[go: up one dir, main page]

WO2006016020A2 - Nanoparticules comprenant un coeur constitue essentiellement d’un polymere cyanoacrylique et une ecorce d’un polymere amphiphile, et eventuellement un principe actif qui est preferablement du busulfan - Google Patents

Nanoparticules comprenant un coeur constitue essentiellement d’un polymere cyanoacrylique et une ecorce d’un polymere amphiphile, et eventuellement un principe actif qui est preferablement du busulfan Download PDF

Info

Publication number
WO2006016020A2
WO2006016020A2 PCT/FR2005/001398 FR2005001398W WO2006016020A2 WO 2006016020 A2 WO2006016020 A2 WO 2006016020A2 FR 2005001398 W FR2005001398 W FR 2005001398W WO 2006016020 A2 WO2006016020 A2 WO 2006016020A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nanoparticles
amphiphilic
polymeric nanoparticles
cyanoacrylic
Prior art date
Application number
PCT/FR2005/001398
Other languages
English (en)
Other versions
WO2006016020A3 (fr
Inventor
Anne Magali Layre
Ruxandra Gref
Patrick Couvreur
Joël Richard
Original Assignee
Ethypharm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethypharm filed Critical Ethypharm
Publication of WO2006016020A2 publication Critical patent/WO2006016020A2/fr
Publication of WO2006016020A3 publication Critical patent/WO2006016020A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the present invention relates to biodegradable composite polymeric nanoparticles, which may optionally contain an active principle, as well as suspensions in aqueous medium of such particles, their preparation and their use.
  • composite polymeric nanoparticles means particles of a size between 20 and 500 nm, charged or not in active principle (s) and consisting of a combination of at least two polymers of different nature.
  • Nanoprecipitation is meant in the sense of the present invention a process leading to the precipitation in the form of nanoparticles, one or more polymers.
  • Nanoprecipitation is a method based on the formation of colloidal polymeric particles by phase separation. The nanoprecipitation can thus be generated by the addition of a non-solvent of the polymer to a solution of this polymer, the non-solvent being miscible with the solvent in large proportion.
  • the phase separation then leads to an immediate precipitation of the polymer in the form of stable nanoparticles.
  • the composite polymeric nanoparticles of the invention are particularly suitable for encapsulation and for the vectorization of molecules with a therapeutic effect exhibiting high instability and / or high toxicity with respect to the medium into which they are introduced. This is particularly the case for active ingredients which have a strong tendency to crystallization and / or are weakly to very weakly water-soluble and / or toxic.
  • anti-cancer agents are not only toxic to the human or animal body, but also exhibit low solubility and tendency to crystallize which limit the therapeutic index, and may lead to the formation of crystalline particles in situ after administration, if the local concentration approaches saturation, said crystalline particles then being responsible for a vascular obstruction.
  • molecules used as anticancer anticancer agents such as busulfan which possess, because of their three-dimensional structure, and the nature of their chemical groups, a strong tendency to crystallization.
  • the structure of these agents is such that they present, in the natural state, chemical groups that have a strong tendency to self-associate, through hydrophobic or polar interactions leading to the spontaneous crystallization of these molecules. .
  • Such a crystallization phenomenon is of course unsuitable for parenteral administration of active principles with a therapeutic effect, taking into account, on the one hand, the size of the crystals which may cause partial or total vascular obstruction, and, on the other hand, the considerable slowing down of the dissolution and absorption of these assets.
  • the high chemical reactivity of certain active ingredients makes their encapsulation in polymeric structures such as nanoparticles, very difficult if not impossible, when these particles are obtained by a conventional emulsion polymerization process.
  • the methylsulfonate groups of these anticancer agents are extremely reactive and interact with the monomeric structures as soon as they come into contact, thus preventing the normal polymerization of the polymer (s) and thus the formation of well-individualized polymeric vectors.
  • such a chemical interaction causes its active agent to lose its biological activity. It is therefore necessary to avoid such interactions when encapsulating alkylating agents.
  • the reaction of the immune system of the individual and in particular the Mononuclear Phagocyte System (SPM), accelerates the elimination of the administered object, regardless of the type. administered vector.
  • SPM Mononuclear Phagocyte System
  • the polymeric nanoparticles administered are rapidly eliminated by the body's immune system and thus have a limited life span, implying a low therapeutic efficacy.
  • colloidal vectors in the form of liposome-based injectable liquid formulations, in particular loaded with busulfan, as described in the article Bone Marrow Transplant. 2002.30 (12): 833-41.
  • Such formulations allow encapsulation of busulfan at levels of the order of about 0.5% by weight of the total weight of liposomes.
  • colloidal-based liposomes also have the disadvantage of a short life in the plasma environment due to spontaneous dissociation and rapid metabolic degradation of these lipid structures.
  • Polymers of the poly (alkyl cyanoacrylate) (or PACA) family are particularly suitable for the transport of chemically sensitive and / or unstable active ingredients, since they have a relatively low toxicity and are compatible with intravascular administration (Kante et al., 1982, Couvreur et al., 1989).
  • the degradation products of these polymers in the body are essentially alcohols or poly (cyanoacrylic acids) which are well tolerated and easily eliminated by the body, and on the other hand, the kinetics of degradation of these polymers. makes it possible to administer them intravascularly.
  • polymers of the family of poly (alkyl cyanoacrylates) are also compatible with intravenous administration.
  • polymeric nanoparticles based on poly (alkyl cyanoacrylates) have been used for the transport and delivery of insulin intravenously, as described in US 5,641,515 to ELAN Corp ..
  • insulin is associated with the poly (alkyl cyanoacrylate) polymer in the form of a chemical complex where the molecular integrity of insulin and thus the effectiveness of this molecule is preserved: after having been administered, insulin is gradually released into the body.
  • colloidal vectors in the form of nanoparticles described above have the advantage of conferring a certain stability on the products transported within the nanoparticles has led to the development of colloidal vectors consisting of polymeric nanoparticles of poly (cyanoacrylates). alkyl) charged with toxic and / or unstable active ingredients.
  • US Pat. No. 4,329,332 describes nanoparticles consisting of polymers of methyl cyanoacrylate or of ethyl cyanoacrylate that can be used for the transport and parenteral administration of anticancer active ingredients such as actinomycin or methotrexate, for example. These nanoparticles with a diameter of less than 500 nm are manufactured by spontaneous micellar polymerization of the monomers in an acid medium.
  • nanoparticles have the disadvantage of having a low level of encapsulation.
  • the active ingredient loading capacity of the poly (alkyl cyanoacrylate) nanoparticles expressed as the amount of active ingredient associated with a polymer mass unit, also called the encapsulation rate is very closely related to the nature of the active ingredient to encapsulate.
  • these nanoparticles are obtained by an in situ polymerization process in an aqueous medium, which tends to rapidly reprecipitate and crystallize poorly soluble or insoluble active ingredients, thus making it difficult to encapsulate these active principles.
  • patent application WO 99/43359 describes the use of weakly water-soluble active agent vectors constituted by an association between a poly (alkyl cyanoacrylate) and a compound capable of complexing the active principle.
  • the latter compounds are, for example, cyclodextrins for which it has been found that the affinity of the cyclodextrin with certain active agents makes it possible to substantially increase the degree of encapsulation.
  • polyalkyl cyanoacrylates on which PEGs are grafted allows a certain improvement in the half-life of the nanoparticles formed therefrom.
  • the PEG hydrophilic groups significantly reduce non-specific capture phenomena by the actors of the Mononuclear Phagocyte System (SPM) and in particular by macrophages.
  • SPM Mononuclear Phagocyte System
  • various types of poly (alkyl cyanoacrylate) have been employed.
  • nanoparticles formed by emulsion polymerization from the monomeric units of the poly (isobutyl cyanoacrylate) (PIBCA) and PEG groups dispersed in the aqueous phase were synthesized by Perrachia et al. (J. Biomed, Mater Res 1997, 34 (3): 317-326). These nanoparticles, which are not loaded with active principle, have an improved half-life due to the presence on their surface of PEG groups which spontaneously orient themselves to the outside of the nanoparticles, thus limiting their capture by the agents of the immune system.
  • the present invention therefore proposes to overcome these disadvantages by proposing composite biodegradable polymeric nanoparticles consisting of at least one polymer of the poly (alkyl cyanoacrylate) family, and at least one other polymer of amphiphilic nature, capable of parenteral administration in humans or animals, and also having a high level of encapsulation of active ingredients and in particular of hydrophobic active ingredients and / or very chemically reactive, and / or having a strong propensity to crystallization.
  • These composite nanoparticles also have the advantage of being able to be manufactured in a relatively simple and fast process.
  • nanoparticles according to the invention can thus be used for the manufacture of medicaments for the treatment of autoimmune or cancerous diseases.
  • these nanoparticles are useful in the treatment of leukemias and especially chronic myeloid leukemia.
  • the subject of the invention is biodegradable composite polymeric nanoparticles comprising:
  • an inner polymeric core consisting essentially of at least one cyanoacrylic polymer chosen from the group of polyalkylcyanoacrylates
  • an outer polymeric shell consisting essentially of at least one amphiphilic polymer comprising at least one hydrophilic group and at least one minus one hydrophobic group
  • the cyanoacrylic polymer according to the invention is chosen from the group of poly (alkyl cyanoacrylate) (PACA), the alkyl group being a linear or branched alkyl group, preferably comprising 1 to 12 carbon atoms, and better from 3 to 6 carbon atoms.
  • PDA poly (alkyl cyanoacrylate)
  • the preferred cyanoacrylic polymers according to the invention are chosen from the group comprising poly (ethyl cyanoacrylate) (PECA), polybutyl cyanoacrylate (PBCA), poly (isobutyl cyanoacrylate) PIBCA, poly ( propyl cyanoacrylate) (PPCA) and poly (isohexyl cyanoacrylate) (PIHCA) which are particularly effective for the encapsulation of hydrophobic and / or very chemically reactive and / or having a very high tendency to crystallize.
  • PECA poly (ethyl cyanoacrylate)
  • PBCA polybutyl cyanoacrylate
  • PIBCA poly (isobutyl cyanoacrylate)
  • PPCA propyl cyanoacrylate
  • PIHCA poly (isohexyl cyanoacrylate)
  • the more preferred cyanoacryl polymers according to the invention are poly (ethyl cyanoacrylate) (PECA) or poly (isobutyl cyanoacrylate) (PIBCA).
  • the even more preferred cyanoacrylic polymer according to the invention is poly (isobutyl cyanoacrylate) (PIBCA).
  • the cyanoacrylic polymers according to the invention have a weight average molecular weight determined by size exclusion chromatography (CES) in polystyrene equivalent of between 2000 and 500 000 g / mol, preferably between 5000 and 350 000 g / mol.
  • CES size exclusion chromatography
  • the polymeric shell of the nanoparticles according to the present invention consists essentially of at least one polymer of amphiphilic nature comprising at least one group of hydrophobic nature, and at least one group of hydrophilic nature.
  • hydrophilic group means not only a hydrophilic functional group, in particular a hydrophilic, monovalent or polyvalent atom or group of atoms, for example divalent or trivalent, said hydrophilic functional group being borne by the carbon skeleton of the amphiphilic polymer according to the invention; but also a block (or "block") of hydrophilic nature, for example a monomer or a chain of identical or different monomers of hydrophilic nature, said monomer or chain of monomers of hydrophilic nature being located in the chain of the amphiphilic polymer according to US Pat. invention.
  • hydrophobic group means not only a hydrophobic functional group, in particular an atom or group of atoms.
  • hydrophobic, monovalent or polyvalent for example divalent or trivalent, said hydrophobic functional group being carried by the carbon skeleton of the amphiphilic polymer according to the invention; but also a block (or "block") of hydrophobic nature, for example a monomer or a chain of identical or different monomers of hydrophobic nature, said monomer or chain of monomers of hydrophobic nature being located in the chain of the amphiphilic polymer according to US Pat. invention.
  • the groups of preferred hydrophobic nature of the polymer of amphiphilic nature according to the invention are chosen from the group comprising poly (anhydrides), polyesters such as polymers of lactic acid (PLA), polycaprolactones (PCL), copolymers of lactic acid and glycolic acid (PLGA), polyhydroxybutyrate, polyhydroxyvalerate and their copolymers.
  • poly (anhydrides) polyesters such as polymers of lactic acid (PLA), polycaprolactones (PCL), copolymers of lactic acid and glycolic acid (PLGA), polyhydroxybutyrate, polyhydroxyvalerate and their copolymers.
  • the preferred hydrophilic nature groups of the polymer of amphiphilic nature according to the invention are chosen from the group comprising polysaccharides, polyvinylpyrrolidones, and preferably polyethylene glycols (PEGs).
  • the groups of hydrophilic nature of the polymer of amphiphilic nature according to the invention have a weight average molecular weight of between 1000 and 20000 g / mol, preferably between 2000 and 5000 g / mol.
  • amphiphilic polymers according to the present invention will be used diblock copolymers (or “diblocks") or multiblock copolymers (or “multiblocks”), at least one of which is constituted or bearing a hydrophilic group (s) (s). ) and at least one sequence is constituted or is carrier of hydrophobic group (s).
  • the block consisting of and / or carrying a hydrophobic group (s) constitutes the hydrophobic part of the amphiphilic polymer according to the invention, and the block consisting of and / or bearing a hydrophilic group (s) constitutes the hydrophilic part thereof. .
  • the amphiphilic polymer according to the present invention consists of a PECL / PEG type diblock copolymer, that is to say composed of a pure poly ⁇ -caprolactone sequence and a PEG sequence.
  • the amphiphilic polymer according to the invention must be insoluble in water. Therefore, it is preferable that the ratio of the molar masses between the hydrophobic part and the hydrophilic part of this polymer is between 1: 1 and 100: 1, preferably between 2: 1 and 10: 1.
  • the nanoparticles according to the present invention are advantageously used for encapsulation, transport and distribution of active principles in the human or animal body.
  • the nanoparticles according to the invention may contain one or more active ingredients, which are encapsulated within the polymeric core formed by the poly (alkyl cyanoacrylate).
  • the active principles contained in the polymer core of the nanoparticles according to the invention may be active ingredients that are weak to very weakly water-soluble and / or hydrophobic and / or that have a strong tendency to crystallize, and / or that are very chemically reactive.
  • weakly to very weakly water-soluble active agent is meant, within the meaning of the present invention, an active agent whose solubility index is between 100 and 100,000, such the
  • systemic antibacterial agents As active principles which may be encapsulated in the polymer core of the nanoparticles according to the present invention, mention may be made of systemic antibacterial agents, systemic antifungal agents and systemic antiviral agents, among which mention may be made, without limitation, of cephalosporins, beta-lactam antibiotics, cyclins, aminoglycosides, quinolones, macrolides, imidazole derivatives, azole derivatives, sulfonamides, aciclovir, and reverse transcriptase inhibitors.
  • active principles which can also be encapsulated in the polymer core of the nanoparticles according to the invention, mention may also be made of active principles with a strong tendency to crystallize, and in particular to provide those with a certain toxicity to the organism, such as anticancer agents.
  • hydrophobic nature such as tamoxifen, taxanes such as paclitaxel or docetaxel; but also vinblastine, actinomycin, methotrexate, carboplatin, etoposide and camptothecins such as CPTIl and its metabolite SN 38 for example and finally anticancer active ingredients having or capable of releasing a sulfonate derivative such as busulfan in particular.
  • Busulfan which has the chemical formula 1,4-bis (methanesulfonyloxy) butane, belongs to the therapeutic class of antineoplastic agents and alkylating agents. At the biological level, the mechanism of action of busulfan is to establish at the nucleoprotein level, stable bridges preventing the replication of DNA, hence its effect cytostatic blocking mitosis in dividing cells. Busulfan is then removed in the body mainly as methanesulfonic acid. The bulsulfan, which carries two methyl groups sulfonates type CH 3 SO 3 ⁇ , is caused to s 1 auto eachr through molecular interactions, where its crystalline properties, which make it particularly difficult molecule to be encapsulated.
  • these sulfonate groups are also responsible for interactions with other chemical groups such as monomeric units or polymer chains being formed poly (cyanoacrylates) for example. Such an interaction is at the origin of covalent bonds or "bridging" irreversibly blocking the polymerization process, making it a difficult compound to encapsulate by in situ polymerization.
  • the busulfan molecule is capable of forming, after release of a methylsulfonate, a reactive derivative that can combine with nucleophilic groups of the SH, NH 2 , COOH, OH or phosphate type, for example.
  • Busulfan is an anti-cancer agent used in the treatment of leukemias and in particular chronic myeloid leukemia and certain autoimmune diseases for its selective immunosuppressive effect on the spinal cord.
  • Busulfan is an agent listed as a carcinogen (Merck index nth edition) whose toxicity to healthy cells of the body to which it is administered remains a major problem in the context of a therapeutic treatment.
  • busulfan within bioerodible polymeric structures and further presenting some stealth and means of cell or tissue targeting should make it possible to substantially reduce these problems of non-specific cytotoxicity.
  • Such vectors which are the subject of the present invention thus offer a new possible route for anticancer treatments by busulfan.
  • these nanoparticles may advantageously comprise on their surface cellular or tissue recognition molecules. Such molecules indeed make it possible to ensure proper specific targeting of the nanoparticles administered in the bloodstream. In this way, the effectiveness of the encapsulated active agent is definitely increased by concentrating its location on its cellular or tissue target.
  • the nanoparticles according to the invention advantageously comprise on their surface one or more cell recognition molecules such as monoclonal or polyclonal antibodies directed for example against certain surface cellular proteins, immunoglobulin fragments, ligands specific for cell surface receptors. or alternatively agonist or antagonist molecules capable of binding and / or recognizing all or part of the targeted cells or tissues, such as folic acid or its derivatives, or residues such as biotin, avidin or streptavidin.
  • cell recognition molecules such as monoclonal or polyclonal antibodies directed for example against certain surface cellular proteins, immunoglobulin fragments, ligands specific for cell surface receptors. or alternatively agonist or antagonist molecules capable of binding and / or recognizing all or part of the targeted cells or tissues, such as folic acid or its derivatives, or residues such as biotin, avidin or streptavidin.
  • These surface molecules can, like the PEG groups mentioned above, be an integral part of the amphiphilic polymer in the form of a block copolymer, or else they can be inserted via a spacer arm, within the cyanoacrylic polymer.
  • the composite nanoparticles according to the invention preferably have an average diameter of between 50 and 500 nm, and better still between 60 and 200 nm.
  • the polymer of amphiphilic nature can represent between 10 and 60%, preferably between 20 and 50% of the total weight of the nanoparticles, excluding the weight of the active principle (s) possibly present in the polymer core of the nanoparticles according to the invention ,
  • the cyanocaryl polymer represents between 40 and 90%, preferably between 50 and 80% of the total weight of the nanoparticles, excluding the weight of the active principle, excluding the weight of the active principle (s) possibly present in the polymeric core of the nanoparticles, nanoparticles according to the invention
  • the active principle (s) is (are) present at a rate of from 0.5 to 20% and better still from 1 to 10% by weight relative to the weight of the cyanoacrylic polymer engaged in the nanoparticles according to the invention.
  • the present invention also relates to a process for manufacturing polymeric nanoparticles as defined above, which comprises:
  • A-a dissolution step comprising:
  • C- a step of co-nanoprecipitation of said cyanoacrylic polymer and of said amphiphilic polymer comprising adding the organic phase obtained in step B above, preferably progressively, in a sufficient volume of dispersant phase to allow dispersing the organic phase in the aqueous dispersant phase, and co-precipitating the amphiphilic and polycyanoacrylic polymers, to obtain a suspension of composite polymeric nanoparticles as defined above; D- optionally the purification of the suspension of said nanoparticles by filtration, and
  • the composite polymeric nanoparticles obtained according to the process of the invention thus have the particularity of being constituted from at least two preformed polymers of different nature, ie for which the polymerization step took place before the formation of the nanoparticles themselves.
  • the reactivity and / or chemical instability of the active ingredients to be encapsulated does not interfere with the polymerization and thus the formation of the nanoparticles and the biological activity of the agent to be encapsulated is preserved.
  • the method of the invention allows a spontaneous formation of the composite nanoparticles according to the invention, the amphiphilic polymer being positioned, spontaneously on the periphery of said nanoparticles, thus forming the outer polymeric shell of the latter.
  • the hydrophilic groups contained in the amphiphilic polymer according to the invention will be positioned at the time of coprecipitation to the outside of the nanoparticles, so as to form a a sort of hydrophilic ring in direct contact with the aqueous phase.
  • the cyanoacrylic polymer according to the invention is positioned spontaneously in the center of the nanoparticles during co-nanoprecipitation, so as to form said core of the polymeric nanoparticles according to the invention.
  • the active ingredient (s) used in the context of the present invention are preferably active ingredients that are weakly to very slightly water-soluble. Thus, during co-nanoprecipitation, these molecules will spontaneously be enclosed in the compartment delimited by the polymeric core of said nanoparticles.
  • the dispersed phase is preferably introduced gradually in the dispersant phase, the introduction may for example be by slow injection using a precision syringe type Hamilton syringe for example.
  • the co-nanoprecipitation of the polymers then starts immediately and leads to obtaining a control opalescent solution of the formation of the composite nanoparticles according to the invention.
  • the method for manufacturing nanoparticles according to the invention comprises a final lyophilization step of the suspension obtained at the end of step E.
  • a subsequent step of analyzing the formed composite nanoparticles can take place in order to characterize structurally (size, shape, homogeneity) and functionally (measurement of the rate of incorporation into active principle) the colloidal polymeric vectors thus formed.
  • the composite nanoparticle dispersions obtained can be easily lyophilized to ensure good preservation and redispersed ex-temporally just before use.
  • the present invention also relates to a suspension in an aqueous medium of composite polymeric nanoparticles according to the invention.
  • a suspension may advantageously be lyophilized so as to be stored easily and then reconstituted by adding extemporaneously water.
  • the present invention further relates to the use of the suspension according to the invention for the manufacture of medicaments for the treatment of autoimmune or cancerous diseases.
  • these suspensions of nanoparticles are useful in the treatment of leukemias and especially chronic myeloid leukemia.
  • the suspension according to the invention may be administered, alone or in combination with other medicaments, parenterally and in particular intravascularly, and even more preferably intravenously or intraarterially.
  • Example 1 Preparation of composite nanoparticles of poly (isobutyl cyanoacrylate) / poly ( ⁇ -caprolactone) -co-poly (ethylene glycol).
  • the amphiphilic diblock copolymer of poly ( ⁇ -caprolactone) -co-poly (ethylene glycol) (PECL-PEG) consisting of a poly ( ⁇ -caprolactone) block having a molar mass of 10,000 g / mole and a poly block (ethylene glycol) with a molar mass of 2000 g / mol was synthesized according to Gref R., Lick M., Joc P., Marchand M., Dellacherie E., Harnisch S., Blunk T., Miiller RH; 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influence of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption; Coll.Surf.B; 2000; 18; 301-313.
  • the dispersed phase (1 ml) is composed of a mixture of 80/20 (v / v), poly (isobutyl cyanoacrylate) acetone solution (0.8 ml) and an acetone solution of amphiphilic copolymer diblock of PECL-PEG (0.2 ml) concentrated to 10 mg / ml.
  • the dispersed phase (1 ml) is slowly injected (approximately 10 seconds) into an aqueous dispersing phase (2 ml) using a Hamilton syringe (ImI capacity) and taking care to plunge the syringe needle into the aqueous dispersant phase.
  • the latter is subjected to magnetic stirring (1250 rpm) during the injection.
  • the composite nanoparticles form immediately, which makes the solution opalescent.
  • the acetone is then removed by evaporation under vacuum at room temperature, using a rotary evaporator. Total evaporation of acetone is verified by weighing.
  • the average diameter of the composite nanoparticles measured by quasi-elastic light scattering is equal to 140 ⁇ 40 nm.
  • the surface potential of the nanoparticles measured using a zetameter is about -41 mV.
  • the composite nanoparticles are obtained according to the process described in Example 1, but the two polymer solutions are mixed in a ratio of 70/30 (v / v).
  • the dispersed phase (ImI) is obtained by mixing 0.7 ml of the poly (isobutyl cyanoacrylate) solution and 0.3 ml of the PECL-PEG amphiphilic diblock copolymer solution described in Example 1, concentrated at 10 ° C. mg / ml.
  • the average diameter of the composite nanoparticles measured by quasi-elastic light scattering is equal to 125 ⁇ 35 nm.
  • the surface potential of the nanoparticles measured using a zetameter is about -26 mV.
  • the composite nanoparticles are obtained according to the method described in Example 1, but the two polymer solutions are mixed in a proportion of 60/40 (v / v).
  • the dispersed phase (ImI) is obtained by mixing 0.6 ml of the poly (isobutyl cyanoacrylate) solution and 0.4 ml of the PECL-PEG amphiphilic diblock copolymer solution described in Example 1, concentrated at 10 ° C. mg / ml.
  • the average diameter of the composite nanoparticles measured by quasi-elastic light scattering is equal to 120 ⁇ 40 nm.
  • the surface potential of the nanoparticles measured using a zetameter is about -28 mV.
  • EXAMPLE 4 The composite nanoparticles are obtained according to the method described in Example 1, but the two polymer solutions are mixed in a proportion of 50/50 (v / v).
  • the dispersed phase (ImI) is obtained by mixing 0.5 ml of the poly (isobutyl cyanoacrylate) solution and 0.5 ml of the PECL-PEG amphiphilic diblock copolymer solution described in Example 1, concentrated at 10 ° C. mg / ml.
  • the average diameter of the composite nanoparticles measured by quasi-elastic light scattering is equal to 105 ⁇ 35 nm.
  • the surface potential of the nanoparticles measured using a zetameter is about -22 mV.
  • a second acetone solution of amphiphilic diblock copolymer PECL-PEG is prepared as described in Example 1, concentrated at 40 mg / ml.
  • a third busulfan acetone solution concentrated at 4 mg / ml is prepared.
  • the busulfan present in the composite nanoparticles is determined by liquid scintillation counting of the radioactivity.
  • the radioactive label used was tritiated busulfan (busulfan- 3H).
  • busulfan- 3H tritiated busulfan
  • it is mixed with cold busulfan in the dispersed phase (1.25 ⁇ Ci for 2 mg cold busulfan).
  • the organic phase is obtained by mixing these three solutions in the following manner: the first two polymer solutions are mixed in a proportion of 50/50 (v / v), and the organic phase (ImI) is then obtained by mixing 0.250 ml of the solution of poly (cyanoacrylate, isobutyl), 0.250 ml of the solution of PECL - PEG and 0.500 ml of the solution of busulfan cold busulfan- + 3 H. the organic phase (1 ml) is injected slowly
  • aqueous dispersing phase (2 ml) using a Hamilton syringe (1 ml capacity) and taking care to plunge the needle of the syringe into the aqueous dispersant phase.
  • the latter is subjected to magnetic stirring (1250 rpm) during the injection.
  • the composite nanoparticles form immediately, which makes the solution opalescent.
  • the acetone is then removed by evaporation under vacuum at room temperature, using a rotary evaporator. Total evaporation of acetone is verified by weighing. During evaporation of the acetone, some busulfan crystals are formed in the aqueous dispersing phase.
  • the nanoparticles are separated dispersant phase by centrifugation (30 min 30000g), then dried in a desiccator under vacuum for 24 hours
  • the amount of busulfan present in the nanoparticles is determined by counting the radioactivity in the pellet of the nanoparticles dissolved in 1 ml of acetone
  • the encapsulation rate of busulfan is 1.7 ⁇ 0.1% (mg Bu / mg nanoparticles) .
  • the average diameter of the composite nanoparticles before purification is equal to 165 ⁇ 50 nm and the average diameter of the nanoparticles after purification. is equal to 160 ⁇ 50 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Hematology (AREA)
  • Medicinal Preparation (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention se rapporte à des nanoparticules polymériques composites biodégradables, pouvant contenir éventuellement un principe actif, ainsi qu'à des suspensions en milieu aqueux de telles particules, leur préparation et leur utilisation.

Description

l'
NANOPARTICULES POLYMERIQUES COMPOSITES
La présente invention se rapporte à des nanoparticules polymériques composites biodégradables, pouvant contenir éventuellement un principe actif, ainsi qu'à des suspensions en milieu aqueux de telles particules, leur préparation et leur utilisation.
Par nanoparticules polymériques composites, on entend au sens de la présente invention, des particules d'une taille comprise entre 20 et 500 nm, chargées ou non en principe (s) actif (s) et constituées d'une association d'au moins deux polymères de nature différente.
Par nanoprécipitation, on entend au sens de la présente invention un procédé conduisant à la précipitation sous la forme de nanoparticules, d'un ou plusieurs polymères. La nanoprécipitation est une méthode basée sur la formation de particules polymériques colloïdales par séparation de phases. La nanoprécipitation peut ainsi être engendrée par l'addition d'un non-solvant du polymère à une solution de ce polymère, le non-solvant étant miscible au solvant en large proportion. La séparation de phases conduit alors à une précipitation immédiate du polymère sous la forme de nanoparticules stables. On parlera de co-nanoprécipitation lorsqu'au moins deux polymères précipitent ensemble pour donner des nanoparticules polymériques dites composites.
Les nanoparticules polymériques composites de l'invention sont particulièrement adaptées à encapsulation et à la vectorisation de molécules à effet thérapeutique présentant une forte instabilité et/ou une forte toxicité vis à vis du milieu dans lequel elles sont introduites. C'est notamment le cas pour les principes actifs qui ont une forte tendance à la cristallisation et/ou sont faiblement à très faiblement hydrosolubles et/ou toxiques.
De nombreux agents anticancéreux, de par leur activité cytotoxique importante, doivent dans la plupart des cas être véhiculés au sein d'un vecteur réduisant l'impact et la toxicité de ces agents sur les cellules non cancéreuses.
En outre, certains agents anticancéreux sont non seulement toxiques pour l'organisme humain ou animal, mais présentent également une faible solubilité et une forte tendance à la cristallisation qui limitent l'index thérapeutique, et peuvent conduire à la formation de particules cristallines in situ après administration, si la concentration locale approche de la saturation, lesdites particules cristallines étant alors responsables d'une obstruction vasculaire. C'est le cas notamment de molécules utilisées comme agents anticancéreux alkylants tels que le busulfan qui possèdent, du fait de leur structure tridimensionnelle, et de la nature de leurs groupements chimiques, une forte tendance à la cristallisation. En effet, la structure de ces agents est telle qu'ils présentent, à l'état naturel des groupements chimiques qui ont une forte tendance à s 'auto-associer, à travers des interactions hydrophobes ou polaires conduisant à la cristallisation spontanée de ces molécules. Un tel phénomène de cristallisation est bien entendu impropre à une administration parentérale de principes actifs à effet thérapeutique compte tenu d'une part de la taille des cristaux qui risquent de provoquer une obstruction vasculaire partielle ou totale, et d'autre part du ralentissement considérable de la dissolution et de l'absorption de ces actifs. l'
II importe donc d'éviter absolument ce phénomène de cristallisation, lors de la vectorisation de tels actifs.
Par ailleurs, la forte réactivité chimique de certains principes actifs tels que par exemple les agents anticancéreux alkylants rend leur encapsulation dans des structures polymériques telles que des nanoparticules, très difficile, voire impossible, lorsque ces particules sont obtenues par un procédé classique de polymérisation en émulsion. En effet, les groupements méthylsulfonates de ces agents anticancéreux sont extrêmement réactifs et interagissent avec les structures monomériques dès leur mise en contact, empêchant ainsi la polymérisation normale du ou des polymères et donc la formation de vecteurs polymériques bien individualisés. De plus, une telle interaction chimique fait perdre son activité biologique au principe actif. Il est donc nécessaire d'éviter de telles interactions lors de encapsulation d'agents alkylants.
Par ailleurs, se pose également le problème de l'efficacité thérapeutique des principes actifs encapsulés et administrés par voie parentérale ou par voie intraveineuse.
Dans le cas d'une administration par voie parentérale, la réaction du système immunitaire de l'individu, et en particulier du Système des Phagocytes Mononucléés (SPM) , accélère l'élimination de l'objet administré, et ce quel que soit le type de vecteur administré.
Dans le cas d'une administration par voie intraveineuse, les nanoparticules polymériques administrées sont rapidement éliminées par le système immunitaire de l'organisme et ne présentent donc qu'une durée de vie limitée, impliquant une faible efficacité thérapeutique.
Pour pallier le problème de l'élimination rapide de ces vecteurs dans l'organisme, et/ou permettre la vectorisation l'
- A -
de principes actifs instables et/ou toxiques, de nombreux vecteurs dits "furtifs", c'est à dire faiblement reconnus par le système immunitaire, ont été développés.
Afin de vectoriser des principes actifs chimiquement sensibles et/ou instables, tels que des agents anticancéreux comme le busulfan, ont été développés des vecteurs colloïdaux se présentant sous forme de formulations liquides injectables à base de liposomes, notamment chargés en busulfan, comme cela est décrit dans l'article Bone Marrow Transplant. 2002.30 (12) : 833-41. De telles formulations permettent une encapsulation du busulfan à des taux de l'ordre d'environ 0,5 % en poids du poids total de liposomes. Cependant, en plus de leur faible rendement d1encapsulation, de tels vecteurs colloïdaux à base de liposomes ont en outre l'inconvénient de présenter une faible durée de vie dans le milieu plasmatique due à la dissociation spontanée et à la dégradation métabolique rapide de ces structures lipidiques. Ce phénomène implique une faible efficacité à encontre des tumeurs engendrant l'administration de volumes importants de dispersions liposomales parfois incompatibles avec les dosages nécessaires au traitement et nécessitant souvent des temps de perfusion longs et inconfortables, de l'ordre de 2h pour les adultes et 3h pour les enfants (M. Hassan, Bone Marrow Transplantation 2002, 30, 833-841) . Pour pallier ce problème de la stabilité intra- plasmatique, des vecteurs colloïdaux solides à base de polymères non hydrosolubles ont été développés. Ces vecteurs colloïdaux se présentent sous la forme de nanoparticules polymériques biodégradables capables de transporter un ou plusieurs principes actifs dissous ou dispersés au sein de leur matrice polymérique. Les principes actifs transportés sont libérés progressivement, au fur et à mesure de la dégradation métabolique des nanoparticules.
Les polymères de la famille des poly(cyanoacrylates d'alkyle) (ou PACA) sont particulièrement adaptés au transport de principes actifs chimiquement sensibles et/ou instables, car ils présentent une relativement faible toxicité et s'avèrent compatibles avec une administration intravasculaire (Kante et al, 1982; Couvreur et al, 1989) . D'une part, les produits de dégradation de ces polymères dans l'organisme sont essentiellement des alcools ou des acides poly(cyanoacryliques) bien tolérés et facilement éliminés par l'organisme, et d'autre part, la cinétique de dégradation de ces polymères rend possible leur administration intravasculaire. En outre, les polymères de la famille des poly (cyanoacrylates d'alkyle) sont également compatibles avec une administration intraveineuse.
Ainsi, des nanoparticules polymériques à base de poly (cyanoacrylates d'alkyle) ont été utilisées pour le transport et la délivrance d'insuline par voie intraveineuse, comme cela est décrit dans le document US 5,641,515 de ELAN Corp.. Dans ces nanoparticules, l'insuline est associée au polymère de poly(cyanoacrylate d'alkyle) sous la forme d'un complexe chimique où l'intégrité moléculaire de l'insuline et donc l'efficacité de cette molécule est préservée : après avoir été administrée, l'insuline est libérée progressivement dans l'organisme.
Cependant, cela n'est possible que dans la mesure où l'insuline ne réagit pas chimiquement avec les unités monomériques du polymère en formation, ce qui n'est pas le cas de molécules très réactives comme le busulfan par exemple. l'l'
Par ailleurs, le fait que les vecteurs colloïdaux sous forme de nanoparticules décrits ci-dessus présentent l'avantage de conférer une certaine stabilité aux produits transportés au sein des nanoparticules a conduit à développer des vecteurs colloïdaux constitués de nanoparticules polymériques de poly(cyanoacrylates d'alkyle) chargées en principes actifs toxiques et/ou instables.
Ainsi, le brevet US 4,329,332, décrit des nanoparticules constituées de polymères du cyanoacrylate de méthyle ou de cyanoacrylate d' éthyle utilisables pour le transport et l'administration parentérale de principes actifs anticancéreux comme actinomycine ou le métothrexate par exemple. Ces nanoparticules d'un diamètre inférieur à 500 nm, sont fabriquées par polymérisation micellaire spontanée des monomères en milieu acide.
De telles nanoparticules ont cependant l'inconvénient de présenter un faible taux d'encapsulation. En effet, la capacité de charge en principe actif des nanoparticules de poly (cyanoacrylates d'alkyle) exprimée en tant que quantité de principe actif associée à une unité de masse de polymère, encore appelée taux d'encapsulation, est très étroitement liée à la nature du principe actif à encapsuler. Or, ces nanoparticules sont obtenues par un procédé de polymérisation in situ en milieu aqueux, qui a tendance à faire reprécipiter et cristalliser rapidement les principes actifs faiblement solubles ou insolubles, rendant ainsi difficile 1' encapsulation de ces principes actifs.
Ainsi, se pose le problème de encapsulation de principes actifs cristallins, faiblement solubles dans l'eau et/ou hydrophobes, car pour ces molécules, l'incorporation au sein de nanoparticules de poly(cyanoacrylate d'alkyle) se révèle inefficace, avec des taux d1encapsulation de l'ordre l'
de 0,1 à 1 % en poids de la masse de polymère engagée, le principe actif ayant une forte tendance à précipiter dans la phase aqueuse dispersante. (Brigger et al. Int. J. Pharm. 2001 (19), 214 (1-2) : 37-42) Afin d'augmenter la charge en actif des nanoparticules constituées à partir de poly(cyanoacrylate d'alkyle), qui se révèlent par ailleurs être d'excellents polymères du point de vue de la tolérance et de la toxicité dans l'organisme, une nouvelle forme de vecteurs a été développée. Ainsi, la demande de brevet WO 99/43359 décrit l'utilisation de vecteurs de principes actifs faiblement hydrosolubles constitués par une association entre un poly(cyanoacrylate d'alkyle) et un composé apte à complexer le principe actif. Ces derniers composés sont par exemple des cyclodextrines pour lesquelles il a été constaté que l'affinité de la cyclodextrine avec certains agents actifs permet d'augmenter sensiblement le taux d'encapsulation.
Cependant, outre la relative complexité d'un tel système, ces vecteurs ne permettent de prévoir encapsulation que d'un nombre restreint de principes actifs, pour lesquels d'une part la complexation avec la molécule de cyclodextrine n'entraîne pas de détérioration structurelle ayant des incidences sur l'activité biologique de la molécule et d'autre part pour lesquels la complexation est suffisamment labile pour permettre une libération satisfaisante du principe actif visé.
Toutefois, même si ces vecteurs permettent d'envisager 1'encapsulation à des taux améliorés de certains principes actifs hydrophobes ou peu hydrosolubles, de tels vecteurs sont peu adaptés à 1 'encapsulation de principes actifs très réactifs. En effet, dans la mesure où ces vecteurs sont fabriqués par polymérisation in situ en présence du principe actif, celui-ci risque de réagir avec les unités monomériques, empêchant une polymérisation adéquate nécessaire à la réalisation des nanoparticules.
Par ailleurs, plusieurs auteurs ont décrit différents systèmes vecteurs furtifs constitués de nanoparticules de polymère de la famille des poly(cyanoacrylate d'alkyle) sur lesquelles sont greffés des groupements de type Poly Ethylène Glycol (PEG) . Dans de telles structures, les groupements PEG sont directement associés au poly(cyanoacrylate d'alkyle) formant ainsi des nanoparticules polymériques portant à leur surface une sorte de couronne hydrophile en contact avec le milieu extérieur.
L'utilisation de poly(cyanoacrylates d'alkyle) sur lesquels sont greffés des PEG permet une amélioration certaine de la demi-vie des nanoparticules qui en sont formées. En effet, les groupements hydrophiles PEG diminuent significativement les phénomènes de capture non spécifique par les acteurs du Système des Phagocytes Mononucléés (SPM) et en particulier par les macrophages. Pour la réalisation de ces vecteurs polymériques furtifs, différents types de poly(cyanoacrylate d'alkyle) ont été employés.
Ainsi, des nanoparticules formées par polymérisation en émulsion à partir des unités monomériques du poly(cyanoacrylate d'isobutyle) (PIBCA) et de groupements PEG dispersés dans la phase aqueuse ont été synthétisées par Perrachia et al. (J. Biomed. Mater. Res. 1997, 34 (3); 317- 326) . Ces nanoparticules, non chargées en principe actif, présentent une demi-vie améliorée du fait de la présence à leur surface des groupements PEG qui s'orientent spontanément vers l'extérieur des nanoparticules limitant ainsi leur capture par les agents du système immunitaire. l'
Par ailleurs, des nanoparticules porteuses d'agents anticancéreux ont également été développées. Ainsi, Li et al
(Biol. Pharm. Bull. 24(6) 662-665 (2001) ont réalisé des nanoparticules constituées d'un autre copolymère de la famille des poly (cyanoacrylate d'alkyle : le poly(methoxyPEG- co- cyanoacrylate de n-hexadécyle) (PEG-PHDCA) et chargées avec un agent anticancéreux tel que le TNF (tumor necrosis factor) -α.
De même, Brigger et al (Int. J. Pharm. 2001 (19), 214 (1- 2) : 37-42) ont synthétisé des nanoparticules à base du même copolymère de poly(cyanoacrylate de methoxyPEG -co- cyanoacrylate d'hexadécyle) chargées en tamoxifène pour un traitement ciblé de tumeurs, présentant une demi-vie acceptable. Cependant, les nanoparticules décrites ci-dessus ont l'inconvénient de présenter un très faible taux d'encapsulation en principe actif, de l'ordre de 0,4 % en poids de la masse de polymère engagée.
De ce fait, encapsulation de principes actifs hydrophobes et/ou cristallins et /ou réactifs sur le plan chimique n'a jusqu'ici jamais pu être réalisée à partir de poly(cyanoacrylate d'alkyle), à des taux d'encapsulation satisfaisants du point de vue thérapeutique.
La présente invention, se propose donc de pallier ces inconvénients en proposant des nanoparticules polymériques biodégradables composites constituées d'au moins un polymère de la famille des poly(cyanoacrylates d'alkyle), et d'au moins un autre polymère de nature amphiphile, aptes à une administration parentérale chez l'être humain ou animal, et présentant également un taux élevé d'encapsulation de principes actifs et notamment de principes actifs hydrophobes et/ou très réactifs sur le plan chimique, et/ou possédant une forte propension à la cristallisation. Ces nanoparticules composites présentent également l'avantage de pouvoir être fabriquées selon un procédé relativement simple et rapide.
Les nanoparticules conformes à l'invention sont ainsi utilisables pour la fabrication de médicaments destinés au traitement de maladies auto-immunes ou cancéreuses. En particulier, ces nanoparticules sont utiles dans le traitement des leucémies et tout particulièrement de la leucémie myéloïde chronique. Ainsi, l'invention a pour objet des nanoparticules polymériques composites biodégradables comprenant :
- un coeur polymérique interne, essentiellement constitué d'au moins un polymère cyanoacrylique choisi dans le groupe des poly(cyanoacrylates d'alkyle), - une écorce polymérique externe essentiellement constituée d'au moins un polymère amphiphile comportant au moins un groupement hydrophile et au moins un groupement hydrophobe, et
- éventuellement un principe actif. De préférence, le polymère cyanoacrylique selon l'invention est choisi dans le groupe des poly(cyanoacrylate d'alkyle) (PACA), le groupe alkyle étant un groupe alkyle linéaire ou ramifié, comprenant de préférence 1 à 12 atomes de carbone, et mieux de 3 à 6 atomes de carbone. Les polymères cyanoacryliques préférés selon l'invention sont choisis dans le groupe comprenant le poly(cyanoacrylate d'éthyle) (PECA), le poly(cyanoacrylate de butyle) (PBCA), le poly (cyanoacrylate d'isobutyle) PIBCA, le poly(cyanoacrylate de propyle) (PPCA) et le poly(cyanoacrylate d'isohexyle) (PIHCA) qui sont particulièrement efficaces pour l'encapsulation de principes actifs hydrophobes et/ou très réactifs sur le plan chimique et/ou ayant une très forte tendance à la cristallisation.
Les polymères cyanoacryliques davantage préférés selon l'invention sont le poly(cyanoacrylate d'éthyle ) (PECA) ou le poly(cyanoacrylate d'isobutyle) (PIBCA) .
Le polymère cyanoacrylique encore plus préféré selon l'invention est le poly(cyanoacrylate d'isobutyle) (PIBCA) .
Les polymères cyanoacryliques conformes à l'invention ont une masse molaire moyenne en poids déterminée par chromatographie d'exclusion stérique (CES) en équivalent polystyrène comprise entre 2000 et 500 000 g/mole, préférentiellement entre 5000 et 350 000 g/mole.
L'écorce polymérique des nanoparticules conformes à la présente invention est essentiellement constituée par au moins un polymère de nature amphiphile comportant au moins un groupement de nature hydrophobe, et au moins un groupement de nature hydrophile.
Par groupement hydrophile, on entend, au sens de la présente invention, non seulement un groupement fonctionnel hydrophile, en particulier un atome ou groupement d'atomes hydrophile, monovalent ou polyvalent, par exemple bivalent ou trivalent, ledit groupement fonctionnel hydrophile étant porté par le squelette carboné du polymère amphiphile selon l'invention ; mais également une séquence (ou « bloc ») de nature hydrophile, par exemple un monomère ou un enchaînement de monomères identiques ou différents de nature hydrophile, ledit monomère ou enchaînement de monomères de nature hydrophile étant situé dans la chaîne du polymère amphiphile selon l'invention. Par groupement hydrophobe, on entend, au sens de la présente invention, non seulement un groupement fonctionnel hydrophobe, en particulier un atome ou groupement d'atomes hydrophobe, monovalent ou polyvalent, par exemple bivalent ou trivalent, ledit groupement fonctionnel hydrophobe étant porté par le squelette carboné du polymère amphiphile selon l'invention ; mais également une séquence (ou « bloc ») de nature hydrophobe, par exemple un monomère ou un enchaînement de monomères identiques ou différents de nature hydrophobe, ledit monomère ou enchaînement de monomères de nature hydrophobe étant situé dans la chaîne du polymère amphiphile selon l'invention. Les groupements de nature hydrophobe préférés du polymère de nature amphiphile selon l'invention sont choisis dans le groupe comprenant les poly(anhydrides) , les polyesters tels que les polymères de l'acide lactique (PLA) les polycaprolactones (PCL) , les copolymères de l'acide lactique et de l'acide glycolique (PLGA), le polyhydroxybutyrate, le polyhydroxyvalérate et leurs copolymères.
Les groupements de nature hydrophile préférés du polymère de nature amphiphile selon l'invention sont choisis dans le groupe comprenant les polysaccharides, les polyvinylpyrrolidones, et de préférence les polyéthylène glycols (PEG) .
De préférence, les groupements de nature hydrophile du polymère de nature amphiphile selon l'invention ont une masse molaire moyenne en poids comprise entre 1000 et 20000 g/mole, de préférence entre 2000 et 5000 g/mole.
D'une manière préférée, on utilisera comme polymère amphiphile selon la présente invention des copolymères diséquencés (ou « diblocs ») ou multiséquencés (ou « multiblocs ») , dont au moins une séquence est constituée ou porteuse de groupement (s) hydrophile (s) et au moins une séquence est constituée ou est porteuse de groupement (s) hydrophobe (s) . l'
La séquence constituée et/ou porteuse de groupement (s) hydrophobe (s) constitue la partie hydrophobe du polymère amphiphile selon l'invention, et la séquence constituée et/ou porteuse de groupement (s) hydrophile (s) en constitue la partie hydrophile.
Préférentiellement, le polymère amphiphile conforme à la présente invention est constitué d'un copolymère diséquencé de type PECL/PEG, c'est à dire composé d'une séquence de poly ε-caprolactone pur et d'une séquence PEG. Le polymère amphiphile conforme à l'invention doit être insoluble dans l'eau. De ce fait, il est préférable que le rapport des masses molaires entre la partie hydrophobe et la partie hydrophile de ce polymère soit compris entre 1: 1 et 100:1, de préférence entre 2:1 et 10:1. Les nanoparticules selon la présente invention sont avantageusement utilisées pour encapsulation, le transport et la distribution de principes actifs dans l'organisme humain ou animal.
De ce fait, les nanoparticules selon l'invention peuvent contenir un ou plusieurs principes actifs, qui sont encapsulés au sein du cœur polymérique formé par le poly(cyanoacrylate d'alkyle) .
Les principes actifs contenus dans le cœur polymérique des nanoparticules selon l'invention peuvent être des principes actifs faiblement à très faiblement hydrosolubles et /ou hydrophobes et/ou ayant une forte tendance à la cristallisation, et/ou étant très réactifs sur le plan chimique.
Par actif « faiblement à très faiblement hydrosoluble », on entend, au sens de la présente invention, un actif dont l'indice de solubilité est compris entre 100 et 100 000, tel l'
que décrit dans la pharmacopée américaine n°27 (USP 27),page 2747 édition 2004#
A titre de principes actifs pouvant être encapsulés dans le cœur polymérique des nanoparticules selon la présente invention, on peut citer les agents antibactériens systémiques, les agents antifongiques systémiques et les agents antiviraux systémiques , parmi lesquels on peut citer à titre non limitatif les céphalosporines, les beta- lactamines, les cyclines, les aminosides, les quinolones, les macrolides, les dérivés d' imidazole , les dérivés azolés, les sulfamides, l'aciclovir, et les inhibiteurs de la transcriptase inverse.
A titre de principes actifs pouvant également être encapsulés dans le cœur polymérique des nanoparticules selon l'invention, on peut également citer les principes actifs à forte tendance à la cristallisation, et notamment prévoir ceux présentant une certaine toxicité pour l'organisme tels que les anticancéreux de nature hydrophobe comme le tamoxifène, les taxanes comme le paclitaxel ou le docétaxel ; mais également la vinblastine, actinomycine, le methotrexate, le carboplatine, l'étoposide et les camptothécines comme le CPTIl et son métabolite le SN 38 par exemple et enfin les principes actifs anticancéreux présentant ou capables de libérer un dérivé sulfonate tel que le busulfan notamment.
Le busulfan dont la formule chimique est le 1,4- bis (méthanesulfonyloxy)butane, appartient à la classe thérapeutique des agents antinéoplasiques et des agents alkylants. Au niveau biologique, le mécanisme d'action du busulfan consiste à établir au niveau des nucléoprotéines, des ponts stables empêchant la réplication de l'ADN, d'où son effet cytostatique entraînant le blocage de la mitose dans les cellules en division. Le busulfan est ensuite éliminé dans l'organisme principalement sous la forme d'acide méthanesulfonique. Le bulsulfan, qui est porteur de deux groupements méthyl- sulfonates de type CH3SO3 ~, est amené à s1autoassocier à travers des interactions moléculaires, d'où ses propriétés cristallines, qui en font une molécule particulièrement difficile à encapsuler. En outre, ces groupements sulfonates sont également responsables d'interactions avec d'autres groupements chimiques comme les unités monomériques ou les chaînes polymériques en cours de formation des poly(cyanoacrylates) par exemple. Une telle interaction est à l'origine de liaisons covalentes ou "pontages" bloquant de façon irréversible le processus de polymérisation, ce qui en fait un composé difficile à encapsuler par polymérisation in situ.
La molécule de busulfan est capable de former après libération d'un méthyl-sulfonate, un dérivé réactif pouvant se combiner avec des groupements nucléophiles de type SH, NH2, COOH, OH, ou phosphates par exemple.
Le busulfan est un agent anticancéreux employé dans le traitement des leucémies et en particulier de la leucémie myéloîde chronique et de certaines maladies auto-imunes pour son effet immunosupresseur sélectif sur la moelle épinière.
Le busulfan est cependant un agent répertorié comme carcinogène (Merck index nème édition) dont la toxicité à l'égard des cellules saines de l'organisme auquel il est administré reste un problème majeur dans le cadre d'un traitement thérapeutique.
L'encapsulation du busulfan au sein de structures polymériques bioérodables et présentant en outre une certaine furtivité et des moyens de ciblage cellulaire ou tissulaire doit permettre de réduire sensiblement ces problèmes de cytotoxicité non spécifique. De tels vecteurs, qui font l'objet de la présente invention offrent ainsi une nouvelle voie possible pour les traitements anticancéreux par le busulfan.
Outre les groupements hydrophiles de surface chargés d'assurer la furtivité du système vecteur objet de la présente invention en réduisant 1 Opsonisation des nanoparticules, celles-ci peuvent avantageusement comporter à leur surface des molécules de reconnaissance cellulaire ou tissulaire. De telles molécules permettent en effet d'assurer un véritable ciblage spécifique des nanoparticules administrées dans la circulation sanguine. De cette façon, on augmente de façon certaine l'efficacité de l'agent actif encapsulé en concentrant sa localisation sur sa cible cellulaire ou tissulaire.
Ainsi, les nanoparticules selon l'invention comportent avantageusement à leur surface une ou plusieurs molécules de reconnaissance cellulaire comme des anticorps mono ou polyclonaux dirigés par exemple contre certaines protéines cellulaires de surface, des fragments d' immunoglobulines, des ligands spécifiques de récepteurs de surface cellulaire ou encore des molécules agonistes ou antagonistes capables de se lier et/ou de reconnaître tout ou partie des cellules ou tissus visés, tels que l'acide folique ou ses dérivés, ou encore les résidus biotine, avidine ou streptavidine par exemple.
Ces molécules de surface peuvent comme les groupements PEG précédemment cités, faire partie intégrante du polymère amphiphile sous la forme d'un copolymère bloc, ou encore être insérées par l'intermédiaire d'un bras espaceur, au sein du polymère cyanoacrylique.
Les nanoparticules composites selon l'invention ont de préférence un diamètre moyen compris entre 50 et 500 nm, et mieux entre 60 et 200 nm.
Les quantités des différents constituants des nanoparticules selon l'invention sont avantageusement les suivantes :
- le polymère de nature amphiphile peut représenter entre 10 et 60%, de préférence entre 20 et 50% du poids total des nanoparticules, à l'exclusion du poids du ou des principes actifs éventuellement présents dans le cœur polymérique des nanoparticules selon l'invention,
- le polymère cyanocarylique représente entre 40 et 90 %, de préférence entre 50 et 80 % du poids total des nanoparticules à l'exclusion du poids du principe actif à l'exclusion du poids du ou des principes actifs éventuellement présents dans le cœur polymérique des nanoparticules selon l'invention
- le ou les principe (s) actif (s) est (ou sont) présent (s) à raison de 0,5 à 20% et mieux de 1 à 10% en poids par rapport au poids du polymère cyanoacrylique engagé dans les nanoparticules selon l'invention.
La présente invention a encore pour objet un procédé de fabrication des nanoparticules polymériques telles que définies ci-dessus, qui comprend :
A- une étape de dissolution comprenant :
- a) la dissolution dudit polymère cyanoacrylique dans un premier solvant ou mélange de solvants organiques miscibles en toute proportion dans une phase aqueuse dispersante, pour obtenir une première solution à base de polymère cyanoacrylique, b) la dissolution simultanée ou successive dudit polymère amphiphile dans un deuxième solvant organique ou mélange de solvants organiques, ledit polymère amphiphile étant insoluble dans la phase aqueuse dispersante, pour obtenir une deuxième solution à base de polymère amphiphile et c) le cas échéant, la dissolution simultanée ou successive dans un troisième solvant organique ou mélange de solvants organiques du ou des principes actifs à encapsuler, pour obtenir une troisième solution à base de principe actif, les premier, deuxième et troisième solvants ou mélange de solvants organiques étant identiques ou différents, et dans le cas où ils sont différents, ils présentent également chacun une miscibilité en toute proportion dans chacun des des premier et/ou deuxième et/ou troisième solvants ou mélange de solvants organiques ;
B- le mélange de la première solution à base de polymère cyanoacrylique avec la deuxième solution à base de polymère amphiphile, et le cas échéant, avec la solution à base de principe actif, de préférence sous agitation, jusqu'à l'obtention d'une phase organique homogène ;
C- une étape de co-nanoprécipitation dudit polymère cyanoacrylique et dudit polymère amphiphile comprenant l'ajout de la phase organique obtenue à l'étape B ci-dessus, de préférence de façon progressive, dans un volume de phase dispersante en quantité suffisante pour permettre la dispersion de la phase organique dans la phase aqueuse dispersante, et la co-précipitation des polymères amphiphile et polycyanoacrylique, pour obtenir une suspension de nanoparticules polymériques composites telles que définies précédemment ; D- éventuellement la purification de la suspension desdites nanoparticules par filtration, et
E- une étape d'élimination du solvant par évaporation.
Les nanoparticules polymériques composites obtenues selon le procédé de l'invention présentent ainsi la particularité d'être constituées à partir d'au moins deux polymères préformés de nature différente, c'est à dire pour lesquels l'étape de polymérisation a eu lieu avant la formation des nanoparticules proprement dites. Au cours de ce procédé, la réactivité et/ou l'instabilité chimique des principes actifs à encapsuler (le cas échéant) n'interfère pas avec la polymérisation et donc la formation des nanoparticules et l'activité biologique de l'agent à encapsuler est préservée.
Le procédé de l'invention permet une formation spontanée des nanoparticules composites selon l'invention, le polymère de nature amphiphile se positionnant, de façon spontanée à la périphérie desdites nanoparticules, formant ainsi l'écorce polymérique extérieure de ces dernières.
Pour des raisons d'affinités chimiques avec la phase aqueuse employée comme phase dispersante, les groupements hydrophiles contenus dans le -polymère amphiphile selon l'invention, vont se positionner au moment de la coprécipitation vers l'extérieur des nanoparticules, de façon à former une sorte de couronne hydrophile au contact direct de la phase aqueuse.
Le polymère cyanoacrylique selon l'invention se positionne en revanche spontanément au centre des nanoparticules lors de la co-nanoprécipitation, de façon à former ledit cœur des nanoparticules polymériques selon l'invention. Cela est dû notamment à sa très faible affinité pour la phase aqueuse dispersante. Le ou les principes actifs utilisés dans le cadre de la présente invention sont préférentiellement des principes actifs faiblement à très faiblement hydrosolubles. Ainsi, lors de la co-nanoprécipitation, ces molécules vont spontanément être enfermées dans le compartiment délimité par le cœur polymérique desdites nanoparticules.
La phase dispersée est de préférence introduite de façon progressive dans la phase dispersante, l'introduction pouvant par exemple se faire par injection lente à l'aide d'une seringue de précision de type seringue Hamilton par exemple. La co-nanoprécipitation des polymères démarre alors immédiatement et conduit à l'obtention d'une solution opalescente témoin de la formation des nanoparticules composites conformes à l'invention. Avantageusement, le procédé de fabrication de nanoparticules selon l'invention comprend une étape finale de lyophilisation de la suspension obtenue à l'issue de l'étape E.
Une étape ultérieure d'analyse des nanoparticules composites formées peut avoir lieu afin de caractériser sur le plan structurel (taille, forme, homogénéité) et sur le plan fonctionnel (mesure du taux d'incorporation en principe actif) les vecteurs polymériques colloïdaux ainsi formés. Les dispersions de nanoparticules composites obtenues peuvent être facilement lyophilisées pour assurer une bonne conservation et redispersées de façon ex-temporanée juste avant utilisation.
La présente invention a également pour objet une suspension dans un milieu aqueux de nanoparticules polymériques composites selon l'invention. Une telle suspension peut avantageusement être lyophilisée de façon à être stockée facilement puis reconstituée par addition d'eau extemporanément.
La présente invention a encore pour objet l'utilisation de la suspension selon l'invention pour la fabrication de médicaments destinés au traitement de maladies auto-immunes ou cancéreuses. En particulier, ces suspensions de nanoparticules sont utiles dans le traitement des leucémies et tout particulièrement de la leucémie myéloïde chronique.
La suspension selon l'invention peut être administrée, seule ou en association avec d'autres médicaments, par voie parentérale et en particulier par voie intravasculaire, et encore plus préférentiellement par voie intraveineuse ou intra-artérielle.
Les exemples suivants illustrent l'invention, sans toutefois en limiter la portée.
Exemples
Exemple 1 : Préparation de nanoparticules composites de poly (cyanoacrylate d' isobutyle) /poly (ε-caprolactone) -co- poly (éthylène glycol) .
Le copolymère dibloc amphiphile de poly (ε-caprolactone) -co-poly (éthylène glycol) (PECL - PEG) constitué d'un bloc de poly (ε-caprolactone) de masse molaire 10000 g/mole et d'un bloc de poly (éthylène glycol) de masse molaire 2000 g/mole a été synthétisé selon Gref R., Lϋck M., Quellec P., Marchand M., Dellacherie E., Harnisch S., Blunk T., Miiller R.H.; 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG) : influence of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption; Coll.Surf.B; 2000; 18; 301-313. La phase dispersée (1 ml) est composée du mélange en proportion 80/20 (v/v) , d'une solution acétonique de poly (cyanoacrylate d'isobutyle) (0,8 ml) et d'une solution acétonique de copolymère amphiphile dibloc de PECL-PEG (0,2 ml) concentrées à 10 mg/ml. La phase dispersée (1 ml) est injectée lentement (environ 10 secondes) dans une phase dispersante aqueuse (2 ml) à l'aide d'une seringue Hamilton (capacité ImI) et en prenant soin de plonger l'aiguille de la seringue dans la phase dispersante aqueuse. Cette dernière est soumise à une agitation magnétique (1250 t/min) durant l'injection. Les nanoparticules composites se forment immédiatement, ce qui rend la solution opalescente. L'acétone est ensuite éliminée par évaporation sous vide à température ambiante, à l'aide d'un évaporateur rotatif. L' évaporation totale de l'acétone est vérifiée par pesée.
Le diamètre moyen des nanoparticules composites mesuré par diffusion quasi élastique de la lumière est égal à 140 ± 40 nm. Le potentiel de surface des nanoparticules mesuré à l'aide d'un zétamètre est d'environ - 41 mV.
Exemple 2
Les nanoparticules composites sont obtenues suivant le procédé décrit dans l'exemple 1, mais les deux solutions de polymères sont mélangées en proportion 70/30 (v/v) . La phase dispersée (ImI) est obtenue en mélangeant 0,7 ml de la solution de poly (cyanoacrylate d'isobutyle) et 0,3 ml de la solution de copolymère dibloc amphiphile PECL-PEG décrit à l'exemple 1, concentrées à 10 mg/ml.
Le diamètre moyen des nanoparticules composites mesuré par diffusion quasi élastique de la lumière est égal à 125 ± 35 nm. Le potentiel de surface des nanoparticules mesuré à l'aide d'un zétamètre est d'environ -26 mV. Exemple 3
Les nanoparticules composites sont obtenues suivant le procédé décrit dans l'exemple 1, mais les deux solutions de polymères sont mélangées en proportion 60/40 (v/v) . La phase dispersée (ImI) est obtenue en mélangeant 0,6 ml de la solution de poly (cyanoacrylate d'isobutyle) et 0,4 ml de la solution de copolymère dibloc amphiphile PECL-PEG décrit à l'exemple 1, concentrées à 10 mg/ml.
Le diamètre moyen des nanoparticules composites mesuré par diffusion quasi élastique de la lumière est égal à 120 ± 40 nm. Le potentiel de surface des nanoparticules mesuré à l'aide d'un zétamètre est d'environ - 28 mV.
Exemple 4 Les nanoparticules composites sont obtenues suivant le procédé décrit dans l'exemple 1, mais les deux solutions de polymères sont mélangées en proportion 50/50 (v/v) . La phase dispersée (ImI) est obtenue en mélangeant 0,5 ml de la solution de poly (cyanoacrylate d'isobutyle) et 0,5 ml de la solution de copolymère dibloc amphiphile PECL-PEG décrit à l'exemple 1, concentrées à 10 mg/ml.
Le diamètre moyen des nanoparticules composites mesuré par diffusion quasi élastique de la lumière est égal à 105 ± 35 nm. Le potentiel de surface des nanoparticules mesuré à l'aide d'un zétamètre est d'environ - 22 mV.
Exemple 5 : Préparation de nanoparticules composites de poly (cyanoacrylate d' isobutyle) / poly (ε-caprolactone) -co- poly (éthylène glycol) .chargées en busulfan. On prépare une première solution de poly(cyanoacrylate d'isobutyle dans de l'acétone, concentrée à 40 mg/ml. l'
On prépare une deuxième solution acétonique de copolymère dibloc amphiphile PECL-PEG tel que décrit à l'exemple 1, concentrée à 40 mg/ml.
On prépare une troisième solution acétonique de busulfan concentrée à 4 mg/ml. Le busulfan présent au sein des nanoparticules composites est dosé par comptage en scintillation liquide de la radioactivité. Le marqueur radioactif utilisé est le busulfan tritié (busulfan-3H) . Pour le dosage celui-ci est mélangé au busulfan froid dans la phase dispersée (1,25 μCi pour 2 mg de busulfan froid) .
La phase organique est obtenue par le mélange de ces trois solutions de la manière suivante : les deux premières solutions de polymères sont mélangées en proportion 50/50 (v/v) , et - la phase organique (ImI) est alors obtenue en mélangeant 0,250 ml de la solution de poly (cyanoacrylate d' isobutyle) , 0,250 ml de la solution de PECL - PEG et 0,500 ml de la solution de busulfan froid + busulfan-3H. La phase organique (1 ml) est injectée lentement
(environ 10 secondes) dans une phase dispersante aqueuse (2 ml) à l'aide d'une seringue Hamilton (capacité 1 ml) et en prenant soin de plonger l'aiguille de la seringue dans la phase dispersante aqueuse. Cette dernière est soumise à une agitation magnétique (1250 t/min) durant l'injection. Les nanoparticules composites se forment immédiatement, ce qui rend la solution opalescente. L'acétone est ensuite éliminée par évaporation sous vide à température ambiante, à l'aide d'un évaporateur rotatif. L' évaporation totale de l'acétone est vérifiée par pesée. Lors de évaporation de l'acétone, il y a formation de quelques cristaux de busulfan dans la phase dispersante aqueuse. Ces derniers sont éliminés par plusieurs étapes de purifications successives (centrifugation à 630 g pendant 5min, pré-filtration sur filtre de porosité lμm (Glass Fiber membrane ; Gelman Laboratory) et filtration sur filtre de porosité 0,45 μm (Millex HV ; Millipore) . Les nanoparticules sont séparées de la phase dispersante par centrifugation (30 min 30000g), puis séchées dans un dessiccateur sous vide pendant 24h. La quantité de busulfan présente dans les nanoparticules est déterminée par comptage de la radioactivité dans le culot des nanoparticules remis en solution dans 1 ml d'acétone. Le taux d' encapsulation du busulfan est de 1,7 ± 0,1 % (mg Bu/mg nanoparticules) . Le diamètre moyen des nanoparticules composites avant purification est égal à 165 ± 50 nm et le diamètre moyen des nanoparticules après purification est égal à 160 ± 50 nm.

Claims

REVENDICATIONS
1- Nanoparticules polymériques composites biodégradables comprenant :
- un coeur polymérique interne, essentiellement constitué d'au moins un polymère cyanoacrylique choisi dans le groupe des poly(cyanoacrylate d'alkyle), une écorce polymérique externe essentiellement constitué d'au moins un polymère amphiphile comportant au moins un groupement hydrophile et au moins un groupement hydrophobe, et
- éventuellement un principe actif.
2- Nanoparticules polymériques composites, caractérisés en ce que le groupe alkyle du polymère cyanoacrylique comprend 1 à 12 atomes de carbone, de préférence 3 à 6 atomes de carbone.
3- Nanoparticules polymériques composite selon la revendication 1 caractérisée en ce que le polymère cyanoacrylique est choisi dans le groupe comprenant le polycyano (acrylate d'éthyle) (PECA), le polycyano (acrylate de butyle (PBCA), le polycyano (acrylate d'isobutyle)
(PIBCA), le polycyano (acrylate de propyle) (PPCA) et le polycyano (acrylate d'isohexyle) (PIHCA) de préférence le polycyanoacrylate d'isobutyle et le polycyano (acrylate d'éthyle) .
4- Nanoparticules polymériques selon l'une quelconque des revendications 1 à 3, caractérisées en ce que ledit polymère cyanoacrylique a une masse molaire moyenne en poids déterminé par chromatographie d'exclusion stérique en équivalent polystyrène comprise entre 2000 et 500 000 g/mole, préférentiellement entre 5000 et 350 000 g/mole. 5- Nanoparticules polyτnériques composites selon l'une quelconque des revendications 1 à 4, caractérisées en ce que : le groupement hydrophobe dudit polymère de nature amphiphile est choisi dans le groupe comprenant les poly(anhydrides) , les polyesters tels que les polymères de l'acide lactique (PLA), les copolymères de l'acide lactique et de l'acide glycolique (PLGA), le polyhydroxybutyrate, le polyhydroxyvalérate, leurs copolymères et les polycaprolactones (PCL) , et le groupement hydrophile dudit polymère de nature amphiphile est choisi dans le groupe comprenant les groupements polysaccharide, polyvinylpyrrolidone, de préférence polyéthylène glycol (PEG) .
6- Nanoparticules polymériques composites selon la revendication 5, caractérisées en ce que le groupement hydrophile du polymère amphiphile a une masse molaire moyenne en poids comprise entre 1000 et 20000 g/mole, de préférence entre 2000 et 5000 g/mole.
7- Nanoparticules selon l'une quelconque des revendications 1 à 6, caractérisées en ce que ledit polymère de nature amphiphile est un copolymère di-séquencé ou multi-séquencé.
8- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 7, caractérisées en ce que le rapport de la masse molaire de la partie hydrophobe dudit polymère amphiphile à celle de la partie hydrophile dudit polymère amphiphile et compris entre 1/1 et 100/1, de préférence entre 2/1 et 10/1. 9- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 8, caractérisées en ce que : ledit polymère de nature amphiphile représente entre 10 et 60%, de préférence entre 20 et 50% du poids total des nanoparticules, à l'exclusion du poids du ou des principes actifs éventuellement présents dans le cœur polymérique des nanoparticules, et ledit polymère cyanocarylique représente entre 40 et 90 %, de préférence entre 50 et 80 % du poids total des nanoparticules, à l'exclusion du poids du ou des principes actifs éventuellement présents dans le cœur polymérique des nanoparticules .
10- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 9, caractérisées en ce qu'elles ont un diamètre moyen compris entre 50 et 500 nm et plus préférentiellement entre 60 et 200 nm.
11- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 10, caractérisées en ce que ledit cœur polymérique contient au moins un principe actif, ledit principe actif représentant entre 0,5 et 20%, de préférence entre 1 et 10% du poids du polymère cyanoacrylique.
12- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 11, caractérisées en ce que le principe actif est une molécule à forte tendance à la cristallisation et/ou hydrophobes et/ou très faiblement hydrosoluble et/ou chimiquement très réactive.
13- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 12, caractérisées en ce l'
que ledit principe actif est choisi dans le groupe comprenant les agents antibactériens systémiques, les agents antiviraux systémiques et les agents antifongiques systémiques, de préférence choisi dans le groupe comprenant les céphalosporines, les bétalactamimes, les cyclines, les aminosides, les quinolones, les macrolides, les dérivés d'imidazole, les dérivés azolés, les sulfamides, l'aciclovir, les inhibiteurs de la transcriptase inverse ; et les agents anticancéreux, de préférence les agents anticancéreux de nature hydrophobe tel que le tamoxifène, les taxanes, l'étoposide, les camptothécines, le busulfan, le carboplatine, la vinblastine, actinomycine et le méthotrexate.
14- Nanoparticules polymériques composites selon la revendication 13, caractérisées en ce que ledit principe actif est un agent anticancéreux, présentant ou étant capable de libérer un dérivé de sulfonate, de préférence le busulfan.
15- Nanoparticules polymériques composites selon l'une quelconque des revendications 1 à 14, caractérisées en ce qu'elles comportent une ou plusieurs molécules de reconnaissance cellulaire ou tissulaire à la surface de ladite écorce polymérique, qui sont de préférence choisies parmi les immunoglobulines, les ligands, les agonistes et antagonistes de récepteurs cellulaires.
16- Procédé de fabrication de nanoparticules polymériques composites telles que définies selon l'une des revendications 1 à 15 comprenant :
A- une étape de dissolution comprenant :
- a) la dissolution dudit polymère cyanoacrylique dans un premier solvant au mélange de solvants organiques miscibles en toute proportion dans une phase aqueuse dispersante, pour obtenir une première solution à base de polymère cyanoacrylique,
- b) la dissolution simultanée ou successive dudit polymère amphiphile dans un deuxième solvant organique ou mélange de solvants organiques, ledit polymère amphiphile étant insoluble dans la phase aqueuse dispersante, pour obtenir une deuxième solution à base de polymère amphiphile, et - c) le cas échéant, la dissolution simultanée ou successive dans un troisième solvant organique ou mélange de solvants organique du ou des principes actifs à encapsuler, pour obtenir une troisième solution à base de principe actif, les premier, deuxième et troisième solvants ou mélange de solvants organiques étant identiques ou différents, et dans le cas où ils sont différents, ils présentent également chacun une miscibilité en toute proportion dans chacun des des premier et/ou deuxième et/ou troisième solvants ou mélange de solvants organiques ;
B- le mélange de la première solution à base de polymère cyanoacrylique avec la deuxième solution à base de polymère amphiphile, et le cas échéant, avec la solution à base de principe actif, de préférence sous agitation, jusqu'à l'obtention d'une phase organique homogène ;
C- une étape de co-nanoprécipitation dudit polymère cyanoacrylique et dudit polymère amphiphile comprenant l'ajout de la phase organique, de préférence de façon progressive, dans un volume de phase dispersante en quantité suffisante pour permettre la dispersion de la phase organique dans la phase aqueuse dispersante, et la co-précipitation des polymères amphiphiles et polycyanoacrylique, pour obtenir une suspension de nanoparticules polymériques composites; D- éventuellement la purification de la suspension desdites nanoparticules par filtration ; et
E- une étape d'élimination du solvant par évaporation.
17- Procédé de fabrication de nanoparticules polymériques composites selon la revendication 16, caractérisé en ce qu'il comporte en outre une étape finale F de lyophilisation de ladite suspension.
18- Suspension dans un milieu aqueux de nanoparticules polymériques composites telles que définies selon l'une des revendications 1 à 15 ou telles que préparées selon le procédé de la revendication 16 ou 17.
19- Suspension selon la revendication 18 caractérisée en ce qu'elle est lyophilisée.
20- Utilisation de la suspension de nanoparticules telle que définie selon la revendication 18 ou 19, pour une administration parentérale et en particulier intravasculaire.
21- Utilisation de la suspension de nanoparticules selon la revendication 20, pour la fabrication d'un médicament destiné au traitement du cancer, et notamment de la leucémie myéloïde chronique.
22- Utilisation de la suspension de nanoparticules selon la revendication 21 pour la fabrication d'un médicament destiné au traitement des infections systémiques bactériales ou virales.
PCT/FR2005/001398 2004-07-07 2005-06-07 Nanoparticules comprenant un coeur constitue essentiellement d’un polymere cyanoacrylique et une ecorce d’un polymere amphiphile, et eventuellement un principe actif qui est preferablement du busulfan WO2006016020A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0407569A FR2872703B1 (fr) 2004-07-07 2004-07-07 Nanoparticules polymeriques composites
FR0407569 2004-07-07

Publications (2)

Publication Number Publication Date
WO2006016020A2 true WO2006016020A2 (fr) 2006-02-16
WO2006016020A3 WO2006016020A3 (fr) 2006-07-13

Family

ID=34946547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001398 WO2006016020A2 (fr) 2004-07-07 2005-06-07 Nanoparticules comprenant un coeur constitue essentiellement d’un polymere cyanoacrylique et une ecorce d’un polymere amphiphile, et eventuellement un principe actif qui est preferablement du busulfan

Country Status (2)

Country Link
FR (1) FR2872703B1 (fr)
WO (1) WO2006016020A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121077A1 (fr) * 2007-03-30 2008-10-09 Agency For Science, Technology And Research Point quantique encapsulé
US9364433B2 (en) 2011-04-28 2016-06-14 Borje S. Andersson Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
CN108453927A (zh) * 2018-02-08 2018-08-28 西安交通大学 一种可生物降解PCL/Mg复合材料FDM耗材的制备工艺
US10967039B2 (en) 2013-05-28 2021-04-06 Sintef Tto As Process for preparing stealth nanoparticles
US20210113482A1 (en) * 2018-03-27 2021-04-22 Sintef Tto As Poly (Alkyl Cyanoacrylate) Nanoparticles for Use in Treatment of Cancer
US12433846B2 (en) 2021-09-24 2025-10-07 Sintef Tto As Drug delivery system for treatment of cancer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329332A (en) * 1978-07-19 1982-05-11 Patrick Couvreur Biodegradable submicroscopic particles containing a biologically active substance and compositions containing them
FR2608942B1 (fr) * 1986-12-31 1991-01-11 Centre Nat Rech Scient Procede de preparation de systemes colloidaux dispersibles d'une substance, sous forme de nanocapsules
FR2659554B1 (fr) * 1990-03-16 1994-09-30 Oreal Composition pour le traitement cosmetique et/ou pharmaceutique des couches superieures de l'epiderme par application topique sur la peau et procede de preparation correspondant.
IE80468B1 (en) * 1995-04-04 1998-07-29 Elan Corp Plc Controlled release biodegradable nanoparticles containing insulin
FR2775435B1 (fr) * 1998-02-27 2000-05-26 Bioalliance Pharma Nanoparticules comprenant au moins un polymere et au moins un compose apte a complexer un ou plusieurs principes actifs
US7498045B2 (en) * 2001-08-31 2009-03-03 Thomas M. S. Chang Biodegradable polymeric nanocapsules and uses thereof
CN1417242A (zh) * 2002-11-14 2003-05-14 天津大学 聚乙二醇接枝修饰的聚氰基丙烯酸酯共聚物及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121077A1 (fr) * 2007-03-30 2008-10-09 Agency For Science, Technology And Research Point quantique encapsulé
CN101668697B (zh) * 2007-03-30 2013-03-27 科技研究局 疏水量子点的封装
US9364433B2 (en) 2011-04-28 2016-06-14 Borje S. Andersson Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
US9724345B2 (en) 2011-04-28 2017-08-08 Platform Brightworks Two, Ltd. Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
US10028949B2 (en) 2011-04-28 2018-07-24 Platform Brightworks Two, Ltd. Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
US10548890B2 (en) 2011-04-28 2020-02-04 Platform Brightworks Two, Ltd. Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
US11045466B2 (en) 2011-04-28 2021-06-29 Platform Brightworks Two, Ltd. Parenteral formulations of lipophilic pharmaceutical agents and methods for preparing and using the same
US10967039B2 (en) 2013-05-28 2021-04-06 Sintef Tto As Process for preparing stealth nanoparticles
CN108453927A (zh) * 2018-02-08 2018-08-28 西安交通大学 一种可生物降解PCL/Mg复合材料FDM耗材的制备工艺
US20210113482A1 (en) * 2018-03-27 2021-04-22 Sintef Tto As Poly (Alkyl Cyanoacrylate) Nanoparticles for Use in Treatment of Cancer
US11806330B2 (en) 2018-03-27 2023-11-07 Sintef Tto As PACA and cabazitaxel for anti-cancer treatment
US12433846B2 (en) 2021-09-24 2025-10-07 Sintef Tto As Drug delivery system for treatment of cancer

Also Published As

Publication number Publication date
FR2872703B1 (fr) 2006-10-06
FR2872703A1 (fr) 2006-01-13
WO2006016020A3 (fr) 2006-07-13

Similar Documents

Publication Publication Date Title
KR101243689B1 (ko) 미립자 및 의약품 조성물
Narayanan et al. Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug Ibuprofen-Sodium: An in vitro and in vivo analysis
EP0869776B1 (fr) Nanoparticules stabilisees et filtrables dans des conditions steriles
KR100578382B1 (ko) 항암제의 전달체용 수용성 키토산 나노입자 및 그 제조방법
CN102740895B (zh) 纳米轭合物以及纳米轭合物配制品
US10245244B2 (en) Pharmaceutical formulations for the treatment of pulmonary arterial hypertension
JP2018065862A (ja) 薬剤を装填したポリマーナノ粒子及びその製造方法と使用方法
WO2014036534A1 (fr) Curcumine-er, nanocurcumine liposomale à liberation prolongée-plga pour réduire au minimum la prolongation du qt dans les thérapies anticancéreuses
JP5449388B2 (ja) 耐性がん治療用高分子ミセル組成物及びその製造方法
CN101926775A (zh) 包载硫酸长春新碱的双功能纳米粒制剂的制备和应用方法
Ramaiah et al. High azithromycin concentration in lungs by way of bovine serum albumin microspheres as targeted drug delivery: lung targeting efficiency in albino mice
KR20180054855A (ko) 치료제를 포함하는 치료 나노입자, 및 이를 제조 및 사용하는 방법
CN108686226B (zh) 以碱基为载体的纳米药物输送体系
WO2024109964A1 (fr) Composition micellaire chargée de médicament oral et son procédé de préparation
Baviskar et al. Development and evaluation of N-acetyl glucosamine-decorated vitamin-E-based micelles incorporating resveratrol for cancer therapy
WO2006016020A2 (fr) Nanoparticules comprenant un coeur constitue essentiellement d’un polymere cyanoacrylique et une ecorce d’un polymere amphiphile, et eventuellement un principe actif qui est preferablement du busulfan
Ábrahám et al. Improvement of the drug encapsulation into biodegradable polyester nanocarriers by blending of poly (lactic-co-glycolic acid) and polycaprolactone.
Merkulova et al. Etoposide-loaded colloidal delivery systems based on biodegradable polymeric carriers
TWI472341B (zh) 寡聚物奈米顆粒複合體釋放系統
WO2002000162A2 (fr) Systeme d'administration de medicaments
KR101039095B1 (ko) pH 민감성을 갖는 약물전달용 생체적합성 나노복합체 및 이의 제조방법
EP4003431A1 (fr) Structures particulaires à base de nanoparticules d'or, leurs procédés de préparation et leurs utilisations dans le traitement des tumeurs solides
Shi et al. Reduction-responsive and tumor-targeted polyprodrug nanocarriers for targeting therapy of hepatocellular carcinoma
AU2021101355A4 (en) Nanocarriers for treatment of breast cancer
US20230270681A1 (en) Drug delivery agents for prevention or treatment of pulmonary disease

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application