pressure vessel 2 need to be pressurized with hydrogen, the hydrogen storage alloy to be installed in the device will be Heat to about C and hydrogen pressurization at a hydrogen release pressure of 30 kgZcm 2 or more. Conversely, if the contents of pressure vessel 2 release hydrogen, the hydrogen storage alloy is cooled to about 5 ° C and hydrogen is released. Occlude.
  • a general high hydrogen dissociation pressure characteristic such as a Ti—Fe-based hydrogen storage alloy is suitable.
  • the hydrogen or inert gas replenishing device 9 replenishes the hydrogen storage / release device 6 with hydrogen or the pressure resistant vessel 2 with hydrogen or an inert gas.
  • An active gas cylinder is arranged.
  • the power source of a heat medium pump, a solenoid valve, a hydraulic equipment pump, and the like is electronically controlled as appropriate according to sensor values such as temperature and pressure and preset values.
  • the functional substance metal or alloy powder is put in the pressure vessel and high-pressure hydrogen is introduced, and one S3 ⁇ 4 of the functional substance is heated to high temperature to ignite the hydrogen.
  • Hydrogenated powder of functional substances can be obtained by combustion synthesis using self-heating due to the oxidization reaction, in particular, fine particles of metal single crystals can be easily obtained, and high-pressure hydrogen pressure can be realized by using low-temperature heat, or
  • the material of the alloy or metal compound is heated at a high temperature, gasified and separated, and then cooled. Hydrogenation of metals and reduction of metals.
  • magnesium oxide For metal reduction, for example, coarse particles such as magnesium oxide are placed in a pressure-resistant container, and laser is irradiated with a laser radiation plug in the temperature control unit to heat the magnesium oxide at a high temperature to gasify, and oxygen is diffused to the outside.
  • Magnesium gas can be produced as a fine metal by cooling and can be used to activate functional substances or fill hydrogen in hydrogen storage containers.
  • the hydrogen used at the time of activation is stored again for reactivation and recycled, so that hydrogen can be used effectively and hydrogen is not wasted.
  • Activity in the storage container hydrogen filling
  • the laser source of the laser radiation plug is an electromagnetic wave of the necessary wavelength, which is obtained by concentrating sunlight directly with a lens or a reflector, or by power generated using light conversion, wind power conversion, biomass fuel, etc.
  • Naturally or renewable energy can be used effectively by amplifying and using the generated energy.
  • the hydrogen demand device using functional bodies is a hydrogen storage container 102, a hydrogen generation container 103, a hydrogen demand body 104 (hydrogen engine, fuel cell, etc.), Caro heat unit 1 05, electronic control unit 1 06, ⁇ S electrical unit 1 07, water tank 1 08, pump 1 09 [It is configured as a single unit, and it is configured with nickel hydride batteries 1 1 5 etc. if necessary. ing.
  • the frame of the hydrogen generation vessel 103 is provided with a heating device 120 using a heat medium that has received exhaust heat from the hydrogen consumer, and the heat medium is fed and circulated by an electronically controlled pump.
  • the hydrogen generation container 103 is filled with a fine particle of Mg or hydrogenated Mg as a functional substance and coated with water-soluble aliphatic polyester resin to form coarse particles.
  • a hydrogen nozzle equipped with a one-way valve 1 1 8 and a liquid nozzle are provided at the end of 1 03 so that it can be attached to and detached from the frame. Hydrogen is generated when water from the water tank 1 08 flows from the liquid nozzle of the hydrogen generation container 1 03, and the coating material permeates an appropriate amount of water to hydrolyze the function and generate hydrogen and metal hydride.
  • the hydrogen that became unstable is gasified.
  • This generated hydrogen is supplied to the hydrogen consumer and combined with oxygen in the air to generate water.
  • the generated water is returned to the water tank via the separator 1 1 6, and the hydrogen generation vessel functional body Circulates in the integrated device as raw water that hydrolyzes and generates hydrogen.
  • the water released together with hydrogen from the hydrogen nozzle of the hydrogen generation container 103 is separated from the hydrogen gas and then circulated from the bypass pipe to the water tank 108, and the excess water is drained.
  • a place to control hydrogen generation In this case, in addition to adjusting the amount of water with the pump 109 that feeds the raw material water, the generated hydrogen gas is sent directly from the bypass piping into the hydrogen generation vessel 10 03 and the water inside the vessel is quickly sent out to stop hydrogen generation.
  • the functional body made of hydrogenated functional material to be installed inside the hydrogen generation vessel includes hydrogen dissociable metals or their alloys or their compounds, alkali metal elements such as Li or their alloys or their Compounds, alkaline earth elements such as Ca or their alloys or their compounds, carbon group elements such as Si or their alloys or their compounds, A or their alloys or their compounds can be used well-known functional substances, Depending on the necessary material, a trace amount of acid / alkali material may be mixed into the functional body.
  • the hydrogen storage container 102 has the same function as the hydrogen storage / release device 6 described in Example 2. Inside the hydrogen storage container, heat generated by the heat medium that has received exhaust heat from the hydrogen consumer is stored. A medium flow path is provided, and the heat medium is sent and circulated by an electronically controlled pump to adjust the hydrogen pressure in the integrated device to a constant level.
  • This hydrogen storage container may be replaced with a pressure-resistant container.
  • a series of operations to start a hydrogen demand device that employs a fuel cell as the hydrogen demand body 104 is performed by the heating device 1 05 heating the hydrogen storage material in the hydrogen storage container 10 02 using electric power from the electronic control unit 106. .
  • a series of charging operations of the hydrogen demand device to which the nickel metal hydride battery 1 15 is added is such that electricity is supplied to the nickel metal hydride battery from the power distribution unit 107 to generate hydrogen gas from the positive electrode and store it in the hydrogen storage alloy of the negative electrode. .
  • Hydrogen generated hydrogen gas is stored in the hydrogen storage material in the hydrogen storage container 102 to prepare for discharge.
  • nickel-metal hydride batteries can generate electricity by using hydrogen generation container 103 even when the battery is insufficiently charged and generating hydrogen gas by dissolving and reducing hydrogen in the electrolyte.
  • the corrugated portion of the hydrogen storage container plate is made of a porous material to form a laminate, and the nickel hydrogen battery is electrolyzed via piping in the heat medium chamber between the plate cassettes. By directly circulating the liquid, hydrogen ions dissolved directly from the hydrogen storage alloy can reach the positive electrode, so that the time for hydrogen ions to molecularize and dissolve again in the electrolyte is omitted. Can be shortened.
  • a hydrogen demand apparatus that uses a hydrogen engine of an automobile as a hydrogen demand body can be used in the same way as a fuel cell.
  • the hydrogen engine is a hybrid system (combined with an internal combustion engine and an electric motor),
  • lithium-based secondary batteries can also be combined.
  • Example 5 Explained by referring to the example of FIG. 7, a gas sensor that detects gas using a functional catalyst material as a gas reactant 153, with the conductor ends of two types of metal wires joined together.
  • a catalyst particle powder particle is mounted as a gas reactant 153 around the conductor junction 1502 of the thermocouple, and the gas sensor is configured by being housed in the release / detachment container 150.
  • the detachable container 150 containing the gas sensor is inserted into the socket, and the two types of conductors that join the conductor end of the gas sensor in the socket are the Thomson effect control system including the power supply, the Seebeck effect control system, etc. It is connected to an electronic control unit consisting of
  • thermocouple conductor material is commonly used in general industrial applications, such as chromel: alumel, iron: constantan, copper: constantan, etc., which joins two types of metal wire ends.
  • Conductive wires that are not limited include those in which a thermocouple strand is incorporated in a metal pipe via an insulating tube, or a thermocouple strand is placed in a tube and filled with magnesium oxide for insulation. This is generally known.
  • the release container 150 is provided with a plurality of fine holes through which gas molecules can flow on the plate surface of a plastic injection-molded container, and a gas sensor is housed in the release container and is integrally formed.
  • the release / container is made of a metal material for heat and pressure resistance, and the part that houses the gas sensor is provided with a plurality of fine holes on the surface of the container to allow gas molecules to pass through. More preferably, the ceramic container is also functional.
  • a hydrogen storage alloy is used as the functional material catalyst material.
  • metals such as Cu, Ca, La, Mg, and Nu ⁇ , LaNi and MgTi alloys are known, but the types of catalyst materials and production methods are particularly limited. is not.
  • the hydrogen storage alloy powder film can be formed by using wet plating and other discharge methods such as CVD, PVD, metals such as Cu, Ca, La, Mg, and Nu Nu ⁇ . It can also be manufactured by applying a thin film with molecules, oxides, carbides, etc.
  • Such a gas sensor can be applied to various types of gas sensors by selecting and using a functional substance that adsorbs by selecting a specific gas.
  • an electrochemical device that selects a functional substance and uses it as a diffusion catalyst layer includes an electrochemical device and a thermocouple that have a diffusion catalyst layer on the outer surface of a proton conducting membrane (body) that has electrode layers on both sides. Conductor junctions are joined or inserted together to be integrated, and housed in a detachable container, and the thermocouple and electrochemical device wires are connected to the electronic control unit via the detachable container.
  • thermocouple conductor junction functional membranes such as a diffusion catalyst layer, an electrode layer, and a proton conducting membrane (body) are provided on the outer peripheral surface of the thermocouple conductor junction, and are integrated and stored in a release / adsorption container.
  • the wires of the thermocouple and electrochemical device are connected to the electronic control unit via the release / attachment container.
  • the material types that form the functional membranes of the diffusion catalyst layer, electrode layer, and proton conducting membrane (body) of this electrochemical device are known and not specified.
  • thermocouple conductor junction in which a functional film of an electrode and a gas reaction film is formed on the surface of a sphere or an ellipsoid sphere, the gas junction and the thermocouple conductor junction are joined or inserted together.
  • the thermocouple and the surface acoustic wave device conductors are connected to the electronic control unit via the release / removal container.
  • thermocouple improves the detection accuracy of the gas sensor by measuring the temperature using the Zebeck effect and controlling the temperature of the measurement environment using the Thomson effect.
  • Gas reactants can react to many types of gases by selecting and using a catalyst material as appropriate, so it is possible to reduce the size of an integrated gas sensor that detects many types simultaneously. It becomes.
  • Example 6 Referring to the examples of FIGS. 8, 9, and 10, FIG.
  • FIG. 9 shows a positive electrode 1 equipped with a positive electrode active material 1 96 of a power generation element in which a functional body is used as an active material. 95, the separation membrane 193, and the negative electrode 198 on which the negative electrode active material 199 is mounted are joined together, and the power generation element is integrally formed.
  • the power generation element is a nickel metal hydride battery
  • the positive electrode with nickel hydroxide attached to the positive electrode active material, the separation membrane, and the negative electrode with the hydrogen storage alloy attached to the negative electrode active material are joined together.
  • this is a lithium metal battery
  • the negative electrode to which is attached is joined and formed integrally.
  • an electrolysis film formed of a positive electrode with carbon, iridium alloy, oxide, etc. attached to the functional material of the oxygen electrode (or anode in the case of water electrolysis) and fluororesin Platinum black or the like is attached to the functional material of the membrane and hydrogen electrode (cathode in the case of water electrolysis) to form MEA (membrane-electrode assembly).
  • the functional material of the electrolyte membrane is not only an organic polymer resin such as fluororesin, but also fine particles of hydrogen dissociable metal or alloy, and the material is coated with carbide or oxide as a base material. Or a functional material in which proton conductive groups are introduced into the material using carbonaceous, carbide or oxide fine particles.
  • organic polymer resin such as fluororesin
  • fine particles of hydrogen dissociable metal or alloy or the material is coated with carbide or oxide as a base material.
  • a functional material in which proton conductive groups are introduced into the material using carbonaceous, carbide or oxide fine particles can be used for these functional materials of electrodes and electrolyte membranes (including separation membranes).
  • FIG. 8 shows a cylindrical nickel-metal hydride battery or lithium ion battery, in which a positive electrode 1 90 and a negative electrode 1 92 are spirally wound together with an insulating film 1 94 through a separation membrane 1 93 to form a cylindrical case 1 800. It is inserted and provided.
  • a negative electrode 192 formed with an active material layer, a separation membrane 193 separating the two electrodes, and a spiral power generation element composed of a force are housed, and ethylene carbonate (EC) and dimethyl carbonate
  • EC ethylene carbonate
  • An electrolyte solution in which LiPF 6 is dissolved is injected into a mixed solvent in which (DMC) is mixed, and the battery is sealed by the sealing body.
  • the positive electrode with nickel hydroxide attached to the positive electrode active material layer, the separation membrane, and the negative electrode with the fine powder of hydrogen storage alloy in the negative electrode active material layer are similarly spiraled. And enclosed in a cylindrical case together with the electrolyte.
  • power generation element positive electrode, separation membrane containing solid polymer, and negative electrode are joined and formed integrally with insulating film 194 from both sides. If it is manufactured by inserting it into a spiral case, it will function without degrading electrical conductivity by appropriately pressing a functional substance that does not leak electrolyte.
  • the hydrogen storage alloy is used for the negative electrode of the nickel hydrogen battery, and tin or silicon is the same for the negative electrode of the lithium metal battery.
  • the low-temperature thermoplastic water-soluble polymer resin is, for example, a polyolefin-based or polyolefin-based and tetrafluoroethylene-based resin as appropriate, and an emulsion-type water-soluble polymer resin dispersed in water is used. .
  • Known materials can be used for the active material of the electrode, the material of the separation membrane, and the electrolyte.
  • the electrode in which the functional substance is fixed by the low-temperature thermoplastic water-soluble polymer resin in particular, in the negative electrode of the nickel metal hydride battery, the hydrogen storage alloy or in the negative electrode of the lithium metal battery, tin or
  • the expansion and contraction of the fine powder can be flexibly handled by plasticity, so that the functional substance can be prevented from falling off the electrode, thereby extending the life of the secondary battery. I can plan.
  • Example 7 The example of FIG. 10 illustrates a reversible fuel cell by laminating MEA (membrane-electrode assembly) plates.
  • the two plate electrodes 209 and 210 have a concave plane and a convex plane in the plane, respectively, and a hydrogen (fuel) flow hole is formed in the center of the concave plane and the convex plane, respectively.
  • This plate material is manufactured by press-molding a metal plate when it also serves as an electrode, but in the case of a polymer material or the like, it is manufactured by forming a conductive band by a printing method after injection molding. If the plate spacing is maintained by stacking thin plates in the vertical direction, it is convenient as a measure against pressure resistance when constrained by bolts from both ends of the laminate.
  • the electrode electrode 209 anode for water electrolysis
  • the corrugated portion of the plate electrode 210 anode for water electrolysis
  • An exchange membrane 222, a hydrogen electrode diffusion layer 224, a hydrogen electrode and a conductor are formed, and a MEA (membrane-one electrode assembly) plate is formed to which the power generation elements are bonded.
  • oxygen (air) passes through the cassette, and when cassettes are stacked, hydrogen (fuel) can flow between the cassettes. Since the (air) flow path is cut off, no separators or circulators are required.
  • the distribution holes are provided at both ends of the plate in the vertical direction.
  • the hydrogen (fuel) does not produce C02 or the like like pure hydrogen fuel, it will be carbonized in one place in the plane.
  • hydrogen-based reformed gas is used as fuel, two off-gases such as C02 are required at the edge of the surface.
  • the conductive bands on both sides of the cassette are stacked with the insulators 229a and 229b sandwiched between the cassettes in order to stack the cassettes and connect the cells in series.
  • a current collecting band is formed on both surfaces of the film-like insulator to connect the electrodes in series. Inside the laminate, it is joined to the connection terminal of the hydrogen electrode and pulled out to the outside, and the oxygen electrode is externally connected. Connected in series with the conductor on the plate side.
  • each film layer is not particularly limited, and the manufacturing method may be a dubbing method, a spray method, a brush coating method, etc. using materials, a binder and a solvent.
  • the dating method in addition to the usual dubbing method in which the substrate is immersed in a slurry in the air, it is formed by sintering if necessary. It can manufacture with a well-known manufacturing method, and the method is not specified.
  • a MEA membrane-electrode assembly
  • a MEA membrane-electrode assembly
  • the plate is bonded with the (electrode assembly) faces facing each other, and the plate is covered with an outer membrane provided with holes on the entire surface.
  • Hydrogen (fuel) nozzles are attached to both ends of the plate, allowing hydrogen (fuel) to pass through the two plates, and both outer surfaces of the battery are exposed to oxygen (air).
  • the plate is manufactured by press-molding a metal film when it also serves as an electrode.
  • the plate is manufactured by forming a conductive band using a printing method after press-forming the polymer film. Is done.
  • MEA membrane-electrode assembly
  • conductive bands are formed from the plate. From the plate, a conductive band (in the case of a polymer material) and MEA (membrane-electrode assembly) layers are formed as an oxygen (air) electrode, an electrolyte membrane, and a hydrogen (fuel) electrode.
  • a belt is formed.
  • a membrane fuel cell When a membrane fuel cell is configured in this way, it can be used in any shape, such as flat, phased or rolled and cylindrical, depending on the installation shape. Since it is always exposed to air during operation, the generated water will naturally evaporate, so it is not necessary to blow with power.
  • the coating of the finely divided functional substance enables the enhancement of functionality, weight reduction, and cost reduction of various devices to be used.
  • the functional substance treatment apparatus can be provided as a metal reduction or metal hydride fine powder production apparatus.
  • using hydrogenated magnesium, etc. it is possible to safely store and transport hydrogen energy and use large quantities of hydrogen. Magnesium after hydrolysis can be used for a wide range of secondary uses such as pharmaceuticals, industry and agriculture. In a hydrogen society, these technologies are effective for global environmental conservation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

明細書 機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着 方法 技術分野
本発明は、機能物質のナノメートルサイズ微紛体の製造と利用に係り、機能物質の 処理装置および機能体の応用装置の機能を高めることができ、且つ、機能体を用いる 装置の軽量化、低コスト化および多様化に関する。 背景技術
機能物質は、機能性を高めるために機械的粉碎処理等によって微紛の単位質量あ たりの表面積を最大にして使用される。このような文献資料としては、日本国特許公開 2004— 29081 1、日本国特許公開 2004— 268022、日本国特許公開 2004— 1 7 441 4などが知られている。
また、機能物質が水素吸蔵合金であれば製造された状態では、表面が酸化物皮膜 で覆われているため、水素化の進行が損なわれ水素吸蔵機能が低下する。このため水 素吸蔵合金を使用する装置では、使用前に水素の吸蔵'放出を円滑に行わせるための 活性化処理を行う。このような文献資料としては、日本国特許公開平 9— 31 585号、 日本国特許公開平 1 1一 31 1 400号、日本国特許公開 2000— 1 7408号、日本国特 許公開 2002— 1 60901号、曰本国特許公開 2003— 286001号、など力《失 Πられて いる。
水素貯蔵合金の場合の活性化は、一般には、活性化の水素加圧装置で 1 40kgZ cm2以上の高圧ボンベの水素圧を 30kgZcm2程度に減圧調整して活性化に用いられ、 発火防止のため活性化後に水素吸蔵合金から水素を大気放出させ不活性ガスととも に封入して輸送される。この場合、水素は活性化に用いられた後に大気放出されるが、 一旦常圧にした水素を元の高圧な水素圧に戻すには高コストな電気工ネルギーを投入 しなければならず廃棄処分も余儀なく水素を無駄にしている課題がある。 また、大量に水素吸蔵合金を装着して利用する水素貯蔵容器や水素コンテナなどの 水素貯蔵装置において、水素吸蔵合金粉末を活性化して、水素を吸蔵させた状態で装 置内に水素吸蔵合金を装着しょうとすると、作業中に空気中の酸素と金属紛が反応し て水素が発火する危険がある。
ほかにも活性化した水素吸蔵合金では、作業中の時間経過とともに再度表面が酸化 物皮膜で覆われ(被毒)水素化の進行が損なわれ水素吸蔵機能が低下するため、最初 から装置内に未活性の水素吸蔵合金を装着しておき、装置の耐圧仕様を利用して活性 化をする。このため、長く使用する間は水素容器の内圧は 10kgZcm2未満でありなが ら、使用に先立ち 1回だけ行う活性化のために装置の内圧は接着剤などを用いて装着 された場合などでは、 30kgXcm2以上となる。従来の水素解離圧特性が中間な、例え ば、 LaNi系水素吸蔵合金の粉体が装着される装置でも、活性化に際しては、 1 0kgZ cm2以上の圧力に耐える頑丈な容器が必要で、その軽量化や低コスト化は難しかった。 また、機能物質の加水分解による水素発生においては、水素ガス発生機能を高める ために金属材料などを高温熱で加熱し水と反応させたり、乾燥固形の酸'アルカリ材料 を含む水素化物に水蒸気を反応させて水素を発生させ燃料電池などに供給して用いら れている。このような文献資料としては、日本国特許公開 2004— 149394、日本国特 許公開 2002— 069558、国際特許公開 WO2003/020635など力知られてし、る。 この金属材料による水素発生方法では、装置も大きく熱害の課題があり、酸'アル力 リ材料を含む水素化物に水蒸気を反応させる水素発生方法では、酸'アルカリによる固 体高分子型燃料電池等の装置の劣化害や、作動停止中でも低湿度で水素発生が起き たりするほか、余剰水素ガスの備蓄手段もないため高圧水素による破裂課題があり、 これらは民生で利用する固体高分子型燃料電池や水素エンジンなどの装置の水素発 生源として危険性が高く、水素エネルギーの貯蔵としても不適当な手段である。
また、ニッケル水素電池やリチウムイオン電池においても、電極に用いる機能物質の 紛体の結合材として接着剤等が用いられている。このような文献資料としては、日本国 特許公開 2002— 1 10244、曰本国特許公開 2005— 44672など力知られている。 ニッケル水素電池やリチウムイオン電池の電極では、充放電時に正'負電極に装着さ れる活物質である機能物質が水素やリチウムを吸放出する際に体積が膨縮変化する。 この激しい体積の膨縮の繰り返しから機能物質が微紛化することにより電気抵抗が増 加したり、機能物質が電極箔から脱落したりして低寿命化の原因となっている。特に、リ チウム系電池の負極材では、高い電気工ネルギ一密度が実現できる機能物質の錫 (S n)やケィ素 (Si)の採用を妨げている。これは、酸'アルカリや高温での耐性が優れてい る高分子接着材が用いられているが、この高分子接着材は低温域での熱可塑性が乏 しいため激しい体積の膨縮変化には耐えられず、結合組織が破壊されることが原因と なっている。この課題を解決する電極の活物質層の形成方法としてメツキ法、真空蒸着 法などが試みられているが手間もかかり製造コストも高い。
従って本発明は、従来技術の課題である機能物質のナノメートル域の微粉体を被膜 化して大気中に長時間晒しても発火もなく安全で被毒や飛散もせず、様々な装置へ低 コストで機能よく装着することができる機能物質を提供する。且つ、自然または再生可 能なエネルギーの利用で金属水素化物の金属結晶を含む水素化微粉体および金属化 合物から還元した金属粉体も製造できる機能物質の処理装置を提供することにある。 本発明の他の目的は、金属水素化物の機能物質をナノメートル域の微粉体に製造し て用いること..で、特に資源枯渴もなく環境や固体高分子型燃料電池に害もない水素化 マグネシウム等を用いて、水素の安全な貯蔵'輸送ができる貯蔵具、大量な水素ガスを 発生させ安全に水素需要体へ供給したり水溶液に還元電位を与えたりできる水素発生 容器、水素発生剤等を提供することにある。
さらに、本発明の他の目的は、機能物質のナノメートル域の微粉体を用いることで触 媒機能を向上させるほか、ガスセンサ一や二次電池等の長寿命化ゃセパレーターのな い可逆燃料電池等を提供することにある。 発明の開示
本発明では、機能体は、機能物質がナノメートル域の微粉体または機能物質がナノ メートル域の微粉体を被膜材でまとめ固形状または粒状に被膜化した機能体手段を用 いる。機能物質の処理装置では、耐圧容器にフランジおよびジャケット並びに温調部を 設けた単数または複数の処理容器手段と、耐圧容器に脱気装置および水素吸蔵放出 装置を配した水素充填手段と、耐圧容器および水素吸蔵放出装置にそれぞれ加熱装 置および冷却装置を配した加熱冷却手段と、処理容器手段および水素充填手段並び に加熱冷却手段を自動制御する電子制御手段とで構成される。機能体の貯蔵具では、 自然または再生可能なエネルギーによって機能物質の還元および水素化が行われた 機能体を防水された容器または袋に密封収納するエネルギー変換貯蔵手段で構成さ れる。機能体を用いる成形品または塗装材あるいは被覆材あるいは注入剤では、材料 および結合材と触媒機能の機能体を混合し機能物質を分散させた触媒手段で構成さ れる。機能体を用いる水素溶解剤では、機能体または水素化した機能物質による機能 体を粉体または固形体あるいは粘体の医薬または食品あるいは貼膜物に混入するか あるいは容器に充填した水素溶解手段で構成される。機能体を用いる水素需要装置で は、水素化した機能物質による機能体を装着した水素発生容器による水素放出手段と、 水素貯蔵物質を用いた水素貯蔵容器に加熱装置を配した水素吸蔵放出手段と、水素 放出手段の機能体と液体水とを反応させて金属水素化物および加水分解からの水素 ガスを発生させる水素発生手段と、水素発生手段による発生水素ガスを水素需要体へ 供給し酸素と化合して生成した水を水素発生手段に利用する原料水供給手段と、検知 系統を含む電子制御による電子制御手段とで装置が一体構成される。機能体を用いる ガスセンサーでは、熱電対の測温接点側の導体接合点と機能体を装着したガス反応体 による複合素子手段と、複合素子手段を離脱着容器内に収納させた離脱着手段と、複 合素子手段を制御する電源を含むトムソン効果制御系統およびゼーベック効果制御系 統などからなる電子制御部による電子制御手段とで構成される。機能体を用いる二次 電池では、活物質の機能物質と低温熱可塑性の被膜材を用いて形成する電極手段と、 電極手段の負極と正極と分離膜からなる発電要素を接合して絶縁膜で覆った一体化手 段とで構成される。機能体を MEA (膜-電極接合体)プレートに用いる燃料電池または 可逆燃料電池では、波形部等を設けたプレートの片面に MEA (膜—電極接合体)を形 成した MEA (膜—電極接合体)プレート手段と、 MEA (膜—電極接合体)プレートの単体 または MEA (膜—電極接合体)プレート 2枚を張り合わせた MEA (膜—電極接合体)力 セット、あるいはその MEA (膜一電極接合体)カセットを重ね合わせ積層した積層手段と、 MEA (膜—電極接合体)プレートの単体または MEA (膜—電極接合体)カセットを外装 膜で覆うか、あるいは積層された MEA (膜一電極接合体)カセットの周囲を接合して陽 極側あるいは負極側の内部を密閉し分離して、二流路の流体用の各ノズルを設けた密 閉手段とで構成したことを特徴とする。
機能体手段の機能物質は、利用によって自然に微紛化する最終の粒径以下から 1 n m以内で、予め微紛化工程を経てナノメートルサイズに微粉化されることで、装着後の 利用時における微紛化による弊害をなくし、機能物質の単位質量あたりの表面積を拡 大することで単位質量あたりの界面反応を著しく促進することができる。
最良の粒径は 3〃 m以下 1 nmの域であり、この微紛体の利用にあたっては装着の 簡易化、飛散や被毒の防止、熱や電気の伝導性、被膜材質の特定物質の透過性など、 様々な課題を解消する工夫が不可欠となる。その手段として、製造した機能物質の微 粉体の表面を被膜材として熱可塑性高分子の樹脂で薄く被膜化することで、様々な課 題が解消できる。たとえば、機能物質が水素吸蔵合金の場合であれば大気中などの主 に酸素のほか炭酸ガス、窒素、水分などが直接に水素吸蔵合金の表面に触れないよう にできるため、被毒や界面反応などが防止できる。あるいは、機能物質の微粉体をまと めて固形体や粗粒子にすることで熱や電気の伝導性も高めることができる。あるいは、 被膜材に水溶性の高分子の樹脂で脂肪族ポリエステル系樹脂のように 70°C以下で分 子が流動化をする低温熱可塑性の高分子の樹脂で被膜をする場合では、機能材料の 膨縮にも順応し膜に亀裂を生ずることなく微紛体の密着固定を維持することができる。 また、被膜化のプロセスでは、従来のメツキ法、真空蒸着法などでは、製造コストが 高い。この点、水溶解性や有機溶剤溶解性の高分子の樹脂は、水や溶剤によって容易 に薄い成膜工程が可能である。比較的低温域で作動する装置では、例えば、化学合成 法によって乳酸を重合した水溶解性有機高分子の樹脂である脂肪族ポリエステル系樹 脂またはポリオレフイン系の樹脂などを水に分散したェマルジヨンタイプを用いることが でき、他にも一般の有機高分子の樹脂も使用できる。
比較的高温域で作動する装置では、 Si— O結合を主鎖とする重合体類の一般にシリ コンゴム(ゲイ素樹脂)といわれる高分子の樹脂を用いることもできる。このシリコンのゴ ム材は、体積変化をする粒状の機能体を固形接着する材料としても適する。
この機能物質のナノメートル域の微粉体またはナノメ一トル域の微粉体を被膜材でま とめて被膜化した固形状または粗粒状の機能体を、触媒目的として成形品の材料また は塗装材の材料あるいは被覆材の材料あるいは注入剤の材料等に混合し触媒機能の 機能物質を分散して触媒効果を高めることができる。注入剤は、紙や皮など繊維質材 料による成形品、木材を切削した家具、コンクリートや廃材チップ等を固形した容器や 建築材など、分解、防腐、消臭、など触媒機能のほか補強、耐久性向上などを目的にし て、部材製造工程の最終段階で内部に注入または塗布するもので、高機能を備えた製 品が低コストで製造ができる。
ほかにも、機能体を、粉体または固形体あるいは粘体の医薬または食品あるいは貼 膜物に混入するかあるいは容器に充填して用いることで高機能化ができる。例えば、粉 末や錠剤等固形の薬品や食品の中に微量の金属や金属水素化物の水素化水素吸蔵 合金や水素化マグネシウム等のナノメートル域の機能物質を添加すると、金属がミネラ ルとして水溶液に溶解するほか、水素化マグネシウム等であれば利用時に飲食する水 溶液によって、加水分解による水素と金属水素化物の両方からの水素が発生し、その 水素が水溶液中に溶解することで、水溶液にミネラルと還元電位とアルカリ性 pH値を ;与えることができるため、滅菌や活性酸素を消去するなど細胞活性ができ健康にもよい。 水素化の水素吸蔵合金の機能物質を錠剤内に添加する場合では、水溶液の温度によ つて水素を同樹こ放出して水素を水溶液に溶解させることができる。
また、金属水素化物のナノメートル域の水素化マグネシウム微紛体による機能体を 容器内に充填して風呂水、洗浄水、養殖水などに投入することで、加水分解による発生 水素を水溶液に溶解させ還元電位とアルカリ性 pH値を与えた機能水としても同樹ニ用 いることができる。
また、加水分解を伴う水素発生の目的で、金属水素化物によるナノメートル域の機能 体を水素発生容器などに充填して用いる水素需要装置の場合、水素発生容器を水素 需要体の排熱を用いて加熱をしながら、水素発生容器内部に水をポンプで制御して注 入することで大量の水素ガスが発生できる。たとえば、安全な金属水素化物として水素 化マグネシウムの機能体を用い、被膜材に低温熱可塑性を示す脂肪族ポリエステル系 高分子の樹脂を水に分散したェマルジヨンタイプで被膜化した機能体に水を接触させる と、高分子の樹脂が適量の水を透過させることによって、加水分解による水素と金属水 素化物の両方からの大量な水素を発生させ、固体高分子型燃料電池など水素需要体 や周辺装置へ酸'アルカリによる劣化害を与えることなく水素を供給することができる。 この水素を供給された水素需要体は、酸素と水素の化合によって水を生成する。この 水は、酸'アルカリを含まないため水素発生容器内部に直接循環させることができ、外 部から水を供給することなく加水分解に用いる原料水を得ることができる。
マグネシウムの加水分解は、従来の周知概念として、加水分解の反応による生成物 である水酸化マグネシウムが金属表面に膜を形成するため加水分解の反応が阻止さ れること力、ら、マグネシウムと水を用いる水素燃料発生方法は実用化していなし、。これ が当該発明者によって考案された技術では、水素化マグネシウムの粒径をナノメートル 域の極小サイズにして水透過性の被膜材で被膜化することで、水酸化マグネシウムが 加水分解の反応を阻止する膜厚に達する以前に反応を完了させる技術である。
この技術を用いれば、従来技術の酸'アルカリ材料を含む水素化物質を用いていた 水素発生技術の課題が解決できる。たとえば、国際特許公開 WO2003 020635で は、周知されている酸'アルカリ材料を含む水素化物質に液体水を用いると反応が爆発 的になってしまい制御が困難になるため液体水に変えて水蒸気で加水分解を行ってい る。これに本発明の機能体技術を適用すれば、液体水を用いても被膜材の高分子の樹 脂が適度な水量を透過するため加水分解の反応も緩やかで制御が可能となり、安全な 水素発生装置として民生に提供できる。
また、ガス検知の目的で、熱電対を利用したガスセンサーの場合、検知ガスに対応し た機能物質を選択してガス反応体に用いることができる。たとえば、導体接合点の外周 に被膜化した水素吸蔵合金の機能体を装着すれば、大気に長時間放置されても被毒 が防止されるため、周囲の大気中に水素が混在した場合は、水素を選択吸蔵して水素 吸蔵合金の水素化発熱を熱電対で検知することで水素センタ一として機能できる。 また、水素貯蔵の目的で、燃料電池などに用いる小型な低圧水素貯蔵容器の場合、 被膜化したナノメートル域のマグネシウム窒化物やリチウム窒化物等の錯体材料のほ か様々なナノメートル域の機能物質と結合材とを混合して装置内に固形化したものを詰 めたり、装置内に固形接着すれば、振動による偏りからの膨張破壊もなぐ開放され大 気に長時間放置されても被毒の防止ができ、活性化や水素充填も集約的に行える。 ほかにも水素貯蔵の目的で、水素コンテナや水素貯蔵施設などの大型な水素貯蔵 容器の場合でも同樹こ、被膜化した粒状の様々な機能物質と、結合材とを混合して固 形化したものを装置内のパイプの内側または外側に詰め込んで装着することもできる。 被膜化した粒状の機能物質を、予め活性化してから結合材とを混合して有機溶剤によ るペースト化したものを固形化して、装置内のパイプの内側または外側に詰め込んで装 着するか、ペースト化したものを波形プレートの溝内に固形接着すると、活性化してから 装着することができるため装着後に活性化を要しないことから、大型装置が圧力に対し て頑丈な容器である必要がない。
また、水素精製の目的で、改質ガスや低純度水素ガスの水素精製装置の場合、被 膜化した粒状の機能物質、もしくは被膜化した粒状の機能物質と結合材とを混合して固 形化し、予め活性化してから装置内または装置内のパイプの内側または外側に詰め込 んで装着することができ、あるいは装置内または装置内のパイプの内側または外側、 波形プレートの溝内に固形接着することも容易で、大型装置など装着後に活性化を要 しないことから、圧力に対して頑丈な容器である必要がない。
ほかにも水素精製の目的で、水素精製膜の場合、機能物質の微粉体または被膜化 した粒状の機能物質と水素精製膜材とを混合し、パイプ状またはシート状に成形して、 予め活性化してから装置へ装着することができる。あるいはメタンガスなどを選択吸着 させるほか精製や貯蔵をする装置にも応用できる。
また、ヒートポンプの目的で、水素化発熱および水素放出吸熱を回収する装置の場 合、被膜化した粒状の水素吸蔵合金または被膜化した粒状の水素吸蔵合金と結合材 とを混合して固形化し、予め活性化してから装置内または装置内のパイプの内側また は外側に詰め込んで装着することができ、あるいは装置内または装置内のパイプの内 側または外側、波形プレートの溝内に固形接着することも容易で、大型装置へ装着後 に活性化を要しないことから、圧力に対し頑丈な容器である必要がない。
また、水素加圧の目的で、水素圧縮や活性化の水素吸蔵放出の装置として用いる場 合、被膜化した粒状の水素吸蔵合金のほか、被膜化した粒状の水素吸蔵合金と結合 材を混合して固形化し、予め活性化してから装置内または装置内のパイプの内側また は外側に詰め込んで装着することができ、あるいは装置内または装置内のパイプの内 側または外側、波形プレートの溝内に固形接着することも容易である。 これら水素吸蔵合金を装着した水素吸蔵放出装置を耐圧容器と組み合わせて機能 物質の処理装置として用いることができる。水素吸蔵放出装置の水素放出行程では、 低温排熱によって加熱することで水素圧を 30kgZcm2程度に昇圧して耐圧容器内の機 能体を活性化させ、水素吸蔵行程では、冷却媒体によって冷却することで耐圧容器内 の活性化時に機能体が吸蔵した水素を水素吸蔵放出装置内へ再度戻し、次の活性化 の水素放出行程に備えてリサイクルすることができるとともに、機能体の水素精製機能 から、水素が繰り返して利用されても水素の純度が低下することがない。
また、この機能物質の処理装置を利用して、ナノメートル域の水素化微粉体の機能物 質が高効率で得られる。これは耐圧容器内に金属や合金など機能物質の粗粒子を入 れて高圧水素を導入しておき、温調部に電熱線、電熱プラグ、レーザー放射プラグなど を選択し設けることによって、機能物質の一 3¾を高温加熱して着火をすることで、水素 化反応による自己発熱を利用した燃焼合成ができるため、ナノメートル域の金属結晶を 含む水素化微粉体が低コストで容易に得られる。
また、この機能物質の処理装置にレーザ一放射プラグを用いる場合では、金属化合 物等の材料を高温加熱してガス化分離させて冷却する方法で金属を還元することがで きる。金属還元は、たとえば、耐圧容器内に酸化マグネシウムなどの粗粒子を入れて、 自然または核融合等を含む再生可能なエネルギーから作られたレーザーを温調部の レーザー放射プラグから照射し酸化マグネシウムを高温加熱してガス化させ、酸素は 放散させマグネシウムのガスを冷却することによって微粒子金属が製造できる。
また、この機能物質の還元および水素化が自然または再生可能なエネルギーによつ て行われて製造された機能体が、防水された容器または袋に密封収納されることで、 自然または再生可能なエネルギーを高密度な安全物質として貯蔵'輸送ができる。 また、被膜材に低温熱可塑性の高分子の樹脂を用いてナノメートル域の機能物質を 活物質としてニッケル水素電池やリチウム金属電池の電極箔に装着すると、活物質が 水素やリチウムの吸蔵および放出による膨縮から微紛化して脱落することが防止でき、 負極と正極と分離膜からなる発電要素を接合して絶縁膜で覆って一体化すると、より発 電要素の機能性がよく二次電池の長寿命化が実現できる。
また、機能体と結合材を溶剤によりペースト化したものを局面にも塗布して容易に装 着できることから、波形電極プレートによる可逆燃料電池が実現できる。機能物質は、 M EA (膜一電極接合体)の発電要素の各膜層に適応する機能物質を選択して用いるも ので、 MEA (膜一電極接合体)プレートの単体または MEA (膜一電極接合体)プレート 2 枚を張り合わせた MEA (膜一電極接合体)カセット、あるいはその MEA (膜一電極接合 体)カセットを重ね合わせ積層したもの、あるいは MEA (膜一電極接合体)プレートの単 体または MEA (膜一電極接合体)カセットを外装膜で覆うか、あるいは積層された MEA
(膜一電極接合体)カセットの周囲を接合して陽極側あるいは負極側の内部を密閉にし 分離して、二流路の流体用の各ノズルを設けて密閉に構成されることで、セパレーター を必要としない簡素な可逆燃料電池が機能する。 図面の簡単な説明
第 1図は、本発明の一実施例の系統線図で機能物質の処理装置の全体概要を示し ている。第 2図は、本発明の一実施例で機能体の装着断面を示している。第 3図、第 4図 は、本発明の一実施例でプレートを示している。第 5図は、本発明の一実施例で積層体 の製造工程を示している。第 6図は、本発明の一実施例の水素需要装置全体概要を示 している。第 7図は、本発明の一実施例の断面図でガスセンサーの断面を示している。 第 8図は、本発明の一実施例の展開図で円筒型の二次電池を示している。第 9図は、 本発明の一実施例の断面図で二次電池の発電要素の断面を示している。第 1 0図は、 本発明の一実施例の断面図で MEA (膜-電極接合体)プレートを示している。 発明を実施するための最良の形態
本発明の詳細を説明するために添付の図面に従ってこれを説明する。
実施例 1 .第 2図の実施例によって説明すると、機能物質であるナノメートル域の微 紛体の複数粒子が低温熱可塑性の高分子の樹脂でまとめられ被膜化された粗粒子の 機能体 22、 22a がシリコンゴム材等の結合材 23によって固定化され、装置等の内部 に接着して装着されている。
機能物質の材料は、ヨウ素等のハロゲン元素またはその化合物。硫黄やセレン等の 酸素族元素またはその合金あるいはその化合物。ヒ素、アンチモン、ビスマス等の窒素 族元素またはその合金あるいはその化合物。炭素、ゲイ素、錫等の炭素族元素または その合金あるいはその化合物。リチウム、ナドリゥ厶、カリウム等のアルカリ金属元素ま たはその合金あるいはその化合物。ベリリウム、マグネシウム、カルシウム等のアル力 リ土類金属元素またはその合金あるいはその化合物。亜鉛、カドミウム、水銀の亜鉛' カドミウム■水銀元素またはその合金あるいはその化合物。ホウ素、アルミニウム、ガリ ゥ厶等のホウ素族元素またはその合金あるいはその化合物。遷移元素として、チタン、 クロム、マンガン、鉄、ニッケル等の第 4周期の遷移元素、ジルコニウム、ルテニウム、パ ラジウム等の第 5周期の遷移元素、ランタン、タンタル、白金等の第 6周期の遷移元素、 トリウム等の第 7周期の遷移元素であり、これらの遷移元素または合金あるいはその 化合物である。これらの材料が機能物質として必要に応じて一種類または複数種類以 上が選択され用いられる。
機能物質を 3 U mから 1 nmまで目的の必要による粒径に微粉化する粉碎処理、ある いは水素化処理、あるいは気相合成処理をするなどの微紛処理工程について、炭素系 材料と金属粒子とを水素等の雰囲気中で機械的な粉砕処理によって機能物質を製造 する場合では、例えば、水素導入バルブを備え付けた鋼製ミリング容器内にグラフアイト 粒子と、金属リチウム粒子と、鋼鉄製ボール複数個を封入し、容器内を脱気した後、水 素を I .OMpaで導入される。その後、鋼製ミリング容器を室温で 80 〜1 00時間ミリング 処理を施すことによって格子欠陥を導入した機能物質の微紛体が製造される。
気相反応によって機能物質を製造する場合では、例えば、反応器の一方から沸点以 上の温度で発生されたマグネシウムガスまたはマグネシウム'ニッケルガスの金属微粒 子が導入され、他方から炭化水素が分解された炭素と水素の混合ガスなどが導入され る。反応器内では、気相反応によってマグネシウム'ニッケル微粒子と炭素材の複合化 した機能物質の微紛 ί本が製造される。
また、他にも気相反応によって機能物質を製造する場合では、例えば、反応器内に 炭素系材料とアルカリ金属とを距離をおき配置して真空で封入される。炭素系材料とァ ルカリ金属とを個別に温度制御することで反応が起こり、炭素系材料の平面状分子層 間にアルカリ金属の金属原子を挿入して機能物質の微紛体が製造される。
水素吸蔵合金による機能物質を製造する場合では、例えば、水素吸蔵合金材料とし て、一般的には Ca、 La、 Mg、 Nu Tiなど、ほかにも第 3の元素 V系などが知られ、これ ら材料を調合して溶解によって La— Νί系、 Mg—Τί系の合金など錶造水素吸蔵合金が 製造された後、水素を吸蔵させ初期粉砕あるいは機械的粉砕によって水素貯蔵物質の 微紛体が製造される。他にも機能物質として、金属や合金の紛体または Mgの紛体など を耐圧容器内に入れ高圧水素を導入しておき、機能物質の紛体の一端を高温加熱して 着火をすることで水素化反応による自己発熱を利用した燃焼合成によって、 Mg-Ni- Fe系、 Τί— Cr—V系、 Mg— Ca— Ni系の合金など、あるいは Al、 Mgなど金属水素化物 の金属結晶を含むナノメートル域の微粉体が製造される。他にも同様な方法として、レ 一ザ一照射で材料を高温加熱してガス化したものを冷却して微粉体が製造される。 また、水素吸着材料と水素吸蔵合金などによって機能物質を製造する場合では、例 えば、グラフアイト構造やアモルファス構造の炭素系材料の紛体と、水素吸蔵合金また は炭化物もしくは酸化物のいずれか一種類また複数種以上の粉体を混合して、不活性 ガス等を用いて機械的粉砕によって機能物質のナノメートル域の微紛体が製造され、 一般公知の触媒材料においても同様にして製造される。
このようにして製造された機能物質の微粉体は、平均的な粒径が 20nmであれば、 比表面積は、凡そ 45m2Zgとなる。仮に粒径が 0. 5〃mの粉体の場合であれば比表 面積は凡そ 1 m2Zgであるのに比べて、ナノメ一トル域の微粉体では、単位質量あたり の表面積が格段と大面積化となるために水素吸蔵、水素やメタンの吸着機能のほか、 消臭、分解など触媒機能も向上するほか、加水分解などでは単位重量あたりの反応時 間も早くなる。
製造されたナノメートル域の微粉体の機能物質は、被膜工程を経る。被膜材として低 温熱可塑性の脂肪族ポリエステル系 (テラマック ュニチカ社製等)またはポリオレフィ ン系 (ァロ一ベース ュニチカ社製等)のほか四フッ化工チレン系等、水【こ分散したエマ ルジョンタイプの水溶解性高分子の樹脂を用い、水で希釈して機能物質の微粉体とを 混練した後、被膜材料を 1 1 0°C〜 1 50°Cで加熱乾燥することでガラス転移させ結晶化 した厚みが 1〜5 j« mの成腠が行なわれる。あるいは脂肪族ポリエステル系樹脂を乾 燥させた後に粉砕して微粉化させて、機能物質の粒子の周囲に結晶化後の厚みが 1〜 5 j« mで成膜ができるための必要量と、機能物質の微粉体とを調合し混合した後、電熱 圧着ローラー等を用いて 1 1 0°C〜1 50°Cの加熱処理で被膜材料をガラス転移させ結 晶化によって被膜が行なわれる。その他にも四フッ化工チレン系等の水溶解性高分子 の樹脂も含み、これらを適宜調合して水で希釈した溶液と機能物質の微粉体を混練し た後、加熱乾燥機に入れて結晶化して製造することも効果がよい。一般にプラスチック 原料といわれる有機高分子の樹脂の場合でも、有機溶剤で希釈して機能物質のナノメ 一トル域の微粉体と混練した後、加熱処理をしたり、有機高分子を微粉化して機能材料 の微粉体と混合して加熱処理をするなどして、同様に製造される。これらの被膜方法で 被膜化された固形体は、利用目的により任意の粒径に粉砕した粗粒子としても製造さ れる。
このように機能物質の機能体が製造されると、ナノメートル域の機能物質の微粉体で あっても、高分子樹脂の接着効果よつて微粉体同士が密着にして形成され、被毒や飛 散をすることも無ぐ数十ミクロン〜数ミリの任意の粒径や固形体として機能体が提供さ れ、微粉体間が密着することで熱や電気の伝導性を高めることができる。他方で、機能 体が装置に装着され運転時間の経過と共に被膜の表面にクラックが生じた場合、高分 子が低温熱可塑性であれば運転時の排熱等により容易にクラックを自己修復できる。 機能体を用いる各装置への装着方法は、被膜化した粒状の機能体と結合材を混練し たペーストを加熱して任意の形状で固形化したものを目的とする装置内または装置内 のパイプの内側または外側に充填して装着されるか、もしくは、そのペーストを波形プレ 一卜の溝内あるいは電極に塗り付けた後、乾燥または加熱して固形接着される。
他の方法としては、機能物質のナノメートル域の微粉体と結合材とを混練したペース 卜を目的とする装置内または装置内のパイプの内側または外側または波形プレートの 溝内、あるいは電極に塗り付けてから乾燥または加熱して固形接着した後、その固形 化した表面に溶剤で希釈した水溶解性または有機溶剤溶解性の低温熱可塑性の高分 子樹脂を塗布して被膜が行われる。
あるいは、他の装着方法としては、機能物質のナノメートル域の微粉体と溶剤で希釈 した被膜材とを混練したペーストを目的とする装置内あるいは電極に塗布してから加熱 乾燥して固形接着した後、必要に応じてプレス圧着される。
結合材は、例えば、ポリテトラフルォロエチレン(PTFE)、ポリクロロ Jフルォロェチ レン(PCTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂、スチレンブタジエンゴム、 カルボキシセルロース等の公知の高分子樹脂を用いることができる。
また、 Si— O結合を主鎖とする重合体類で一般にシリコンゴム (ゲイ素樹脂)といわれ る高分子の樹脂は、耐熱温度が高いため、機能体とシリコンのゴム材の混合物に溶剤 を加えて練り合わせたペーストを用い、同様に装着される。たとえば、マグネシウムアミ ドゃリチウム水素化物など錯体による水素貯蔵法を採用する場合でも、ナノメートル域 のマグネシウム窒化物やリチウム窒化物等の微粉体を混合して成形して同様に装置内 に接着して用いられる。
また、機能体の貯蔵具では、水素化マグネシウム等の微紛体と脂肪族ポリエステル 系樹脂等を乾燥させた粉体とを混合し、加熱でガラス転移を行い適当な粒径に粉砕し たものを、防水された容器または袋に密封収納される。
また、図示はないが成形品の材料または塗装材の材料あるいは被覆材の材料ある いは注入剤の材料等に触媒機能の機能体を用いる場合は、機能物質のナノメートル域 の微粉体またはナノメートル域の微粉体をまとめて被膜化した固形状または粗粒状の 機能体を、高分子樹脂などの成形品材料または塗料など塗装材料あるいは繊維ゃフィ ルムなどの表面被覆の被覆材料と混合し分散して用いられ、注入剤は、補強、防水等 の材料に機能物質のナノメートル域の微粉体を混入し用いられる。注入剤の利用では、 紙や皮等による繊維質材料による成形品、木材を切削した家具の部材、廃材チップ等 を固形した成形品等を、容器内に入れ真空弓 Iきした後に希釈した液体状の注入剤を吸 込ませてから乾燥すると効果的である。建築物などコンクリートでは、乾燥固形した後 で、液体状の注入剤を表面から塗布して染み込ませることがよい。
また、水素溶解剤として機能体を用いる場合は、機能体または水素化した機能物質 による機能体を粉体または固形体あるいは粘体の医薬または食品あるいは貼膜物に 混入するかあるいは容器に充填して製造される。例えば、粉末、錠剤、ゼリー状の医薬 または食品等であれば、材料の中に微量のナノメートル域の金属や水素化マグネシゥ ム等の金属水素化物を用いた機能体が添加される。直接食さない塗布剤、貼膜物 (傷 テープ、包帯等)、ガム、錠剤、乾物パック (お茶、紅茶等)等は、機能体を材料と混合し たり混合物を皮膜材の有機高分子材で固形化したり固形化後に粉砕したりして製造さ れる。これら飲食に関連する場合の機能体の被膜材は、公知の食品としての有機高分 子材が好ましい。
また、錠剤の製造は、食材または栄養剤あるいは薬剤等の目的材料の粉末と機能体 と被膜材を乾燥させた粉体とを混合し攪拌して金型で打錠して成形し、次いで加熱をす るか、これら材料を混合攪拌して金型で打錠して成形し、次いで錠剤に液状の有機高 分子材を塗布してから加熱をして製造される。
また、機能体を用いて風呂水、洗浄水、養殖水などに水素を溶解させる機能水製造 用の容器の場合は、水が浸入できる微細孔を複数設けた水素発生容器の容器内に水 素化 Mgの微粉体と脂肪族ポリエステル系樹脂を乾燥させた粉体とを混合して、 1 1 0°C 加熱で乾燥させながらガラス転移を行い固形化したのち、適当な粒径に粉砕したものを 水素発生容器内に充填して製造される。 .
これら水素溶解剤により水溶液が還元電位を得る実験として、機能体として水素化 Mgを 1 gと、 25°Cの飲料水 1 Lを用いて、水素濃度、酸化還元電位 (ORP)、 PHの計測 を行った。水素化 Mg粉体を飲料水へ投入して水素の溶解開始約 2分後に水素濃度と 酸化還元電位 (ORP)を計測し、水素濃度 0. 4ppmで酸化還元電位 (ORP)マイナス 1 OOmVを計測した。その後水素濃度 0. 5ppmで酸化還元電位 (ORP)だけがマイナス 400mVまで急激に降下した。水素の溶解開始約 8分以後は水素濃度 1 . 2PPm付近 で停止し、酸化還元電位 (ORP)がマイナス 600mV付近で停止した。
同時に、 PHを計測し、水素の溶解開始約 5分後に pH7を計測した。この時の酸化還 元電位 (ORP)マイナス 600mV付近を計測した。その後 pHは 7. 7付近で停止した。 また、水素が溶解した水溶液を常温下で放置して、水素濃度と酸化還元電位 (ORP)を 計測した。計測開始の値まで水素濃度と酸化還元電位 (ORP)が戻るまでに要した時 間は、凡そ 3時間以上であった。
これらの値は、工業的に洗浄工程で用いられている純水に水素を溶解した機能水の 値に近ぐ風呂水、洗浄水、養殖水などに用いる水溶液の還元電位が水電解装置を用 し、なくても容易に実現できることが判明した。
また、その他、機能体を用いる装置として、燃料電池または水電解装置あるいはニッ ゲル水素電池またはリチウム金属電池など二次電池があり、正極、負極、分離膜また は電解質の各膜層に最適な機能体を用いて製造される。これらの詳細については、後 述の実施例で述べる。
このような機能体の装着では、例えば、水素検知、ヒートポンプ、水素精製、水素加 圧を目的とする装置のほかにも水素吸蔵放出装置では、機能体の熱伝導率が高いこと から水素の吸蔵と放出にかかる時間が短くなリ効率が向上する。他方、二次電池の電 極では、例えば、 Νί水素電池の水素吸蔵合金やリチウム金属電池の Sn、 Siなどの機 能物質が水素やリチウムの吸蔵'放出の繰り返しで微粉化することによる脱落や電気 の伝導性低下などの防止ができる。
実施例 2. 第 3図、第 4図、第 5図の実施例によって説明すると、水素吸蔵放出装置 6であって、第 4図は第 3図の X線位置の横断面を示している。一方のプレート 30は、長 方形の金属プレート面の両端に凹な平面部 40、 41内に水素ホール 42を開けて、縦方 向中央に水素誘導溝 35と、水素誘導溝 35に対し 45度方向に直線な溝をプレート全面 に複数列を平行に設けた波形溝 33を設けた波形部 32が形成されている。
また、他方のプレート 30aは、長方形の金属プレート面の両端に凸な平面部 40a、 4 1 a内に水素ホール 42aを開けて、縦方向中央に水素誘導溝 35aと、プレート 30に設け た波形溝 33とは逆の方向で、水素誘導溝 35aに対し 45度方向に直線な溝をプレート 全面に複数列を平行に設けた波形溝 33aを設けた波形部 32aが形成されている。この 金属プレートの成形は、金型を用いて、プレス加工により製造される。
次いで、 Aおよび Bの矢印が示すようにプレート 30とプレート 30aとの間に板材 69を 重ねて、プレートと板材の間およびプレート間に口一付用の薄膜材を挟み重ねて真空 炉内で高熱処理により平面部 40、 40aの面と面、波形溝 33と 33aの山と谷など、それ ぞれ接合する部分がロー付けされ、プレートカセットが形成される。板材 69は、長辺側 の両端に平行に接合され、プレートカセットが積層された場合に長辺方向に熱媒体の 流路を形成し、且つ、水素室の耐圧補強として機能する。
次いで Cの矢印が示すようにプレートカセット両面の波形部に形成される波形溝内に 被膜化した粒状の機能体と結合材とを混合して練り合わせたペースト 55を用い、塗り 付けて固形接着され装着される。この場合、機能体は、使用温度帯に適合する水素吸 蔵合金が選定されて用いられる。 次いで Dの矢印が示すように被膜化の機能体が装着されたプレートカセットの必要枚 数を積層した積層体の上下両端には、平面プレートと波形のプレート片面が接合された 端プレート 70が積層され、プレートカセットが重ね合わせて接合する積層体の側面周 囲を溶接して水素室を密閉にして積層体が製造される。次いで積層体の短辺側の両端 には、熱媒体ノズルを設けたキャップが取り付けられ、上面の端プレート 70にある一方 の水素ホールには水素ノズルが取り付けられた後、積層体の上下両側から断熱板を介 して拘束板 74が設けられ、ボルトとナットにより連通孔 75を通して締め付けて水素吸 蔵放出装置が構成される。水素吸蔵放出装置では水素ホールは 1つでよく他方の水素 ホールは必要がないため塞がれ、積層体の上面の端プレート 70には水素ホールが 1 つである。
この水素吸蔵放出装置は、容器内がパイプで構成され、パイプの内部や外部に被膜 化した粗粒状の機能体もしくは粒状の機能体と結合材とを混合して固形化したものを詰 めて装着した装置であっても同様に機能する。この水素吸蔵放出装置は、水素貯蔵、ヒ —卜ポンプ、水素精製の装置と比べても、機能的にも構造的にも同様な装置である。た だし水素精製の装置では、混合ガスを通過させる必要にあっては水素室の両端には、 それぞれ水素ノズルを取り付けられる。
実施例 3.第 1図の実施例によって説明すると、機能物質の処理装置 1全体の系統 線図であって、耐圧容器 2、脱気装置 5、水素吸蔵放出装置 6、水素または不活性ガス ネ甫給装置 9、力 Π熱装置 7、冷却装置 8のほ力、、電磁弁 1 2、 1 3、 1 3b、 1 4、 1 4b、減圧 調整弁 1 1、熱媒体ポンプ 1 8、 1 9、各センサーを含む制御機器で構成され、金属還元、 または機能物質の水素化粉砕、または機能体の活性化、あるいは水素貯蔵容器の水 素充填等が行われている。
耐圧容器 2は、 30kg/cm2以上の高圧に対応する容器で、側面周囲に熱媒体のジャ ケット 4と、フランジと、電熱線、電熱プラグ、レーザー放射プラグ等必要に応じた器具が 取り付けられた温調部が設けられ、金属、機能物質、水素貯蔵容器などの内容物を出 し入れするフランジには、フランジ蓋 3を油圧式または電動式で開閉できるように備えら れている。
また、ジャケット 4は、配管して接続される加熱装置 7および冷却装置 8からの加熱媒 体および冷却媒体を配管に接続される電磁弁 14、 14bが電子制御されることによって、 耐圧容器 2の内容物を、たとえば、脱気行程であれば 80°C程度に加熱し、水素加圧行 程であれば 5°C程度に冷却される。
また、ガスソケットは、配管して接続される脱気装置 5および水素吸蔵放出装置 6か らの脱気系統 1 6および水素または不活性ガス系統 17の配管に接続される電磁弁 1 3、 1 3bが電子制御されることによって、耐圧容器 2の内容物を脱気行程であれば脱気装 置 5の真空ポンプで 3Toor程度に真空引きし、水素加圧行程であれば水素吸蔵放出装 置 6によって 30kgZcm2以上の水素加圧が行われ、金属還元であれば不要ガスを外気 放散する。このように構成した耐圧容器 2は、単体または複数を設けて運転される。 水素吸蔵放出装置 6は、第 3図、第 4図、第 5図の実施例によって説明した構造で、積 層体の両端の熱媒体ノズルに配管される加熱装置 7および冷却装置 8からの加熱媒体 および冷却媒体を配管に接続される電磁弁 14、 14bが電子制御されることによって、 耐圧容器 2の内容物が水素加圧を必要とすれば装置内に装着される水素吸蔵合金を 80°C程度に加熱して水素放出圧 30kgZcm2以上で水素加圧を行い、逆に耐圧容器 2 の内容物が水素放出をする場合であれば、水素吸蔵合金を 5°C程度に冷却して水素を 吸蔵させる。この場合、水素吸蔵放出装置 6に装着する機能物質の材料としては、一般 な水素解離圧特性の高い、例えば、 Ti— Fe系の水素吸蔵合金などが適する。
水素または不活性ガス補給装置 9は、水素吸蔵放出装置 6へ水素を、あるいは耐圧 容器 2へ水素または不活性ガスを補給するものであり、圧力調整弁 1 1が介されて高圧 な水素または不活性ガスのボンベが配されている。
電子制御は、温度、圧力などの各センサー値と予め設定された値によって適宜熱媒 体のポンプ、電磁弁、油圧機器のポンプなどの電源が電子制御されている。
このように装置が構成されたことで、機能物質の金属や合金の紛体などを耐圧容器 内に入れ高圧水素を導入しておき、機能物質の一 S¾を高温加熱して着火をすることで 水素化反応による自己発熱を利用した燃焼合成による機能物質の水素化粉碎ができ、 特に金属単結晶の微紛体が容易に得られるほか、低温熱を用いることで高圧な水素加 圧が実現し、あるいは、この機能物質の処理装置にレーザ一放射プラグを用いる場合 では、合金や金属化合物の材料を高温加熱してガス化分離させて冷却する方法で金 属の水素化や金属の還元をすることができる。金属還元は、たとえば、耐圧容器内に 酸化マグネシウムなどの粗粒子を入れておき、温調部のレーザ一放射プラグによって レーザーを照射し酸化マグネシウムを高温加熱してガス化させ、酸素は外気放散させ マグネシウムのガスは冷却によって微粒子の金属として製造でき、機能物質の活性化 または水素貯蔵容器などの水素充填も行える。活性化の運転では活性化時に用いた 水素を再活性化のために再度水素吸蔵してリサイクルすることで水素を有効利用し水 素を無駄にすることがなぐ更には、錯体物質など装着した水素貯蔵容器内の活性 (水 素充填)が低コスト化できる。レーザー放射プラグのレーザー源は、太陽光をレンズや 反射鏡で直接集光したもの、または太陽電池での光変換、風力変換、バイオマス燃料 等を利用して発電した電力によって、必要な波長の電磁波を発生したものを増幅励起し て利用されることで自然または再生可能なエネルギーの有効利用が実現する。
実施例 4.第 6図の実施例によって説明すると、機能体を用いる水素需要装置が、水 素貯蔵容器 1 02、水素発生容器 1 03、水素需要体 1 04 (水素機関、燃料電池など)、 カロ熱装置 1 05、電子制御部 1 06、酉 S電部 1 07、水タンク 1 08、ポンプ 1 09【こよって一 体構成され、必要によりニッケル水素電池 1 1 5等を付加して構成されている。
また、水素発生容器 1 03の架台には、水素需要体の排熱を受領した熱媒体による 加熱装置 1 20力《設けられ、電子制御されるポンプによって熱媒体が送液され循環して いる。水素発生容器 1 03は、内部に機能物質として Mgまたは水素化 Mgの微粉体が 水溶性の脂肪族ポリエステル系樹脂等により被膜化され粗粒子に形成されたものが充 填されて、水素発生容器 1 03の端部に一方向弁 1 1 8を備えた水素ノズルと液体ノズル を設けて架台と脱着可能にして構成されている。水素発生は、水タンク 1 08からの水が 水素発生容器 1 03の液体ノズルから流入し、被膜材が適量な水を透過させることで機 能体が加水分解して発生する水素と金属水素化物では定着不安定になった水素がガ ス化する。この発生水素は、水素需要体へ供給され空気中の酸素と結合することで水 が生成され、その生成水は、分離器 1 1 6を経て水タンク内へ戻され、水素発生容器の 機能体が加水分解して水素を発生させる原料水として一体装置内を循環する。水素発 生容器 1 03の水素ノズルから水素とともに放出する水は、水素ガスと分離した後にバイ パス配管より水タンク 1 08へ循環し、余剰する水は排水される。水素発生を制御する場 合は、原料水を送るポンプ 1 09によって水量を調節するほか、発生水素ガスをバイパス 配管より水素発生容器 1 03内へ直接送り、容器内部の水を外部へ速やかに送り出す ことで水素発生を制止させる。
また、水素発生容器の内部に装着する水素化の被膜化した機能物質による機能体 は、 Mg以外にも水素解離性の金属またはその合金あるいはその化合物、 Liなどアル カリ金属元素またはその合金あるいはその化合物、 Caなどアルカリ土類元素またはそ の合金あるいはその化合物、 Siなど炭素族元素またはその合金あるいはその化合物、 Aほたはその合金あるいはその化合物などの周知される機能物質を用いることができ、 必要な材料によっては、微量な酸'アルカリ材料を機能体に混入することもよい。
また、水素貯蔵容器 1 02は、実施例 2.で説明した、水素吸蔵放出装置 6と同様な機 能で、水素貯蔵容器の内部には、水素需要体の排熱を受領した熱媒体による熱媒流 路が設けられ、電子制御されるポンプによって熱媒体が送液され循環して、一体装置 内の水素圧を一定に調整している。この水素貯蔵容器は、耐圧容器を代用してもよい。 また、水素需要体 1 04に燃料電池を採用する水素需要装置の起動の一連動作は、 電子制御部 1 06からの電力で加熱装置 1 05が水素貯蔵容器 1 02内の水素貯蔵物質 を加熱する。 =>加熱されることで水素貯蔵物質内の金属水素化物から水素ガスが放出 して水素需要体 1 04を起動する。 =>電子制御部 1 06からの電力で溶液供給装置 1 09 が起動して水タンク 1 08の液体水を用いて水素発生容器 1 03内に注入することで加水 分解反応を開始すると同時に水素需要体の発熱で水素発生容器内の反応を促進させ る。→発電された電力は配電部 1 07へ送電される。→加熱装置 1 05の加熱が中止さ れ水素貯蔵寧器 1 02内の水素貯蔵物質が余剰水素を吸蔵し水素需要体の起動時や 高消費時の水素放出に備える。
また、ニッケル水素電池 1 1 5を付加した水素需要装置の一連の充電動作は、配電部 1 07よりニッケル水素電池へ電力を通電して正極から水素ガスを発生させ負極の水素 吸蔵合金に吸蔵させる。→さらに余剰させる発生水素ガスを水素貯蔵容器 1 02内の水 素貯蔵物質に吸蔵させて放電時に備える。
また、ニッケル水素電池は、水素発生容器 1 03を用いることで充電不足の場合でも 水素ガスを発生させると、電解液へ水素を溶解し還元することで起電ができる。他にも ニッケル水素電池を高需要時に対応する場合は、水素貯蔵容器のプレートの波形部を 多孔材で形成して積層体を構成させ、プレートカセット間の熱媒室に配管を介しニッケ ル水素電池の電解液を直接循環通過させることで、水素吸蔵合金から直接溶解した水 素イオンが正極へ到達することが出来るため、水素イオンが一旦分子化して再度電解 液に溶解する時間が省略されるため時間が短縮できる。
また、水素需要体に自動車の水素エンジンを採用する水素需要装置の場合につい ても、燃料電池同様に用いることができ、水素エンジンでハイブリッドシステム(内燃機 関および電動機併用)である場合は、前述のニッケル水素電池を付加して組み合わせ て応用されるほか、リチウム系の二次電池も組み合わすことができる。
実施例 5.第 7図の実施例によって説明すると、ガス反応体 1 53に機能物質の触媒 材を用いたガスを検知するガスセンサーであって、 2種類の金属線の導体端が接合さ れた熱電対の導体接合点 1 52の周囲にガス反応体 1 53として触媒材の粉末粒子が装 着され、離脱着容器 1 50内部に収納されガスセンサーが構成されている。
また、ガスセンサーが収納された離脱着容器 1 50はソケットに差し込まれて、ソケット 内でガスセンサーの導体端と接合する 2種類の導線は、電源を含むトムソン効果制御 系統およびゼーベック効果制御系統などとで構成される電子制御部と結線されて全体 が構成されている。
熱電対の導体材料としては、一般工業用で汎用されている、例えばクロメル:アルメ ル、鉄:コンスタンタン、銅:コンスタンタンなど 2種類の金属線端を接合したもので、特に 熱電対素線材料を限定するものではなぐ導線は、金属パイプの中に絶縁管を介して 熱電対素線の導線を組み入れたものや、チューブの中に熱電対素線の導線を入れ、酸 化マグネシウムを充填し絶縁したものが一般に知られている。
また、離脱着容器 1 50は、プラスチック材で射出成形された容器の板面にガス分子 が流通できる微細な孔が複数設けられ、離脱着容器内部にガスセンサーが収納されて 一体化形成されている。この離脱着容器が耐熱'耐圧用では金属材料を用いて構成さ れていて、ガスセンサーを収納する部分は、容器の板面にはガス分子が通過できるよう に微細な孔を複数あけて設けられ、さらに好ましくはセラミック材容器も機能的である。 このガスセンサーが、水素検知の場合では、機能物質の触媒材は水素吸蔵合金を用 しゝ、例えば一般的には Cu、 Ca、 La、 Mg、 Nu Τίなど金属のほかにも LaNi系、 MgTi系 の合金が知られているが、特に触媒材の種類や製造方法を限定するものではない。 また、水素吸蔵合金の粉末の被膜化は、本発明の方法以外にも湿式めつきのほか C VD、 PVDなどの放電式を用いて、 Cu、 Ca、 La、 Mg、 Nu Τίなどの金属、高分子、酸化 物、炭化物などで薄膜な被膜を施して製造もできる。
このようなガスセンサ一では、特定ガスを選択して吸着したりする機能物質を選定し て用いることによって多種類のガスセンサーに適応できる。
また、図示はないが機能物質を選定し拡散触媒層として用いる電気化学デバイスで は、電極層を両面に備えるプロトン伝導膜 (体)の外面に拡散触媒層を設けた電気化学 デバイスと熱電対の導体接合点を接合または挿入して一体化し、離脱着容器内に収納 され、熱電対および電気化学デバイスの導線が離脱着容器を介して電子制御部と結線 されて用いられる。
また、円筒な電気化学デバイスでは、熱電対の導体接合点の外周面に、拡散触媒層、 電極層、プロトン伝導膜 (体)の機能膜が設けられて一体化し、離脱着容器内に収納さ れ、熱電対および電気化学デバイスの導線が離脱着容器を介して電子制御部と結線さ れている。この電気化学デバイスの拡散触媒層、電極層、プロトン伝導膜 (体)の機能 膜を形成する材料種は公知のもので特定するものではない。
また、球体または楕円球体の表面に電極とガス反応膜の機能膜が形成された弾性 表面波 (SAW)デバイスを用いるガスセンサ一では、ガス反応体と熱電対の導体接合 点を接合または挿入され一体化し、離脱着容器内に収納され、熱電対および弾性表面 波デバイスの導線が離脱着容器を介して電子制御部と結線されている。
このようなガス反応体 (電気化学デバイス、弾性表面波デバイス)と熱電対の導体接 合点との組み合わせたガスセンサーの場合では、ガス反応体自身がガス濃度を計測し データを制御部へ出力し、熱電対はゼ一ベック効果による温度計測とトムソン効果によ る計測環境の温度制御を行うことでガスセンサーの検知精度を向上させる。ガス反応 体 (電気化学デバイス、弾性表面波デバイス)は、触媒材を適宜選定して用いることで、 多種類のガスに反応できるため、多種類を同時に検知する一体化ガスセンサーの小型 化が可能となる。 実施例 6.第 8図、第 9図、第 1 0図の実施例によって説明すると、第 9図は、機能体 が活物質として用いられる発電要素の正極活物質 1 96が装着された正極 1 95と、分離 膜 1 93と、負極活物質 1 99が装着された負極 1 98とが接合され、発電要素が一体に 形成されている。
発電要素は、ニッケル水素電池であれば、正極活物質に水酸化ニッケルが装着され た正極と、分離膜と、負極活物質に水素吸蔵合金が装着された負極が接合され、一体 に形成される。これがリチウム金属電池であれば、正極活物質にリチウムを含有する金 属酸化物等が装着された正極と、分離膜と、負極活物質に炭素、錫または珪素等、ある いはこれらの化合物等が装着された負極が接合され、一体に形成される。
発電要素が可逆燃料電池の場合は、酸素極 (水電解の場合は陽極)の機能物質に 炭素、イリジウム系合金、酸化物等が装着された正極と、フッ素樹脂等で成膜された電 解質膜と、水素極 (水電解の場合は陰極)の機能物質に白金黒等が装着され、 MEA (膜一電極接合体)が形成される。
また、燃料電池の場合は、電解質膜の機能物質はフッ素樹脂等有機高分子の樹脂 のほか、水素解離性の金属または合金の微粒子で、その材料を母体に炭化物または 酸化物で被膜処理をしたもの、あるいは炭素質、炭化物または酸化物の微粒子などを 用いて、その材料にプロトン伝導性の基が導入された機能材料を採用することができる。 これら電極や電解質膜 (分離膜を含む)の機能物質は、周知されている機能物質を用 いること力できる。
第 8図は、円筒型のニッケル水素電池またはリチウムイオン電池で、分離膜 1 93を 介して正極 1 90と負極 1 92が絶縁膜 1 94と共に渦巻き状に巻かれて、円筒ケース 1 8 0内に挿入され設けられている。
リチウムイオン電池の場合は、円筒ケース 1 80内には、アルミニウムから成る芯体 に LiCo02を主体とする活物質層が形成された正極 1 90と、銅から成る芯体に黒鉛を 主体とする活物質層が形成された負極 1 92と、これら両電極間を離す分離膜 1 93と力、 ら成る渦巻き状の発電要素を収納して、エチレンカーボネー卜 (EC)とジメチルカ一ポネ ート (DMC)が混合された混合溶媒に、 LiPF6が溶解された電解液が注入されて、封口 体によって電池が封口されている。 これが、ニッケル水素電池であれば、正極活物質層に水酸化ニッケルが装着された 正極と、分離膜と、負極活物質層の水素吸蔵合金の微粉体が装着された負極が同様 に渦巻き状にして電解液と共に円筒ケース内に封入される。
これら発電要素の正極と、固体高分子を含む分離膜と、負極を接合して一体に形成 したものを、絶縁膜 1 94で両側から挟み両端側面を熱圧着して発電要素をパック化し て、渦巻き状に巻きケースに挿入して製造すると、電解液の液漏れもな 機能物質が 適度に押し付けられることで電気伝導性を低下させること無く機能する。
この場合、機能材料を利用中に微粉化する粒径以下に予め微粉化されたものを、二 ッケル水素電池の負極では水素吸蔵合金を、一方、リチウム金属電池の負極でも錫や 珪素が同様の粒径に微粉化されたものを、それぞれ水で希釈した低温熱可塑性の水 溶性高分子の樹脂と混練したペーストを電極に塗布して加熱乾燥後、プレス圧着され て電極が形成される。低温熱可塑性の水溶性高分子の樹脂は、例えば、ポリオレフイン 系あるいはポリオレフイン系と四フッ化工チレン系を適宜調合したもので、水に分散した ェマルジヨンタイプの水溶解性高分子の樹脂を用いる。電極の活物質、分離膜の材質 および電解液などは、公知の材料を用いることができる。
このように低温熱可塑性の水溶性高分子の樹脂で機能物質が固定化される電極で は、特に、ニッケル水素電池の負極では、水素吸蔵合金が、あるいはリチウム金属電 池の負極では、錫や珪素が、同様に装着後の微粉化が発生しないことのほか、微粉体 の膨縮を可塑性によって柔軟に対応するため電極から機能物質の脱落が防止できるこ とから二次電池の長寿命化が図れる。
実施例 7.第 1 0図の実施例によって説明すると、 MEA (膜一電極接合体)プレートの 積層による可逆燃料電池である。 2枚のプレート電極 209、 21 0には、各々面内に凹 平面および凸平面が形成され、その凹平面および凸平面の中心部に水素(燃料)の流 通穴が各々開けられ、 2枚のプレート全面には、直線で平行な波溝を並べ、プレー卜を 重ねた時に波溝が交差するように各々直角方向に形成した波形部が形成され、かつ波 形部の全面には、水素(燃料)が通過できる微細孔が無数開けられて、 2枚のプレート は重ね合わされ、ともに縦方向の両側面を折り曲げてカセットが成形されて製造され る。 このプレート材質については、電極を兼ねる場合は、金属板をプレス成形して製造さ れるが、高分子材などの場合であれば射出成形後に導電帯を印刷方法などで形成し て製造され、プレートの縦方向に細い板材を重ねてプレート間隔を保たれると、積層体 の両端からボルトで拘束した場合に耐圧対策として都合がよい。
また、カセットのプレートの電極 209 (水電解の場合は陽極)およびプレートの電極 2 1 0 (水電解の場合は陽極)の波形部には、電極両面から外側に向かい酸素極拡散層 223、イオン交換膜 222、水素極拡散層 224、水素極電極および導電体が形成され発 電要素が接合した MEA (膜一電極接合体)プレートが形成される。
また、このように構成されるとカセット内部は、酸素 (空気)が通過し、さらにカセットが 積層されるとカセット間には、水素 (燃料)が流通できるようになり、水素 (燃料)と酸素 (空気)の流路が分断されるため、セ /、°レーターが不要となる。
また、流通穴は、プレートの縦方向の両端に設けられ、燃料電池として用いる場合、 水素 (燃料)が、純水素燃料のように C02などを生成しない場合は面内に 1個所でよぐ 炭化水素系の改質ガスを燃料として用いる場合などは、 C02などオフガスを通過させ るため面端に 2箇所必要となる。
また、カセットの両面の導電帯には、カセットを積層してセルを直列に結線するために、 カセット間に絶縁体 229a、 229bを挟んで積層する。このフィルム状の絶縁体の両面 には、電極を直列に接続するために集電帯が形成され、積層体の内部では水素極の 接続端子に接合して外部へ引き出され、外部で酸素極のプレート側の導線と直列に結 線される。
従来の燃料電池や水電解装置では、 2つ(セパレーターと MEA)の機能部材の組み 合わせによってスタックが構成され機能している。本発明では、 MEA (膜一電極接合 体)プレートの単体で機能部材として機能している。従い、本発明の MEA (膜一電極接 合体)プレートの機能部材では、従来の各膜材料に用いられる公知の拡散触媒および 電解質膜の材料であっても、すべて新規な構成要素として含まれる。また、各膜層の成 形方法は、材料は特に限定されず、製法も材料と結合材と溶剤などを用いディッビング 法、スプレー法、刷毛塗り法等であって良し、。デイツビング法としては、大気中でスラリー の中に基体を浸潰させる通常のデイツビング法の他、必要であれば焼結して形成される など、公知の製造方法で製造でき、その方法を特定するものではない。
また、膜状な可逆燃料電池として構成する場合、プレート全面に微細孔な波形部が設 けられたプレートまたはプレートの片面に MEA (膜一電極接合体)が形成され、 2つの MEA (膜一電極接合体)面を向き合わせてプレートが接合され、プレートの周園ま、孔 が全面に設けられた外装膜で覆われている。プレート両端には、水素(燃料)用のノズ ルが取り付けられ、 2枚のプレート内部を水素(燃料)が通過できるようにされ、電池の 両外面は、酸素 (空気)にさらされている。
また、プレートは、電極を兼ねる場合は、金属フィルムをプレス成形して製造されるが、 高分子材などの場合であれば高分子フィルムをプレス成形後に導電帯を印刷方法など で形成して製造される。波形部には、 MEA (膜—電極接合体)の各層および導電帯が 形成される。プレートから、導電帯 (高分子材の場合)と、 MEA (膜一電極接合体)の各 層として、酸素 (空気)極、電解質膜、水素 (燃料)極、が順次形成された上に導電帯が 形成されている。
このように膜状燃料電池が構成されると、設置形状に合わせて平面的または局面的 あるいは巻いて円筒的など、形状自在で用いることができる。運転中も常に空気にさら されているため、生成する水も自然に蒸発するため、動力で送風する必要がないため 合理的である。
本発明について説明したが、本発明は上記実施形態に限定されるものではなぐ改 良の目的または本発明の思想の範囲内において改良または変更が可能である。 産業上の利用可能性
以上説明したように、微粉化の機能物質を被膜化したことで、利用する様々な装置な どの高機能化、軽量化、低コスト化などを可能とする。また、機能物質の処理装置では、 金属還元や金属水素化物の微紛体の製造装置としても提供ができる。且つ、水素化マ グネシゥム等を用いて、安全な水素エネルギーの貯蔵'輸送や大量水素発生利用がで き、加水分解後のマグネシウムも医薬、工業、農業など広く二次利用ができる利点があ リ、水素社会においては、これらの技術が地球環境保全に功を奏する。

Claims

請求の範囲
1 .機能体は、機能物質がナノメートル域の微粉体または機能物質がナノメートル域の 微粉体を被膜材でまとめ固形状または粒状に被膜化した機能体手段を用い、 前記機能物質の処理装置では、耐圧容器にフランジおよびジャケット並びに温調部を 設けた単数または複数の処理容器手段と、
前記耐圧容器に脱気装置および水素吸蔵放出装置を配した水素充填手段と、 前記耐圧容器および水素吸蔵放出装置にそれぞれ加熱装置および冷却装置を配した 加熱冷却手段と、
前記処理容器手段および水素充填手段並びに加熱冷却手段を自動制御する電子制 御手段とで構成し、
前記機能体の貯蔵具では、自然または再生可能なエネルギーによって機能物質の還 元および水素化が行われた機能体を防水された容器または袋に密封収納するェネル ギー変換貯蔵手段で構成し、
前記機能体を用いる成形品または塗装材あるいは被覆材あるいは注入剤では、材料 および結合材と触媒機能の機能体を混合して分散させた触媒手段で構成し、 前記機能体を用いる水素溶解剤では、水素化した機能物質による機能体を粉体または 固形体あるいは粘体の医薬または食品あるいは貼膜物に混入するかあるいは容器に 充填した水素溶解手段で構成し、
前記機能体を用いる水素需要装置では、水素化した機能物質による機能体を装着した 水素発生容器による水素放出手段と、
水素貯蔵物質を用いた水素貯蔵容器に加熱装置を配した水素吸蔵放出手段と、 前記水素放出手段の機能体と液体水とを反応させて金属水素化物および加水分解か らの水素ガスを発生させる水素発生手段と、
前記水素発生手段による発生水素ガスを水素需要体へ供給し酸素と化合して生成した 水を水素発生手段に利用する原料水供給手段と、
検知系統を含む電子制御による電子制御手段とで装置が一体構成し、
前記機能体を用いるガスセンサーでは、熱電対の測温接点側の導体接合点と機能体 を装着したガス反応体による複合素子手段と、 前記複合素子手段を離脱着容器内に収納させた離脱着手段と、
前記複合素子手段を制御する電源を含むトムソン効果制御系統およびゼーベック効果 制御系統などからなる電子制御部による電子制御手段とで構成し、
前記機能体を用いる二次電池では、活物質の機能物質と低温熱可塑性の被膜材を用 いて形成する電極手段と、
前記電極手段の負極と正極と分離膜からなる発電要素を接合して絶縁膜で覆った一体 化手段とで構成し、
前記機能体を M EA (膜—電極接合体)プレートに用いる燃料電池または可逆燃料電池 では、波形部等を設けたプレートの片面に MEA (膜一電極接合体)を形成した MEA (膜—電極接合体)プレート手段と、
前記 MEA (膜一電極接合体)プレートの単体または MEA (膜一電極接合体)プレート 2 枚を張り合わせた MEA (膜一電極接合体)カセット、あるいはその MEA (膜一電極接合 体)カセットを重ね合わせ積層した積層手段と、
前記 MEA (膜一電極接合体)プレートの単体または MEA (膜一電極接合体)カセットを 外装膜で覆うか、あるいは積層された MEA (膜一電極接合体)カセットの周囲を接合し て陽極側あるいは負極側の内部を密閉し分離して、二流路の流体用の各ノズルを設け た密閉手段とで構成したことを特徴とする機能体、機能物質の処理装置および機能体 の応用装置並びに機能体の装着方法。
2.前記機能物質は、次の(1 )〜(9)いずれかの一種類または複数種類以上の材料で あることを特徴とする請求の範囲 1記載の機能体。
(1 )ハロゲン元素またはその化合物であること。
(2)酸素族元素またはその合金あるいはその化合物であること。
(3)窒素族元素またはその合金あるいはその化合物であること。
(4)炭素族元素またはその合金あるいはその化合物であること。
(5)アルカリ金属元素またはその合金あるいはその化合物であること。
(6)アルカリ土類金属元素またはその合金あるいはその化合物であること。
(7)亜鉛'カドミウム'水銀元素またはその合金あるいはその化合物であること。
(8)ホウ素族元素またはその合金あるいはその化合物であること。 (9)第 4、 5、 6、 7周期の遷移元素またはその合金あるいはその化合物であること。
3.前記機能体は、次の(1 )〜(3)いずれかの方法によって 3〃m以下から 1 nm以内 の必要に応じた粒径で予め微粉化および処理加工がされる微粉処理工程を経た後、 被膜材と溶剤によりペーストにしてから固形化するか、あるいは固形化したものを粉砕 して粗粒子にして製造される被膜工程を経たことを特徴とする請求の範囲 1、 2いずれ か記載の機能体。
( 1 )容器内に機能物質と不活性の気体等を導入し機械的な粉砕処理またはレーザー 照射によって材料を高温加熱してガス化したものを冷却して微紛体が製造されたもので める と。
(2)耐圧容器内に機能物質と水素を導入し水素化反応の自己発熱により金属水素化 物の結晶を含む微紛体が製造されたものであること。
(3)真空容器内に、炭素系材料とアルカリ金属材料とを距離をおき配置して封入し、炭 素系材料とアルカリ金属材料とを個別に温度制御して、気相反応によって炭素系材料 の平面状分子層間にアルカリ金属の金属原子を挿入させた微粉体が製造されたもの であること。
4.前記機能体は、次の(1 )〜(7)のいずれかの目的に用いることを特徴とする請求の 範囲 1、 2、 3いずれか記載の機能体。
( 1 )触媒の目的であり、成形品または塗装材または注入剤等に用いること。
(2)液体への水素溶解目的であり、医薬'食品等に混入あるいは容器等に用いること。 (3)エネルギー貯蔵目的であり、防水された密封な容器または袋等で保存されること。
(4)加水分解を伴う水素発生の目的であり、水素需要体と一体構成して原料液体水の 循環経路の容器内等に用いること。
(5)ガス検知目的であり、検知部等に用いること。
(6)特定物 の精製または貯蔵 (吸着'吸蔵)あるいはヒートポンプまたは水素加圧の 目的であり、各々装置内等に用いること。
(7)燃料電池または水電解装置あるいは二次電池の目的であり、 MEA (膜一電極接 合体)の膜層または電極等の発電要素に用いること。
5.前記処理容器手段の温調部に電熱線または電熱プラグまたはレーザー放射プラグ を設けたことを特徴とする請求の範囲 1、 2、 3、 4いずれか記載の機能物質の処理装 置。
6.前記レーザー放射プラグのレーザー源は、太陽光を集光したものあるいは自然また は再生可能なエネルギーから変換した電力で電磁波を発生したものを増幅励起させた ことを特徴とする請求の範囲 1、 2、 3、 4、 5いずれか記載の機能物質の処理装置。
7.前記処理容器手段の耐圧容器内に、金属または合金あるいは金属化合物を入れて、 水素または不活性の気体等を導入し、レーザ一照射によって材料を高温加熱してガス 化したものを冷却して金属の水素化または金属の還元をすることを特徴とする請求の 範囲 1、 2、 3、 4、 5、 6いずれか記載の機能物質の処理装置。
8.波形部を持つ金属のプレートの平面部内に水素ホールを設けて、前記プレート 2枚 の間に板材を挟んで重ねあわせ口一付けしてプレートカセットを形成して、前記プレート カセット両面の波形部の溝内に機能体を固形接着した後、前記プレートカセットを積層 し周囲の接合部を溶接して水素室を密閉にした積層体を形成し、前記積層体の両端側 には熱媒体ノズルおよび上面側の水素ホールには水素ノズルを接合して構成したこと を特徴とする請求の範囲 1記載の水素吸蔵放出装置。
9.前記水素吸蔵放出装置は、次の(1 )〜(4)のいずれかの目的の装置として規模を 問わず用いることを特徴とする請求の範囲 1、 8いずれか記載の水素吸蔵放出装置。
( 1 )気体貯蔵目的であり、機能体を用い貯蔵 (吸着'吸蔵)および運搬をする装置として 用いるものであること。
(2)気体精製目的であり、機能体を用い混合ガスまたは低純度ガスから高純度ガスを 得る装置として用いるものであること。
(3) ヒートポンプ目的であり、水素化発熱および水素放出吸熱を回収する装置として 用いるものであること。
(4)水素加圧目的であり、物質の還元、活性化および水素圧縮の装置として用いるも のであること。
1 0.水素溶解手段は、食材または栄養剤あるいは薬剤等の目的材料の粉末と金属水 素化物の機能体との混合物、または前記混合物と固形材を混練して金型で成形したも の、あるいは前記混合物と有機高分子を乾燥させた粉体とを混合し攪拌して金型で加 圧成形し加熱処理をしたもの、あるいは前記混合物を金型で加圧形成して液状の有機 高分子を表面に塗布してから加熱乾燥処理をしたことを特徴とする請求の範囲 1、 2、 3、 4いずれか記載の水素溶解剤。
1 1 .水素溶解手段は、液体が浸入できる微細孔を複数設けた容器の内部に金属また は金属水素化物の機能体を充填したものであることを特徴とする請求の範囲 1、 2、 3、
4、 10いずれか記載の水素溶解剤。
12.水素放出手段は、水素発生容器内に金属または金属水素化物の機能体を装着し、 一方向弁を備えた水素ノズルと液体ノズルを取り付け脱着可能にした容器であることを 特徴とする請求の範囲 1、 2、 3、 4いずれか記載の水素需要装置。
1 3.水素発生手段および水素吸蔵放出手段は、水素需要体の発熱を加熱熱源とする ことを特徴とする請求の範囲 1、 2、 3、 4、 12いずれか記載の水素需要装置。
14.複合素子手段のガス反応体は、次の(1 )〜(4)のいずれかによリガス検知機能を 得ることを特徴とする請求の範囲 1、 2、 3、 4いずれか記載のガスセンサ一。
(1 )機能体を熱電対の導体接合点の周囲に装着したものであること。
(2)電極層を両面に備えるプロトン伝導膜 (体)の外面に機能体による拡散触媒層を形 成した電気化学デバイスであり、熱電対の導体接合点を接合または挿入したものであ ること。
(3)熱電対の導体接合点の外周に、機能体による拡散触媒層、電極層、プロトン伝導 膜 (体)を形成した円筒な電気化学デバイスであること。
(4)球体もしくは楕円球体の弾性表面波 (SAW)デバイスであり、熱電対の導体接合点 を接合または揷入したものであること。
1 5. MEA (膜一電極接合体)プレートの電解質膜では、次の(1 )〜(4)のいずれかの 機能体にプロトン伝導性の基が導入されたものであることを特徴とする請求の範囲 1、 2、 3、 4記載の燃料電池または可逆燃料電池。
(1 )有機高分子であること。
( 2)水素解離性の金属または合金の機能体を母体に炭化物または酸化物で被膜処理 をしたものであること。
(3)炭素質の微粒子であること。 (4)炭化物または酸化物の微粒子の材料であること。
1 6.耐圧容器内に金属酸化物を入れて不活性の気体を導入しておき、レーザー照射 によって酸素と金属にガス化分離させ、酸素ガスは外部へ放出し金属ガスを内部で冷 却し金属還元をした後、次いで耐圧容器内に高圧水素を導入して、還元金属の一 S耑を レーザー照射によって着火させ、水素化反応の自己発熱で反応を促進させて金属水素 化物の微粉体を得ることを特徴とする請求の範囲 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5いずれか記載の水素化される機能物質の再生方法
1 7.脂肪族ポリエステル系またはポリオレフイン系または四フッ化工チレン系の樹脂を 水に分散した水溶解性の有機高分子の樹脂を含む水溶解性の有機高分子の樹脂また は有機溶剤溶解性の有機高分子の樹脂のいずれか一種類または複数種類を用い、溶 剤で希釈して機能物質の微粉体とを混練した後、加熱によってガラス転移させ固形化 をして被膜化を行うか、あるいは乾燥して微粉化した水溶解性高分子の樹脂または有 機溶剤溶解性の有機高分子の樹脂と機能物質の微粉体とを混合した後、加熱によって ガラス転移させ固形化をして被膜化を行い、あるいはその固形化したものを粉砕して粗 粒子に製造されることを特毁とする請求の範囲1、2、3、4、5、6、7、8、9、1 0、1 1、 1 2、 1 3、 1 4、 1 5、 1 6いずれか記載の機能物質の被膜方法。
1 8.第一の装着方法は、被膜化した粗粒子の機能体と溶剤で希釈した結合材とを混 練したペーストを加熱乾燥して任意の形状で固形化したものを目的とする装置内また は装置内のパイプの内側または外側に充填して装着するか、もしくは、そのペーストを 波形プレートの溝内あるいは電極に塗布した後、加熱乾燥して固形接着する。
第二の装着方法は、機能物質のナノメートル域の微粉体と溶剤で希釈した結合材とを 混練したペーストを目的とする装置内または装置内のパイプの内側または外側または 波形プレートの溝内、あるいは電極に塗布してから加熱乾燥して固形接着した後、その 固形化した表面に溶剤で希釈した被膜材を塗布して被膜化をする。
第三の装着方法は、機能物質のナノメートル域の微粉体と溶剤で希釈した被膜材とを 混練したペーストを目的とする装置内あるいは電極に塗布してから加熱乾燥して固形 化した後、必要に応じてプレス圧着したことを特徴とする請求の範囲 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7いずれか記載の機能体の装着方法。 要約書
本発明は、ナノメートルサイズ微紛体の機能物質の製造と利用に係り、機能物質の処 理装置および応用装置の機能を高めることができ、且つ、機能物質を用いる装置の軽 量化および低コスト化に関する。
機能体は、機能物質がナノメートル域の微粉体または機能物質がナノメートル域の 微粉体を被膜材でまとめ固形状または粒状に被膜化した機能体手段を用いる。機能物 質の処理装置では、耐圧容器にフランジおよびジャケット並びに温調部を設けた単数ま たは複数の処理容器手段と、耐圧容器に脱気装置および水素吸蔵放出装置を配した 水素充填手段と、耐圧容器および水素吸蔵放出装置にそれぞれ加熱装置および冷却 装置を配した加熱冷却手段と、処理容器手段および水素充填手段並びに加熱冷却手 段を自動制御する電子制御手段とで構成される。機能体の貯蔵具では、自然または再 生可能なエネルギーによって機能物質の還元および水素化が行われた機能体を防水 された容器または袋に密封収納するエネルギー変換貯蔵手段で構成する。機能体を用 し、る成形品または塗装材あるいは被覆材あるいは注入剤では、材料および結合材と触 媒機能の機能体を混合し機能物質を分散させた触媒手段で構成される。機能体を用い る水素溶解剤では、機能体または水素化した機能物質による機能体を粉体または固形 体あるいは粘体の医薬または食品あるいは貼膜物に混入するかあるいは容器に充填 :した水素溶解手段で構成される。機能体を用いる水素需要装置では、水素化した機能 物質による機能体を装着した水素発生容器による水素放出手段と、水素貯蔵物質を用 いた水素貯蔵容器に加熱装置を配した水素吸蔵放出手段と、水素放出手段の機能体 と液体水とを反応させて金属水素化物および加水分解からの水素ガスを発生させる水 素発生手段と、水素発生手段による発生水素ガス 水素需要体へ供給し酸素と化合し て生成した水を水素発生手段に利用する原料水供給手段と、検知系統を含む電子制 御による電子制御手段とで装置が一体構成される。機能体を用いるガスセンサーでは、 熱電対の測温接点側の導体接合点と機能体を装着したガス反応体による複合素子手 段と、複合素子手段を離脱着容器内に収納させた離脱着手段と、複合素子手段を制御 する電源を含むトムソン効果制御系統およびゼーベック効果制御系統などからなる電 子制御部による電子制御手段とで構成される。機能体を用いる二次電池では、活物質 の機能物質と低温熱可塑性の被膜材を用いて形成する電極手段と、電極手段の負極 と正極と分離膜からなる発電要素を接合して絶縁膜で覆った一体化手段とで構成され る。機能体を MEA (膜-電極接合体)プレートに用いる燃料電池または可逆燃料電池 では、波形部等を設けたプレー卜の片面に MEA (膜一電極接合体)を形成した MEA (膜—電極接合体)プレート手段と、 MEA (膜一電極接合体)プレートの単体または MEA (膜-電極接合体)プレート 2枚を張り合わせた MEA (膜-電極接合体)カセット、ある いはその MEA (膜一電極接合体)カセットを重ね合わせ積層した積層手段と、 MEA (膜 —電極接合体)プレートの単体または MEA (膜一電極接合体)カセットを外装膜で覆う か、あるいは積層された MEA (膜一電極接合体)カセットの周囲を接合して陽極側ある いは負極側の内部を密閉し分離して、二流路の流体用の各ノズルを設けた密閉手段と で構成したことで、金属水素化物の微粉体および金属化合物から還元した金属粉体の 製造が低コストとなり、従来技術の課題である活性化した機能物質の粉体を大気中に 長時間晒しても発火もなく安全で被毒もせず、様々な装置へ低コストで装着することが できる。且つ、自然または再生可能なエネルギーで水素化マグネシウムを製造すること
、、
で、エネルギーを高密度な安全物質に変換して貯蔵'輸送を可能にし、水素需要体へ大 量な水素を発生して安全に供給できる。また、ガスセンサ一や二次電池等の長寿命化 が実現できる。
PCT/JP2005/014001 2004-07-26 2005-07-26 機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着方法 WO2006011620A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006527885A JPWO2006011620A1 (ja) 2004-07-26 2005-07-26 機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着方法
US11/658,376 US20090035623A1 (en) 2004-07-26 2005-07-26 Functional product, treatment device of functional substance, applied device of functional product and mounting method of functional product

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-216765 2004-07-26
JP2004216765 2004-07-26
JP2004316995 2004-10-29
JP2004-316995 2004-10-29
JP2004365062 2004-12-16
JP2004-365062 2004-12-16
JP2005-008437 2005-01-14
JP2005008437 2005-01-14
JP2005092290 2005-03-28
JP2005-092290 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006011620A1 true WO2006011620A1 (ja) 2006-02-02

Family

ID=35786360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014001 WO2006011620A1 (ja) 2004-07-26 2005-07-26 機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着方法

Country Status (3)

Country Link
US (1) US20090035623A1 (ja)
JP (1) JPWO2006011620A1 (ja)
WO (1) WO2006011620A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015844A1 (fr) * 2006-07-31 2008-02-07 Techno Bank Co., Ltd. Appareil générateur de courant
JP2008298217A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 水素貯蔵システム
WO2010116530A1 (ja) * 2009-04-10 2010-10-14 株式会社テクノバンク 洋上自然エネルギー変換装置
JP2011032148A (ja) * 2009-08-05 2011-02-17 Aquafairy Kk 水素発生剤、その製造方法及び水素発生方法
JP2018514923A (ja) * 2015-05-04 2018-06-07 ビーエーエスエフ コーポレーション 電気化学的水素吸蔵電極および電気化学的電池
RU2729567C1 (ru) * 2019-12-18 2020-08-07 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) Способ повышения эффективности металлогидридных теплообменников
JP2021506724A (ja) * 2017-12-18 2021-02-22 アイホッド リミテッド 水素を生成するための組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0708758D0 (en) * 2007-05-04 2007-06-13 Powderject Res Ltd Particle cassettes and process thereof
US8246796B2 (en) * 2010-02-12 2012-08-21 Honeywell International Inc. Fuel cell recharger
CN101881369A (zh) * 2010-06-25 2010-11-10 桂林电子科技大学 阵列式固态储氢放氢装置
TWI460238B (zh) 2011-12-15 2014-11-11 Ind Tech Res Inst 自組塗裝塗料、散熱板及其製造方法
TWI466153B (zh) 2011-12-15 2014-12-21 Ind Tech Res Inst 電容器及其製造方法
FR2985670A1 (fr) * 2012-01-12 2013-07-19 Centre Nat Rech Scient Procede ameliore pour le stockage d'un gaz
TWM541176U (zh) * 2016-12-21 2017-05-01 財團法人工業技術研究院 無機粉體製作裝置以及無機粉體製作與分級裝置
GB201806840D0 (en) * 2018-04-26 2018-06-13 Univ Of The Western Cape Metal hydride hydrogen storage arrangement for use in a fuel cell utility vehicle and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052814A (ja) * 2002-07-16 2004-02-19 Nissan Motor Co Ltd 水素貯蔵装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052814A (ja) * 2002-07-16 2004-02-19 Nissan Motor Co Ltd 水素貯蔵装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015844A1 (fr) * 2006-07-31 2008-02-07 Techno Bank Co., Ltd. Appareil générateur de courant
JP2008298217A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 水素貯蔵システム
WO2010116530A1 (ja) * 2009-04-10 2010-10-14 株式会社テクノバンク 洋上自然エネルギー変換装置
JP2011032148A (ja) * 2009-08-05 2011-02-17 Aquafairy Kk 水素発生剤、その製造方法及び水素発生方法
JP2018514923A (ja) * 2015-05-04 2018-06-07 ビーエーエスエフ コーポレーション 電気化学的水素吸蔵電極および電気化学的電池
JP7097700B2 (ja) 2015-05-04 2022-07-08 ビーエーエスエフ コーポレーション 電気化学的水素吸蔵電極および電気化学的電池
JP2021506724A (ja) * 2017-12-18 2021-02-22 アイホッド リミテッド 水素を生成するための組成物
RU2729567C1 (ru) * 2019-12-18 2020-08-07 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) Способ повышения эффективности металлогидридных теплообменников

Also Published As

Publication number Publication date
JPWO2006011620A1 (ja) 2008-05-01
US20090035623A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
EP2048110A1 (en) Power generating apparatus
WO2006011620A1 (ja) 機能体、機能物質の処理装置および機能体の応用装置並びに機能体の装着方法
US7001681B2 (en) Water vapor transport power generator
Sapkota et al. Zinc–air fuel cell, a potential candidate for alternative energy
US8916305B2 (en) Methods of generating hydrogen gas and power
EP2920107B1 (en) Hydrogen generator
EP1908729A1 (en) Hydrogen-generating material and hydrogen generation apparatus
US20150089796A1 (en) Method of making a packaged fuel unit for a hydrogen generator
WO2014025770A2 (en) Fuel unit, refillable hydrogen generator and fuel cell system
US20200295386A1 (en) Water exchanger for a fuel cell based power generator
CN101600647A (zh) 发电装置
Huang et al. Metal phosphates as intermediate temperature proton conducting electrolytes
Xia et al. Metal–Nitrogen Batteries: Emerging and Promising Models for Energy Conversion/Storage System and Simultaneous NH3 Synthesis
CN1540777A (zh) 金属燃料电池箱
US20150064104A1 (en) Hydrogen generator with sequential fuel initiation
JP2013020722A (ja) 燃料電池発電システム
US9660279B2 (en) Fuel unit for hydrogen generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527885

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11658376

Country of ref document: US