WO2006033600A2 - Method for determining the direction and wavelength of a coherent light emission and optical system for carrying out said method - Google Patents
Method for determining the direction and wavelength of a coherent light emission and optical system for carrying out said method Download PDFInfo
- Publication number
- WO2006033600A2 WO2006033600A2 PCT/RU2005/000464 RU2005000464W WO2006033600A2 WO 2006033600 A2 WO2006033600 A2 WO 2006033600A2 RU 2005000464 W RU2005000464 W RU 2005000464W WO 2006033600 A2 WO2006033600 A2 WO 2006033600A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical system
- interferometers
- photocells
- light radiation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J9/02—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
- G01J9/0246—Measuring optical wavelength
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/78—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
- G01S3/782—Systems for determining direction or deviation from predetermined direction
- G01S3/783—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
- G01S3/7835—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using coding masks
Definitions
- the invention relates to the field of spectral analysis and laser ranging and can be used in the spectral analysis of light radiation, as well as for orientation of various actuators along the laser beam.
- This method does not allow to measure the wavelength of light radiation, which is its disadvantage.
- a four-site photodetector is known for tracking a laser spot with rockets and other actuators [Lacer Shot Tracker. Eurohotopis. Decumber / Japan 2004, pp.24, 25], which provides, at low noise thresholds, the reception of signals proportional to the angles of deviation of the target from the axis of the receiving channel.
- the photodetector is optimized for a wavelength of 1.06 microns and does not allow measuring the wavelength of laser radiation, which is its disadvantage.
- the closest in technical essence and the achieved effect to the present invention is a method for determining the direction and wavelength of coherent light radiation, based on the registration of the system of interference strips of equal thickness formed in the interferometer containing an optical wedge, while the registration of the said system of interference strips of equal thickness is carried out in a spatial frequency signal by projecting an image of said system onto a periodic system containing photocells, electrical signals received from said photocell recorded in the form of their dependence on the location of photocells in said periodic system and analyzed [JN ° RF Patent 2190197, IPC 7 G01JZ / 00, 9/02 GOlB, GOlR 23/17, publ. September 27, 2002 (prototype)].
- the disadvantages of this method include the need for rigid fixation of the position of the interferometer relative to the source of coherent radiation and the use of a calibration coefficient when measuring the light wavelength, which is associated with an increase in the period of interference fringes with an increase in the angle of incidence of light radiation.
- the closest in technical essence and the achieved effect to the proposed invention is an optical system comprising an interferometer containing an optical wedge and a periodic system located behind it, containing photocells and connected to a spectrum analyzer [RF Patent N ⁇ > 2190197, IPC 7 GOl J 3/00, G Ol B 9/02, G Ol R 23/17, publ. September 27, 2002].
- the disadvantages of this optical system include the need for rigid fixation of the position of the interferometer relative to the source of coherent radiation and the use of a calibration coefficient when measuring the light wavelength, which is associated with an increase in the period of interference fringes with an increase in the angle of incidence of light radiation.
- the basis of the invention is the task of simultaneously measuring the wavelength of the light and the angle of incidence of the light beam on the optical interference system.
- the objective of the invention is the simultaneous measurement of the wavelength of the light and the angle of incidence of the light beam on the optical interference system.
- FIG. 1 is a diagram of an optical system
- FIG. 2 is a diagram of a selection of coordinate axes and angles p and ⁇ .
- the optical system (Fig. 1) is made in the form of three interferometers 1, 2 and 3, containing optical wedges 4, 5 and 6, behind which there are periodic systems 7, 8 and 9, containing photocells 10, 11 and 12, while at the input and exit surfaces of each of the three optical wedges 4, 5 and 6, reflective coatings 13, 14, 15, 16, 17, 18 are located, partially transmitting light radiation.
- Each of the three mentioned interferometers 1, 2, and 3 is located by the input or output surface of the optical wedges 4, 5, and 6 in one of three planes that are rotated along the axis of the optical system by 120 ° relative to each other.
- the angle ⁇ between the axis of the optical system and the output surface of each of the optical wedges 4, 5, and 6 is set in the range ⁇ - 45-89.999 °.
- Three periodic systems 7, 8 and 9, containing photocells 10, 11 and 12, located behind the optical wedges of said interferometers, are connected to a spectrum analyzer 19.
- the angle ⁇ at the apex of the optical wedges 4, 5, and 6 is set in the range ⁇ ⁇ 0.001 - 10 °.
- the optical wedges 4, 5 and 6 are located in the optical system so that the apex of each of the wedges 4, 5 and 6 is directed to the intersection point O of the three planes turned and inclined to each other, in which the input or output surfaces of the optical wedges 4 are located 5 and 6.
- Periodic systems 7, 8 and 9, containing photocells 10, 11 and 12, onto which the interference fringe systems 20 of equal thickness are projected, are made in the form of charge-coupled instrument (CCD) or CMOS lines.
- CCD charge-coupled instrument
- CMOS lines The position of each of the periodic systems 7, 8 and 9 containing the photocells 10, 11 and 12, is fixed relative to the position of the corresponding interferometer 1, 2 and 3.
- the photocells 10, 11 and 12 of the periodic system 7, 8 and 9 can be located in plane parallel to the output plane of the corresponding optical wedges 4, 5 and 6, as shown in figure 1.
- a laser operating in the infrared, visible or ultraviolet ranges is used as a source of coherent radiation 21 .
- the input surfaces of the optical wedges 4, 5 and 6 are located on the side of the source 21 of coherent radiation.
- the output surfaces of the optical wedges 4, 5 and 6 are located on the side of the periodic systems 7, 8 and 9.
- the optical wedges 4, 5 and 6, on the input and output surfaces of which are reflective coatings 13, 14, 15, 16, 17, 18, partially transmitting light radiation, are multi-beam wedge Fabry-Perot interferometers.
- the reflection coefficient of reflective coatings 13, 14, 15, 16, 17, 18 is set in the range of 0.05 - 0, 99.
- the claimed method for determining the direction and wavelength of coherent light radiation is carried out on the present optical system as follows.
- a parallel beam of light from a source of coherent radiation 21 falls on the optical wedges 4, 5, 6, for arbitrary angles p and ⁇ of incidence of light radiation, representing the latitude p and longitude ⁇ (figure 2) on a unit sphere with an equator lying in the plane perpendicular to the axis of the optical system centered at the point of intersection of the three unfolded and inclined planes to each other, forming a system of multipath interference fringes 20 of equal thickness.
- Images of the systems of interference fringes 20 is projected onto the periodic systems 7, 8 and 9 containing the photocells 10, 11 and 12 and recorded as their dependence on the location of the photocells 10, P and l2 in the periodic system 7, 8 and 9.
- the proposed method for determining the direction and wavelength of coherent light radiation and the optical system for its implementation can simultaneously determine the direction of incidence of several laser beams with the same or different wavelengths of light with high accuracy in their measurement in a wide spectral range and can be used in spectral analysis of light radiation, and also for orientation along the laser beams of various actuators.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Spectrometry And Color Measurement (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Description
Способ определения направления и длины волны когерентного светового излучения и оптическая система для его осуществления A method for determining the direction and wavelength of coherent light radiation and an optical system for its implementation
Область техникиTechnical field
Изобретения относятся к области спектрального анализа и лазерной локации и могут быть использованы при спектральном анализе светового излучения, а также для ориентации по лазерному лучу различных исполнительных механизмов.The invention relates to the field of spectral analysis and laser ranging and can be used in the spectral analysis of light radiation, as well as for orientation of various actuators along the laser beam.
Предшествующий уровень техникиState of the art
Известен способ лазерной локации цели, основанный на амплитудной квадрантной пеленгации с помощью четырехплощадочного фотодетектора, коммутируя определенным образом выходы которого, получают сигналы, пропорциональные углам отклонения цели от оси приемного канала [Матвеев И.H., Протопопов B.B., Троицкий И.H., Устинов Н.Д. Лазерная локация. M.: Машиностроение, 1984, c.234-235].There is a method of laser target location based on amplitude quadrant direction finding using a four-site photodetector, commuting in a certain way the outputs of which receive signals proportional to the angles of deviation of the target from the axis of the receiving channel [Matveev I.N., Protopopov BB, Troitsky I.N., Ustinov N.D. Laser location. M .: Mechanical Engineering, 1984, c.234-235].
Данный способ не позволяет измерять длину волны светового излучения, что является его недостатком.This method does not allow to measure the wavelength of light radiation, which is its disadvantage.
Известен четырехплощадочный фотодетектор для отслеживания лазерного пятна ракетами и другими исполнительными механизмами [Lаsеr Sроt Тrасkеr. Еurорhоtопiсs. Dесеmbеr/Jапuаrу 2004, pp.24, 25], который обеспечивает, при низких порогах шума, получение сигналов, пропорциональных углам отклонения цели от оси приемного канала. Указанный фотоприемник оптимизирован для длины волны 1,06 мк и не позволяет измерять длину волны лазерного излучения, что является его недостатком.A four-site photodetector is known for tracking a laser spot with rockets and other actuators [Lacer Shot Tracker. Eurohotopis. Decumber / Japan 2004, pp.24, 25], which provides, at low noise thresholds, the reception of signals proportional to the angles of deviation of the target from the axis of the receiving channel. Specified the photodetector is optimized for a wavelength of 1.06 microns and does not allow measuring the wavelength of laser radiation, which is its disadvantage.
Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ определения направления и длины волны когерентного светового излучения, основанный на регистрации системы интерференционных полос равной толщины, образованных в интерферометре, содержащем оптический клин, при этом регистрацию упомянутой системы интерференционных полос равной толщины осуществляют в виде сигнала пространственной частоты путем проецирования изображения упомянутой системы на периодическую систему, содержащую фотоэлементы, полученные с упомянутых фотоэлементов электрические сигналы регистрируют в виде их зависимости от местоположения этих фотоэлементов в упомянутой периодической системе и анализируют [Патент РФ JN° 2190197, МПК 7 G01JЗ/00, GOlB 9/02, GOlR 23/17, опубл. 27 сентября 2002 г. (прототип)].The closest in technical essence and the achieved effect to the present invention is a method for determining the direction and wavelength of coherent light radiation, based on the registration of the system of interference strips of equal thickness formed in the interferometer containing an optical wedge, while the registration of the said system of interference strips of equal thickness is carried out in a spatial frequency signal by projecting an image of said system onto a periodic system containing photocells, electrical signals received from said photocell recorded in the form of their dependence on the location of photocells in said periodic system and analyzed [JN ° RF Patent 2190197, IPC 7 G01JZ / 00, 9/02 GOlB, GOlR 23/17, publ. September 27, 2002 (prototype)].
К недостаткам данного способа следует отнести необходимости жесткой фиксации положения интерферометра относительно источника когерентного излучения и использование калибровочного коэффициента при измерении длины световой волны, что связано с возрастанием периода интерференционных полос при увеличении угла падения светового излучения. Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является оптическая система, включающая интерферометр, содержащий оптический клин и расположенную позади него периодическую систему, содержащую фотоэлементы и связанную со спектроанализатором [Патент РФ N<> 2190197, МПК 7 GOl J 3/00, G Ol B 9/02, G Ol R 23/17, опубл. 27 сентября 2002 г.]. К недостаткам данной оптической системы следует отнести необходимость в жесткой фиксации положения интерферометра относительно источника когерентного излучения и использование калибровочного коэффициента при измерении длины световой волны, что связано с возрастанием периода интерференционных полос при увеличении угла падения светового излучения.The disadvantages of this method include the need for rigid fixation of the position of the interferometer relative to the source of coherent radiation and the use of a calibration coefficient when measuring the light wavelength, which is associated with an increase in the period of interference fringes with an increase in the angle of incidence of light radiation. The closest in technical essence and the achieved effect to the proposed invention is an optical system comprising an interferometer containing an optical wedge and a periodic system located behind it, containing photocells and connected to a spectrum analyzer [RF Patent N <> 2190197, IPC 7 GOl J 3/00, G Ol B 9/02, G Ol R 23/17, publ. September 27, 2002]. The disadvantages of this optical system include the need for rigid fixation of the position of the interferometer relative to the source of coherent radiation and the use of a calibration coefficient when measuring the light wavelength, which is associated with an increase in the period of interference fringes with an increase in the angle of incidence of light radiation.
Раскрытие изобретенияDisclosure of invention
В основу изобретения положена задача одновременного измерения длины световой волны и угла падения светового пучка на оптическую интерференционную систему.The basis of the invention is the task of simultaneously measuring the wavelength of the light and the angle of incidence of the light beam on the optical interference system.
Поставленная задача решается за счет того, что в способе определения направления и длины волны когерентного светового излучения, основанном на регистрации системы интерференционных полос равной толщины, образованных в интерферометре, содержащем оптический клин, регистрацию упомянутой системы интерференционных полос равной толщины осуществляют в виде сигнала пространственной частоты путем проецирования изображения упомянутой системы на периодическую систему, содержащую фотоэлементы, полученные с упомянутых фотоэлементов электрические сигналы регистрируют в виде их зависимости от местоположения этих фотоэлементов в упомянутой периодической системе и анализируют, при этом формируют оптическую систему из трех интерферометров, содержащих оптические клинья, на входных и выходных поверхностях каждого из трех оптических клиньев располагают отражающие покрытия, частично пропускающие световое излучение, каждый из интерферометров располагают в одной из трех плоскостей, развернутых по оси оптической системы на 120° относительно друг друга, при этом угол θ между осью оптической системы и выходной поверхностью каждого оптического клина задают в диапазоне θ = 45-89,999°, образованные в каждом из упомянутых интерферометрах системы интерференционных полос равной толщины при произвольно заданных углах р и τ падения светового излучения, представляющих собой широту р и долготу τ на единичной сфере с экватором, лежащим в плоскости, перпендикулярной оси оптической системы с центром в точке пересечения упомянутых трех развернутых и наклонных друг к другу плоскостей, регистрируют в виде трех пространственных частот с периодами di , d2 и d3, связанными с длиной волны λ и углами р и т падения светового излучения следующими соотношениями: f(λ, р, τ, ,0°) = dlt f(λ, P> τ, 120°) = d2 и /(A, р, τ, -120°) = d3, по которым определяют длину волны А углы р и τ падения светового излучения.The problem is solved due to the fact that in the method for determining the direction and wavelength of coherent light radiation, based on the registration of a system of interference bands of equal thickness formed in an interferometer containing an optical wedge, the registration of the said system of interference bands of equal thickness is carried out in the form of a spatial frequency signal by projecting an image of said system onto a periodic system containing photocells obtained from said electric photocells RP G signals are recorded in the form of their dependence on the location of these photocells in the aforementioned periodic system and analyze, while forming an optical system of three interferometers containing optical wedges, reflective coatings are placed on the input and output surfaces of each of the three optical wedges, partially transmitting light radiation, each of the interferometers is placed in one of three planes, rotated along the axis of the optical system by 120 ° relative to each other, while the angle θ between the axis of the optical system and the output surface of each optical wedge in the range θ = 45-89.999 °, the systems of interference bands of equal thickness formed in each of the mentioned interferometers at arbitrary given angles p and τ of incidence of light radiation, representing latitude p and longitude τ on a unit sphere with an equator lying in a plane perpendicular to the axes of the optical system centered at the intersection of the three unfolded and inclined planes are recorded in the form of three spatial frequencies with periods di, d 2 and d 3 associated with the wavelength λ and the angles p and t of incidence light emission by the following relations: f (λ, p, τ,, 0 °) = d lt f (λ, P> τ, 120 °) = d 2 and / (A, p, τ, -120 °) = d 3 , which determine the wavelength And the angles p and τ of the incidence of light radiation.
Задачей изобретения является одновременное измерение длины световой волны и угла падения светового пучка на оптическую интерференционную систему. Поставленная задача может быть решена за счет того, что оптическая система, включающая интерферометр, содержащий оптический клин и расположенную позади него периодическую систему, содержащую фотоэлементы и связанную со спектроанализатором, снабжена двумя дополнительными интерферометрами, содержащими оптические клинья, позади которых расположены периодические системы, содержащие фотоэлементы, при этом на входных и выходных поверхностях каждого из трех оптических клиньев расположены отражающие покрытия, частично пропускающие световое излучение, каждый из трех упомянутых интерферометров расположен в одной из трех плоскостей, развернутых по оси оптической системы на 120° относительно друг друга, угол θ между осью оптической системы и выходной поверхностью каждого из оптических клиньев задан в диапазоне θ = 45-89,999°, а три периодических системы, содержащие фотоэлементы и расположенные позади оптических клиньев упомянутых интерферометров, связаны со спектроанализатором.The objective of the invention is the simultaneous measurement of the wavelength of the light and the angle of incidence of the light beam on the optical interference system. The problem can be solved due to the fact that the optical system, including an interferometer containing an optical wedge and a periodic system located behind it, containing photocells and connected to a spectrum analyzer, is equipped with two additional interferometers containing optical wedges, behind which there are periodic systems containing photocells while reflecting coatings partially transmitting light are located on the input and output surfaces of each of the three optical wedges radiation, each of the three mentioned interferometers is located in one of three planes rotated 120 ° relative to each other along the axis of the optical system, the angle θ between the axis of the optical system and the output surface of each of the optical wedges is set in the range θ = 45-89.999 °, and three periodic systems containing photocells and located behind the optical wedges of said interferometers are connected to a spectrum analyzer.
Сущность изобретения поясняется чертежами, на которых представлены: фиг.1 - схема оптической системы, фиг.2 - схема выбора осей координат и углов р и τ. Оптическая система (фиг.l) выполнена в виде трех интерферометров 1, 2 и 3, содержащих оптические клинья 4, 5 и 6, позади которых расположены периодические системы 7, 8 и 9, содержащие фотоэлементы 10, 11 и 12, при этом на входных и выходных поверхностях каждого из трех оптических клиньев 4, 5 и 6 расположены отражающие покрытия 13, 14, 15, 16, 17, 18, частично пропускающие световое излучение. Каждый из трех упомянутых интерферометров 1, 2 и 3 расположен входной или выходной поверхностью оптических клиньев 4, 5 и 6 в одной из трех плоскостей, развернутых по оси оптической системы на 120° относительно друг друга. Угол θ между осью оптической системы и выходной поверхностью каждого из оптических клиньев 4, 5 и 6 задан в диапазоне θ — 45-89,999°. Три периодических системы 7, 8 и 9, содержащие фотоэлементы 10, 11 и 12, расположенные позади оптических клиньев упомянутых интерферометров, связаны со спектроанализатором 19.The invention is illustrated by drawings, in which: FIG. 1 is a diagram of an optical system, FIG. 2 is a diagram of a selection of coordinate axes and angles p and τ. The optical system (Fig. 1) is made in the form of three interferometers 1, 2 and 3, containing optical wedges 4, 5 and 6, behind which there are periodic systems 7, 8 and 9, containing photocells 10, 11 and 12, while at the input and exit surfaces of each of the three optical wedges 4, 5 and 6, reflective coatings 13, 14, 15, 16, 17, 18 are located, partially transmitting light radiation. Each of the three mentioned interferometers 1, 2, and 3 is located by the input or output surface of the optical wedges 4, 5, and 6 in one of three planes that are rotated along the axis of the optical system by 120 ° relative to each other. The angle θ between the axis of the optical system and the output surface of each of the optical wedges 4, 5, and 6 is set in the range θ - 45-89.999 °. Three periodic systems 7, 8 and 9, containing photocells 10, 11 and 12, located behind the optical wedges of said interferometers, are connected to a spectrum analyzer 19.
Угол φ при вершине оптических клиньев 4, 5 и 6 задан в диапазоне φ ~ 0,001 - 10°. Оптические клинья 4, 5 и 6 расположены в оптической системе таким образом, чтобы вершина каждого из клиньев 4, 5 и 6 была направлена к точке пересечения О упомянутых трех развернутых и наклонных друг к другу плоскостей, в которых расположены входные или выходные поверхности оптических клиньев 4, 5 и 6.The angle φ at the apex of the optical wedges 4, 5, and 6 is set in the range φ ~ 0.001 - 10 °. The optical wedges 4, 5 and 6 are located in the optical system so that the apex of each of the wedges 4, 5 and 6 is directed to the intersection point O of the three planes turned and inclined to each other, in which the input or output surfaces of the optical wedges 4 are located 5 and 6.
Периодические системы 7, 8 и 9, содержащие фотоэлементы 10, 11 и 12, на которые проецируют системы интерференционных полос 20 равной толщины, выполнены в виде линеек приборов с зарядовой связью (CCD) или CMOS. Положение каждой из периодических систем 7, 8 и 9, содержащих фотоэлементы 10, 11 и 12, зафиксировано относительно положения соответствующего интерферометра 1, 2 и 3. Например, фотоэлементы 10, 11 и 12 периодической системы 7, 8 и 9 могут быть расположены в плоскости параллельной выходной плоскости соответствующего оптического клина 4, 5 и 6, как показано на фиг.1.Periodic systems 7, 8 and 9, containing photocells 10, 11 and 12, onto which the interference fringe systems 20 of equal thickness are projected, are made in the form of charge-coupled instrument (CCD) or CMOS lines. The position of each of the periodic systems 7, 8 and 9 containing the photocells 10, 11 and 12, is fixed relative to the position of the corresponding interferometer 1, 2 and 3. For example, the photocells 10, 11 and 12 of the periodic system 7, 8 and 9 can be located in plane parallel to the output plane of the corresponding optical wedges 4, 5 and 6, as shown in figure 1.
В качестве источника 21 когерентного излучения используют лазер, работающий в инфракрасном, видимом или ультрафиолетовом диапазонах.As a source of coherent radiation 21, a laser operating in the infrared, visible or ultraviolet ranges is used.
Входные поверхности оптических клиньев 4, 5 и 6 расположены со стороны источника 21 когерентного излучения. Выходные поверхности оптических клиньев 4, 5 и 6 расположены со стороны периодических систем 7, 8 и 9. Оптические клинья 4, 5 и 6, на входных и выходных поверхностях которых расположены отражающие покрытия 13, 14, 15, 16, 17, 18, частично пропускающие световое излучение, представляют собой многолучевые клиновые интерферометры Фабри-Перо. Коэффициент отражения отражающих покрытий 13, 14, 15, 16, 17, 18 задан в диапазоне 0,05 - 0, 99.The input surfaces of the optical wedges 4, 5 and 6 are located on the side of the source 21 of coherent radiation. The output surfaces of the optical wedges 4, 5 and 6 are located on the side of the periodic systems 7, 8 and 9. The optical wedges 4, 5 and 6, on the input and output surfaces of which are reflective coatings 13, 14, 15, 16, 17, 18, partially transmitting light radiation, are multi-beam wedge Fabry-Perot interferometers. The reflection coefficient of reflective coatings 13, 14, 15, 16, 17, 18 is set in the range of 0.05 - 0, 99.
Заявленный способ определения направления и длины волны когерентного светового излучения осуществляется на настоящей оптической системе следующим образом.The claimed method for determining the direction and wavelength of coherent light radiation is carried out on the present optical system as follows.
Параллельный пучок света от источника 21 когерентного излучения падает на оптические клинья 4, 5, 6, при произвольно заданных углах р и τ падения светового излучения, представляющих собой широту р и долготу τ (фиг.2) на единичной сфере с экватором, лежащим в плоскости, перпендикулярной оси оптической системы с центром в точке пересечения упомянутых трех развернутых и наклонных друг к другу плоскостей, образуя системы многолучевых интерференционных полос 20 равной толщины. Изображения систем интерференционных полос 20 проецируется на периодические системы 7, 8 и 9, содержащие фотоэлементы 10, 11 и 12 и регистрируется в виде их зависимости от местоположения фотоэлементов 10, П и l2 в периодической системе 7, 8 и 9. Затем записанные электрические сигналы подвергаются преобразованию Фурье на спектроанализаторе 19, на выходе которого получают их частотное преобразование в виде трех пространственных частот с периодами d\ , d2 w d3, связанными с длиной волны λ и углами р и τ падения светового излучения следующими соотношениями: f(λ, р, τ, 0°) = dj , f(λ, р, τ, 120°) = d2 и f(λ, р, τ, -120°) = d3,, по которым определяют длину волны λ углы р и τ падения светового излучения.A parallel beam of light from a source of coherent radiation 21 falls on the optical wedges 4, 5, 6, for arbitrary angles p and τ of incidence of light radiation, representing the latitude p and longitude τ (figure 2) on a unit sphere with an equator lying in the plane perpendicular to the axis of the optical system centered at the point of intersection of the three unfolded and inclined planes to each other, forming a system of multipath interference fringes 20 of equal thickness. Images of the systems of interference fringes 20 is projected onto the periodic systems 7, 8 and 9 containing the photocells 10, 11 and 12 and recorded as their dependence on the location of the photocells 10, P and l2 in the periodic system 7, 8 and 9. Then, the recorded electrical signals are converted Fourier transform on a spectrum analyzer 19, the output of which is their frequency conversion in the form of three spatial frequencies with periods d \ , d 2 wd 3 associated with the wavelength λ and angles p and τ of the incidence of light radiation by the following relations: f (λ, p, τ , 0 °) = dj, f (λ, p, τ, 120 °) = d 2 and f (λ, p, τ, -120 °) = d 3 , which determine the wavelength λ of the angles p and τ of the incidence of light radiation.
Предлагаемые способ определения направления и длины волны когерентного светового излучения и оптическая система для его осуществления позволяют одновременно определять направление падения нескольких лазерных лучей с одинаковыми или различными длинами световых волн при высокой точности их измерения в широком спектральном диапазоне и могут быть использованы при спектральном анализе светового излучения, а также для ориентации по лазерным лучам различных исполнительных механизмов. The proposed method for determining the direction and wavelength of coherent light radiation and the optical system for its implementation can simultaneously determine the direction of incidence of several laser beams with the same or different wavelengths of light with high accuracy in their measurement in a wide spectral range and can be used in spectral analysis of light radiation, and also for orientation along the laser beams of various actuators.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2004127683 | 2004-09-15 | ||
| RU2004127683/28A RU2004127683A (en) | 2004-09-15 | 2004-09-15 | METHOD FOR DETERMINING THE DIRECTION AND WAVE LENGTH OF COAGERENT LIGHT RADIATION AND OPTICAL SYSTEM FOR ITS IMPLEMENTATION |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006033600A2 true WO2006033600A2 (en) | 2006-03-30 |
| WO2006033600A3 WO2006033600A3 (en) | 2006-09-14 |
Family
ID=36050789
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/RU2005/000464 WO2006033600A2 (en) | 2004-09-15 | 2005-09-14 | Method for determining the direction and wavelength of a coherent light emission and optical system for carrying out said method |
Country Status (2)
| Country | Link |
|---|---|
| RU (1) | RU2004127683A (en) |
| WO (1) | WO2006033600A2 (en) |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4309108A (en) * | 1977-01-17 | 1982-01-05 | The Perkin-Elmer Corporation | Analyzer for coherent radiation |
| SU1441189A1 (en) * | 1987-05-15 | 1988-11-30 | Сибирский государственный научно-исследовательский институт метрологии | Wave-length meter |
| RU2064667C1 (en) * | 1992-04-27 | 1996-07-27 | Василий Васильевич Валявко | Method of measuring laser radiation wavelength |
| RU2190197C1 (en) * | 2001-12-17 | 2002-09-27 | Атнашев Виталий Борисович | Spectrometry method and device for its realization ( variants ) |
-
2004
- 2004-09-15 RU RU2004127683/28A patent/RU2004127683A/en not_active Application Discontinuation
-
2005
- 2005-09-14 WO PCT/RU2005/000464 patent/WO2006033600A2/en active Application Filing
Also Published As
| Publication number | Publication date |
|---|---|
| RU2004127683A (en) | 2006-02-20 |
| WO2006033600A3 (en) | 2006-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7359057B2 (en) | Method and apparatus for measuring small shifts in optical wavelengths | |
| US7105820B2 (en) | Terahertz imaging for near field objects | |
| US8107056B1 (en) | Hybrid optical distance sensor | |
| US5642194A (en) | White light velocity interferometer | |
| JP2566907B2 (en) | Distance measuring device and method | |
| CN102230788B (en) | Self-calibration device and method for measuring parallelism of laser receiving and transmitting optical axes | |
| US9046412B2 (en) | Compact interferometer spectrometer | |
| US7477398B2 (en) | Multi-beam heterodyne laser doppler vibrometer | |
| US8736847B2 (en) | Method and apparatus for imaging | |
| JP2018151398A (en) | Calibration device, laser distance measurement device, and structure manufacturing method | |
| US10295673B1 (en) | Nested interferometer for optical autocovariance lidar | |
| US5285261A (en) | Dual interferometer spectroscopic imaging system | |
| WO2020202547A1 (en) | Optical distance measurement device | |
| JPH0663867B2 (en) | Interfering device for wavefront condition detection | |
| JP2732849B2 (en) | Interferometer | |
| US20230168083A1 (en) | System for generating a signal representative of the profile of a surface moving relative to the system | |
| IL286820A (en) | Method and system for mapping and range detection | |
| US6480284B1 (en) | Multiple plane reference mirror for interferometric testing of optical systems | |
| US5285260A (en) | Spectroscopic imaging system with ultrasonic detection of absorption of modulated electromagnetic radiation | |
| WO2006033600A2 (en) | Method for determining the direction and wavelength of a coherent light emission and optical system for carrying out said method | |
| JP7659626B2 (en) | Peak association technique for multiple targets in coherent LIDAR systems | |
| US20030202186A1 (en) | Method and apparatus for ultra high-resolution interferometry | |
| JPS63218827A (en) | Light spectrum detector | |
| JP2011021991A (en) | Spectroscopic three-dimensional shape measuring instrument and method of measuring spectroscopic three-dimensional shape | |
| JP2924754B2 (en) | Optical differential velocity meter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |