[go: up one dir, main page]

WO2006038261A1 - Mri用磁界発生装置 - Google Patents

Mri用磁界発生装置 Download PDF

Info

Publication number
WO2006038261A1
WO2006038261A1 PCT/JP2004/014365 JP2004014365W WO2006038261A1 WO 2006038261 A1 WO2006038261 A1 WO 2006038261A1 JP 2004014365 W JP2004014365 W JP 2004014365W WO 2006038261 A1 WO2006038261 A1 WO 2006038261A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic field
field generator
mri
protruding portion
Prior art date
Application number
PCT/JP2004/014365
Other languages
English (en)
French (fr)
Inventor
Shigeo Hashimoto
Masaaki Aoki
Original Assignee
Neomax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co., Ltd. filed Critical Neomax Co., Ltd.
Priority to PCT/JP2004/014365 priority Critical patent/WO2006038261A1/ja
Priority to EP04788393A priority patent/EP1808126B1/en
Priority to US11/664,261 priority patent/US7796002B2/en
Priority to CN2004800441329A priority patent/CN101031238B/zh
Publication of WO2006038261A1 publication Critical patent/WO2006038261A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3802Manufacture or installation of magnet assemblies; Additional hardware for transportation or installation of the magnet assembly or for providing mechanical support to components of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets

Definitions

  • the present invention relates to a magnetic field generator for MRI, and more particularly to a magnetic field generator for MRI in which a permanent magnet group has a protruding portion that protrudes outward from a contact portion with a magnetic pole piece.
  • each permanent magnet constituting a permanent magnet group uses an adhesive for an adjacent permanent magnet, a plate yoke, or both of them. Glued.
  • the permanent magnet constituting the permanent magnet group when a mechanical load exceeding a normal design value is applied to the permanent magnet group due to vibration or impact during transportation of the magnetic field generator, the permanent magnet constituting the permanent magnet group May not be sufficiently retained, and the permanent magnet may be separated from the adjacent permanent magnet or the plate-like yoke and eventually separated from the group of permanent magnets. In this case, the magnetic field uniformity of the MRI magnetic field generator cannot be maintained, and the magnetic field strength decreases.
  • Patent Document 2 a technique using a magnet cover for protecting the permanent magnet group has been proposed (see, for example, Patent Document 2).
  • Patent Document 1 Japanese Patent No. 2699250
  • Patent Document 2 Japanese Patent Laid-Open No. 11-178808
  • Japanese Patent No. 2699250 is effective in preventing the permanent magnet from separating from the adjacent permanent magnet or plate-shaped yoke because the molding material directly holds the permanent magnet. .
  • a formwork having a plurality of members is formed by a plate-shaped yoke. It is necessary to form a sealed space at a predetermined position, fill the molding material in the space, and then remove the mold, which requires a large number of steps.
  • a main object of the present invention is to provide a magnetic field generator for MRI that can be applied to various magnetic field generators and can prevent separation of permanent magnets constituting a permanent magnet group.
  • a pair of permanent magnet groups each including a plurality of permanent magnets bonded to each other and forming an air gap, and the pair of permanent magnet groups are magnetically coupled. And a pair of magnetic pole pieces provided on the respective main surfaces of the gaps of the pair of permanent magnet groups, and the permanent magnet group protrudes outward from the contact portion with the magnetic pole pieces.
  • the magnetic field generator for MRI which is configured to have a protrusion and generates a magnetic field in the gap between a pair of magnetic pole pieces, permanent magnet fixing that prevents the permanent magnets arranged in the protrusion from separating from the permanent magnet group force
  • a magnetic field generator for MRI characterized by comprising a member for use, is provided.
  • the permanent magnet fixing member by providing the permanent magnet fixing member, the permanent magnets that make up the permanent magnet group are adjacent to each other even if vibration or impact occurs during transportation of the magnetic field generator for MRI, for example. And the plate-like yoke force can be prevented from being separated, that is, the permanent magnet can be prevented from separating from the permanent magnet group, and the magnetic field generator for MRI can be operated stably for a long time.
  • the permanent magnet fixing member can be used not only for a magnetic field generator to be provided in the future but also for an existing magnetic field generator, and for reinforcing the magnetic field generator. Preferred.
  • the permanent magnet fixing member is a hook-shaped member attached to the outer peripheral surface of the pole piece so as to cover the air gap side surface of the protrusion.
  • a load force S exceeding the design value is applied to the bonded portion of the permanent magnet
  • the saddle-shaped member can hold the permanent magnet with the surface force on the air gap side and prevent separation of the permanent magnet.
  • “covering the gap side surface of the protrusion” is not limited to covering the entire gap side surface, and a part of the surface (surface constituting the gap side surface) is exposed. There is a permanent magnet.
  • the permanent magnet fixing member is a belt-like member attached to the outer peripheral surface of the protrusion.
  • the belt-shaped member as the permanent magnet fixing member, the outer peripheral surface of the protruding portion is exposed, so that the belt-shaped member can be easily formed on the outer peripheral surface of the protruding portion. Can be attached to.
  • a reinforcing material provided between the belt-like member and the protruding portion is included.
  • a reinforcing material provided between the belt-like member and the protruding portion is included.
  • the permanent magnet fixing member is a plate-like member that connects a plurality of permanent magnets constituting the protruding portion.
  • the plate-like member can be easily provided at a necessary portion of the protrusion. Fixing can be reinforced.
  • the plate-like member extends to the yoke and is fixed.
  • the connection between the permanent magnet and the yoke can be strengthened, and the permanent magnet can be fixed more strongly.
  • it includes a ring member surrounding the protrusion provided with the permanent magnet fixing member.
  • it further includes a molding material filled in a space between the ring member and the protrusion.
  • a molding material filled in a space between the ring member and the protrusion.
  • the permanent magnet fixing member is a cover member along the shape of the protruding portion.
  • the cover member along the shape of the protruding portion as the permanent magnet fixing member, the outer peripheral surface of the permanent magnet constituting the protruding portion, and further, the air gap side surface can be fixed.
  • This cover member can be easily manufactured and effective as the shape of the protrusion is simple.
  • FIG. 1 is a schematic side view showing an MRI magnetic field generator to which the present invention is applied.
  • FIG. 2 is a perspective view showing an example of a permanent magnet group.
  • FIG. 3 is a partial perspective view showing an example of an embodiment to which a hook-shaped member is attached.
  • FIG. 5 is a partial perspective view showing an example of an embodiment in which a belt-like member is attached.
  • FIG. 6 is an illustrative view showing a state in which a reinforcing material is inserted in a gap between the belt-like member and the protruding portion.
  • FIG. 7 is a partial perspective view showing an example of an embodiment in which a cover member is attached.
  • FIG. 8 is a perspective view showing a modification of the cover member.
  • FIG. 9 is a partial perspective view showing an example of an embodiment in which a plate-like member is attached.
  • FIG. 10 is an illustrative view for explaining a plate-like member.
  • FIG. 11 is a partial perspective view showing an example of an embodiment in which a ring member is attached.
  • FIG. 12 (a) is an illustrative view showing an example of an embodiment in which a ring member is attached, and (b) is an illustrative view showing an example of an embodiment in which a molding material is filled in the ring member.
  • an MRI magnetic field generator 10 is an open-type MRI magnetic field generator, and is a pair of magnetic pole units that are arranged to face each other while forming a gap. Includes 1 la and 1 lb.
  • the magnetic pole units 11a and l ib include plate yokes 12a and 12b, respectively.
  • Permanent magnet groups 14a and 14b are arranged on the facing surfaces of the pair of plate yokes 12a and 12b, and pole pieces 16a and 16b are fixed on the facing surfaces of the permanent magnet groups 14a and 14b. Is done.
  • the outer peripheral portion of the permanent magnet group 14a protrudes outward from the contact portion with the magnetic pole piece 16a to form a protruding portion 18, and the outer peripheral portion of the permanent magnet group 14b is the contact portion with the magnetic pole piece 16b. More outward Protrusions 18 are formed protruding.
  • the height of the permanent magnet groups 14a and 14b is, for example, 100 mm.
  • the permanent magnet groups 14a and 14b are obtained by integrally bonding a plurality of permanent magnets 20 having a rectangular parallelepiped shape or a cubic shape. Further, the permanent magnets 20 constituting the permanent magnet group 14a are arranged so that their magnetic directions are the same direction, and the permanent magnets 20 constituting the permanent magnet group 14b are the same direction.
  • the permanent magnets 20 of the permanent magnet group 14a are arranged so that the gap side becomes N pole, and the permanent magnets 20 of the permanent magnet group 14b are arranged so that the gap side becomes S pole.
  • a high magnetic flux density type R-Fe-B magnet such as NEOMAX-47 (manufactured by NEOMAX Co., Ltd.) is used.
  • the permanent magnet 20 is composed of a single magnet, not shown. Obtained by standing up.
  • the pole piece 16a includes a disc-shaped base plate 22 made of, for example, iron, which is disposed on the permanent magnet group 14a.
  • a silicon steel plate 24 for preventing the generation of eddy current is formed.
  • the silicon steel plate 24 is fixed on the base plate 22 with an adhesive.
  • an annular protrusion 26 is formed to increase the magnetic field strength of the peripheral edge to obtain a uniform magnetic field due to the iron force.
  • the annular protrusion 26 includes, for example, a plurality of annular protrusion pieces, and the annular protrusion 26 is formed by fixing each annular protrusion piece to the peripheral edge of the silicon steel plate 24.
  • the plate yokes 12a and 12b are magnetically coupled by a single plate-shaped support yoke 28. That is, the support yoke 28 is positioned such that the upper surface on one end edge side of the plate yoke 12a is positioned on the lower end surface of the support yoke 28 and the upper end surface of the support yoke 28 is positioned on the lower surface on one end edge side of the plate yoke 12b. Connected to plate yokes 12a and 12b. Therefore, the plate yokes 12a and 12b and the support yoke 28 are connected so that the connecting portion has an angle of approximately 90 degrees and is U-shaped in a side view.
  • the position farthest from permanent magnet group 14a on the inner surface side of the connecting portion between plate yoke 12a and support yoke 28 (in this embodiment, plate yoke 12a and the support Reinforcing members 30 are respectively formed on both ends of the connection portion with the yoke 28 on the inner surface side.
  • the position farthest from the permanent magnet group 14b on the inner surface side of the connecting portion between the plate yoke 12b and the support yoke 28 (this implementation In the form, the reinforcing members 30 are respectively formed on both ends of the connecting portion between the plate yoke 12b and the support yoke 28 on the inner surface side. Therefore, the plate-like yoke 12a and the support yoke 28 are more firmly fixed to the plate-like yoke 12b and the support yoke 28 by the reinforcing member 30, respectively.
  • leg portions 32 are attached to the lower surface of the plate-like yoke 12a.
  • a magnetic field is generated in the gap between the pole pieces 16a and 16b, and a magnetic field strength of, for example, 0.2 T or more is required in the uniform magnetic field space F (see Fig. 1).
  • the magnetic field generator 10 includes a bowl-shaped member 34 as shown in FIG. 3 as a permanent magnet fixing member.
  • FIG. 3 FIG. 5, FIG. 7, FIG. 9 and FIG. 11, the magnetic pole unit ib side is omitted. Similar to the magnetic field generator 10 shown in FIG. Needless to say, it has. However, the permanent magnets 20 constituting the permanent magnet group 14a are arranged so as to have the magnetization direction A1, and the permanent magnets 20 constituting the permanent magnet group 14b are arranged so as to have the magnetization direction A2.
  • the hook-shaped member 34 is attached to the outer peripheral surface of the pole piece 16a in a hook shape, and the gap-side surface 18a (see FIG. 1) of the protrusion 18 is the hook-shaped member 34. Covered by.
  • the pole piece 16a may be assembled on the permanent magnet group 14a, and then the flange member 34 may be attached to the outer peripheral surface of the pole piece 16a by welding or the like. The same is true for the magnetic nut 1 lb.
  • the bowl-shaped member 34 has a thickness of about 3 mm to 10 mm, and is preferably a nonmagnetic metal such as aluminum or stainless steel. Such a nonmagnetic metal has excellent strength and does not affect the magnetic field generated in the magnetic field generator 10.
  • the hook-shaped member 34 made of nonmagnetic metal is divided into a plurality of pieces, and the hook-shaped member pieces adjacent to each other between the hook-shaped member pieces and the magnetic pole pieces 16a are divided. Place a material with high electrical resistance between them, or make insulation by forming a gap in each.
  • a material having a large electric resistance such as resin or ceramics, as the cage member 34.
  • the reinforcing member 38, the cover members 40 and 41, the plate-like members 42 and 44, and the ring member 46, which will be described later, are similarly configured with such a thickness and material.
  • the bowl-shaped member 34 is permanently attached.
  • the magnet 20 can be held from the air gap side surface 18a, and the permanent magnet 20 can be prevented from being separated from the adjacent permanent magnet 20 and the plate yokes 12a and 12b.
  • the magnetic field generator 10 can be used stably for a long period of time.
  • the plate-shaped yokes 12a and 12b on which the permanent magnet groups 14a and 14b are arranged have no permanent space.
  • a magnet fixing member can be used.
  • the permanent magnet fixing member can be attached to the magnetic field generator more easily (with fewer steps) than in the past.
  • the number of assembly steps can be further reduced.
  • attachment work of the bowl-shaped member 34 may be performed as follows.
  • the hook-like member 34 is also divided in correspondence with each annular protrusion piece, and After the member pieces are attached, the annular protrusion pieces with the hook-like member pieces attached are arranged on the base plate 22 and assembled into an annular shape.
  • the bowl-shaped member 34 includes not only the space-side surface 18a but also the outer peripheral surface 18b of the protrusion 18 of the permanent magnet group 14a. It may be formed to extend to. The same applies to the permanent magnet group 14b side.
  • a belt-like member 36 may be used as a permanent magnet fixing member.
  • the belt-like member 36 for example, a flexible metal belt is used, and a nonmagnetic metal such as stainless steel is preferable. Such a nonmagnetic metal has excellent strength and does not affect the magnetic field generated in the magnetic field generator 10. When importance is attached to the suppression of eddy current, non-metal such as polyester fiber is preferably used. The strength can be further improved by adding glass fiber or carbon fiber to the non-metal. Further, for example, the thickness of the belt-like member 36 is 0.1 mm— 1. Omm, the width is 90 mm, and it is desirable that the belt-like member 36 is wound around the outer peripheral surface 18b of the protrusion 18 in multiple layers. In addition, the strip member 36 May be one or more.
  • the belt-like member 36 can be easily attached to the outer peripheral surface 18b of the protruding portion 18 even if the magnetic field generator is used.
  • the shape of the reinforcing member 38 is preferably a shape that fills a gap between the belt-like member 36 and the permanent magnet 20 constituting the protrusion 18, but the belt-like member 36 is a protrusion 18 of the permanent magnet group 14a. Any shape can be used as long as the force for holding the permanent magnet 20 constituting the structure can be increased.
  • a cover member 40 may be used as a permanent magnet fixing member.
  • the cover member 40 is shaped along the protrusion 18.
  • the cover member 40 may be divided into a plurality of parts in the circumferential direction in consideration of assembly efficiency that is desired to be fixed to the plate-like yoke 12a with screws or the like.
  • cover member 40 By using the cover member 40, it is possible to fix all the surfaces (the void side surface 18a and the outer peripheral surface 18b) of the permanent magnet 20 constituting the protruding portion 18.
  • a cover member 41 as shown in FIG. 8 may be used.
  • the cover member 41 is provided only on the outer peripheral surface 18b of the projecting portion 18, and is formed so as to surround the outer peripheral surface 18b along the outer peripheral surface 18b. According to the cover member 41, the outer peripheral surface 18b of the permanent magnet 20 constituting the protrusion 18 can be fixed.
  • the cover members 40 and 41 are more easily manufactured and effective as the protrusion 18 has a simple shape. Further, the cover members 40 and 41 may be divided into a plurality of parts in the circumferential direction.
  • a plate shape that connects a plurality of permanent magnets 20 to the air gap side surface 18a and the outer peripheral surface 18b of the protrusion 18 Part 42 may be attached.
  • a plurality of permanent magnets 20 By bonding a plurality of permanent magnets 20 with the plate-like member 42, one of the permanent magnets 20 is prevented from being separated from the adjacent permanent magnets 20. Can be stopped.
  • the size of the plate-like member may be arbitrarily determined.
  • the plate-like member may be formed in an annular shape on the space-side surface 18a so as to go around the space-side surface 18a of the protruding portion 18.
  • an L-shaped plate-like member 44 extending from the permanent magnet 20 to the upper surface of the plate-like yoke 12a may be used.
  • the permanent magnet 20 can be more firmly fixed by connecting the plate-like member 44 to the plate-like yoke 12a, and separation of the permanent magnet 20 from the plate-like yoke 12a can be prevented.
  • the saddle-shaped member 34, the band-shaped member 36, the reinforcing member 38, the cover members 40 and 41, and the plate-shaped members 42 and 44 described above include the permanent magnet 20, the adjacent permanent magnet 20, and the plate-shaped yokes 12a and 12b. It is also effective as a means to reinforce a magnetic field generator for which measures for separating both forces are not taken, and can be used for general purposes.
  • the ring member 46 may be arranged so as to cover the protruding portion 18 to which the hook-like member 34 is attached.
  • the ring member 46 may be divided into a plurality of parts in the circumferential direction in consideration of the assembly efficiency.
  • the molding material 48 needs to have a temperature during the curing reaction of 100 ° C or lower in consideration of thermal demagnetization of the permanent magnet 20, and is more desirable if it is 60 ° C or lower.
  • urethane foam is preferable. Urethane foam cures at room temperature and is excellent in terms of workability and economy, and is also effective for reinforcing existing magnetic field generators.
  • the ring member 46 and the molding material 48 shown in FIG. 11 and FIG. Needless to say, the present invention can also be applied to the embodiment using the plate-like members 42 and 44.
  • the yoke is formed by the pair of plate-like yokes 12a, 12b and the one supporting yoke 28 is described, but the present invention is not limited to this, and a pair of permanent magnets is used.
  • a C-shaped integrated yoke that magnetically couples the groups 14a, 14b may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 様々な磁界発生装置に適用でき、永久磁石群14a,14bを構成する永久磁石20の分離を防ぐことができる、MRI用磁界発生装置10を提供する。MRI用磁界発生装置10は一対の永久磁石群14a,14bを含む。一対の永久磁石群14a,14bは、それぞれ相互に接着される複数の永久磁石20を含みかつ空隙を形成して対向配置される。永久磁石群14a,14bは磁極片16a,16bとの接触部よりも外方に突出した突出部18を有する。突出部18の空隙側表面18aを覆うように磁極片16a,16bの外周面に鍔状部材34が取り付けられる。

Description

明 細 書
MRI用磁界発生装置
技術分野
[0001] この発明は MRI用磁界発生装置に関し、より特定的には、永久磁石群が磁極片と の接触部よりも外方に突出した突出部を有する MRI用磁界発生装置に関する。 背景技術
[0002] 従来、永久磁石型の MRI用磁界発生装置にお ヽては、永久磁石群を構成する各 永久磁石は、隣接する永久磁石、板状継鉄あるいはそれらの両方に接着剤を用い て接着される。
しかし、このような構成によれば、磁界発生装置の輸送中の振動や衝撃等によって 通常の設計値を超える機械的な負荷が永久磁石群に力かった場合、永久磁石群を 構成する永久磁石を十分に保持することができず、当該永久磁石が、隣接する永久 磁石や板状継鉄から分離しひ ヽては永久磁石群から離脱してしまう場合がある。この 場合には、 MRI用磁界発生装置の磁界均一度が保てなくなり、磁界強度が低下する
[0003] そこで、永久磁石群の側面に成形材を設ける技術が提案されて!ヽる(たとえば、特 許文献 1参照)。
また、永久磁石群を保護する磁石カバーを用いる技術が提案されている (たとえば 、特許文献 2参照)。
特許文献 1:特許第 2699250号公報
特許文献 2:特開平 11—178808号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許第 2699250号公報の技術は、成形材が永久磁石を直接保持するので、当該 永久磁石が隣接する永久磁石や板状継鉄カゝら分離することを防止する上で有効で ある。
しかし、このような成形材を設けるためには、複数の部材カもなる型枠を板状継鉄 の所定の位置に設けて密封空間を形成し、当該空間内に成形材を充填しその後型 枠を取り除く必要があり、多くの工程数を要する。
[0005] また、この技術は、永久磁石群の周囲に型枠を配置するスペースがある磁界発生 装置には適用できるが、そのようなスペースを有さない磁界発生装置には適用でき ず、様々な磁界発生装置に用いることができる汎用的な技術ではな力つた。
[0006] 特開平 11— 178808号公報の技術では、永久磁石群の外周面を覆うように配置さ れた磁石カバーによって永久磁石群を外部力も保護することはできるが、磁石カバ 一と永久磁石群との間には隙間があり、磁石カバーによって永久磁石群を直接保持 する構造ではないので、磁石カバー内において、永久磁石が他の永久磁石や板状 «鉄力も分離することを防ぐことはできな 、。
それゆえにこの発明の主たる目的は、様々な磁界発生装置に適用でき、永久磁石 群を構成する永久磁石の分離を防ぐことができる、 MRI用磁界発生装置を提供する ことである。
課題を解決するための手段
[0007] この発明のある見地によれば、それぞれ相互に接着される複数の永久磁石を含み かつ空隙を形成して対向配置される一対の永久磁石群と、一対の永久磁石群を磁 気的に結合するための継鉄と、一対の永久磁石群のそれぞれの空隙側主面に設け られる一対の磁極片とを有し、永久磁石群が磁極片との接触部よりも外方に突出した 突出部を有するように構成され、一対の磁極片間の空隙に磁界を発生させる MRI用 磁界発生装置において、突出部に配置される永久磁石が永久磁石群力 離脱する ことを防止する永久磁石固定用部材を備えることを特徴とする、 MRI用磁界発生装 置が提供される。
[0008] この発明では、永久磁石固定用部材を設けることによって、たとえば MRI用磁界発 生装置の輸送中に振動や衝撃等が生じても、永久磁石群を構成する永久磁石が隣 接する永久磁石や板状継鉄力も分離することを防止でき、すなわち永久磁石が永久 磁石群から離脱することを防止でき、 MRI用磁界発生装置を長期間安定して動作さ せることができる。また、当該永久磁石固定用部材は、今後提供される磁界発生装置 だけではなく既存の磁界発生装置にも用いることができ、磁界発生装置の補強にも 好適となる。
[0009] 好ましくは、永久磁石固定用部材が、突出部の空隙側表面を覆うように磁極片の外 周面に取り付けられる鍔状部材である。このように、永久磁石固定用部材として磁極 片外周面に取り付けられる鍔状部材を用いて、突出部の空隙側表面を覆うと、永久 磁石の接着部分に設計値を超える負荷力 Sかかった場合においても、当該鍔状部材 が永久磁石を空隙側表面力 保持し、永久磁石の分離を防ぐことができる。また、こ のように鍔状部材を磁極片外周面に取り付けることによって、永久磁石群が配置され る継鉄表面にスペースがなくても、永久磁石固定用部材を用いることが可能となる。
[0010] ここで、「突出部の空隙側表面を覆う」とは、空隙側表面のすべてを覆う場合に限定 されず、表面 (空隙側表面を構成する面)の一部分が露出して 、る永久磁石があって ちょい。
[0011] また、好ましくは、永久磁石固定用部材が、突出部の外周面に取り付けられる帯状 部材である。このように永久磁石固定用部材として帯状部材を用いることによって、突 出部の外周面が露出して 、る 、かなる磁界発生装置にぉ 、ても、突出部の外周面 に帯状部材を容易に取り付けることができる。
[0012] さらに、好ましくは、帯状部材と突出部との間に設けられる補強材を含む。突出部の 外周面が凹凸形状になっている場合、帯状部材による固定力が及ばない永久磁石 が生じうる。しかし、帯状部材と永久磁石群の突出部との間に補強材を介挿すること によって、突出部の外周面を構成するすべての永久磁石を抑え固定することができ る。
[0013] 好ましくは、永久磁石固定用部材が、突出部を構成する複数の永久磁石同士を接 続するプレート状部材である。このように、永久磁石固定用部材として、突出部を構 成する複数の永久磁石同士を接続するプレート状部材を用いることによって、突出 部の必要な箇所に容易にプレート状部材を設け永久磁石の固定を補強することがで きる。
[0014] また、好ましくは、プレート状部材が継鉄にまで延びて固定される。このようにプレー ト状部材が継鉄にまで延びて固定されることによって、永久磁石と継鉄との接続を強 くでき永久磁石をより強く固定できる。 [0015] さらに、好ましくは、永久磁石固定用部材が設けられた突出部を包囲するリング部 材を含む。このように突出部を包囲するリング部材をさらに設けることによって、永久 磁石が磁界発生装置力も脱落するのを防止でき、かつ永久磁石群を外部から保護 することができる。
[0016] 好ましくは、リング部材と突出部との間の空間に充填される成形材をさらに含む。こ のようにリング部材と突出部との間に成形体を充填することによって、永久磁石群の 突出部を構成する永久磁石をさらに強固に保持することができる。
[0017] また、好ましくは、永久磁石固定用部材が、突出部の形状に沿ったカバー部材であ る。このように、永久磁石固定用部材として、突出部の形状に沿ったカバー部材を用 いることによって、突出部を構成する永久磁石の外周面、さらには空隙側表面を固定 することができる。このカバー部材は、突出部の形状が単純な場合ほど容易に製造 でき効果的である。
図面の簡単な説明
[0018] [図 1]この発明が適用される MRI用磁界発生装置を示す概略側面図である。
[図 2]永久磁石群の一例を示す斜視図である。
[図 3]鍔状部材を取り付けた実施形態の一例を示す部分斜視図である。
圆 4]鍔状部材の変形例を示す図解図である。
[図 5]帯状部材を取り付けた実施形態の一例を示す部分斜視図である。
[図 6]帯状部材と突出部との間の隙間に補強材を介挿した状態を示す図解図である
[図 7]カバー部材を取り付けた実施形態の一例を示す部分斜視図である。
[図 8]カバー部材の変形例を示す斜視図である。
[図 9]プレート状部材を取り付けた実施形態の一例を示す部分斜視図である。
[図 10]プレート状部材を説明するための図解図である。
[図 11]リング部材を取り付けた実施形態の一例を示す部分斜視図である。
[図 12] (a)はリング部材を取り付けた実施形態の一例を示す図解図であり、 (b)はリン グ部材内に成形材を充填した実施形態の一例を示す図解図である。
符号の説明 [0019] 10 MRI用磁界発生装置
11a, l ib 磁極ユニット
12a, 12b 板状継鉄
14a, 14b 永久磁石群
16a, 16b 磁極片
18 突出部
18a 突出部の空隙側表面
18b 突出部の外周面
20 永久磁石
28 支持継鉄
34 鍔状部材
36 帯状部材
38 補強材
40, 41 カバー部材
42, 44 プレート状部材
46 リング部材
48 成形材
発明を実施するための最良の形態
[0020] 以下、図面を参照してこの発明の実施形態について説明する。
図 1を参照して、この発明の一実施形態の MRI用磁界発生装置 10は、オープンタ イブの MRI用磁界発生装置であり、空隙を形成して対向配置される一対の磁極ュニ ット 1 laおよび 1 lbを含む。
[0021] 磁極ユニット 11aおよび l ibは、それぞれ板状継鉄 12aおよび 12bを含む。一対の 板状継鉄 12aおよび 12bのそれぞれの対向面側には永久磁石群 14aおよび 14bが 配置され、永久磁石群 14aおよび 14bのそれぞれの対向面側には磁極片 16aおよ び 16bが固着される。
[0022] このとき、永久磁石群 14aの外周部が磁極片 16aとの接触部より外方に突出して突 出部 18が形成され、永久磁石群 14bの外周部が磁極片 16bとの接触部より外方に 突出して突出部 18が形成される。
[0023] 永久磁石群 14aおよび 14bの高さはたとえば 100mmである。永久磁石群 14aおよ び 14bは、図 2に示すように直方体状あるいは立方体状の複数の永久磁石 20を接着 によって一体ィ匕したものである。また、永久磁石群 14aを構成する各永久磁石 20は 磁ィ匕方向が同方向になるように配置され、永久磁石群 14bを構成する各永久磁石 2 0は磁ィ匕方向が同方向になるように配置される。この実施形態では、永久磁石群 14a の永久磁石 20は空隙側が N極になるように、永久磁石群 14bの永久磁石 20は空隙 側が S極になるように、配置される。
[0024] 永久磁石 20には、たとえば NEOMAX— 47 (株式会社 NEOMAX製)等の高磁束 密度タイプの R— Fe— B系磁石が用いられ、永久磁石 20は図示しな ヽ磁石単体を組 み立てること〖こよって得られる。
[0025] 磁極片 16aは、永久磁石群 14a上に配置されるたとえば鉄カゝらなる円板状のベー スプレート 22を含む。ベースプレート 22上には、うず電流の発生を防止するための 珪素鋼板 24が形成される。珪素鋼板 24は、ベースプレート 22上に接着剤で固定さ れる。ベースプレート 22の周縁部には、たとえば鉄力もなり周縁部の磁界強度を上げ 均一磁界を得るための環状突起 26が形成される。環状突起 26は、たとえば複数の 環状突起片を含み、各環状突起片を珪素鋼板 24の周縁部に固定することによって 環状突起 26が形成される。
[0026] 板状継鉄 12aおよび 12bは一枚の板状の支持継鉄 28によって磁気的に結合され る。すなわち、支持継鉄 28の下端面に板状継鉄 12aの一端縁側上面が、支持継鉄 28の上端面が板状継鉄 12bの一端縁側下面にそれぞれ位置するように、支持継鉄 28が板状継鉄 12aおよび 12bに接続される。したがって、板状継鉄 12aおよび 12bと 支持継鉄 28とは、その接続部が略 90度の角度を有し側面視コ字状になるように接 続される。
[0027] 図 3をも参照して、板状継鉄 12aと支持継鉄 28との接続部内面側のうち永久磁石 群 14aから最も遠い位置 (この実施の形態では板状継鉄 12aと支持継鉄 28との接続 部内面側の両端)に、それぞれ補強部材 30が形成される。同様に、板状継鉄 12bと 支持継鉄 28との接続部内面側のうち永久磁石群 14bから最も遠い位置 (この実施の 形態では板状継鉄 12bと支持継鉄 28との接続部内面側の両端)に、それぞれ補強 部材 30が形成される。したがって、補強部材 30によって、板状継鉄 12aと支持継鉄 2 8とが、板状継鉄 12bと支持継鉄 28とがそれぞれより強く固定される。
また、板状継鉄 12aの下面には 4つの脚部 32が取り付けられる。
[0028] このような磁界発生装置 10では、磁極片 16aおよび 16b間の空隙に磁界が発生し 、均一磁界空間 F (図 1参照)においてたとえば 0. 2T以上の磁界強度が要求される このような磁界発生装置 10は、永久磁石固定用部材として図 3に示すような鍔状部 材 34を備える。
[0029] なお、図 3,図 5,図 7,図 9および図 11では、磁極ユニット l ib側が省略されている 力 図 1に示す磁界発生装置 10と同様、空隙を挟んで上下対称の構造を有している ことはいうまでもない。但し、永久磁石群 14aを構成する永久磁石 20は A1の磁化方 向を有するように、永久磁石群 14bを構成する永久磁石 20は A2の磁化方向を有す るように、それぞれ配置される。
[0030] 図 3に示すように、鍔状部材 34は、磁極片 16aの外周面に鍔状に取り付けられてお り、突出部 18の空隙側表面 18a (図 1参照)が鍔状部材 34によって覆われる。組み 立て時には、まず、磁極片 16aを永久磁石群 14a上に組み立てておき、その後鍔状 部材 34を磁極片 16aの外周面に溶接等により取り付けるようにしてもよい。磁極ュ- ット 1 lb側にお 、ても同様である。
[0031] 鍔状部材 34としては、 3mm— 10mm程度の厚みで構成され、アルミニウム、ステン レススチール等の非磁性金属が好ましい。このような非磁性金属は、優れた強度を有 しかつ磁界発生装置 10に発生する磁界に影響を与えない。また、うず電流の抑制を 重視する場合には、非磁性金属からなる鍔状部材 34を複数に分割し、各鍔状部材 片と磁極片 16aとの間、および相互に隣接する鍔状部材片の間に電気抵抗の大きい 材料を配置するか、あるいはそれぞれに空隙を形成する力して絶縁を図ってもょ 、。 あるいは、鍔状部材 34として、榭脂、セラミックス等の電気抵抗の大きい材料を用い ることが好ましい。後述する、補強材 38、カバー部材 40, 41、プレート状部材 42, 44 およびリング部材 46についても同様に、このような厚み、材料で構成される。 [0032] このような磁界発生装置 10によれば、外的衝撃等によって永久磁石 20の接着部 分に設計値を超える負荷がカゝかった場合にぉ ヽても、鍔状部材 34が永久磁石 20を 空隙側表面 18aから保持し、永久磁石 20が隣接する永久磁石 20や板状継鉄 12a, 12bから分離することを防ぐことができる。このように永久磁石 20を、接着剤による固 定に加えて鍔状部材 34で固定することによって、磁界発生装置 10を長期間安定使 用できる。
[0033] また、鍔状部材 34を磁極片 16a, 16bの外周面に取り付けることによって、永久磁 石群 14a, 14bが配置される板状継鉄 12a, 12b表面にスペースがなくても、永久磁 石固定用部材を用いることが可能となる。
[0034] さらに、鍔状部材 34を用いれば、従来と比較して磁界発生装置に永久磁石固定用 部材を簡単に (少ない工程で)取り付けることができる。鍔状部材 34を磁極片 16a, 1 6bに予め取り付けておくことによって、組立の工程数を一層少なくできる。
[0035] なお、鍔状部材 34の取り付け作業を次のように行ってもょ 、。
磁極片 16a, 16bの環状突起 26が複数の環状突起片カも構成されるときは、鍔状 部材 34も各環状突起片に対応して分割構造にしておき、各環状突起片に当該鍔状 部材片を取り付けた後、鍔状部材片が取り付けられた環状突起片をベースプレート 2 2上に配置し環状に組み立てていく。
[0036] また、図 4に示すように、鍔状部材 34は、永久磁石群 14aの突出部 18における空 隙側表面 18aだけではなく外周面 18b、さら〖こは板状継鉄 12aの上面にまで延びる ように形成されてもょ ヽ。永久磁石群 14b側につ ヽても同様である。
[0037] ついで図 5に示すように、永久磁石固定用部材として帯状部材 36を用いてもよい。
帯状部材 36としては、たとえば可撓性を有する金属性のベルトが用いられ、ステン レススチール等の非磁性金属が好ましい。このような非磁性金属は、優れた強度を有 しかつ磁界発生装置 10に発生する磁界に影響を与えない。また、うず電流の抑制を 重視する場合には、ポリエステル繊維等の非金属が用いられることが望ましい。当該 非金属にガラス繊維や炭素繊維を加えることによって強度をさらに向上させることが できる。また、たとえば、帯状部材 36の厚みは 0. 1mm— 1. Omm、幅は 90mmとさ れ、突出部 18の外周面 18bに多層に卷回することが望ましい。さらに、帯状部材 36 は 1本でも複数本でもよい。
[0038] このような帯状部材 36を突出部 18の外周面 18bに卷回することによって、永久磁 石 20の固定を補強できる。
また、突出部 18の外周面 18bが露出して 、る 、かなる磁界発生装置にぉ 、ても、 突出部 18の外周面 18bに帯状部材 36を容易に取り付けることができる。
[0039] なお、突出部 18の外周面 18bが凹凸形状の場合には、帯状部材 36の固定力が及 ばない永久磁石 20が生じうる。したがって、図 6に示すように、帯状部材 36と永久磁 石 20 (永久磁石群 14a)との間に補強材 38を介挿することによって、突出部 18の外 周部 18bを構成するすべての永久磁石 20を強く固定することができる。
[0040] 補強材 38の形状は、帯状部材 36と突出部 18を構成する永久磁石 20との間の隙 間を埋めるような形状が好ましいが、帯状部材 36が永久磁石群 14aの突出部 18を 構成する永久磁石 20を保持する力を高めることができるならば、任意の形状でよい。
[0041] さらに、図 7に示すように、永久磁石固定用部材としてカバー部材 40が用いられて もよい。カバー部材 40は、突出部 18に沿った形状とされる。カバー部材 40は、板状 継鉄 12aにねじ等で固定されることが望ましぐ組立効率を考慮して、円周方向に複 数分割されてもよい。
[0042] カバー部材 40を用いることによって、突出部 18を構成する永久磁石 20のすベての 面 (空隙側表面 18a、外周面 18b)を固定することができる。
[0043] また、図 8に示すようなカバー部材 41が用いられてもよい。カバー部材 41は、突出 部 18の外周面 18bのみに設けられ、外周面 18bに沿ってかつ外周面 18bを全周に 亘つて囲むように形成される。カバー部材 41によれば、突出部 18を構成する永久磁 石 20の外周面 18bを固定することができる。
[0044] カバー部材 40, 41は、突出部 18の形状が単純な場合ほど容易に製造でき効果的 である。また、カバー部材 40, 41は、円周方向に複数分割されてもよい。
[0045] また、図 9および図 10 (a)に示すように、永久磁石固定用部材として、突出部 18の 空隙側表面 18aや外周面 18bに、複数の永久磁石 20同士を接続するプレート状部 材 42が取り付けられてもよ ヽ。複数の永久磁石 20をプレート状部材 42で接着するこ とによって、その中の 1つの永久磁石 20が隣接する永久磁石 20から分離するのを防 止することができる。なお、プレート状部材の大きさは任意でよぐたとえば、突出部 1 8の空隙側表面 18aを一周するように当該空隙側表面 18aに環状に形成されてもよ い。
[0046] また、図 9および図 10 (b)に示すように、永久磁石 20から板状継鉄 12aの上面へと 延びるたとえば L字型形状のプレート状部材 44が用いられてもよい。この場合には、 プレート状部材 44を板状継鉄 12aに接続することによって永久磁石 20をより強く固 定でき、永久磁石 20を板状継鉄 12aから分離することを防ぐことができる。
[0047] さらに、このようなプレート状部材 42, 44は、突出部 18の必要な箇所に容易に取り 付けることができるので、永久磁石 20の固定を容易に補強することができる。
磁極ユニット 1 lb側にぉ 、ても同様である。
[0048] 上述した鍔状部材 34、帯状部材 36、補強材 38、カバー部材 40, 41、プレート状 部材 42, 44は、永久磁石 20を、隣接する永久磁石 20、板状継鉄 12a, 12b、あるい はそれらの両方力 分離するための対策が施されていない磁界発生装置を補強する 手段としても有効であり、汎用的に用 、ることができる。
[0049] さらに、図 11および図 12 (a)に示すように、鍔状部材 34が取り付けられた突出部 1 8を覆うようにリング部材 46が配置されてもょ 、。
このようなリング部材 46を用いることによって、永久磁石 20を磁界発生装置 10から 脱落することを防止でき、また、永久磁石群 14aを外部力も保護することができる。な お、組立効率等を考慮してリング部材 46は円周方向に複数分割されてもよい。
[0050] また、図 12 (b)に示すように、リング部材 46の中に成形材 48を充填すれば、永久 磁石群 14aの突出部 18を構成する永久磁石 20を保持する力をより一層強くすること ができる。
磁極ユニット 1 lb側にっ 、ても同様である。
[0051] なお、成形材 48は、永久磁石 20の熱減磁を考慮して、硬化反応時の温度が 100 °C以下である必要があり、 60°C以下であればより望ましぐ具体的には発泡ウレタン が好ましい。発泡ウレタンは常温で硬化し、作業性、経済性という点で優れており、既 存の磁界発生装置の補強等にも有効となる。
[0052] 図 11および図 12に示すリング部材 46および成形材 48は、帯状部材 36、補強材 3 8、あるいはプレート状部材 42, 44を用いる実施形態にも適用できることはいうまでも ない。
[0053] また、上述の実施形態では、一対の板状継鉄 12a, 12bおよび一つの支持継鉄 28 によって継鉄を形成する場合について述べたが、これに限定されず、一対の永久磁 石群 14a, 14bを磁気的に結合するたとえば C字状の一体化された継鉄が用いられ てもよい。
[0054] この発明が詳細に説明され図示されたが、それは単なる図解および一例として用い たものであり、限定であると解されるべきではないことは明らかであり、この発明の精 神および範囲は添付された請求の範囲の文言のみによって限定される。

Claims

請求の範囲
[1] それぞれ相互に接着される複数の永久磁石を含みかつ空隙を形成して対向配置 される一対の永久磁石群と、前記一対の永久磁石群を磁気的に結合するための継 鉄と、前記一対の永久磁石群のそれぞれの空隙側主面に設けられる一対の磁極片 とを有し、前記永久磁石群が前記磁極片との接触部よりも外方に突出した突出部を 有するように構成され、前記一対の磁極片間の空隙に磁界を発生させる MRI用磁界 発生装置において、
前記突出部に配置される前記永久磁石が前記永久磁石群から離脱することを防止 する永久磁石固定用部材を備えることを特徴とする、 MRI用磁界発生装置。
[2] 前記永久磁石固定用部材が、前記突出部の空隙側表面を覆うように前記磁極片 の外周面に取り付けられる鍔状部材である、請求項 1に記載の MRI用磁界発生装置
[3] 前記永久磁石固定用部材が、前記突出部の外周面に取り付けられる帯状部材で ある、請求項 1に記載の MRI用磁界発生装置。
[4] 前記帯状部材と前記突出部との間に設けられる補強材をさらに含む、請求項 3に 記載の MRI用磁界発生装置。
[5] 前記永久磁石固定用部材が、前記突出部を構成する複数の永久磁石同士を接続 するプレート状部材である、請求項 1に記載の MRI用磁界発生装置。
[6] 前記プレート状部材が前記継鉄にまで延びて固定される、請求項 5に記載の MRI 用磁界発生装置。
[7] 前記永久磁石固定用部材が設けられた前記突出部を包囲するリング部材をさらに 含む、請求項 1から 6の 、ずれかに記載の MRI用磁界発生装置。
[8] 前記リング部材と前記突出部との間の空間に充填される成形材をさらに含む、請求 項 7に記載の MRI用磁界発生装置。
[9] 前記永久磁石固定用部材が、前記突出部の形状に沿ったカバー部材である、請 求項 1に記載の MRI用磁界発生装置。
PCT/JP2004/014365 2004-09-30 2004-09-30 Mri用磁界発生装置 WO2006038261A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/014365 WO2006038261A1 (ja) 2004-09-30 2004-09-30 Mri用磁界発生装置
EP04788393A EP1808126B1 (en) 2004-09-30 2004-09-30 Magnetic field generator for mri
US11/664,261 US7796002B2 (en) 2004-09-30 2004-09-30 Magnetic field generator for MRI
CN2004800441329A CN101031238B (zh) 2004-09-30 2004-09-30 Mri用磁场发生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014365 WO2006038261A1 (ja) 2004-09-30 2004-09-30 Mri用磁界発生装置

Publications (1)

Publication Number Publication Date
WO2006038261A1 true WO2006038261A1 (ja) 2006-04-13

Family

ID=36142352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014365 WO2006038261A1 (ja) 2004-09-30 2004-09-30 Mri用磁界発生装置

Country Status (4)

Country Link
US (1) US7796002B2 (ja)
EP (1) EP1808126B1 (ja)
CN (1) CN101031238B (ja)
WO (1) WO2006038261A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077002B2 (en) * 2005-12-19 2011-12-13 Jianyu Lian Open MRI magnetic field generator
US8760250B2 (en) 2009-06-02 2014-06-24 Correlated Magnetics Rsearch, LLC. System and method for energy generation
US8576036B2 (en) 2010-12-10 2013-11-05 Correlated Magnetics Research, Llc System and method for affecting flux of multi-pole magnetic structures
US8368495B2 (en) 2008-04-04 2013-02-05 Correlated Magnetics Research LLC System and method for defining magnetic structures
US8760251B2 (en) 2010-09-27 2014-06-24 Correlated Magnetics Research, Llc System and method for producing stacked field emission structures
US7800471B2 (en) 2008-04-04 2010-09-21 Cedar Ridge Research, Llc Field emission system and method
US9105380B2 (en) 2008-04-04 2015-08-11 Correlated Magnetics Research, Llc. Magnetic attachment system
US9202616B2 (en) 2009-06-02 2015-12-01 Correlated Magnetics Research, Llc Intelligent magnetic system
US8779879B2 (en) 2008-04-04 2014-07-15 Correlated Magnetics Research LLC System and method for positioning a multi-pole magnetic structure
US8179219B2 (en) 2008-04-04 2012-05-15 Correlated Magnetics Research, Llc Field emission system and method
US9371923B2 (en) 2008-04-04 2016-06-21 Correlated Magnetics Research, Llc Magnetic valve assembly
US8174347B2 (en) 2010-07-12 2012-05-08 Correlated Magnetics Research, Llc Multilevel correlated magnetic system and method for using the same
US8279032B1 (en) 2011-03-24 2012-10-02 Correlated Magnetics Research, Llc. System for detachment of correlated magnetic structures
US8717131B2 (en) 2008-04-04 2014-05-06 Correlated Magnetics Research Panel system for covering a glass or plastic surface
US8816805B2 (en) 2008-04-04 2014-08-26 Correlated Magnetics Research, Llc. Magnetic structure production
JP2011525389A (ja) * 2008-06-24 2011-09-22 アルバータ ヘルス サービシズ 磁石組立体およびイメージング・ボリューム用の磁場を決定する方法
EP2333935B1 (en) * 2008-10-02 2016-01-06 Nissan Motor Co., Ltd. Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
RU2011129645A (ru) * 2008-12-17 2013-01-27 Конинклейке Филипс Электроникс Н.В. Сборка постоянного магнита для визуализации магнитных частиц
US8937521B2 (en) 2012-12-10 2015-01-20 Correlated Magnetics Research, Llc. System for concentrating magnetic flux of a multi-pole magnetic structure
US8917154B2 (en) 2012-12-10 2014-12-23 Correlated Magnetics Research, Llc. System for concentrating magnetic flux
JP5668681B2 (ja) 2009-02-27 2015-02-12 日立金属株式会社 磁界発生装置
US8704626B2 (en) 2010-05-10 2014-04-22 Correlated Magnetics Research, Llc System and method for moving an object
US9275783B2 (en) 2012-10-15 2016-03-01 Correlated Magnetics Research, Llc. System and method for demagnetization of a magnetic structure region
US9257219B2 (en) 2012-08-06 2016-02-09 Correlated Magnetics Research, Llc. System and method for magnetization
US9404776B2 (en) 2009-06-02 2016-08-02 Correlated Magnetics Research, Llc. System and method for tailoring polarity transitions of magnetic structures
US9711268B2 (en) 2009-09-22 2017-07-18 Correlated Magnetics Research, Llc System and method for tailoring magnetic forces
US8638016B2 (en) 2010-09-17 2014-01-28 Correlated Magnetics Research, Llc Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure
US8702437B2 (en) 2011-03-24 2014-04-22 Correlated Magnetics Research, Llc Electrical adapter system
WO2012142306A2 (en) 2011-04-12 2012-10-18 Sarai Mohammad Magnetic configurations
US8963380B2 (en) 2011-07-11 2015-02-24 Correlated Magnetics Research LLC. System and method for power generation system
US9219403B2 (en) 2011-09-06 2015-12-22 Correlated Magnetics Research, Llc Magnetic shear force transfer device
US8848973B2 (en) 2011-09-22 2014-09-30 Correlated Magnetics Research LLC System and method for authenticating an optical pattern
WO2013130667A2 (en) 2012-02-28 2013-09-06 Correlated Magnetics Research, Llc. System for detaching a magnetic structure from a ferromagnetic material
EP2868271A4 (en) * 2012-07-02 2016-05-18 Hitachi Metals Ltd MAGNETIC CIRCUIT
US9245677B2 (en) 2012-08-06 2016-01-26 Correlated Magnetics Research, Llc. System for concentrating and controlling magnetic flux of a multi-pole magnetic structure
US9298281B2 (en) 2012-12-27 2016-03-29 Correlated Magnetics Research, Llc. Magnetic vector sensor positioning and communications system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339916A (ja) * 1995-06-12 1996-12-24 Shin Etsu Chem Co Ltd 永久磁石磁気回路
JPH11178808A (ja) * 1997-12-18 1999-07-06 Hitachi Medical Corp 磁気共鳴イメージング装置用磁界発生装置
JP2001326118A (ja) * 1999-11-16 2001-11-22 Sumitomo Special Metals Co Ltd 磁極ユニット、その組立方法および磁界発生装置
JP2004057829A (ja) * 2002-07-26 2004-02-26 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージングの磁場発生装置向けに磁気部材を組み立てるための方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8322561U1 (it) 1983-08-02 1985-02-02 Black & Decker Inc Braccio portautensile da applicare a sbalzo su colonne portanti e dotato di mezzi di guida, in particolare per squadratrici angolari.
DE3566185D1 (en) * 1984-04-11 1988-12-15 Sumitomo Spec Metals Magnetic field generating device for nmr-ct
JPS6117053A (ja) 1984-07-03 1986-01-25 Sanyo Electric Co Ltd 核磁気共鳴撮像装置
JPS61152956A (ja) 1984-12-26 1986-07-11 Takeshi Sato デイ−ゼル機関の微粒子状排出物質の低減方法
US4679022A (en) * 1985-12-27 1987-07-07 Sumitomo Special Metal Co. Ltd. Magnetic field generating device for NMR-CT
JPS63190311A (ja) * 1986-10-03 1988-08-05 Hitachi Ltd 永久磁石式磁場発生装置
JPS63241905A (ja) * 1987-03-27 1988-10-07 Sumitomo Special Metals Co Ltd 磁界発生装置
JP2649437B2 (ja) 1990-09-29 1997-09-03 住友特殊金属株式会社 Mri用磁界発生装置
DE69129687T2 (de) * 1990-09-29 1999-03-11 Sumitomo Special Metals Co., Ltd., Osaka Vorrichtung zur Erzeugung eines Magnetfeldes für die Bildgebung mittels magnetischer Resonanz
JP2699250B2 (ja) 1993-01-22 1998-01-19 信越化学工業株式会社 磁場発生装置及び磁場発生装置製造方法
FR2702592B1 (fr) 1993-03-09 1995-04-07 Commissariat Energie Atomique Structure d'aimant permanent à haute efficacité et à faibles fuites.
JP2757104B2 (ja) * 1993-04-01 1998-05-25 信越化学工業株式会社 磁場発生装置
JP3369653B2 (ja) 1993-07-26 2003-01-20 信越化学工業株式会社 永久磁石対向型磁場発生装置
JP3682807B2 (ja) 1996-08-13 2005-08-17 信越化学工業株式会社 軸方向磁場発生用永久磁石磁気回路
JPH10275720A (ja) 1997-03-31 1998-10-13 Shin Etsu Chem Co Ltd 永久磁石磁気回路
NO305270B1 (no) * 1997-12-04 1999-04-26 Seas Fabrikker As Permanentmagnetmontasje
KR100362042B1 (ko) 1998-04-14 2002-11-22 스미토모 도큐슈 긴조쿠 가부시키가이샤 Mri용 자계 발생 장치
IT1305960B1 (it) 1998-05-11 2001-05-21 Esaote Spa Struttura di magnete in particolare per macchine per il rilevamentod'immagine in risonanza magnetica nucleare.
JP2953659B1 (ja) * 1998-08-06 1999-09-27 住友特殊金属株式会社 Mri用磁界発生装置およびその組立方法並びにそれに用いる磁石ユニットの組立方法
JP2000139874A (ja) * 1998-09-02 2000-05-23 Sumitomo Special Metals Co Ltd Mri用磁界発生装置
JP4138132B2 (ja) 1999-02-10 2008-08-20 ヤンマー株式会社 燃料噴射ポンプのガバナ装置
KR100319923B1 (ko) * 1999-05-10 2002-01-09 윤종용 자기공명영상장치용 자기장 발생 장치
DE60038849D1 (de) * 1999-07-15 2008-06-26 Hitachi Metals Ltd Verfahren zum Abbau eines Magnetfeldgenerators
JP4123649B2 (ja) 1999-08-12 2008-07-23 日立金属株式会社 磁界発生装置およびその組立方法
DE60026426T2 (de) * 1999-11-16 2006-11-16 Neomax Co., Ltd. Polstückeinheit für einen Magnet der bildgebenden magnetischen Resonanz
US6642826B1 (en) * 2000-08-09 2003-11-04 Sumitomo Special Metals Co., Ltd. Magnetic field generator and assembling method thereof
JP4190025B2 (ja) 2000-11-27 2008-12-03 信越化学工業株式会社 Mri用磁気回路の組立方法
US7148778B2 (en) * 2001-11-30 2006-12-12 The Regents Of The University Of California High performance hybrid magnetic structure for biotechnology applications
EP1598814A4 (en) * 2003-02-19 2006-03-22 Neomax Co Ltd MAGNETIC FIELD INTERNAL HEAT TREATMENT DEVICE
CN1595189B (zh) * 2003-09-10 2010-06-16 信越化学工业株式会社 用于磁路的包装板、使用该包装板包装磁路的方法以及磁路的包装件
US7423431B2 (en) * 2003-09-29 2008-09-09 General Electric Company Multiple ring polefaceless permanent magnet and method of making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339916A (ja) * 1995-06-12 1996-12-24 Shin Etsu Chem Co Ltd 永久磁石磁気回路
JPH11178808A (ja) * 1997-12-18 1999-07-06 Hitachi Medical Corp 磁気共鳴イメージング装置用磁界発生装置
JP2001326118A (ja) * 1999-11-16 2001-11-22 Sumitomo Special Metals Co Ltd 磁極ユニット、その組立方法および磁界発生装置
JP2004057829A (ja) * 2002-07-26 2004-02-26 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージングの磁場発生装置向けに磁気部材を組み立てるための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1808126A4 *

Also Published As

Publication number Publication date
US20080100406A1 (en) 2008-05-01
EP1808126A1 (en) 2007-07-18
CN101031238A (zh) 2007-09-05
EP1808126A4 (en) 2010-05-05
CN101031238B (zh) 2010-07-28
EP1808126B1 (en) 2012-12-26
US7796002B2 (en) 2010-09-14

Similar Documents

Publication Publication Date Title
WO2006038261A1 (ja) Mri用磁界発生装置
US8717133B2 (en) Reactor
US8497756B2 (en) Reactor core and reactor
US8860542B2 (en) Reactor, reactor manufacturing method, and reactor component
JP4089341B2 (ja) ロータおよび回転機
US7619341B2 (en) Rotor of rotating electric machine
JP6280592B2 (ja) リアクトル
KR101707389B1 (ko) 전기 기계를 위한 로터
JP4811785B2 (ja) 周期磁界発生装置およびこれを用いたリニアモータ
JP2009194198A (ja) リアクトル
US20170338032A1 (en) Reactor
JP4816690B2 (ja) Mri用磁界発生装置
JP4816689B2 (ja) Mri用磁界発生装置
JP5316871B2 (ja) リアクトル、及びコンバータ
JP4518752B2 (ja) Mri用磁界発生装置
KR102119367B1 (ko) 로터
JP2016143835A (ja) リアクトル
JP5668681B2 (ja) 磁界発生装置
JP2011009791A (ja) リアクトル
JP5344158B2 (ja) リアクトル、リアクトル用のボビン、及びコンバータ
JP4214736B2 (ja) Mri用磁界発生装置
JP3056883B2 (ja) Mri用磁界発生装置
JP4711160B2 (ja) リニアモータ電機子およびリニアモータ
JP3059596B2 (ja) Mri用磁界発生装置
JP2023094806A (ja) リアクトル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200480044132.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2004788393

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004788393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11664261

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11664261

Country of ref document: US