WO2006018866A1 - Inhibiteur de croissance de bactérie oxydant le soufre et méthode de prévention de la corrosion du béton - Google Patents
Inhibiteur de croissance de bactérie oxydant le soufre et méthode de prévention de la corrosion du béton Download PDFInfo
- Publication number
- WO2006018866A1 WO2006018866A1 PCT/JP2004/011814 JP2004011814W WO2006018866A1 WO 2006018866 A1 WO2006018866 A1 WO 2006018866A1 JP 2004011814 W JP2004011814 W JP 2004011814W WO 2006018866 A1 WO2006018866 A1 WO 2006018866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concrete
- growth inhibitor
- sulfur
- powder
- corrosion
- Prior art date
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 28
- 239000003966 growth inhibitor Substances 0.000 title claims abstract description 27
- 230000007797 corrosion Effects 0.000 title claims abstract description 22
- 238000005260 corrosion Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title abstract description 8
- 230000001590 oxidative effect Effects 0.000 title abstract 4
- 239000011593 sulfur Substances 0.000 title abstract 4
- 229910052717 sulfur Inorganic materials 0.000 title abstract 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000000843 powder Substances 0.000 claims abstract description 37
- 235000019253 formic acid Nutrition 0.000 claims abstract description 19
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 17
- GMDNUWQNDQDBNQ-UHFFFAOYSA-L magnesium;diformate Chemical compound [Mg+2].[O-]C=O.[O-]C=O GMDNUWQNDQDBNQ-UHFFFAOYSA-L 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 10
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000004568 cement Substances 0.000 claims description 16
- 239000004480 active ingredient Substances 0.000 claims description 15
- 239000010865 sewage Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 230000001580 bacterial effect Effects 0.000 claims description 5
- 238000005536 corrosion prevention Methods 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 abstract description 8
- 239000003112 inhibitor Substances 0.000 abstract description 4
- 239000004552 water soluble powder Substances 0.000 abstract description 2
- 239000004615 ingredient Substances 0.000 abstract 2
- 230000002035 prolonged effect Effects 0.000 abstract 2
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 241000605222 Acidithiobacillus ferrooxidans Species 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000004281 calcium formate Substances 0.000 description 4
- 235000019255 calcium formate Nutrition 0.000 description 4
- 229940044172 calcium formate Drugs 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- -1 formic acid compound Chemical class 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000010718 Oxidation Activity Effects 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- MJWPFSQVORELDX-UHFFFAOYSA-K aluminium formate Chemical compound [Al+3].[O-]C=O.[O-]C=O.[O-]C=O MJWPFSQVORELDX-UHFFFAOYSA-K 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 241000605178 Halothiobacillus neapolitanus Species 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 241000605219 Starkeya novella Species 0.000 description 1
- 241000605176 Thermithiobacillus tepidarius Species 0.000 description 1
- 241000605118 Thiobacillus Species 0.000 description 1
- 241001509286 Thiobacillus denitrificans Species 0.000 description 1
- 241000605268 Thiobacillus thioparus Species 0.000 description 1
- 241000156287 Triaenodes delicatus Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940118662 aluminum carbonate Drugs 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229940044170 formate Drugs 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/02—Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/06—Aluminium; Calcium; Magnesium; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/61—Corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/67—Biocides
Definitions
- the present invention relates to a growth inhibitor of sulfur-oxidizing bacteria such as the genus Thiobacillus causing corrosion of concrete in a sewage treatment facility or a sewage pipe, and a method for preventing corrosion of concrete using the inhibitor. About.
- Conventional methods for preventing corrosion of concrete structures include, for example, a method in which a metal or metal oxide that is insoluble in water such as nickel and soluble in sulfuric acid is used as an active ingredient and is directly mixed with concrete (Patent Document 1), Or insoluble in sulfuric acid such as W, Mo, Na WO, Na MoO
- Patent Document 2 There has been proposed a method (Patent Document 2) in which a metal and a metal compound are used as active ingredients and added during the production of a concrete structure.
- Patent Document 3 discloses a formic acid compound such as formic acid, sodium formate or calcium formate as an active ingredient that suppresses the growth of sulfur-oxidizing bacteria and exhibits a corrosion-inhibiting action on concrete. Has been proposed.
- the formic acid or the formic acid compound described in this document is readily water-soluble or liquid, and even in the examples, calcium formate is dissolved in water and the effect of inhibiting the growth of sulfur-oxidizing bacteria is shown. Absent. Therefore, when such a readily water-soluble or liquid compound is used as an effective component, it is not possible to expect a long-term concrete corrosion prevention effect, and it is also necessary to increase the amount of use.
- formic acid or a salt thereof can be used as a cement admixture used for rapid-hardening cement and the like because it exhibits a pseudo-coagulation action in a cement composition as shown in Patent Documents 4-16. ing. Furthermore, pasture preservatives that utilize the growth inhibition effect of microorganisms by formic acid or ammonium formate are also commercially available.
- Patent Document 1 Japanese Patent Laid-Open No. 4-149053
- Patent Document 3 Japanese Patent Laid-Open No. 10-324549
- Patent Document 4 JP-A-8-310845
- Patent Document 5 Japanese Patent Laid-Open No. 2001-48617
- Patent Document 6 Special Table 2001-509124
- An object of the present invention is to provide a sulfur-oxidizing bacterium growth inhibitor capable of sufficiently inhibiting the growth of sulfur-oxidizing bacteria for a long period of time, wherein the active ingredient is a poorly water-soluble powder.
- Another object of the present invention is to provide a method for preventing corrosion of concrete, which can sufficiently prevent corrosion of concrete in a sewage treatment facility by sulfur-oxidizing bacteria over a long period of time and has almost no risk of reducing the strength of the concrete. There is.
- the magnesium oxide having a solubility power in water of 25 ° C of S3.0g / I00ml or less.
- a sulfur-oxidizing bacterial growth inhibitor containing, as an active ingredient, a magnesium formate-containing powder obtained by reacting shim and formic acid.
- a method for preventing corrosion of a concrete comprising a step of mixing the sulfur-oxidizing bacteria growth inhibitor in producing a concrete by curing a cement composition containing cement and aggregate.
- the growth inhibitor of the present invention comprises a magnesium formate-containing powder having low water solubility and poorly water solubility as an active ingredient, and therefore can sufficiently inhibit the growth of sulfur-oxidizing bacteria over a long period of time.
- the method for preventing corrosion of concrete according to the present invention uses the growth inhibitor of the present invention, the corrosion of concrete by sulfur-oxidizing bacteria and the like is sufficiently inhibited over a long period of time by adding a small amount to the concrete in a sewage treatment facility or the like.
- the effect can be obtained with a small amount of blending, the corrosion prevention effect can be obtained without substantially reducing the strength of the concrete itself.
- FIG. 1 is a graph showing the results of measuring the effect of active ingredients in the growth inhibitor of the present invention on the growth of the NB1-3 strain carried out in Examples 1 and 2 and Comparative Example 1.
- FIG. 2 is a graph showing the results of measuring the effect of the active ingredient in the growth inhibitor of the present invention on the elemental sulfur oxidation activity of A. ferrooxidans ATCC2370 strain carried out in Examples 3-5 and Comparative Example 2.
- FIG. 3 is a graph showing the results of measuring the effect of active ingredients in the growth inhibitor of the present invention on the elemental sulfur oxidation activity of NB1-3 strain washed cells performed in Examples 6 and 7 and Comparative Example 3.
- the growth inhibitor of the present invention is, for example, an inhibitor that inhibits the growth of sulfur-oxidizing bacteria such as Cibacillus, which cause corrosion of concrete in sewage treatment facilities, and is not limited to concrete in contact with sewage. Effectively inhibit the growth of sulfur-oxidizing bacteria even in concrete that is close to sewage treatment facilities and is affected by atmospheric hydrogen sulfide. Can do.
- sulfur-oxidizing bacteria such as Cibacillus
- the active ingredient used in the growth inhibitor of the present invention is a poorly water-soluble magnesium formate-containing powder obtained by reacting magnesium oxide and formic acid.
- the solubility of the powder in water at 25 ° C. is usually 3.0 gZl00 ml or less, preferably 2.0 g / l00 ml or less, particularly preferably 1.7 g / 100 ml or less, and its lower limit is usually 0.2 gZl00 ml or more. When the solubility exceeds 3.0 g / 100 ml, there is a possibility that the growth inhibitory effect over a long period cannot be expected.
- the particle size of the magnesium formate-containing powder is not particularly limited.
- the growth inhibiting action can be effectively exhibited, and the particle size blended at a desired position in the concrete is preferable. .
- 0.1 100 II m is desirable.
- magnesium oxide and formic acid are reacted. Since this reaction is an exothermic reaction, it is usually preferable to carry out the reaction while cooling to about 0-5 ° C.
- the reaction product can be obtained by pulverizing the reaction product by operations such as grinding, etc., and further drying and the like when the exotherm has subsided.
- the powdering operation usually re-heats due to powdering, so it is preferable to continue the operation until there is no heat generation.
- hydration can be carried out by adding water before pulverization.
- the amount charged in the reaction of magnesium oxide and formic acid is usually such that the ratio of magnesium oxide: formic acid is about 1: 2-4.
- the product obtained by the reaction is a mixture of magnesium formate and magnesium hydroxide.
- the anhydrous salt of magnesium formate is usually dissolved in about 14.0 g in 100 ml of water at 0 ° C.
- the solubility of the magnesium formate-containing powder is considerably low as described above. This is presumed that the reaction product magnesium formate was contaminated with magnesium hydroxide and stabilized.
- the sulfur-oxidizing bacterium that inhibits growth by the growth inhibitor of the present invention includes a sulfur-oxidizing bacterium of the genus Cibacillus, such as Thiobacillus thioparus, T. neapolitanus, Cibacillus T. capsulatus, T. tepidarius, T. denitrificans, T. ferrooxidans, T. ferrooxidans, T. ferrooxidans, T. ferrooxidans, T. ferrooxidans ⁇ bachinoles 'thiooxidans ( ⁇ ⁇ thiooxidans), ⁇ bachinoles' Snovelas (T. novellus)
- Cibacillus such as Thiobacillus thioparus, T. neapolitanus, Cibacillus T. capsulatus, T. tepidarius, T. denitrificans, T. ferrooxidans, T. ferrooxidans, T. ferrooxidans, T. ferrooxidans, T. ferr
- Cibacillus 'Berstus ( ⁇ versutus), Cibacillus' Intermediaus (ius ⁇ intermedius), Cibacillus. T. americanus, Cibacillus.
- the effective concentration of the growth inhibitor of the present invention is not particularly limited, and can be appropriately selected depending on the kind of sulfur-oxidizing bacteria. However, it is usually preferably O.OlgZkg or more, particularly preferably 0.150 g / kg.
- the method for preventing corrosion of concrete according to the present invention includes a step of mixing the sulfur-oxidizing bacterial growth inhibitor of the present invention when a concrete is produced by curing a cement composition containing cement and aggregate.
- the cement composition is not particularly limited as long as it is a cement composition used when producing concrete, and can be appropriately selected according to a known composition and according to a desired structure. At this time, various additives may be included in order to obtain a desired concrete structure.
- the mixing ratio of the growth inhibitor of the present invention is sufficient to prevent corrosion even when the amount is usually 0.0001-0.1 part by weight, particularly 0.0001-0.01 part by weight, per 100 parts by weight of cement in the cement composition. As well as being obtained, the effect can be sustained significantly.
- the growth inhibitor of the present invention After the growth inhibitor of the present invention has been mixed into the cement composition, concrete having an excellent anticorrosion action can be obtained by molding and curing, for example, by a known method. In particular, it is possible to easily and evenly mix the growth inhibitor of the present invention into concrete even by centrifugal molding.
- This centrifugal molding method can be performed in the same manner as a method for producing a known fume tube or the like, and concrete having a desired growth inhibitor can be obtained by appropriately selecting the centrifugal molding conditions.
- the particle size of the growth inhibitor is important. If the particle size is too small, it may move together with the breathing water used during centrifugal molding and may be drained in some cases. If the particle size is too large, it may move to the outer surface during centrifugal molding. Therefore, the particle size of the magnesium formate-containing powder as the active ingredient is preferably selected from the above-mentioned preferred range.
- Corrosive concrete l.Og was inoculated into 20 ml of machine salt medium (pH 7.0) and stored under aerobic conditions at 30 ° C. When the pH of the medium dropped to 2.0, the medium was changed and this culturing operation was performed 5 times. A yellow colony of Cibacillus thixoxidans obtained by roasting was isolated, and this isolate was designated as NB 1-3.
- Example 1 The powder (A) 5 mg (Example 1), the power to add lOOmg (Example 2), or the control powder was not added (Comparative Example DNB1-3 strain was cultured. The amount of growth of NB1-3 strain was measured by absorbance at 660. The results are shown in FIG.
- Fig. 1 shows that powder (A) exhibits excellent sulfur-oxidizing bacteria growth inhibitory activity.
- reaction vessel of a Workbruda pressure gauge equipped with a manometer, reaction vessel and shaking device 5 mg of A.ferrooxidans ATCC 2370 strain, a commercially available sulfur-oxidizing bacterium, ⁇ -alanine-SO 2 _ loose
- Impregnation solution 200 ⁇ 1 ( ⁇ 3.0) and sodium sulfite 200 ⁇ mol were added in a total volume of 3 ml, and the powder prepared in Example 1 (A) 0.5 mg (Example 3), 5.3 mg Example 4), 30 mg (Example 5) was added or was not added as a control (Comparative Example 2), and the amount of oxygen absorbed over time was measured. Place 0.2 ml of sodium hydroxide in the centerwell and adjust the pH in the reaction tank to 3.0. The measurement was performed while adjusting to. The gas phase of the Workbruda pressure gauge was kept at 30 ° C with air. The result is shown in figure 2.
- powder (A) exhibits excellent sulfur-oxidizing bacterial growth inhibitory activity under acidic pH 3.0.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Ceramic Engineering (AREA)
- Agronomy & Crop Science (AREA)
- Wood Science & Technology (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Dentistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2004/011814 WO2006018866A1 (fr) | 2004-08-18 | 2004-08-18 | Inhibiteur de croissance de bactérie oxydant le soufre et méthode de prévention de la corrosion du béton |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2004/011814 WO2006018866A1 (fr) | 2004-08-18 | 2004-08-18 | Inhibiteur de croissance de bactérie oxydant le soufre et méthode de prévention de la corrosion du béton |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006018866A1 true WO2006018866A1 (fr) | 2006-02-23 |
Family
ID=35907263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/011814 WO2006018866A1 (fr) | 2004-08-18 | 2004-08-18 | Inhibiteur de croissance de bactérie oxydant le soufre et méthode de prévention de la corrosion du béton |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006018866A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106121A1 (fr) * | 2009-03-20 | 2010-09-23 | Basf Se | Élaboration sans solvant de matériau squelette organométallique poreux à base de formiate de magnésium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000159554A (ja) * | 1998-11-24 | 2000-06-13 | Fujita Corp | コンクリート腐食防止剤およびコンクリート腐食防止用コーティング材 |
-
2004
- 2004-08-18 WO PCT/JP2004/011814 patent/WO2006018866A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000159554A (ja) * | 1998-11-24 | 2000-06-13 | Fujita Corp | コンクリート腐食防止剤およびコンクリート腐食防止用コーティング材 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106121A1 (fr) * | 2009-03-20 | 2010-09-23 | Basf Se | Élaboration sans solvant de matériau squelette organométallique poreux à base de formiate de magnésium |
US8431744B2 (en) | 2009-03-20 | 2013-04-30 | Basf Se | Solvent-free preparation of magnesium formate-based porous metal-organic framework |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6752867B1 (en) | Antibacterial agent for concrete, concrete compositions and concrete products | |
GB2042025A (en) | Strengthening soft soil | |
JPS6128618B2 (fr) | ||
TW200505793A (en) | Metal oxide solid solution, preparation and use thereof | |
AU2006257359A1 (en) | Method of delivery of agents providing freezing and thawing resistance to cementitious compositions | |
JP4032199B2 (ja) | 硝酸性窒素脱窒基質 | |
WO2004011403A3 (fr) | Phosphates hydrogenes de metal alcalin precurseurs de materiaux electochimiques actifs contenant du phospate | |
WO2005037728A1 (fr) | Agents reducteurs de chrome hexavalent a base d'amine destines au ciment | |
CZ289326B6 (cs) | Přípravek k úpravě vody a sanaci půd | |
Ersan et al. | Granules with activated compact denitrifying core (ACDC) for self-healing concrete with corrosion protection functionality | |
WO2006018866A1 (fr) | Inhibiteur de croissance de bactérie oxydant le soufre et méthode de prévention de la corrosion du béton | |
Zherebyateva et al. | Microbiological corrosion of concrete structures of hydraulic facilities | |
JP6937199B2 (ja) | 有機質土の固化処理方法 | |
WO2006082346A2 (fr) | Procede de solidification et de stabilisation d'une solution aqueuse d'hydroxyde de sodium concentree | |
US6146666A (en) | Thiobacillus thiooxidans growth inhibitor | |
JP2017197393A (ja) | 混和材料、セメントの練混ぜ方法、セメント系プレミックス材料、鉄筋コンクリートの腐食防止方法 | |
JP5316492B2 (ja) | 藻類の増殖抑制方法 | |
EP0812306A2 (fr) | Procede permettant d'inhiber la corrosion de beton arme | |
KR100326651B1 (ko) | 티오바실루스·티오옥시단스 생육저해제, 시멘트 조성물 및 시멘트 구조체 | |
Singh | Microbiologically induced deterioration of cement-based materials | |
US4897120A (en) | Accelerator for portland cement derived from fertilizer | |
JP3044669B2 (ja) | チオバチルス・チオオキシダンス生育阻害剤 | |
KR100416960B1 (ko) | 고로슬래그를 이용한 식생콘크리트 조성물 | |
WO2021130327A1 (fr) | Procede de traitement de sols pollues par des sulfates | |
JP2000212564A (ja) | 海底土質改良材及び海底土質改良方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |