[go: up one dir, main page]

WO2006117990A1 - 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品 - Google Patents

圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品 Download PDF

Info

Publication number
WO2006117990A1
WO2006117990A1 PCT/JP2006/307769 JP2006307769W WO2006117990A1 WO 2006117990 A1 WO2006117990 A1 WO 2006117990A1 JP 2006307769 W JP2006307769 W JP 2006307769W WO 2006117990 A1 WO2006117990 A1 WO 2006117990A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric ceramic
constant
ceramic composition
electric field
Prior art date
Application number
PCT/JP2006/307769
Other languages
English (en)
French (fr)
Inventor
Shinichiro Kawada
Ryoko Katayama
Katsuhiro Horikawa
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006529413A priority Critical patent/JP3945536B2/ja
Priority to CN200680004194A priority patent/CN100594198C/zh
Priority to EP20060731705 priority patent/EP1876156B1/en
Publication of WO2006117990A1 publication Critical patent/WO2006117990A1/ja
Priority to US11/852,678 priority patent/US7691286B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • Piezoelectric ceramic composition a method for producing the piezoelectric ceramic composition, and piezoelectric ceramic electronic component
  • the present invention relates to a piezoelectric ceramic composition, a method for producing the piezoelectric ceramic composition, and a piezoelectric ceramic electronic component, and more specifically, does not contain Pb (lead), and is a lead-free piezoelectric ceramic.
  • the present invention relates to a composition, a method for producing the piezoelectric ceramic composition, and a piezoelectric ceramic electronic component such as a piezoelectric actuator manufactured using the piezoelectric ceramic composition, such as a piezoelectric buzzer.
  • Pb pressure such as
  • Patent Document 1 includes a general formula: (1 n) (K Na Li) (Nb Ta) 0 - ⁇
  • Patent Document 2 discloses a general formula: (l—n) (K Na Li) (Nb Ta)
  • Ml is a trivalent metal element
  • M2 is a monovalent metal element
  • M3 is
  • a piezoelectric ceramic composition mainly composed of a tetravalent metal element is disclosed.
  • x, y, z, m, ⁇ , and patent document 1 and patent document 2 are out of order! 0. l ⁇ x, y ⁇ 0.3, x + y ⁇ 0. 75, 0 ⁇ z ⁇ 0.3, 0.98 ⁇ m ⁇ l.0, and 0 ⁇ n ⁇ 0.1.
  • Patent Document 1 (K, Na, Li) (Nb, Ta) 0 is assigned as the third component.
  • Constant molar amount of perovskite complex oxide M1M20 or M1M2M30 e.g. Ba
  • a piezoelectric ceramic composition having a number kp of 25% or more and a Curie point Tc exceeding 200 ° C is obtained.
  • Patent Document 3 ⁇ Li (K Na) ⁇ (Nb Ta Sb) O (where 0 ⁇ x ⁇ 0.2
  • a piezoelectric ceramic composition containing 0.1 mol and having an open porosity of 0.4 vol% or less is disclosed.
  • Patent Document 3 suppresses the open porosity (the amount of dent generated on the surface of the piezoelectric ceramic composition in terms of vol%) to 0.4 vol% or less by using the above-described Ag to Zr metal element additive. It is said that mechanical strength can be improved. Furthermore, the above general formula ⁇ Li (K Na) ⁇ (Nb
  • Patent Document 4 includes ⁇ (K Na) Ag ⁇ NbO— ⁇ [ ⁇ ⁇ + ] [ ⁇ 2 ] (where 0 ⁇ ⁇ 1,
  • M is at least one metal element of (Mn, Mg, In, Si ⁇ Ga, Sb), (X Is a piezoelectric ceramic composition represented by the average valence of metal element M).
  • Patent Document 4 (K, Na) NbO alloy Ag and Mn, Mg, In, Si, Ga, Sb
  • the dielectric loss tan ⁇ is reduced, the reliability is improved, and the piezoelectric d constant can be improved.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 228227
  • Patent Document 2 Japanese Patent Laid-Open No. 11-228228
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-244300
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-68835
  • Patent Documents 1 and 2 (K, Na, Li) (Nb, Ta) 0 is added as a third component.
  • Patent Document 3 discloses that ⁇ Li (K Na) ⁇ (Nb Ta Sb) O is added with a metal element such as In x 1-y y l- ⁇ 1-z-w z w 3
  • Patent Document 4 discloses that (K, Na) NbO is added with Ag, In, or the like by adding d.
  • the piezoelectric d constant at a high electric field which is an actual electric field, is generally different from the piezoelectric d constant at a micro electric field that is usually measured, and just because the piezoelectric d constant of a small electric field is high, The piezoelectric d constant of high electric fields is not always high!
  • the piezoelectric material is divided into many regions called “domains” having different spontaneous polarization directions.
  • domains In the case of a small electric field, only the 180 ° domain in which the direction of spontaneous polarization is parallel to the direction in which the electric field is applied responds.
  • a large distortion occurs due to the rotation of the 90 ° domain whose spontaneous polarization direction is perpendicular to the electric field application direction.
  • the piezoelectric d constant at high electric field may not be so high depending on the domain structure even if the material has a high piezoelectric d constant at a small electric field.
  • the piezoelectric d constant in a minute electric field is slightly Although it can be desired to improve, it is not possible to obtain a sufficiently high piezoelectric d constant, and the piezoelectric d constant at a high electric field is significantly different from the desired piezoelectric d constant. I found out.
  • the present invention has been made in view of such circumstances, and a lead-free piezoelectric ceramic composition capable of realizing a desired high piezoelectric d constant in both a minute electric field and a high electric field, and the It is an object of the present invention to provide a method for producing a piezoelectric ceramic composition and a piezoelectric ceramic electronic component produced using the piezoelectric ceramic composition.
  • the present inventors have intensively studied to achieve the above object, and have (K, Na, Li) (Nb, Ta, Sb) having a perovskite structure formulated so as to have a predetermined molar ratio. ) 0
  • Ml M20 with a different perovskite structure as the third component in the group 3 compound (Ml is C n 3 a, Sr, Ba, or M2 is Ti, Zr, or Sn), and the main component is formed, and for 100 mol of the main component, In, Sc, Y, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Yb, and Lu, by adding a total of 0.1 to 10 mol of a specific element, the relative permittivity ⁇ r and A piezoelectric ceramic composition that can increase both the electromechanical coupling coefficient kp, can obtain a high Curie point Tc, and has a desired high piezoelectric d constant both in a minute electric field and in a high electric field. The knowledge that can be obtained.
  • the piezoelectric ceramic composition according to the present invention is composed mainly of a general formula ⁇ (1 -x) (K Na Li) (Nb Ta Sb) 0— xMl
  • M20 ⁇ (where Ml is a medium strength of Ca, Sr and Ba, at least one selected metal)
  • the element, M2 represents at least one metal element selected from among Ti, Zr and Sn.
  • x, a, b, c, d, m, and n forces 0.005 ⁇ x ⁇ 0, 1, 0 ⁇ a ⁇ 0, 9, 0 ⁇ b ⁇ 0. 3, 0 ⁇ a + b ⁇ 0. 9, 0 ⁇ c ⁇ 0. 5, 0 ⁇ d ⁇ 0. 1, 0. 9 ⁇ m ⁇ l. 1, and 0.9.9 ⁇ n ⁇ l. 1.
  • Power, In, Sc, Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu At least one specific elemental power selected. It is characterized by containing 0.1 to 10 moles in total.
  • M40 (M3 is K or Na, M4 is Ti, Zr or Sn)
  • the piezoelectric d constant can be improved both in a minute electric field and in a high electric field.
  • the piezoelectric ceramic composition of the present invention has (M3 Bi) M40 (provided that 0.9 ⁇ p ⁇ l
  • M3 is at least one metal element selected from K and Na
  • M4 is at least one metal element selected from Ti, Zr and Sn. ) May be contained in the main component at a blending molar ratio of 0.5 or less.
  • the molar ratio m of (K Na Li) and (Nb Ta Sb) is set to a range of 0.9 ⁇ m ⁇ 0.99.
  • m is preferably 0.9 ⁇ m ⁇ 0.99.
  • a piezoelectric ceramic composition containing (K, Na) NbO as a main component is good.
  • the temperature range of the firing temperature at which a good sintered body can be obtained is very small. This is a serious problem for practical and mass production, and the temperature range of the firing temperature at which a good sintered body can be obtained is expanded. Was demanded.
  • the present inventors have conducted intensive research, and when the content of the specific element is adjusted so as to be in the range of 1.5 to: LO mol in total with respect to 100 mol of the main component, It has been found that the temperature range ⁇ of the firing temperature at which firing can be performed stably can be widened. This makes it less susceptible to fluctuations in the firing temperature during the sintering process, thereby suppressing the occurrence of defective products and improving productivity.
  • the specific element is preferably contained in a total amount of 1.5 to 10 mol with respect to 100 mol of the main component.
  • At least one metal element selected in the medium force of Mn, Ni, Fe, Zn, Cu and Mg is added to the total amount of 100 moles of the main component. 0. 1 to 10 moles contained!
  • the present inventors conducted further earnest studies, and found that the average particle diameter D was 0.60 ⁇ m or less.
  • the above-mentioned piezoelectric ceramic composition is produced using an ultrafine ceramic raw material powder having a specific surface area of 7.0 m 2 Zg or more and 20.0 m 2 Zg or less, thereby reducing the polarization failure rate of the piezoelectric ceramic component. It was possible to obtain a piezoelectric ceramic part having a higher piezoelectric d constant.
  • the average particle diameter D is 0.60.
  • a ceramic raw material powder having a specific surface area of 50 ⁇ m or less and a specific surface area of 7.0 m 2 Zg or more and 20.0 m 2 Zg or less is produced, and the ceramic raw material powder is subjected to a firing treatment to produce the piezoelectric ceramic composition. It is a feature. [0036] Further, in the method for producing a piezoelectric ceramic composition according to the present invention, the specific surface area is 10. Om 2
  • the piezoelectric ceramic electronic component according to the present invention is a piezoelectric ceramic electronic component in which an external electrode is formed on the surface of the piezoelectric ceramic body.
  • the piezoelectric ceramic body component is formed of the piezoelectric ceramic composition. It is characterized by that.
  • an internal electrode may be embedded in the piezoelectric ceramic body.
  • the main component is represented by the general formula ⁇ (1—X) (K Na Li)
  • M2 represents at least one metal element selected from the medium strength of Ti, Zr and Sn.
  • x, a, b, c, d, m, and n respectively.
  • At least one specific elemental force with medium strength selected from In, Sc, Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu.
  • the piezoelectric d constant can be improved both in the case of a minute electric field and in the case of a high electric field.
  • the piezoelectric d constant at a small electric field is 115pCZN or more, and at a high electric field.
  • a piezoelectric ceramic composition having a piezoelectric d constant of 200 pCZN or more and excellent piezoelectric characteristics can be obtained.
  • (M3 Bi) M40 (however, 0.9 ⁇ p ⁇ l. 1, M3 is less than K and Na
  • the piezoelectric ceramic composition having good piezoelectric properties can be stably obtained as described above, even when the compound is contained in the main component at a blending molar ratio of 0.5 or less. Accordingly, it is possible to provide various piezoelectric ceramic compositions depending on the application.
  • the piezoelectric ceramic composition of the present invention can further improve the piezoelectric characteristics by setting m to 0.9 ⁇ m ⁇ 0.99.
  • Piezoelectric d constant of time Piezoelectric porcelain compositions with a force of Sl30pCZN or higher and a piezoelectric d constant of 250pCZN or higher in a high electric field can be obtained.
  • the firing treatment can be performed stably.
  • the temperature range ⁇ of the firing temperature can be expanded, and the occurrence of defective products can be suppressed even if the firing temperature fluctuates.
  • the temperature range ⁇ can be set to 15 ° C or more, and productivity can be improved.
  • the piezoelectric ceramic composition of the present invention at least one metal element selected in the medium force of Mn, Ni, Fe, Zn, Cu and Mg is added to the total amount of 100 moles of the main component. This may be contained in an amount of 0.1 to 10 moles, whereby the temperature range ⁇ of the firing temperature can be further expanded. Specifically, by adding the above-described divalent metal element, the temperature range ⁇ of the firing temperature can be further increased to about 15 to 25 ° C, that is, the temperature range ⁇ can be increased to about 40 to 55. .
  • the average particle diameter D is 0.60.
  • a ceramic raw material powder having a specific surface area of 7.0 m 2 Zg or more and 20.0 m 2 Zg or less (preferably 10. OmV g or more and 20.0 m 2 Zg or less) is prepared and sintered to the ceramic raw material powder. Since the above-mentioned piezoelectric ceramic composition is manufactured by performing the treatment, the ceramic raw material powder is an ultrafine powder and has good dispersibility, so that the sintering temperature is lowered and the alkali metal which is easily evaporated during sintering.
  • the piezoelectric ceramic element force is formed of the piezoelectric ceramic composition. Therefore, it is possible to stably obtain a piezoelectric ceramic electronic component having a high piezoelectric constant not only in a minute electric field but also when a high electric field is applied.
  • the piezoelectric ceramic electronic component of the present invention is a multilayer piezoelectric ceramic that is driven by a high electric field like a piezoelectric actuator in which an internal electrode may be embedded in the piezoelectric ceramic body. Even in the case of a rack electronic component, a high piezoelectric d constant can be obtained by a driving electric field, and a piezoelectric ceramic electronic component having excellent piezoelectric characteristics can be stably obtained with high efficiency.
  • FIG. 1 is a three-dimensional view schematically showing an oxygen octahedral structure of perovskite.
  • FIG. 2 is a cross-sectional view showing an embodiment of a multilayer piezoelectric actuator as a piezoelectric ceramic electronic component according to the present invention.
  • a piezoelectric ceramic composition as an embodiment (first embodiment) according to the present invention is represented by the following general formula (A).
  • Ml represents at least one metal element selected from among Ca, Sr and Ba
  • M2 represents at least one metal element selected from among Ti, Zr and Sn.
  • X represents at least one specific element in which medium forces of In, Sc, Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu are also selected.
  • the present piezoelectric ceramic composition has ⁇ (K Na Li) (Nb Ta Sb) 0-Ml M20 ⁇ having a bottom bumskite structure (general formula ⁇ ) prepared so as to have a predetermined mixing molar ratio.
  • the main component is composed, and specific elements X such as In and Sc are contained in the range of 0.1 to L0 mol with respect to 100 mol of the main component. This makes it possible for both small electric fields and high electric fields! Thus, the piezoelectric d constant can be improved, and a piezoelectric ceramic composition having desired piezoelectric characteristics can be obtained.
  • the force that can increase the piezoelectric d constant by dissolving a perovskite complex oxide of a specific composition component in 3 minutes is simply Na, Li) (Nb, Ta) 0.
  • the perovskite structure has a structure in which an oxygen octahedron structure centered on a B site ion forms a framework and the A site ion is coordinated in a space within the framework.
  • P is a framework of oxygen octahedron structure
  • oblique sphere is A site ion
  • white sphere is O 2 — ion.
  • Ba 2+ which is an A site ion, is coordinated in the space.
  • the valences of B site ions are the same, such as (K, Na) NbO and LiSbO.
  • the B site ions Nb 5+ and Sb 5+ mix relatively freely with each other, so even if both are dissolved, a uniform oxygen octahedron structure is formed as a whole and consistency is established. Sure It is thought that it can be preserved.
  • Nb 5+ dissolves around K + and only Ti 4+ dissolves around Ba 2+ . Therefore, Nb 5+ and Ti 4+ cannot be mixed freely and are thought to form oxygen octahedral structures with different sizes. In other words, in this case, the consistency of the oxygen octahedron structure between the two deteriorates, and as a result, the piezoelectricity, which makes it difficult to obtain a good piezoelectric ceramic composition, is considered to be impaired.
  • the specific element X is at least one of the above listed In, Sc, Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Limited. That is, these specific elements X are not limited as long as they are trivalent metal elements, which are trivalent metal elements. For example, Bi, La, etc. are not suitable as additive elements. X is limited to the metal elements listed above.
  • must be at least 0.1 mol or more.
  • the molar content ⁇ exceeds 10 moles with respect to 100 moles of the main component, the content of the specific element is excessive and exceeds the solid solution limit.
  • a conductive layer is formed by being deposited on the substrate, resulting in poor polarization.
  • the molar content ⁇ of the specific element X with respect to 100 mol of the main component is adjusted so as to satisfy 0.1 ⁇ 10.
  • the temperature range ⁇ of the firing temperature at which the firing treatment can be performed stably can be increased.
  • the conventional piezoelectric ceramic composition is inferior when the firing temperature during the firing process in which the temperature range ⁇ of the firing temperature at which the firing process can be performed stably is extremely narrow is fluctuated. The incidence increased, and there was a risk of reducing productivity.
  • the temperature range ⁇ ⁇ ⁇ of the firing temperature can be 15 ° C or more.
  • the molar amount ⁇ of the specific element X is set to 1.5 ⁇ ⁇ with respect to 100 mol of the main component. ⁇ 10 is preferred.
  • X is the force that defines the molar ratio of the third component Ml M20 in the main component X force SO. 005
  • the number kp becomes small, so that a desired high piezoelectric d constant cannot be obtained and the piezoelectric characteristics cannot be improved.
  • X exceeds 0.1, the Curie point Tc is remarkably lowered, and the electromechanical coupling coefficient kp is drastically lowered to deteriorate the piezoelectric characteristics.
  • composition components are prepared so that X is 0.005 ⁇ x ⁇ 0.1.
  • Na and Li are contained in the main component as necessary, and exist in a form that is substituted and dissolved with a part of K.
  • a which defines the compounding molar ratio of Na exceeds 0.9
  • b which defines the molar ratio of Li
  • the solid solubility limit with K is exceeded, and in either case, piezoelectricity is not exhibited.
  • the sum of a and b exceeds 0.9, the relative dielectric constant ⁇ r is significantly reduced, making it impossible to obtain the desired high piezoelectric d constant.
  • a, b force 0 ⁇ a ⁇ 0.9, 0 ⁇ b ⁇ 0.3, and 0 ⁇ a + b ⁇ 0
  • composition components are prepared so as to be 9.
  • Ta is also contained in the main component as necessary, and the force exists in the form of substitutional solid solution with a part of Nb. It defines the molar ratio of Ta.
  • c exceeds 0.5, the electromechanical coupling coefficient kp is Drastically
  • the desired piezoelectric characteristics cannot be obtained due to the deterioration of the piezoelectric d constant, both in the case of a small electric field and in the case of a high electric field.
  • composition components are prepared so that c is 0 ⁇ c ⁇ 0.5.
  • Sb is also contained in the main component as required, and the force that exists in the form of a substitution solid solution with a part of Nb Defines the molar ratio of Sb.
  • d exceeds 0.1, the Curie point Tc decreases. However, the piezoelectricity is not exhibited.
  • the composition component is prepared so that d is 0 ⁇ d ⁇ 0.1.
  • m defines the molar ratio of the A site and B site of (K Na Li) (Nb Ta Sb) O
  • the composition components are prepared so that m is 0.9 ⁇ m ⁇ 1.1. Further, from the viewpoint of obtaining a higher piezoelectric d constant, m is preferably set to 0.9 ⁇ m ⁇ 0.99.
  • n is the force that defines the molar ratio of Ml M20 A site and B site n force less than 0.9 n 3
  • composition components are prepared so that n is 0.9 ⁇ n ⁇ 1.1.
  • the piezoelectric ceramic composition represented by the general formula (A) is prepared so as to satisfy the formulas (2) to (10). It is possible to obtain a piezoelectric porcelain composition having excellent piezoelectric characteristics with a piezoelectric d constant that is high both in the electric field. wear.
  • the temperature range ⁇ of the firing temperature at which stable firing treatment can be performed is set.
  • a piezoelectric ceramic composition having a desired piezoelectric d constant and good piezoelectric characteristics can be stably obtained with high efficiency, and productivity can be improved.
  • the present invention is not limited to the piezoelectric ceramic composition of the above embodiment.
  • (M3 Bi) M40 (however, 0.9 ⁇ p ⁇ l.1, M3 is Of K and Na
  • M4 represents at least one metal element selected from Ti, Zr and Sn. It is also preferable to include the compound represented by) in the main component (second embodiment).
  • the piezoelectric ceramic composition can be represented by the following general formula (C).
  • a piezoelectric having excellent piezoelectric characteristics having a high piezoelectric d constant of 115 pCZN or more at a minute electric field and 200 pCZN or more at a high electric field.
  • a body porcelain composition can be stably obtained with high efficiency.
  • the firing temperature range ⁇ can be widened, and thus a piezoelectric ceramic composition having a desired piezoelectric d constant and good piezoelectric characteristics can be stably obtained with high efficiency. Improvements can be made.
  • the piezoelectric ceramic composition is constituted by the general formula (C), it is necessary to satisfy the formula (11).
  • at least one of Mn, Ni, Fe, Zn, Cu and Mg is added in an amount of 0.1 to 10 moles with respect to 100 moles of the main component composed of a solid solution. This also makes it possible to further widen the temperature range ⁇ ⁇ of the firing temperature and further improve productivity (third embodiment).
  • the piezoelectric ceramic composition can be represented by the following general formula (D) or (E).
  • Z represents at least one metal element of Mn, Ni, Fe, Zn, Cu, and Mg.
  • the temperature range ⁇ T of the firing temperature can be increased because these elements are dissolved in the crystal grains. This is considered to contribute to charge compensation and facilitate the generation of the matching layer, which improves the sinterability.
  • the addition molar amount relative to 100 moles of the main component is 0.1 to 10 moles in order to obtain a further expansion effect of the temperature range ⁇ of the firing temperature. This is because 0.1 mol is necessary, whereas if the added molar amount exceeds 10 mol, there is a risk of poor sintering.
  • the content should be adjusted to 0.1 to 10 mol with respect to 100 mol of the main component. is required.
  • FIG. 2 is a cross-sectional view showing an embodiment of a multilayer piezoelectric actuator as a piezoelectric ceramic electronic component according to the present invention.
  • the multilayer piezoelectric actuator includes a piezoelectric ceramic body 1 and the piezoelectric ceramic.
  • the outer electrode 2 (2a, 2b) which is a conductive material such as Ag, formed on both ends of the element body 1, and the Ag or the like embedded in the piezoelectric ceramic element body 1 It is comprised from the internal electrode 3 (3a-3g) formed with electroconductive materials, such as Ag-Pd.
  • one end of the internal electrodes 3a, 3c, 3e, 3g is electrically connected to one external electrode 2a, and one end of the internal electrodes 3b, 3d, 3f is electrically connected to the other external electrode 2b. Connected.
  • the laminated piezoelectric actuator when a voltage is applied between the external electrode 2a and the external electrode 2b, the laminated piezoelectric actuator is displaced in the laminating direction indicated by the arrow X due to the piezoelectric longitudinal effect.
  • a predetermined amount of at least one of MgCO and MgCO is provided.
  • the average particle diameter D is 0.60 m or less and the specific surface area.
  • the ceramic raw material powder is obtained by thoroughly mixing and grinding in an organic solvent until the SSA becomes 7.0 to 20 m 2 / g (preferably 10 to 20 m 2 / g) and then drying.
  • the average particle diameter D is 0.660 111 or less, and the specific surface area 33 is 7.0 to 20m 2 / g (preferably
  • the polarization failure rate of the laminated piezoelectric actuator can be remarkably reduced, and the piezoelectric d constant can be further improved.
  • the dispersibility of the ceramic raw material powder is improved, and the sintering temperature of the piezoelectric ceramic composition is lowered, so that it is likely to evaporate during sintering.
  • Alkali metal dissolves in the crystal grains at a temperature lower than the evaporation temperature, whereby the polarization failure rate can be remarkably reduced, and the piezoelectric d constant can be further improved.
  • the specific surface area SSA exceeds 20 m 2 / g, the degree of pulverization becomes too high, making it difficult to form a laminated piezoelectric actuator sheet. Therefore, the specific surface area SSA needs to be 20 m 2 Zg or less.
  • the pulverizer is not particularly limited as long as the ceramic raw material powder having the above average particle diameter and specific surface area can be obtained. I prefer to use a mill.
  • the alkali metal is water-soluble, the raw material once dissolved in water is not pulverized and re-deposited as a huge segregated product after drying. To do. For this reason, as described above, mixing and pulverization are performed in an organic solvent. However, in a ball mill, since the pulverization process takes a long time, moisture in the air is mixed into the organic solvent during the pulverization process, and an alkali metal prayer occurs. There is a fear.
  • the medium agitating mill having the agitating blade has a strong crushing force, so that the average particle diameter D is 0.60 ⁇ m or less and the specific surface area SSA is 7. 0
  • a ceramic raw material powder of 50 to 20 m 2 / g (preferably 10 to 20 m 2 Zg) can be obtained, and moisture in the air can be eliminated as much as possible.
  • the ceramic raw material powder is calcined at a predetermined temperature (for example, 600 to 1000 ° C) to prepare a calcined product, and then wet pulverized again in a pulverizer. A raw material powder before firing is prepared.
  • a predetermined temperature for example, 600 to 1000 ° C
  • an organic binder is added to the pre-fired raw material powder prepared in this way, and a wet mixing process is performed to form a slurry. Thereafter, a ceramic blade is produced using a doctor blade method or the like. To do.
  • an internal electrode conductive paste containing Ag or Ag-Pd as a main component is used, and screen printing is performed on the ceramic green sheet to form an electrode pattern.
  • the laminate is cut into a predetermined size and accommodated in an alumina sheath, and after a binder removal treatment at a predetermined temperature (for example, 250 to 500 ° C.), the predetermined temperature (for example, 1050 to A firing process is performed at 1200 ° C. to form a piezoelectric ceramic body in which internal electrodes are embedded.
  • a predetermined temperature for example, 250 to 500 ° C.
  • the predetermined temperature for example, 1050 to A firing process is performed at 1200 ° C. to form a piezoelectric ceramic body in which internal electrodes are embedded.
  • a conductive base for an external electrode having an equal force of Ag is applied to both ends of the piezoelectric ceramic body, and a baking process is performed at a predetermined temperature (for example, 750 ° C to 850 ° C).
  • a predetermined temperature for example, 750 ° C to 850 ° C.
  • External power The poles 2a and 2b are formed and further subjected to a predetermined polarization process, whereby a laminated piezoelectric actuator is manufactured.
  • the external electrodes 2a and 2b may be formed by a thin film forming method such as a sputtering method or a vacuum deposition method as long as the adhesion is good.
  • the piezoelectric ceramic composition of the present invention is used to manufacture the piezoelectric ceramic composition of the present invention, for example, even when a high electric field of lkVZmm is applied, the piezoelectric d constant is A piezoelectric actuator having a large displacement can be obtained.
  • the present invention is not limited to the above embodiment.
  • the multilayer piezoelectric actuator has been described as the piezoelectric ceramic electronic component.
  • the piezoelectric ceramic electronic component can also be applied to a single-plate type piezoelectric actuator, or a bimorph type piezoelectric actuator.
  • the above-mentioned piezoelectric ceramic composition can also be used for electronic parts.
  • these ceramic raw materials are weighed so as to obtain a composition as shown in Table 1, and the weighed product is put into a ball mill and wet-mixed in ethanol for about 18 hours. The mixture was dried and calcined at a temperature of 700 ° C to 1000 ° C to obtain a calcined product.
  • the powder whose particle size was adjusted was pressed at a pressure of 9.8 X 10 7 to 1.96 X 10 8 Pa and subjected to a molding process, and the disk shape was 10 mm in diameter and 1.2 mm in thickness.
  • a molded body was prepared, and Sarako, this molded body was kept in the atmosphere at a temperature of 1050 ° C. to 1200 ° C. for 2 hours and fired to obtain a ceramic body.
  • the firing treatment was performed for each sample at a firing temperature of 1050 to 1200 ° C every 5 ° C, and piezoelectric d at each firing temperature.
  • the firing temperature at which the 33 constant is the maximum is the optimum firing temperature, and a piezoelectric d constant of 80% or more of the maximum piezoelectric d constant can be obtained.
  • the firing temperature range was defined as a temperature range ⁇ of a firing temperature at which firing treatment can be performed stably.
  • Table 1 shows the composition components of sample numbers 1 to 28.
  • piezoelectric d constant at a minute electric field (hereinafter simply referred to as “piezoelectric d constant”), and at high electric field.
  • the relative dielectric constant ⁇ r was obtained from the capacitance measured by the impedance analyzer and the sample dimensions, and the electromechanical coupling coefficient kp was obtained by the resonance-anti-resonance method using the impedance analyzer.
  • the piezoelectric d constant is the vibration corresponding to an electric field of about lVZmm using a d meter.
  • the piezoelectric d constant at high electric field is the thickness when an electric field of lkVZmm is applied in the thickness direction.
  • the displacement amount in the direction was measured with a displacement meter, and then the displacement rate was divided by the thickness to calculate the strain rate, and the strain rate was divided by the electric field.
  • the Curie point Tc was obtained by measuring the temperature characteristic of the relative dielectric constant ⁇ r and calculating the maximum temperature of the relative dielectric constant ⁇ r.
  • Table 2 shows the measurement results of sample numbers 1 to 28 and the temperature range ⁇ ⁇ of the firing temperature. [0136] [Table 2]
  • Sample Nos. 1 to 17 are represented by a composition formula: ⁇ 0.94 (K Na) NbO—0.06BaTiO ⁇ .
  • Sample Nos. 1 to 15 are added with specific elements of the present invention (In, Sc, Yb, Y, Nd, Eu, Gd, Dy, Sm, Ho, Er, Tb and Lu).
  • specific elements of the present invention In, Sc, Yb, Y, Nd, Eu, Gd, Dy, Sm, Ho, Er, Tb and Lu.
  • both the relative permittivity ⁇ r and the electromechanical coupling coefficient kp are high.
  • the piezoelectric d constant is 115 pCZN or higher, and the high electric field
  • the piezoelectric d constant is over 200pCZN, and good piezoelectric characteristics are obtained.
  • the molar content ⁇ of each metal element is 2 mol per 100 mol of the main component, and 1.5 to 1 Since it is in the range of 0 mol, it was found that the temperature range ⁇ of the firing temperature at which stable firing can be performed can be as wide as 20 to 35 ° C.
  • the defect rate was over 95%. This is because Bi and La are dissolved in the B site of BaTiO
  • Sample No. 18 does not contain an additive element with respect to the main component, the firing temperature varies, and the defect rate is poorly reproducible even when firing at the same firing temperature is 95%. That's it.
  • Sample Nos. 19 to 23 are represented by the composition formula: ⁇ 0. 94 (K Na) NbO—0.06BaTiO ⁇ .
  • Sample No. 23 did not exhibit piezoelectricity due to poor polarization. This is thought to be because the amount of In added was an excess of 15 moles per 100 moles of the main component, so that In, which could not be dissolved in the main component, precipitated at the grain boundaries, forming a conductive layer.
  • Sample Nos. 19 to 22 add In in the range of 0.1 to 10 moles with respect to 100 moles of the main component, so that the piezoelectric d constant is 115 pCZN or higher and the piezoelectric d in a high electric field. Constant is 200
  • the piezoelectric properties are slightly lower and the firing temperature range ⁇ is also narrower than 10 ° C. If 1S In is added in an amount of 1.5 mol or more, the desired matching layer is formed, and as a result, it is stable. This is probably because a desired piezoelectric ceramic composition is obtained.
  • Sample Nos. 24-27 are obtained by making each component type of M1M20 different within the scope of the present invention.
  • piezoelectric d constant is 115pCZN or higher
  • piezoelectric d constant at high electric field is 200pCZN or higher
  • Sample No. 28 does not contain M1M20 in the composition.
  • the number is less than lOOpCZN and the piezoelectric d constant under high electric field is less than 200pCZN.
  • Samples Nos. 31 to 53 were prepared using the same method and procedure as in [Example 1]. Further, the temperature range ⁇ of the firing temperature was determined in the same manner as in [Example 1].
  • the dielectric constant ⁇ r, the electromechanical coupling coefficient kp, the piezoelectric d constant, the piezoelectric d constant at high electric field, and the Curie point Tc were measured using the method ′ procedure of [Example 1].
  • Table 3 shows the component compositions of sample numbers 31 to 53, and Table 4 shows the measurement results and the temperature range ⁇ T of the firing temperature.
  • the piezoelectric characteristics have a piezoelectric d constant of 115 pC / N or higher and a high electric field piezoelectric d constant of 200 pCZN or higher.
  • Sample No. 36 has an a force of .95 and exceeds 0.9, so that the compounding molar ratio of Na exceeds the solid solution limit with respect to K and does not exhibit piezoelectricity. I helped.
  • sample numbers 34 and 35 have a piezoelectric force constant of 115pCZN or higher and high electric field piezoelectric d constant of 200pCZN or higher because of a force ⁇ 0.9.
  • Sample No. 38 had a b force of .4 and exceeded 0.3. Therefore, the compounding molar ratio of Li was excessive, and a ferroelectric phase could not be formed. Not shown.
  • sample number 37 has a piezoelectric d constant of 115pCZN or higher because b is 0.3.
  • Sample No. 42 had a d-force of .2 and exceeded 0.1. Therefore, Sb was excessive, and the one-point Tc was lowered. Therefore, the sample exhibited a force that did not exhibit piezoelectricity.
  • sample number 41 has a piezoelectric d constant of 115pCZN or more because d is 0.1.
  • Sample No. 49 was sintered poorly because m was 1.20 and exceeded 1.1.
  • sample numbers 44 to 48 have a piezoelectric d constant of 115 pC / N or higher and a high electric field piezoelectric d constant of 200 pCZN or higher because m is in the range of 0.9 to 1.1.
  • a good piezoelectric ceramic electronic component could be obtained.
  • Constant is 130pCZN or higher, Piezoelectric d constant at high electric field is 250pCZN or higher.
  • Sample No. 50 has n force of 0.8 and less than 0.9, so the piezoelectric d constant is 56pCZN,
  • Sample No. 53 has n of 1.2 and exceeds 1.1, so the piezoelectric d constant is 42p
  • sample numbers 51 and 52 are in the range of n force ⁇ ). 9 to 1.1, so that they have a piezoelectric d constant of 115pCZN or higher and a high electric field piezoelectric d constant of 200pCZN or higher.
  • x, a, b, c, d, m, and n indicating the respective molar ratios of the main components are each set to 0.
  • the samples Nos. 61 to 74 were prepared using the same method 'procedure as in [Example 1].
  • the temperature range ⁇ ⁇ of the firing temperature was also determined in the same manner as in [Example 1].
  • Table 5 shows the component compositions of sample numbers 61 to 74, and Table 6 shows the measurement results and the temperature range ⁇ T of the firing temperature.
  • y is 0.6 and exceeds 0.5, so it may exceed the solid solution limit, and components such as Bi that can no longer be completely dissolved are present in grain boundaries. And no longer exhibits piezoelectricity.
  • the sample number 62-68 ⁇ X force is adjusted in the range of 0.005 ⁇ x ⁇ 0.1 and y ⁇ 0.5, so the piezoelectric d constant of 115pCZN or more and 200pCZN or more At high electric field
  • Sample No. 70 has a p-force of .8 and less than 0.9, so the piezoelectric d constant is 75pC.
  • high electric field piezoelectric d constant is as low as 103pCZN, and the piezoelectric characteristics deteriorate.
  • high electric field piezoelectric d constant is as low as 93pCZN, and the piezoelectric characteristics deteriorate.
  • Sample No. 74 contains both M1M20 and (M3 Bi) M40 in the main component.
  • sample number 28 either the piezoelectric d constant or the high electric field piezoelectric d constant
  • sample numbers 71 and 72 have a p force of .9 to 1.1, the piezoelectric d constant of 115 pCZN or higher and the piezoelectric d constant at a high electric field of 200 pCZN or higher have good piezoelectric characteristics.
  • (M3 Bi) M40 was contained in the main component in the piezoelectric ceramic composition.
  • Predetermined amounts of Mn, Ni, Fe, Zn, Cu, and Mg were added to the composition of sample number 1, and the piezoelectric characteristics and the temperature range ⁇ T of the firing temperature were evaluated.
  • MnCO, NiO, FeO, ZnO, CuO and MgCO are prepared, and these ceramics
  • Table 7 shows the component compositions of Sample Nos. 81 to 90, various measurement results, and the temperature range ⁇ of the firing temperature together with the measurement results of Sample No. 1 and the temperature range ⁇ of the firing temperature.
  • Sample No. 90 has a molar amount of Mn added of 15 moles compared to 100 moles of the main component 1
  • Mn, Ni, Fe, Zn, Cu, or Mg is added in a range of 1 to: LO mol with respect to 100 mol of the main component, thereby further widening the temperature range ⁇ of the firing temperature. It was confirmed that it was possible.
  • K CO, Na CO, Nb O, BaCO, TiO, and In O are used as ceramic raw materials
  • a ball mill was used as a pulverizer, and PSZ (partially stable zircouir) with a diameter of 2 mm was included in the ball mill to increase the rotational speed to 2.5 s _1 (150 rpm) and mixed and pulverized in ethanol for 960 minutes (16 hours).
  • PSZ partially stable zircouir
  • a medium stirring mill was used as a pulverizer, a PSZ having a diameter of 0.3 mm was included in the medium stirring mill, and the rotational speed of the outermost periphery of the stirring blade was 10 m / s and mixed and pulverized in ethanol for 4 to 30 minutes to produce ceramic raw material powder.
  • the average particle size D was measured with a laser light scattering particle size analyzer.
  • the specific surface area SSA was determined by the nitrogen gas adsorption method. In other words, N gas is adsorbed on the sample surface, and the adsorption area is calculated from the weight of the adsorbed gas.
  • the specific surface area SSA was calculated by taking the adsorption area as the surface area and dividing the surface area by the mass of the sample.
  • Table 8 shows the composition, production conditions, average particle diameter D, specific surface area SSA, and minute of sample numbers 101 to 114.
  • Sample Nos. 104 to 107 were mixed and pulverized using a medium agitation mill with high crushing power, so the average particle size D was 0.47 even if the treatment time was as short as 5 to 20 minutes. -0.60 ⁇ m, ratio
  • the average value of each piezoelectric constant d of Nos. 104 to 107 is 120 to 185pCZN.
  • sample number 102 is compared with sample numbers 110 to 113, x is 0.06 and the same piezoelectric ceramic composition is used, but sample number 102 is a ball mill. Since the pulverization force is weak, the average particle size D is 0.69 ⁇ m and the specific surface area SSA is 3. 6m 2 / g and desired particle size
  • the ceramic raw material powder could not be obtained. For this reason, the polarization failure rate was 28/30, and polarization failure occurred in almost all specimens.
  • Sample Nos. 110 to 113 were mixed and pulverized using a medium agitation mill with high crushing power, so that the average particle diameter D was 0.47 even if the treatment time was as short as 5 to 20 minutes. -0.60 ⁇ m, ratio
  • each piezoelectric constant d of No. 110 to 113 is 250 to 320pCZN, and the piezoelectric constant d
  • the piezoelectric constant d was also 300 pCZN or more, which was a significant improvement.
  • the average values were 115 pCZN and 245 pCZN, respectively, and it was found that the average values were lower than those of sample numbers 4 to 7 or sample numbers 10 to 13.
  • Sample Nos. 108 and 114 have a specific surface area SSA exceeding 29. lm 2 / g, 28. Om 2 / g and 20 m 2 / g, respectively. I could't do it. Therefore, it was found that the specific surface area S SA needs to be 20.0 m 2 / g or less in order to obtain a high piezoelectric d constant without causing a polarization failure rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明の圧電体磁器組成物は、主成分が、一般式{(1-x)(K1-a-bNaaLib)m(Nb1-c-dTacSbd)O3―xM1nM2O3}(M1はCa、Sr又はBa、M2はTi、Zr又はSn)で表されると共に、0.005≦x≦0.1、0≦a≦0.9、0≦b≦0.3、0≦a+b≦0.9、0≦c≦0.5、0≦d≦0.1、0.9≦m≦1.1、及び0.9≦n≦1.1の範囲にあり、かつ、In、Sc、Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、及びLuの中から選択された少なくとも1種の特定元素が、前記主成分100モルに対し総計で0.1~10モル(好ましくは、1.5~10モル)含有されている。好ましくは、更にMn、ni、Fe、Zn、Cu、又はMgを添加する。これにより微小電界時及び高電界時の双方で高い圧電d定数を高効率で安定的に得ることができるようにする。

Description

圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電 セラミック電子部品
技術分野
[0001] 本発明は圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電 セラミック電子部品に関し、より詳しくは Pb (鉛)を含有しな!、非鉛系の圧電体磁器組 成物、及び該圧電体磁器組成物の製造方法、並びに該圧電体磁器組成物を使用し て製造された圧電ァクチユエータゃ圧電ブザー等の圧電セラミック電子部品に関す る。
背景技術
[0002] 近年、環境面の配慮等力も Pbを含有しな 、非鉛系の圧電体磁器組成物が注目さ れているが、非鉛系圧電体磁器組成物は、 PZT (PbTiO — PbZrO )等の Pb系圧
3 3
電体磁器組成物に比べ、一般に圧電 d定数の低 、ことが知られて 、る。
[0003] このような状況下、非鉛系圧電体磁器組成物の中で (K, Na) NbO系圧電体磁器
3
組成物は、比較的大きな圧電 d定数 (圧電歪定数)が得られることから、 (K, Na) Nb O系圧電体磁器組成物の研究 ·開発が盛んに行われて!/、る。
3
[0004] 例えば、特許文献 1には、一般式:(1 n) (K Na Li ) (Nb Ta ) 0 -ηΜΙΜ
Ι-χ-y x y m 1 z z 3
20 (ただし、 Mlは 2価の金属元素、 M2は 4価の金属元素)を主成分とする圧電磁
3
器組成物が開示され、特許文献 2には、一般式:(l—n) (K Na Li ) (Nb Ta )
Ι-χ-y x y m 1 z z
O -ηΜ1Μ2Μ30 (ただし、 Mlは 3価の金属元素、 M2は 1価の金属元素、 M3は
3 3
4価の金属元素)を主成分とする圧電磁器組成物が開示されている。ここで、 x、 y、 z 、 m、 ηίま、特許文献 1及び特許文献 2の!ヽずれ【こお!ヽても、 0. l≤x、 y≤0. 3、 x+ y< 0. 75, 0≤z≤0. 3、0. 98≤m≤l . 0、及び 0< n< 0. 1の範囲となるように酉己 合されている。
[0005] 特許文献 1及び特許文献 2では、 (K, Na, Li) (Nb, Ta) 0に、第 3成分として所
3
定モル量のぺロブスカイト型複合酸化物 M1M20又は M1M2M30 (例えば、 Ba
3 3
TiO、 CaTiO、(Na Bi ) TiO等)を固溶させることにより、比誘電率 ε r (= ε V ε ; ε Τは絶対誘電率、 ε は真空誘電率を示す。)が 1000以上、電気機械結合係
0 0
数 kpが 25%以上を有し、かつキュリー点 Tcが 200°Cを超える圧電磁器組成物を得 ている。
[0006] また、特許文献 3には、 {Li (K Na ) } (Nb Ta Sb ) O (ただし、 0≤x≤0. 2
1 1 1 3
、 0≤y≤l, 0< z≤0. 4、 0<w≤0. 2)で表される主成分 1モルに対し、 Ag、 Al、 A u、 Bゝ Baゝ Biゝ Caゝ Ceゝ Co、 Csゝ Cuゝ Dyゝ Erゝ Euゝ Feゝ Gaゝ Gdゝ Geゝ Hfゝ Ho, In 、 Ir、 La、 Lu、 Mg、 Mn、 Nd、 Ni、 Pd、 Pr、 Pt、 Rb、 Re、 Ru、 Sc、 Si、 Sm、 Sn、 Sr 、 Tb、 Ti、 Tm、 V、 Y、 Yb、 Zn、 Zrの金属元素の中力 選択された少なくとも 1種以 上の金属元素を 0. 005-0. 15モル含有し、かつ開気孔率を 0. 4vol%以下とした 圧電磁器組成物が開示されて ヽる。
[0007] 特許文献 3は、上記 Ag〜Zrの金属元素添加物によって開気孔率 (圧電磁器組成 物の表面に生じたくぼみ量を vol%で示したもの)を 0. 4vol%以下に抑制することで、 機械的強度を向上できるとされている。更に、上記一般式 {Li (K Na ) } (Nb
1 l 1
Ta Sb ) 0で表される組成を主成分としているため、上記一般式で表される化合物
3
が有する優れた圧電 d定数、電気機械結合係数 kpを利用して、これらの特性に優れ たものになるとされている。
[0008] 特許文献 4には、 { (K Na ) Ag }NbO— ζ〔Μα+〕〔〇2〕 (ただし、 0≤χ< 1、
l 1 3
0≤y≤0. 1、 0≤z≤0. 05、 0<y+z、 Mは Mn、 Mg、 In, Siゝ Ga、 Sb)のうちの少 なくとも一種以上の金属元素、 (Xは金属元素 Mの平均価数)で表される圧電磁器組 成物が開示されている。
[0009] この特許文献 4では、(K, Na) NbO 〖こ Ag、及び Mn、 Mg、 In、 Si、 Ga、 Sbのうち
3
の少なくとも一種以上の金属元素を所定量添加することにより、誘電損失 tan δが低 下し、信頼性が向上する他、圧電 d定数の向上が可能とされている。
[0010] 特許文献 1 :特開平 11 228227号公報
特許文献 2:特開平 11― 228228号公報
特許文献 3:特開 2004— 244300号公報
特許文献 4:特開 2002— 68835号公報
発明の開示 発明が解決しょうとする課題
[0011] しかしながら、特許文献 1及び 2では、(K, Na, Li) (Nb, Ta) 0に、第 3成分として
3
M1M20又は M1M2M30を添加することにより、 1000以上の高い比誘電率 ε r
3 3
を得ているものの、前記第 3成分の含有量を増加させてゆくと、電気機械結合係数 kp が低下するため、若干の圧電 d定数の上昇は認められるものの未だ不十分である。
[0012] すなわち、圧電 d定数と誘電率 ε Τ及び電気結合係数 kpとの間には、数式(1)に示 す関係がある。
[0013] [数 1]
Figure imgf000005_0001
ここで、 Yはヤング率である。
[0014] したがって、高 、圧電 d定数を得るためには、比誘電率 ε r及び電気機械結合係数 kpの双方を増大させるのが望ましいが、特許文献 1及び 2のように、単に , Na, Li ) (Nb, Ta) 0に、第 3成分として M1M20又は M3M4M20を添加したのみでは
3 3 3
、第 3成分の含有量を増加させてゆくと電気機械結合係数 kpが低下してしまうため、 比誘電率 ε rを大きくすることができても、十分に高い所望の圧電 d定数を得ることが できな!/ヽと 、う問題点があった。
[0015] また、特許文献 3は、 {Li (K Na ) } (Nb Ta Sb ) Oに In等の金属元素を添 x 1-y y l-χ 1-z-w z w 3
加することによって開気孔率を 0. 4vol%以下に抑制することができる力 本発明者ら が実験したところ、圧電 d定数には格段の向上が見られず、所望の高い圧電 d定数を 有する圧電磁器組成物を得ることができないことが判明した。
[0016] また、特許文献 4は、 (K, Na) NbOに Ag、及び In等を添加させることによって d
3 31 が向上するとあるが、その向上率は小さぐ十分に高い圧電 d定数を有する圧電磁器 組成物を得ることができな 、ことが判明した。
[0017] また、近年、セラミックの薄層化技術の進展に伴い、高電界駆動の積層型圧電セラ ミック電子部品が開発され実用化されてきている。 [0018] そして、高電界で駆動する圧電セラミック電子部品用の圧電材料としては、実使用 電界である高電界時で、圧電 d定数の高 、ことが望まれて 、る。
[0019] し力しながら、実使用電界である高電界での圧電 d定数と通常測定されている微小 電界での圧電 d定数は一般に異なり、微小電界の圧電 d定数が高いからといって、必 ずしも高電界の圧電 d定数が高 、とは限らな!/、。
[0020] すなわち、圧電材料は、ドメインと呼称される自発分極の方向が異なる多くの領域 に分かれている。そして、微小電界時には、自発分極の方向が電界の印加方向と平 行方向を向いた 180° ドメインのみが応答する。一方、高電界時には、 180° ドメイ ンの応答に加え、自発分極の方向が電界の印加方向と垂直方向を向いた 90° ドメ インが電界の印加方向へと回転することによって大きな歪みが生じるので、上記微小 電界時よりも大きな圧電 d定数を得ることが可能となる。ところが、ある一定の電界を 超えて高電界になると、殆どの 90° ドメインが 180° ドメインに回転しきってしまうた め、大きな変位量を得ることができなくなる。また、ドメイン構造は材料組成によっても 異なるため、微小電界時の圧電 d定数が高い材料であっても、ドメイン構造の影響に よっては高電界時の圧電 d定数はそれほど高くならない場合がある。
[0021] そして、本発明者らの研究結果により、特許文献 1〜4に記載されているような従来 の非鉛系圧電体磁器組成物では、微小電界での圧電 d定数については、若干の向 上を望むことはできるものの、十分に高い圧電 d定数を得ることはできず、さらに高電 界での圧電 d定数にっ 、ては、所望の圧電 d定数と著 、乖離が生じて 、ると 、うこと が分った。
[0022] 本発明はこのような事情に鑑みなされたものであって、微小電界及び高電界の双 方で所望の高 ヽ圧電 d定数を実現できる非鉛系の圧電体磁器組成物、及び該圧電 体磁器組成物の製造方法、並びに該圧電体磁器組成物を使用して製造された圧電 セラミック電子部品を提供することを目的とする。
課題を解決するための手段
[0023] 本発明者らは上記目的を達成するために鋭意研究したところ、所定のモル比率と なるように配合されたぺロブスカイト型構造を有する (K, Na, Li) (Nb, Ta, Sb) 0
3 系化合物に、第 3成分として別のぺロブスカイト型構造を有する Ml M20 (Mlは C n 3 a、 Sr、又は Ba、 M2は Ti、 Zr、又は Sn)を固溶させて主成分を構成し、かつ、主成 分 100モルに対し、 In, Sc、 Y、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Yb、及び Lu の中から選択された少なくとも 1種の特定元素を総計で 0. 1〜10モル含有させた形 態とすることにより、比誘電率 ε r及び電気機械結合係数 kpのいずれをも増大させる ことができ、かつ高いキュリー点 Tcを得ることができ、さらに微小電界時及び高電界 時の双方で所望の高い圧電 d定数を有する圧電体磁器組成物を得ることができると いう知見を得た。
[0024] 本発明はこのような知見に基づきなされたものであって、本発明に係る圧電体磁器 組成物は、主成分が、一般式 { (1 -x) (K Na Li ) (Nb Ta Sb ) 0— xMl
1 a— b a b m 1 c d c d 3 n
M20 } (ただし、 Mlは Ca、 Sr及び Baの中力 選択された少なくとも 1種以上の金属
3
元素、 M2は Ti、 Zr及び Snの中力 選択された少なくとも 1種以上の金属元素を示 す。)で表されると共に、前記 x、 a、 b、 c、 d、 m、及び n力 それぞれ 0. 005≤x≤0. 1, 0≤a≤0. 9, 0≤b≤0. 3, 0≤a+b≤0. 9, 0≤c≤0. 5, 0≤d≤0. 1、 0. 9≤ m≤l . 1、及び 0. 9≤n≤l . 1の範囲にあり、力つ、 In, Sc、 Y、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Yb、及び Luの中力 選択された少なくとも 1種の特定元素力 前 記主成分 100モルに対し総計で 0. 1〜10モル含有されていることを特徴としている
[0025] また、本発明者らの更なる鋭意研究の結果、ベロブスカイト型構造を有する(M3
0.5
Bi ) M40 (M3は K又は Na、M4は Ti、Zr又は Sn)を前記主成分に固溶させた場
0.5 p 3
合も、上述と同様、微小電界時及び高電界時の双方で圧電 d定数を向上させること ができることが分力つた。
[0026] すなわち、本発明の圧電磁器組成物は、(M3 Bi ) M40 (ただし、 0. 9≤p≤l
0.5 0.5 p 3
. 1、 M3は K及び Naの内の少なくとも 1種以上の金属元素、 M4は Ti、 Zr及び Snの 中から選択された少なくとも 1種以上の金属元素を示す。)で表される化合物が、 0. 5 以下の配合モル比で前記主成分中に含有されて 、てもよ 、。
[0027] また、(K Na Li )と(Nb Ta Sb )との配合モル比 mを 0. 9≤m≤0. 99の範 a— b a b 1 c— d c d
囲となるように調製することにより、高電界時の圧電 d定数を更に効果的に向上させる ことができることが分力つた。 [0028] すなわち、本発明の圧電体磁器組成物は、前記 mは 0. 9≤m≤0. 99であることが 好ましい。
[0029] また、従来より、 (K, Na) NbOを主成分として含有する圧電体磁器組成物は、良
3
好な焼結体が得られる焼成温度の温度幅が非常に小さぐ実用上、量産化する上で の重大な問題になっており、良好な焼結体の得られる焼成温度の温度幅の拡大が 求められていた。
[0030] そこで、本発明者らは鋭意研究を重ね、前記特定元素の含有量を、主成分 100モ ルに対し総計で 1. 5〜: LOモルの範囲となるように調製した場合に、安定して焼成処 理を行うことのできる焼成温度の温度幅 ΔΤを広げることができることを見出した。こ れにより焼結処理時に焼成温度の変動の影響を受けにくくなり、不良品の発生が抑 制されて生産性の向上を図ることが可能となる。
[0031] すなわち、本発明の圧電体磁器組成物は、前記特定元素は、前記主成分 100モ ルに対し、総計で 1. 5〜 10モル含有されていることが好ましい。
[0032] さらに、主成分 100モルに対し、 Mn、 Ni、 Fe、 Zn、 Cu及び Mgの中から選択され た少なくとも 1種以上の金属元素を総計で 0. 1〜: LOモル含有させることにより、焼成 温度の温度幅 ΔΤをより一層広げることができることが分力つた。
[0033] すなわち、本発明の圧電体磁器組成物は、前記主成分 100モルに対し、 Mn、 Ni、 Fe、 Zn、 Cu及び Mgの中力 選択された少なくとも 1種以上の金属元素が総計で 0. 1〜 10モル含有されて!、ることが好まし!/、。
[0034] また、本発明者らは更なる鋭意研究を行ったところ、平均粒径 D が 0. 60 μ m以下
50
、かつ比表面積が 7. 0m2Zg以上 20. 0m2Zg以下の超微粒のセラミック原料粉末 を使用して上記圧電体磁器組成物を製造することにより、圧電セラミック部品の分極 不良率を低減させることができ、より一層高い圧電 d定数を有する圧電セラミック部品 を得ることができることが分力つた。
[0035] すなわち、本発明に係る圧電体磁器組成物の製造方法は、平均粒径 D が 0. 60
50 μ m以下、かつ比表面積が 7. 0m2Zg以上 20. 0m2Zg以下のセラミック原料粉末 を作製し、該セラミック原料粉末に焼成処理を施して上記圧電体磁器組成物を製造 することを特徴としている。 [0036] また、本発明に係る圧電体磁器組成物の製造方法は、前記比表面積が 10. Om2
Zg以上であるのが好まし 、。
[0037] また、本発明に係る圧電セラミック電子部品は、圧電セラミック素体の表面に外部電 極が形成された圧電セラミック電子部品において、前記圧電セラミック素体力 上記 圧電体磁器組成物で形成されて 、ることを特徴として 、る。
[0038] さらに、本発明の圧電セラミック電子部品は、前記圧電セラミック素体に内部電極が 埋設されていてもよい。
発明の効果
[0039] 本発明の圧電体磁器組成物によれば、主成分が、一般式 { (1—X) (K Na Li )
1 a— b a b m
(Nb Ta Sb ) 0 一 xMl M20 } (ただし、 Mlは Ca、 Sr及び Baの中から選択さ l-c-d c d 3 n 3
れた少なくとも 1種以上の金属元素、 M2は Ti、 Zr及び Snの中力 選択された少なく とも 1種以上の金属元素を示す。)で表されると共に、前記 x、 a、 b、 c、 d、 m、及び n それぞれ 0. 005≤x≤0. 1、 0≤a≤0. 9、 0≤b≤0. 3、 0≤a+b≤0. 9、 0≤c ≤0. 5, 0≤d≤0. 1、0. 9≤m≤l. 1、及び 0. 9≤n≤l. 1の範囲にあり、力つ、 In 、 Sc、 Y、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Yb、及び Luの中力も選択された少 なくとも 1種の特定元素力 前記主成分 100モルに対し総計で 0. 1〜: LOモル含有さ れているので、微小電界時及び高電界時の双方において圧電 d定数を向上させるこ とができる。具体的には、微小電界時の圧電 d 定数が 115pCZN以上、高電界時
33
の圧電 d定数が 200pCZN以上の圧電特性の良好な圧電体磁器組成物を得ること ができる。
[0040] また、(M3 Bi ) M40 (ただし、 0. 9≤p≤l. 1、 M3は K及び Naの内の少なく
0.5 0.5 p 3
とも 1種以上の金属元素、 M4は Ti、 Zr及び Snの中力 選択された少なくとも 1種以 上の金属元素を示す。)で表される化合物を、 0. 5以下の配合モル比で前記主成分 中に含有した場合も、上述と同等、圧電特性の良好な圧電体磁器組成物を安定的 に得ることができ、したがって、用途に応じた種々の圧電体磁器組成物を提供するこ とがでさる。
[0041] また、本発明の圧電体磁器組成物は、前記 mを 0. 9≤m≤0. 99とすることにより、 圧電特性をより一層向上させることができ、具体的には、微小電界時の圧電 d 定数 力 Sl30pCZN以上、高電界時の圧電 d定数が 250pCZN以上の圧電体磁器組成 物を得ることができる。
[0042] さらに、本発明の圧電体磁器組成物は、前記特定元素を、前記主成分 100モルに 対し、総計で 1. 5〜 10モルとしているので、安定して焼成処理を行うことのできる焼 成温度の温度幅 ΔΤを拡大することができ、焼成温度に温度変動が生じても不良品 が発生するのを抑制することができる。具体的には、前記温度幅 ΔΤを 15°C以上と することができ、生産性の向上を図ることができる。
[0043] また、本発明の圧電体磁器組成物は、前記主成分 100モルに対し、 Mn、 Ni、 Fe、 Zn、 Cu及び Mgの中力 選択された少なくとも 1種以上の金属元素が総計で 0. 1〜 10モル含有されていてもよぐこれにより、焼成温度の温度幅 ΔΤをより一層広げるこ とができる。具体的には、上述した 2価の金属元素を添加することにより、焼成温度の 温度幅 ΔΤを更に 15〜25°C程度、すなわち前記温度幅 ΔΤを 40〜55程度まで広 げることができる。
[0044] また、本発明の圧電体磁器組成物の製造方法によれば、平均粒径 D が 0. 60
50
m以下、かつ比表面積が 7. 0m2Zg以上 20. 0m2Zg以下 (好ましくは、 10. OmV g以上 20. 0m2Zg以下)のセラミック原料粉末を作製し、該セラミック原料粉末に焼 成処理を施して上記圧電体磁器組成物を製造するので、セラミック原料粉末が超微 粉であり、良好な分散性を有することから、焼結温度が低下し、焼結時に蒸発しやす いアルカリ金属が蒸発温度よりも低い温度で結晶粒内に固溶し、その結果分極不良 率を格段に低減させることができ、しかもより一層の高圧電 d定数を有する圧電体磁 器組成物を高効率で製造することができる。
[0045] また、本発明の圧電セラミック電子部品によれば、圧電セラミック素体の表面に外部 電極が形成された圧電セラミック電子部品において、前記圧電セラミック素体力 上 記圧電体磁器組成物で形成されて ヽるので、微小電界時のみならず高電界が印加 されても高い圧電定数を有する圧電セラミック電子部品を安定的に得ることができる
[0046] また、本発明の圧電セラミック電子部品は、前記圧電セラミック素体に内部電極が 埋設されててもよぐ圧電ァクチユエータのように高電界で駆動する積層型圧電セラミ ック電子部品の場合であっても、駆動電界で高い圧電 d定数を得ることができ、圧電 特性の優れた圧電セラミック電子部品を安定的に高効率で得ることができる。
図面の簡単な説明
[0047] [図 1]ぺロブスカイトの酸素八面体構造を模式的に示した立体図である。
[図 2]本発明に係る圧電セラミック電子部品としての積層圧電ァクチユエータの一実 施の形態を示す断面図である。
符号の説明
[0048] 1 圧電セラミック素体
2a、 2b 外部電極
3 内部電極
発明を実施するための最良の形態
[0049] 次に、本発明の実施の形態を詳説する。
[0050] 本発明に係る一実施の形態 (第 1の実施の形態)としての圧電体磁器組成物は、下 記一般式 (A)で表される。
[0051] 100{(1— x)(K Na Li) (Nb Ta Sb )0
1 a— b a b m 1 c d c d 3
— xMl M20 } + (a/2)X O ---(A)
n 3 2 3
[0052] ここで、 Mlは Ca、 Sr及び Baの中力 選択された少なくとも 1種以上の金属元素を 示し、 M2は Ti、 Zr及び Snの中力 選択された少なくとも 1種以上の金属元素を示し 、 Xは In、 Sc、 Y、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Yb、及び Luの中力も選択 された少なくとも 1種の特定元素を示している。
[0053] また、前記 a、 x、 a、 b、 c、 d、 m、及び nは、数式(2)〜(10)を満足している。
[0054] 0.1≤ α≤10···(2)
0.005≤χ≤0.1···(3)
0≤a≤0.9··· (4)
0≤b≤0.3···(5)
0≤a+b≤0.9···(6)
0≤c≤0.5···(7)
0≤d≤0. 1···(8) 0. 9≤m≤l. 1· ·· (9)
0. 9≤n≤l. 1· ·· (10)
[0055] 本圧電体磁器組成物は、所定配合モル比となるように調製されたべ口ブスカイト型 構造(一般式 ΑΒΟ )を有する { (K Na Li ) (Nb Ta Sb ) 0—Ml M20 }で
3 1-a-b a b m 1-c-d c d 3 n 3 主成分が構成されると共に、該主成分 100モルに対し In、 Sc等の特定元素 Xが 0. 1 〜: L0モルの範囲で含有されており、これにより微小電界時及び高電界時の双方に お!ヽて圧電 d定数を向上させることができ、所望の圧電特性を有する圧電体磁器組 成物を得ることができる。
[0056] すなわち、〔背景技術〕の項でも述べたように、 (K, Na, Li) (Nb, Ta) 0に、第 3成
3 分として特定組成成分のぺロブスカイト型複合酸化物を固溶させることにより、圧電 d 定数を高くすることが可能である力 単に , Na, Li) (Nb, Ta) 0に、特定組成成
3
分のぺロブスカイト型複合酸ィ匕物を固溶させたのみでは十分に高 、圧電 d定数 (例 えば、 lOOpCZN以上)を得ることはできず、特に高電界時において Pb系圧電体磁 器組成物に比べて圧電特性が劣るという欠点があった。
[0057] ぺロブスカイト型構造は、図 1に示すように、 Bサイトイオンを中心とした酸素八面体 構造が骨組みとなり、該骨組み内の空間に Aサイトイオンが配位した構造を有してい る。図中、 Pが酸素八面体構造の骨組み、黒球力 ¾サイトイオン、斜線球が Aサイトイ オン、白球は O2—イオンを示している。
[0058] したがって、例えば、(K, Na) NbOの場合は、 Bサイトイオンである Nb5+を中心とし
3
た酸素八面体構造の骨組みの空間に Aサイトイオンである K+及び Na+が配位し、 B aTiOの場合は、 Bサイトイオンである Ti4+を中心とした酸素八面体構造の骨組みの
3
空間に Aサイトイオンである Ba2+が配位することになる。
[0059] そして、組成の異なるぺロブスカイト構造の複合酸ィ匕物同士を均質に固溶させるた めには Bサイトイオンを中心とした酸素八面体構造を互いに無理なく整合させる必要 がある。
[0060] ところで、例えば、(K, Na) NbOと LiSbOのように Bサイトイオンの価数が同一の
3 3
場合は、 Bサイトイオンである Nb5+と Sb5+とは互いに比較的自由に混じり合うため、両 者を固溶させても全体として均一な酸素八面体構造の骨組みを形成し、整合性を確 保することができると考えられる。
[0061] し力しながら、 Bサイトイオンの価数が異なるぺロブスカイト型複合酸ィ匕物同士を固 溶させる場合、例えば、(K, Na)NbOと BaTiOとを固溶させる場合は、局所的な
3 3
電荷バランスを保つように行動するため、 K+の周囲には Nb5+のみが固溶し、 Ba2+の 周囲には Ti4+のみが固溶する。したがって、 Nb5+と Ti4+とは自由に混ざり合うことがで きず、互いに大きさの異なる酸素八面体構造を形成すると考えられる。つまり、この場 合、両者間の酸素八面体構造の整合性が悪くなり、その結果、良好な圧電体磁器組 成物が得られ難ぐ圧電性が損なわれると考えられる。
[0062] そこで、本実施の形態では、前記主成分に対し In、 Sc等の特定元素を所定モル量 添加することにより、異なるベロブスカイト型複合酸化物の酸素八面体構造の整合性 を確保し、これにより微小電界時及び高電界時の双方において高い圧電 d定数を得 るようにしている。
[0063] すなわち、(K Na )NbO、及び BaTiOに加え、特定元素として、例えば Inを酸
0.5 0.5 3 3
化物形態で添加した場合、化学反応式 (B)に示すように、 Inの一部は (K Na ) Nb
0.5 0.5
Oの K及び Naの一部と BaTiOの Tiの一部に置換固溶する力 Inは全体の電荷バ
3 3
ランスを保持するように作用し、 Nb及び Tiの一部とも互いに混ざり合う。
[0064] 100{(l-x) (K Na )NbO +xBaTiO }
.5 0.5 3 3
Figure imgf000013_0001
→100{(1— x—(α/200)) (K Na )NbO
0.5 0.5 3
- (χ- ( α/100)) BaTiO
3
-(α/100) (K Na In )TiO
0.25 0.25 0.5 3
-(α/100) Ba (In Nb )0 }···(Β)
0.5 0.5 3
[0065] このように In3+はそれぞれの Aサイトイオン及び Bサイトイオンと混じり合うことから、混 じり合った層力 異なるぺロブスカイト型複合酸ィ匕物同士の不整合を緩和して無理の ない整合性が成立し、これにより整合層を形成すると考えられる。このような { (α/100 ) (K Na In )TiO - ( a/100)Ba(ln Nb )0 }の整合層が存在することで、
0.25 0.25 0.5 3 0.5 0.5 3
微小電界においても十分に高い圧電 d定数が得られると考えられる。また、この整合 層はドメインウォールを形成すると考えられることから、 Bサイトイオンの価数が同一の ベロブスカイト型複合酸ィ匕物同士を固溶させた場合に比べ、小さいドメインが多数形 成されると予測される。そして、この多数の小さいドメインの各々が高電界印加時に伸 縮、回転し、これにより全体として大きな変形、歪みを生じる。その結果、高電界駆動 時では、 Bサイトイオンの価数が同一のぺロブスカイト同士を固溶させた場合に比べ、 遥かに高い圧電 d定数を得ることができ、そしてこれにより、微小電界時のみならず、 高電界時にお!ヽても圧電 d定数の高 ヽ良好な圧電特性を有する圧電体磁器組成物 を得ることができると考えられる。
[0066] そして、上記特定元素 Xは、上記列挙した In、 Sc、 Y、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy 、 Ho、 Er、 Yb、及び Luの中力も選択された少なくとも 1種に限定される。すなわち、 これら特定元素 Xは 、ずれも 3価の金属元素である力 3価の金属元素であれば限 定されないということはなぐ例えば、 Bi、 La等は添加元素として不適当であり、特定 元素 Xは上述の列挙した金属元素に限定される。
[0067] 次に、 a、 x、 a、 b、 c、 d、 m、及び nを上記数式(2)〜(10)の範囲に限定した理由 を詳述する。
[0068] (1) a
上述したように In等の特定元素を添加することにより、微小電界時及び高電界時の 双方において圧電 d定数を向上させることができる力 そのためには主成分 100モル に対する特定元素 Xの含有モル量 αを、少なくとも 0. 1モル以上とする必要がある。 一方、前記含有モル量 αが主成分 100モルに対し 10モルを超えると特定元素 の 含有量が過剰となって固溶限界を超えるため、固溶しきれなくなった特定元素 Xが結 晶粒界に析出して導電層を形成し、分極不良が生じるおそれがある。
[0069] そこで、本実施の形態では、主成分 100モルに対する特定元素 Xの含有モル量 α を、 0. 1≤ α≤ 10となるように調製している。
[0070] また、前記含有モル量 αを 1. 5≤ α≤ 10の範囲とした場合は、安定して焼成処理 を行うことのできる焼成温度の温度幅 Δ Τを広げることができる。
[0071] すなわち、従来の圧電体磁器組成物は、安定して焼成処理を行うことのできる焼成 温度の温度幅 Δ Τが極めて狭ぐ焼成処理時における焼成温度に変動が生じると、 不良品の発生率が増加し、生産性の低下を招くおそれがあった。 [0072] しかるに、本発明者らの実験結果により、特定元素 Xの含有モル量 exを主成分 100 モルに対し 1. 5≤ α≤ 10とすることにより、安定して焼成処理を行うことのできる焼成 温度の温度幅 Δ Τを広げることのできることが判明した。そして、これにより焼成温度 に余裕が生じることから、焼成温度に若干の変動が生じても焼結性を損なうことがなく 、したがって圧電特性の良好な圧電体磁器組成物を安定的に高効率で得ることが可 能となる。具体的には、焼成温度の温度幅 Δ Τを 15°C以上とすることができ、斯かる 観点からは、特定元素 Xの含有モル量 αを、主成分 100モルに対し 1. 5≤ α≤10と するのが好ましい。
[0073] (2) χ
Xは第 3成分である Ml M20の主成分中の配合モル比を規定する力 X力 SO. 005
n 3
未満になると Ml M20の含有量が過少となって比誘電率 ε r及び電気機械結合係 n 3
数 kpが小さくなり、このため所望の高圧電 d定数を得ることができず、圧電特性の向 上を図ることができない。一方、 Xが 0. 1を超えるとキュリー点 Tcの低下が顕著になり 、電気機械結合係数 kpが急激に低下して圧電特性が悪ィ匕する。
[0074] そこで、本実施の形態では、 Xが 0. 005≤x≤0. 1となるように組成成分を調製して いる。
[0075] (3) a、b
Na及び Liは必要に応じて主成分中に含有され、 Kの一部と置換固溶した形態で 存在するが、 Naの配合モル比を規定する aが 0. 9を超えると強誘電体を形成するこ とができなくなり、また、 Liの配合モル比を規定する bが 0. 3を超えると Kとの固溶限 界を超えてしまい、いずれの場合も圧電性を示さなくなる。また、 aと bの総計が 0. 9を 超えた場合は、比誘電率 ε rが著しく低下し、所望の高圧電 d定数が得ることができ なくなる。
[0076] そこで、本実施の形態で ίま、 a、 b力 0≤a≤0. 9、 0≤b≤0. 3、及び 0≤a + b≤0
. 9となるように組成成分を調製している。
[0077] (4) c
Taも必要に応じて主成分中に含有され、 Nbの一部と置換固溶した形態で存在す る力 Taの配合モル比を規定する cが 0. 5を超えると電気機械結合係数 kpが大幅に 低下し、微小電界時及び高電界時の双方で圧電 d定数の劣化が著しぐ所望の圧電 特性を得ることができなくなる。
[0078] そこで、本実施の形態では、 cが 0≤c≤0. 5となるように組成成分を調製している。
[0079] (5) d
Sbも必要に応じて主成分中に含有され、 Nbの一部と置換固溶した形態で存在す る力 Sbの配合モル比を規定する dが 0. 1を超えると、キュリー点 Tcの低下が著しく 、圧電性を示さなくなる。
[0080] そこで、本実施の形態では、 dが 0≤d≤0. 1となるように組成成分を調製している。
[0081] (6) m
mは(K Na Li ) (Nb Ta Sb ) Oの Aサイトと Bサイトの配合モル比を規定す
1 a— b a b m 1 c— d c d 3
る力 mが 0. 9未満になると Aサイトの配合モル比が過少となって電気機械結合係数 kpが大幅に低下し、同時に、微小電界時及び高電界時の双方で圧電 d定数の低下 が著しぐ所望の圧電特性を得ることができなくなる。一方、 mが 1. 1を超えると Aサイ トの配合モル比が過剰となり、焼結不良となる。
[0082] そこで、本実施の形態では、 mが 0. 9≤m≤ 1. 1となるように組成成分を調製して いる。また、より高い圧電 d定数を得る観点からは、 mは 0. 9≤m≤0. 99とするのが 好ましい。
[0083] (7) n
nは Ml M20の Aサイトと Bサイトの配合モル比を規定する力 n力 0. 9未満にな n 3
つた場合や 1. 1を超えた場合は、いずれも電気機械結合係数 kpが大幅に低下して 微小電界時及び高電界時の双方で圧電 d定数の低下が著しく、所望の圧電特性を 得ることができなくなる。一方、 nが 1. 1を超えると Aサイトの配合モル比が過剰となり 、焼結不良が生じる。
[0084] そこで、本実施の形態では、 nが 0. 9≤n≤ 1. 1となるように組成成分を調製してい る。
[0085] このように本実施の形態では、一般式 (A)で示される圧電体磁器組成物が数式(2 )〜(10)を満足するように調製されているので、微小電界時及び高電界時の双方に ぉ ヽて高 、圧電 d定数を有する圧電特性の優れた圧電体磁器組成物を得ることがで きる。
[0086] また、特定元素 Xの含有モル量 αを主成分 100モルに対し、 1. 5≤ α≤ 10となる ように調製することにより、安定して焼成処理できる焼成温度の温度幅 ΔΤを広くする ことができ、これにより所望の圧電 d定数を有する圧電特性の良好な圧電体磁器組成 物を安定的に高効率で得ることができ、生産性の向上を図ることができる。
[0087] また、本発明は、上記実施の形態の圧電体磁器組成物に限定されるものではなぐ 必要に応じ、 (M3 Bi ) M40 (ただし、 0. 9≤p≤l. 1、 M3は K及び Naの内の
0.5 0.5 p 3
少なくとも 1種以上の金属元素、 M4は Ti、 Zr及び Snの中力 選択された少なくとも 1 種以上の金属元素を示す。)で表される化合物を、前記主成分中に含有させるのも 好まし ヽ (第 2の実施の形態)。
[0088] この場合、圧電体磁器組成物は下記一般式 (C)で表すことができる。
[0089] 100{ (1— X— y) (K Na Li ) (Nb Ta Sb ) 0
1 a— b a b m 1 c d c d 3
-xMl M20 -y(M3 Bi ) M40 }
n 3 0.5 0.5 p 3
+ ( a /2)X O - " (C)
2 3
[0090] ここで、 yは数式(11)を満足している。
[0091] 0≤y≤0. 5· ·· (11)
[0092] 本第 2の実施の形態も、第 1の実施の形態と同様、微小電界時で 115pCZN以上 、高電界時で 200pCZN以上の高い圧電 d 定数を有する圧電特性の優れた圧電
33
体磁器組成物を安定的に高効率で得ることができる。
[0093] また、本第 2の実施の形態においても、特定元素 Xの含有モル量 αを主成分 100 モルに対し、 1. 5≤ α≤ 10となるように調製することにより、安定して焼成処理できる 焼成温度の温度幅 ΔΤを広くすることができ、これにより所望の圧電 d定数を有する 圧電特性の良好な圧電体磁器組成物を安定的に高効率で得ることができ、生産性 の向上を図ることができる。
[0094] 尚、一般式 (C)が数式(11)を満たす必要があるのは、 yが 0. 5を超えてしまうと固 溶限界を超えるため、圧電性を示さなくなるからである。
[0095] したがって、圧電体磁器組成物を一般式 (C)で構成する場合は、数式(11)を満た すことが必要である。 [0096] また、一般式 (A)又は(C)において、 Mn、 Ni、 Fe、 Zn、 Cu及び Mgの少なくとも 1 種を固溶体からなる主成分 100モルに対し 0. 1〜10モル添加するのも好ましぐこ れにより、焼成温度の温度幅 ΔΤをより一層広げることができ、更なる生産性の向上 を図ることが可能となる(第 3の実施の形態)。
[0097] この場合、圧電体磁器組成物は下記一般式 (D)又は (E)で表すことができる。
[0098] 100{(1— X— y) (K Na Li) (Nb Ta Sb )0
1 a— b a b m 1 c d c d 3
— xMl M20 } + (a/2)X O + β〔ZQ+〕〔02—〕 "-(D)
n 3 2 3 (q/2)
100{(l-x-y) (K Na Li) (Nb Ta Sb )0
1 a— b a b m 1 c d c d 3
-xMl M20 -y(M3 Bi ) M40 }
n 3 0.5 0.5 p 3
+ /2)X O + β [Zq+] [O2"] ·'·(Ε)
2 3 (q/2)
[0099] ここで、 Zは Mn、 Ni、 Fe、 Zn、 Cu及び Mgの少なくとも 1種の金属元素を示してい る。
[0100] 上記列挙した Mn、 Ni、 Fe、 Zn、 Cu、 Mgを主成分に添加することにより焼成温度 の温度幅 Δ Tを広げることができるのは、これらの元素が結晶粒内に固溶すると電荷 補償に寄与して整合層の生成を容易にし、これにより焼結性が向上するためと思わ れる。
[0101] 尚、主成分 100モルに対する添加モル量を 0. 1〜10モルにしたのは、焼成温度の 温度幅 ΔΤのより一層の拡大効果を得るためには、主成分 100モルに対し少なくとも 0. 1モルは必要であり、一方、添加モル量が 10モルを超えると、逆に焼結不良となる おそれがあるためである。
[0102] したがって、 Mn、 Ni、 Fe、 Zn、 Cu、 Mgを主成分に添カ卩する場合は、その含有量 を主成分 100モルに対し 0. 1〜10モルとなるように調製することが必要である。
[0103] 次に、上記圧電体磁器組成物を使用して製造された圧電セラミック電子部品につ いて説明する。
[0104] 図 2は本発明に係る圧電セラミック電子部品としての積層圧電ァクチユエ一タのー 実施の形態を示す断面図であって、該積層圧電ァクチユエータは、圧電セラミック素 体 1と、該圧電セラミック素体 1の両端部に形成された Ag等の導電性材料カゝらなる外 部電極 2(2a、 2b)と、圧電セラミック素体 1の内部に並列対向状に埋設された Agや Ag— Pd等の導電性材料で形成された内部電極 3 (3a〜3g)とから構成されている。
[0105] 該積層圧電ァクチユエータは、内部電極 3a、 3c、 3e、 3gの一端が一方の外部電極 2aと電気的に接続され、内部電極 3b、 3d、 3fの一端は他方の外部電極 2bと電気的 に接続されている。そして、該積層圧電ァクチユエータでは、外部電極 2aと外部電極 2bとの間に電圧が印加されると、圧電縦効果により矢印 Xで示す積層方向に変位す る。
[0106] 次に、上記積層圧電ァクチユエータの製造方法を詳述する。
[0107] まず、セラミック素原料として CaCO 、 SrCO、及び BaCOのうちの少なくとも 1種、
3 3 3
TiO 、 ZrO、及び SnOのうちの少なくとも 1種、 In O 、 Sc O 、 Y O 、 Nd O 、 Sm
2 2 2 2 3 2 3 2 3 2 3
O 、 Eu O 、 Gd O 、 Tb O 、 Dy O 、 Ho O 、 Er O 、 Yb O、及び Lu Oのうち
2 3 2 3 2 3 4 7 2 3 2 3 2 3 2 3 2 3 の少なくとも 1種、並びに K CO 、 Nb Ο、必要に応じて Na CO、: Li CO 、 Ta O
2 3 2 5 2 3 2 3 2 5
、 Sb O、さらに必要に応じて Bi O、更には MnCO 、 NiO、 Fe O 、 ZnO、 CuO及
2 5 2 3 3 2 3
び MgCOのうちの少なくとも 1種を所定量秤量し、該秤量物を有機溶媒ゃジルコ-
3
ァ等の粉砕媒体と共に粉砕機に投入し、平均粒径 D が 0. 60 m以下、比表面積
50
SSAが 7. 0〜20m2/g (好ましくは 10〜20m2/g)になるまで、有機溶媒中で十分 に混合粉砕し、その後乾燥させてセラミック原料粉末を得る。
[0108] このように平均粒径 D が 0. 60 111以下、比表面積33八が7. 0〜20m2/g (好ま
50
しくは 10〜 20m2/g)のセラミック原料粉末を使用することにより、積層圧電ァクチュ エータの分極不良率を格段に低減させることができ、圧電 d定数もより一層向上させ ることがでさる。
[0109] すなわち、セラミック原料粉末を上述のような超微粉とすることにより、セラミック原料 粉末の分散性が向上し、圧電磁器組成物の焼結温度が低下することから、焼結時に 蒸発しやすいアルカリ金属が、蒸発温度より低い温度で結晶粒内に固溶し、これによ り分極不良率を格段に低減させることができ、圧電 d定数もより一層向上させることが 可能となる。
[0110] 尚、比表面積 SSAが 20m2/gを超えると粉砕度が高くなりすぎるため積層圧電ァ クチユエータをシート成形するのが困難となり、したがって比表面積 SSAは 20m2Zg 以下とする必要がある。 [0111] ここで、粉砕機としては、上記平均粒径及び比表面積を有するセラミック原料粉末 が得られるのであれば、特に限定されるものではなぐボールミルでも可能であるが、 撹拌翼を有する媒体撹拌ミルを使用するのが好まし ヽ。
[0112] すなわち、本実施の形態のようなニオブ酸アルカリ系材料では、アルカリ金属が水 溶性であることから、一旦水に溶けた原料が粉砕されず、乾燥後に巨大な偏析物とし て再析出する。このため、上述したように有機溶媒中で混合粉砕するが、ボールミル では粉砕処理に長時間を要することから、空気中の水分が粉砕処理中に有機溶媒 に混入し、アルカリ金属の偏祈が生じるおそれがある。
[0113] これに対し上記撹拌翼を有する媒体攪拌ミルは粉砕力が強力であることから、短時 間での粉砕処理で平均粒径 D が 0. 60 μ m以下、比表面積 SSAが 7. 0
50 〜20m2/ g (好ましくは 10〜20m2Zg)のセラミック原料粉末を得ることができ、空気中の水分 混入を極力排除することができる。
[0114] このようにしてセラミック原料粉末を作製した後、該セラミック原料粉末を所定温度( 例えば、 600〜1000°C)で仮焼し、仮焼物を作製した後、再度粉砕機内で湿式粉砕 し、焼成前原料粉末を作製する。
[0115] 次に、このようにして作製された焼成前原料粉末に有機バインダを加え、湿式で混 合処理を行なってスラリー状とし、その後、ドクターブレード法等を使用し、セラミック グリーンシートを作製する。
[0116] 次いで、 Agや Ag— Pdを主成分とした内部電極用導電性ペーストを使用し、上記 セラミックグリーンシート上にスクリーン印刷を施して電極パターンを形成する。
[0117] 次に、これら電極パターンがスクリーン印刷されたセラミックグリーンシートを積層し た後、電極パターンがスクリーン印刷されていないセラミックグリーンシートで挟持し、 圧着して積層体を作製する。次いで、この積層体を所定寸法に切断してアルミナ製 の匣(さや)に収容し、所定温度 (例えば、 250〜500°C)で脱バインダ処理を行った 後、所定温度 (例えば、 1050〜1200°C)で焼成処理を施し、内部電極が埋設され た圧電セラミック素体を形成する。
[0118] そしてこの後、圧電セラミック素体の両端部に Ag等力 なる外部電極用導電性べ 一ストを塗布し、所定温度 (例えば、 750°C〜850°C)で焼付け処理を行って外部電 極 2a、 2bを形成し、さらに所定の分極処理を行ない、これにより積層圧電ァクチユエ ータが製造される。尚、外部電極 2a、 2bは、密着性が良好であればよぐ例えばスパ ッタリング法や真空蒸着法等の薄膜形成方法で形成してもよい。
[0119] このように本実施の形態では、積層圧電ァクチユエ一タカ 本発明の圧電磁器組成 物を使用して製造されているので、例えば、 lkVZmmの高電界を印加した場合でも 、圧電 d定数が大きぐ変位量の大きな圧電ァクチユエータを得ることができる。
[0120] 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、 圧電セラミック電子部品として積層圧電ァクチユエータについて説明したが、単板型 圧電ァクチユエータゃバイモルフ型圧電ァクチユエータにも適用でき、さらには圧電 発振子、圧電ブザー、圧電センサ等の各種圧電セラミック電子部品にも上記圧電体 磁器組成物を使用できるのは 、うまでもな!/、。
[0121] 次に、本発明の実施例を具体的に説明する。
実施例 1
[0122] セラミック素原料として、 K CO、 Na CO、 Nb O、 BaCO、 CaCO、 SrCO、 Ti
2 3 2 3 2 5 3 3 3
O、 ZrO、 SnO、 In O、 Sc O、 Yb O、 Y O、 Nd O、 Eu O、 Gd O、 Dy O
2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
、 Sm O、 Ho O、 Er O、 Tb O、 Lu O、 B O、及び La Oを用意した。
2 3 2 3 2 3 4 7 2 3 2 3 2 3
[0123] 次に、これらのセラミック素原料を、表 1に示すような組成物が得られるように秤量し 、該秤量物をボールミルに投入し、エタノール中で約 18時間湿式混合し、得られた 混合物を乾燥した後、 700°C〜1000°Cの温度で仮焼し、仮焼物を得た。
[0124] 次 、で、この仮焼物を粗粉砕した後、有機バインダを適量加え、ボールミル内で約 16時間湿式粉砕し、 40メッシュの篩 、を通して粒度調整した。
[0125] 次に、粒度調整された粉体を 9. 8 X 107〜1. 96 X 108Paの圧力で加圧して成形 加工を施し、直径 10mm、厚さ 1. 2mmの円板状成形体を作製し、さら〖こ、この成形 体を大気中 1050°C〜 1200°Cの温度で 2時間保持して焼成処理を施し、セラミック 素体を得た。
[0126] 尚、焼成処理は、各試料について 1050〜1200°Cの間で焼成温度を 5°C毎に行 い、各焼成温度での圧電 d
33定数を d
33メータで測定し、圧電 d
33定数が最大となる焼 成温度を最適焼成温度とし、最大圧電 d 定数の 80%以上の圧電 d 定数が得られる
33 33 焼成温度域を、安定して焼成処理を行うことのできる焼成温度の温度幅 ΔΤとした。
[0127] 次いで、真空蒸着法を使用し、各セラミック素体の両主面に Ag電極を形成し、その 後、浴温 80°Cの絶縁オイル中で 3kVZmmの直流電圧を 30分間印加して分極処理 を施し、一般式: 100{ (1— X) (K Na ) NbO— XM1M20 }+ ( α Ζ2)Χ Oで
0.5 0.5 0.98 3 3 2 3 表される試料番号 1〜28の試料を得た。
[0128] 表 1は試料番号 1〜28の組成成分を示している。
[0129] [表 1]
Figure imgf000023_0001
*は本発明範囲外
[0130] 次に、各試料番号 1〜28について、比誘電率 ε r、電気機械結合係数 kp、微小電 界時の圧電 d 定数 (以下、単に「圧電 d 定数」という。)、高電界時の圧電 d 定数 (以
33 33 33 下、「高電界時圧電 d 定数」という。)、及びキュリー点 Tcを測定した。
33
[0131] ここで、比誘電率 ε rは、インピーダンスアナライザで測定した静電容量と試料寸法 から求め、電気機械結合係数 kpはインピーダンスアナライザを使用し、共振—反共 振法により求めた。 [0132] また、圧電 d 定数は、 dメータを使用し約 lVZmmの電界印加時に相当する振動
33 33
を与え、そのときの発生電荷量から求めた。
[0133] また、高電界時圧電 d 定数は、厚み方向に lkVZmmの電界を印加した時の厚み
33
の方向の変位量を変位計で測定し、次いで、この変位量を厚みで除算して歪み率を 算出し、該歪み率を電界で除算して算出した。
[0134] キュリー点 Tcは、比誘電率 ε rの温度特性を測定し、該比誘電率 ε rの極大温度を 算出して得た。
[0135] 表 2は、試料番号 1〜28の各測定結果、及び焼成温度の温度幅 Δ Τを示している [0136] [表 2]
電気機械結合係数 高電界時 キュリー点 焼成温度の 試 比誘電率
kp 圧電 d33定数 Tc 温度幅 ΔΤ 番号 ε r
(%) (pCZN) (。c) (°C)
1 1510 47.2 301 594 280 30
2 1478 278 542 280 30
3 1578 234 438 260 30
4 1560 30.5 202 400 250 30
5 1524 寸寸寸寸OΜJ C (V 167 331 260 20
ω C COOOO寸 ό ό COO-
6 1520 2 O8 Ul.4 180 352 260 20
寸 o oOO C C
7 1 20 28. ω ω o 1 176 343 270 20
8 1580 202 396 260 30
9 1520 210 382 260 30
] it ~^、
10 1 40 31.3 醎 α 208 375 270 30
11 1550 215 390 260 30
12 1450 26.4 162 Si 301 260 30
13 1478 268 503 280 30
14 1555 297 586 270 35
15 1528 295 576 270 35
16* 1210 75 112 230
17* 1150 12.3 68 100 240 再現性低く 不良率 95%
18* 1243 95 135 280
19 1170 130 253 280 5
20 1198 24.3 136 266 280 10
21 1507 290 541 280 25
22 1486 299 537 280 25
23* 圧電性示さず
24 1210 227 420 250 35
25 1142 221 415 260 35
26 1423 247 487 280 30
27 1427 245 484 280 30
28* 380 93 124 400 15
*は本発明範囲外
[0137] 試料番号 1〜17は、組成式: {0.94(K Na ) NbO—0.06BaTiO }で表され
0.5 0.5 0.98 3 3 る主成分 100モルに対し、 3価の各金属元素を総計で 2モル含有して 、る。
[0138] このうち試料番号 1〜15は、本発明の特定元素(In、 Sc、 Yb、 Y、 Nd、 Eu、 Gd、 D y、 Sm、 Ho、 Er、 Tb及び Lu)を添カ卩しているので、比誘電率 ε r及び電気機械結合 係数 kpの双方がいずれも高ぐその結果、圧電 d 定数は 115pCZN以上、高電界
33
時圧電 d 定数は 200pCZN以上となり、良好な圧電特性を得ている。
33
[0139] また、各金属元素の含有モル量 αも主成分 100モルに対し 2モルであり、 1.5〜1 0モルの範囲であるので、安定して焼成可能な焼成温度の温度幅 ΔΤも 20〜35°Cと 広くすることができることが分力つた。
[0140] これに対し試料番号 16、 17は、特定元素以外の 3価の金属元素として Bi、 Laを添 加しているため、電気機械結合係数 kpが極端に低下し、このため圧電 d 定数及び
33 高電界時圧電 d
33定数のいずれも低ぐ所望の圧電特性を得ることができな力つた。ま た、焼成温度にもノ ツキが生じ、同一の焼成温度で焼成処理しても再現性に乏しく
、不良率が 95%以上となった。これは Biや Laは BaTiOの Bサイトに固溶することが
3
できず、(K Na ) NbOと BaTiOとの整合層が安定して形成できなかったためと
0.5 0.5 3 3
考えられる。
[0141] また、試料番号 18は、主成分に対し添加元素を含んでおらず、焼成温度にバラッ キが生じ、同一の焼成温度で焼成処理しても再現性に乏しぐ不良率が 95%以上と なった。
[0142] 以上より圧電特性の向上を図るためには、本発明範囲内として列挙した特定元素 を主成分に添加することが肝要であることが確認された。
[0143] 試料番号 19〜23は、組成式: {0. 94 (K Na ) NbO—0. 06BaTiO }で表さ
0.5 0.5 0.98 3 3 れる主成分に対し、 Inの含有モル量を異ならせている。
[0144] 試料番号 23は、分極不良となって圧電性を示さなかった。これは Inの添加モル量 が主成分 100モルに対し 15モルと過剰であるため、主成分に固溶しきれなくなった I nが結晶粒界に析出し、導電層を形成したためと思われる。
[0145] これに対し試料番号 19〜22は、主成分 100モルに対し 0. 1〜10モルの範囲で In を添カ卩しているので、圧電 d 定数が 115pCZN以上、高電界時圧電 d 定数が 200
33 33 pCZN以上となり、良好な圧電特性が得られることが分力つた。
[0146] また、試料番号 21、 22は、主成分 100モルに対する Inの含有モル量 αが 1. 5〜1 0モルであるので、試料番号 19、 20に比べ、圧電 d 定数及び高電界時圧電 d 定数
33 33 が更に向上し、また焼成温度の温度幅 ΔΤも広がることが分力つた。これは Inの添加 量が 1. 5モル未満になると、 (K Na ) NbOと BaTiOの整合層が十分に形成され
0.5 0.5 3 3
ないため、圧電特性も若干低くなり、焼成温度の温度幅 ΔΤも 10°C以下と狭くなつた 1S Inを 1. 5モル以上添加させた場合は所望の整合層が形成され、その結果安定し た所望の圧電磁器組成物が得られるためと考えられる。
[0147] 試料番号 24〜27は、 M1M20の各成分種を本発明範囲内で異ならせたもので
3
あるが、圧電 d 定数が 115pCZN以上、高電界時圧電 d 定数が 200pCZN以上
33 33
の良好な圧電特性を得ることができ、また焼成温度の温度幅 ΔΤも 30〜35°Cと広く なることが分かった。したがって、 Mlとして Ba、 Ca、 Srのいずれか少なくとも 1種、 M 2として Ti、 Zr、 Snのいずれカゝ少なくとも 1種を使用できることが確認された。
[0148] また、試料番号 28は、組成物中に M1M20が含有されていないため、圧電 d 定
3 33 数が lOOpCZN未満、高電界時圧電 d 定数が 200pCZN未満となって所望の良
33
好な圧電特性を得ることができないことが確認された。
実施例 2
[0149] セラミック素原料として、 K CO、 Na CO、 Li CO、 Nb O、 Ta O、 Sb O、 Ba
2 3 2 3 2 3 2 5 2 5 2 5
CO、 TiO、及び In Oを用意し、これらのセラミック素原料を、表 3に示すような組成
3 2 2 3
物が得られるように秤量し、〔実施例 1〕と同様の方法 ·手順を使用して試料番号 31〜 53の試料を作製した。また、焼成温度の温度幅 ΔΤも〔実施例 1〕と同様にして求め た。
[0150] 次 、で、〔実施例 1〕の方法'手順を使用して比誘電率 ε r、電気機械結合係数 kp、 圧電 d 定数、高電界時圧電 d 定数、キュリー点 Tcを測定した。
33 33
[0151] 表 3は試料番号 31〜53の成分組成を示し、表 4はその測定結果及び焼成温度の 温度幅 Δ Tを示して!/、る。
[0152] [表 3]
Figure imgf000028_0001
*は本発明範囲外
Figure imgf000029_0001
*は本発明範囲外
[0154] 試料番号 33は、 Xが 0. 15であり、 0. 1を超えているため、圧電 d 定数は 64pCZ
33
N、高電界圧電 d 定数が 87pCZNと低ぐ良好な圧電特性が得られないことが分か
33
つた o
[0155] これに対して試料番号 31、 32ίま、 X力 0. 005〜0. 1であるので、 115pC/N以 上の圧電 d 定数、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性の
33 33
良好な圧電セラミック電子部品が得られることが確認された。
[0156] また、試料番号 36は、 a力 . 95であり、 0. 9を超えているため、 Naの配合モル比 が過剰となって Kに対する固溶限界を超えてしまい圧電性を示さな力つた。
[0157] これに対して試料番号 34、 35は、 a力 〜 0. 9であるので、 115pCZN以上の圧 電 d 定数、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性の良好な
33 33
圧電セラミック電子部品が得られることが確認された。 [0158] また、試料番号 38は、 b力 . 4であり、 0. 3を超えているため、 Liの配合モル比が 過剰となって強誘電相を形成することができず、圧電性を示さなカゝつた。
[0159] これに対して試料番号 37は、 bが 0. 3であるので、 115pCZN以上の圧電 d 定数
33
、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性の良好な圧電セラミ
33
ック電子部品が得られることが確認された。
[0160] また、試料番号 40は、 cが 0. 6であり、 0. 5を超えているため、圧電 d 定数は 44p
33
CZN、高電界圧電 d 定数が 60pCZNと低ぐ良好な圧電特性が得られないことが
33
分かった。
[0161] これに対して試料番号 39は、 cが 0. 5であるので、 115pCZN以上の圧電 d 定数
33
、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性の良好な圧電セラミ
33
ック電子部品が得られることが確認された。
[0162] また、試料番号 42は、 d力 . 2であり、 0. 1を超えているため、 Sbが過剰となってキ ユリ一点 Tcが低下し、このため圧電性を示さな力つた。
[0163] これに対して試料番号 41は、 dが 0. 1であるので、 115pCZN以上の圧電 d 定数
33
、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性の良好な圧電セラミ
33
ック電子部品が得られることが確認された。
[0164] また、試料番号 43は、 mが 0. 80であり、 0. 9未満であるので、圧電 d 定数は 35p
33
CZN、高電界圧電 d 定数力 0pCZNと低ぐ良好な圧電特性が得られないことが
33
分かった。
[0165] また、試料番号 49は、 mが 1. 20であり、 1. 1を超えているため、焼結不良となった
[0166] これに対し試料番号 44〜48は、 mが 0. 9〜1. 1の範囲にあるので、 115pC/N 以上の圧電 d 定数、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性
33 33
の良好な圧電セラミック電子部品を得ることができた。
[0167] 特に、試料番号 44〜46のように、 mを 0. 9〜0. 99の範囲とすることにより、圧電 d
3 定数は 130pCZN以上、高電界時圧電 d 定数は 250pCZN以上となり、試料番
3 33
号 47、 48に比べ、より一層圧電特性を向上させることができることが分力つた。
[0168] 尚、 mが 0. 99を超えると若干圧電特性が低下するのは、 K等の Aサイトを構成す べき成分量が多くなり、このため固溶体の合成反応に関与しな力つた元素が Ti等の 第 3成分の Bサイトを構成する 4価の元素と優先的に反応し、部分的に圧電性を有さ な 、2次相を形成するためと思われる。
[0169] 試料番号 50は、 n力 . 8であり、 0. 9未満であるので、圧電 d 定数は 56pCZN、
33
高電界圧電 d 定数が 68pCZNと低ぐ良好な圧電特性が得られないことが分かつ
33
た。
[0170] また、試料番号 53は、 nが 1. 2であり、 1. 1を超えているため、圧電 d 定数は 42p
33
CZN、高電界圧電 d 定数が 56pCZNと低ぐ良好な圧電特性が得られないことが
33
分かった。
[0171] これに対し試料番号 51、 52は、 n力^). 9〜1. 1の範囲にあるので、 115pCZN以 上の圧電 d 定数、及び 200pCZN以上の高電界圧電 d 定数を有する圧電特性の
33 33
良好な圧電セラミック電子部品を得ることができた。
[0172] このように主成分中の各配合モル比を示す x、 a、 b、 c、 d、 m及び nを、それぞれ 0.
005≤x≤0. 1, 0≤a≤0. 9, 0≤b≤0. 3, 0≤a+b≤0. 9, 0≤c≤0. 5, 0≤d≤ 0. 1、0. 9≤m≤l. 1、及び 0. 9≤n≤l. 1とすることにより、圧電 d 定数力 ^115pC
33
ZN以上、高電界時圧電 d 定数が 200pCZN以上の圧電特性の良好な圧電セラミ
33
ック電子部品を得ることのできることが分力つた。
実施例 3
[0173] セラミック素原料として、 K CO、 Na CO、 Nb O、 BaCO、 TiO、: Bi O、 ZrO
2 3 2 3 2 5 3 2 2 3 2
、 SnO、及び In Oを用意し、これらのセラミック素原料を、表 5に示すような組成物
2 2 3
が得られるように秤量し、〔実施例 1〕と同様の方法 '手順を使用して試料番号 61〜7 4の試料を作製した。また、焼成温度の温度幅 ΔΤも〔実施例 1〕と同様にして求めた
[0174] 次いで、各試料番号 61〜74について、〔実施例 1〕の方法 '手順を使用して比誘電 率 ε r、電気機械結合係数 kp、圧電 d 定数、高電界時圧電 d 定数、キュリー点 Tcを
33 33
測定した。
[0175] 表 5は試料番号 61〜74の成分組成を示し、表 6はその測定結果及び焼成温度の 温度幅 Δ Tを示して!/、る。
Figure imgf000032_0001
*は本発明 (請求項 2)の範囲外
^a [0177] [表 6]
Figure imgf000033_0001
*は本発明 (請求項 2)の範囲外
[0178] 試料番号 61は、本発明の特定元素が添加されていないため、焼結不良が生じた。
[0179] また、試料番号 69は、 yが 0. 6であり、 0. 5を超えているため、固溶限界を超えてし まい、固溶しきれなくなった Bi等の成分が結晶粒界に析出し、圧電性を示さなくなつ た。
[0180] これに対し試料番号 62〜68ίま X力 0. 005≤x≤0. 1、及び y≤0. 5の範囲に調製 されているので、 115pCZN以上の圧電 d 定数、及び 200pCZN以上の高電界時
33
圧電 d
33定数を有する圧電特性の良好な圧電セラミック電子部品を得ることのできるこ とが分力つた。
[0181] また、試料番号 70は、 p力 . 8であり、 0. 9未満であるため、圧電 d 定数は 75pC
33
ZN、高電界圧電 d 定数が 103pCZNと低くなつており、圧電特性が劣化すること
33
が分かった。
[0182] また、試料番号 73は、 pが 1. 2であり、 1. 1を超えているため、圧電 d 定数は 67p
33
CZN、高電界圧電 d 定数が 93pCZNと低くなつており、圧電特性が劣化すること
33
が分かった r
[0183] さらに、試料番号 74は、主成分中に M1M20も(M3 Bi ) M40も含有されて いないため、試料番号 28 (表 2)と同様、圧電 d 定数及び高電界圧電 d 定数のいず
33 33
れも低ぐ良好な圧電特性が得られなカゝつた。
[0184] これに対し試料番号 71、 72は p力 . 9〜1. 1であるので、 115pCZN以上の圧電 d 定数、及び 200pCZN以上の高電界時圧電 d 定数を有する圧電特性の良好な
33 33
圧電セラミック電子部品を得ることのできることが分力つた。
[0185] このように圧電体磁器組成物中に、(M3 Bi ) M40を主成分中に含有させた
0.5 0.5 p 3
場合であっても、圧電特性を向上させることができるが、その場合は yが 0. 5以下、 p が 0. 9≤p≤l. 1となるように調製する必要のあることが確認された。
実施例 4
[0186] 試料番号 1の組成に所定量の Mn、 Ni、 Fe、 Zn、 Cu、 Mgを添加し、圧電特性並び に焼成温度の温度幅 Δ Tを評価した。
[0187] すなわち、セラミック素原料として、 K CO、 Na CO、 Nb O、 BaCO、 TiO、 In
2 3 2 3 2 5 3 2 2
O、 MnCO、 NiO、 Fe O、 ZnO、 CuO及び MgCOを用意し、これらのセラミック
3 3 2 3 3
素原料を、表 7に示すような組成物が得られるように秤量し、〔実施例 1〕と同様の方法 '手順を使用して試料番号 81〜90の試料を作製した。また、焼成温度の温度幅 ΔΤ も〔実施例 1〕と同様にして求めた。
[0188] 次いで、各試料番号 81〜90について、〔実施例 1〕の方法 '手順を使用して比誘電 率 ε r、電気機械結合係数 kp、圧電 d 定数、高電界時圧電 d 定数、キュリー点 Tcを
33 33
測定した。
[0189] 表 7は試料番号 81〜90の成分組成と各種測定結果及び焼成温度の温度幅 ΔΤを 試料番号 1の測定結果及び焼成温度の温度幅 ΔΤと共に示している。
[0190] [表 7]
Figure imgf000035_0001
この表 7から明らかなように、試料番号 81〜89は、 Mn、 Ni、 Fe、 Zn、 Cu又は Mg を主成分 100モルに対し 0. 1〜10モルの範囲で添カ卩しているので、試料番号 1に比 ベ、圧電 d 定数及び高電界圧電 d 定数は若干低下しているものの、 115pCZN以 上の圧電 d 定数、及び 200pCZN以上の高電界時圧電 d 定数を有し、かつ、安定
33 33
して焼結する焼成温度の温度幅 ΔΤ力 0〜55°Cと広がった。すなわち、試料番号 1 に比べ、更に 10〜25°C程広がっており、より広い温度幅 ΔΤでの焼成処理が可能で あることが分力つた。
[0192] また、試料番号 90は, Mnの添カ卩モル量が主成分 100モルに対し 15モルと多ぐ 1
0モルを超えて 、るため焼結不良を招!、た。
[0193] これらのことから、 Mn、 Ni、 Fe、 Zn、 Cu又は Mgを主成分 100モルに対し 1〜: LOモ ルの範囲で添加することにより、焼成温度の温度幅 ΔΤをより一層広くすることができ ることが確認された。
実施例 5
[0194] セラミック素原料として K CO、 Na CO、 Nb O、 BaCO、 TiO、及び In Oを用
2 3 2 3 2 5 3 2 2 3 意し、一般式 [100{(1— x) (K Na ) NbO— xBaTiO }+4In O ] (xは 0又は 0
0. 5 0. 5 3 3 2 3
. 06)で表される組成物が得られるように、これらセラミック素原料を秤量し、粉砕機を 使用して該秤量物をエタノール中で混合粉砕処理を行い、セラミック原料粉末を作 製した。
[0195] 具体的には、試料番号 101、 102については、粉砕機としてボールミルを使用し、 直径 2mmの PSZ (部分安定ィ匕ジルコユア)をボールミル内に内有させて回転速度を 2. 5s_1 (150rpm)とし、 960分間(16時間)エタノール中で混合粉砕処理を行った。
[0196] また、試料番号 103〜114については、粉砕機として媒体撹拌ミルを使用し、直径 0. 3mmの PSZを媒体撹拌ミル内に内有させ、撹拌翼の最外周の回転速度を 10m /sとし、 4〜30分間エタノール中で混合粉砕処理を行い、セラミック原料粉末を作製 した。
[0197] そして、その後は〔実施例 1〕と同様の方法'手順で試料番号 101〜114の試料を 作製し、圧電定数 d を測定した。
33
[0198] さらに、各試料番号 101〜114について、レーザ光散乱粒径分析器で平均粒径 D
5
0を測定した。
[0199] また、各試料番号 101〜114について、窒素ガス吸着法により比表面積 SSAを求 めた。すなわち、試料表面に Nガスを吸着させ、吸着したガス重量から吸着面積を 求め、吸着面積を表面積とし、この表面積を試料の質量で除して比表面積 SSAを算 出した。
[0200] また、各試料番号 101〜114の各 30個について分極不良となった試料個数を計 数し、分極不良率を算出した。
[0201] 表 8は試料番号 101〜114の組成、製造条件、平均粒径 D 、比表面積 SSA、分
50
極不良率、及び圧電定数 d を示している。
33
[0202] [表 8]
Figure imgf000038_0001
試料番号 101と試料番号 104〜107とを対比すると、 Xはいずれも 0であり同一組 成の圧電体磁器組成物を使用している力 試料番号 101はボールミルを使用して混 合粉砕しているため、粉砕力が弱ぐ 960分の長時間に亙って粉砕処理を行っても、 平均粒径 D は 0. 、比表面積 SSAが 3. 9m2/gと所望粒度のセラミック原料
50
粉末を得ることができず、このため分極不良率が 3Z30となって分極不良の生じた試 験片があった。
[0204] これに対し試料番号 104〜107は粉砕力の強 ヽ媒体撹拌ミルを使用して混合粉砕 しているので、処理時間が 5〜20分と短くても平均粒径 D は 0. 47-0. 60 μ m、比
50
表面積 SSAは 7. 1〜19. 9m2/gと超微粉となり、分極不良の発生した試験片は皆 無であった。また、試料番号 101では分極不良の生じな力つた試験片 27個について 圧電定数 d を測定したところ、その平均値は 110pC/Nであったのに対し、試料番
33
号 104〜107の各圧電定数 d の平均値は 120〜185pCZNであり、圧電定数 dも
33 33 向上することが分力つた。特に、試料番号 105〜107から分力るように、比表面積 SS Aが 10m2Zg以上になると圧電定数 dも 170pCZN以上となり格段に向上すること
33
が分かった。
[0205] 同様に、試料番号 102と試料番号 110〜113とを対比すると、 xはいずれも 0. 06 であり同一組成の圧電体磁器組成物を使用して 、るが、試料番号 102はボールミル を使用して混合粉砕しているため、粉砕力が弱ぐ 960分の長時間に亙って粉砕処 理を行っても、平均粒径 D は 0. 69 ^ m,比表面積 SSAが 3. 6m2/gと所望粒度の
50
セラミック原料粉末を得ることができず、このため、分極不良率が 28/30となって殆 どの試験片で分極不良が生じた。
[0206] これに対し試料番号 110〜113は粉砕力の強 ヽ媒体撹拌ミルを使用して混合粉砕 しているので、処理時間が 5〜20分と短くても平均粒径 D は 0. 47-0. 60 μ m、比
50
表面積 SSAは 7. 1〜20. 0m2/gと超微粉となり、分極不良の発生した試験片は皆 無であった。また、試料番号 102では分極不良の生じな力つた試験片 2個について 圧電定数 d を測定したところ、その平均値は 240pCZNであったのに対し、試料番
33
号 110〜113の各圧電定数 d の平均値は 250〜320pCZNとなって、圧電定数 d
33 33 も向上することが分力つた。特に、比表面積 SSAが 10m2/g以上になると圧電定数 dも 300pCZN以上となり格段に向上することが分力つた。
33
[0207] これにより粉砕機としてはボールミルを使用するよりも媒体撹拌ミルを使用した方が 優位であることが確認された。 [0208] また、試料番号 103及び 109では、粉砕機として媒体撹拌ミルを使用して ヽるもの の、処理時間が 4分と短いため、粉砕が未だ不十分であり、このため平均粒径 D 力 S
50 それぞれ 0. 63 μ m、 0. 65 μ mとなって 0. 60 μ mを超え、また比表面積 SSAもそ れぞれ 6. lm2/g、 5. 8m2/gとなって 7. 0m2/g未満であるため、分極不良率がそれ ぞれ 2Z30、 25Z30となって分極不良の生じた試験片があった。
[0209] また、分極不良の生じな力 た試験片について圧電定数 d を測定したところ、その
33
平均値はそれぞれ 115pCZN、 245pCZNとなって試料番号 4〜7、又は試料番号 10〜 13に比べ低くなることが分力つた。
[0210] また、試料番号 108及び 114は、比表面積 SSAがそれぞれ 29. lm2/g、 28. Om2/ gと 20m2/gを超えており、粉砕度が高すぎるため、シート成形することができな力 た 。したがって分極不良率が発生せず、かつ高圧電 d定数を得るためには、比表面積 S SAは 20. 0m2/g以下にする必要のあることが分かった。

Claims

請求の範囲
[1] 主成分が、一般式 { (1 -x) (K Na Li ) (Nb Ta Sb ) 0 一 xMl M20 } (た
1 a— b a b m 1 c— d c d 3 n 3 だし、 Mlは Ca、 Sr及び Baの中力 選択された少なくとも 1種以上の金属元素、 M2 は Ti、 Zr及び Snの中カゝら選択された少なくとも 1種以上の金属元素を示す。)で表さ れると共に、
前記 x、 a、 b、 c、 d、 m、及び n力 それぞれ 0. 005≤x≤0. 1、 0≤a≤0. 9、 0≤b ≤0. 3, 0≤a+b≤0. 9, 0≤c≤0. 5, 0≤d≤0. 1、 0. 9≤m≤l. 1、及び 0. 9≤ n≤l. 1の範囲にあり、
かつ、 In, Sc、 Y、 Nd、 Sm、 Eu, Gd、 Tb、 Dy、 Ho, Er, Yb、及び I^uの中力ら選 択された少なくとも 1種の特定元素力 前記主成分 100モルに対し総計で 0. 1〜: L0 モル含有されていることを特徴とする圧電体磁器組成物。
[2] (M3 Bi ) M40 (ただし、 0. 9≤p≤l. 1、 M3は K及び Naの内の少なくとも 1
0.5 0.5 p 3
種以上の金属元素、 M4は Ti、 Zr及び Snの中力 選択された少なくとも 1種以上の 金属元素を示す。)で表される化合物力 0. 5以下の配合モル比で前記主成分中に 含有されていることを特徴とする請求項 1記載の圧電体磁器組成物。
[3] 前記 mは 0. 9≤m≤0. 99であることを特徴とする請求項 1又は請求項 2記載の圧 電体磁器組成物。
[4] 前記特定元素は、前記主成分 100モルに対し、総計で 1. 5〜: L0モル含有されて V、ることを特徴とする請求項 1乃至請求項 3の 、ずれかに記載の圧電体磁器組成物
[5] 前記主成分 100モルに対し、 Mn、 Ni、 Fe、 Zn、 Cu及び Mgの中力 選択された 少なくとも 1種以上の金属元素が総計で 0. 1〜10モル含有されていることを特徴とす る請求項 1乃至請求項 4のいずれかに記載の圧電体磁器組成物。
[6] 所定のセラミック素原料を秤量して湿式で混合粉砕処理を行い、平均粒径 D が 0
50
. 60 μ m以下であって、比表面積が 7. 0m2Zg以上 20. 0m2Zg以下のセラミック原 料粉末を作製し、該セラミック原料粉末に焼成処理を施して請求項 1乃至請求項 5の いずれかに記載の圧電体磁器組成物を製造することを特徴とする圧電体磁器組成 物の製造方法。
[7] 前記比表面積が 10. 0m2Zg以上であることを特徴とする請求項 6記載の圧電体磁 器組成物の製造方法。
[8] 圧電セラミック素体の表面に外部電極が形成された圧電セラミック電子部品におい て、
前記圧電セラミック素体が、請求項 1乃至請求項 5のいずれかに記載の圧電体磁 器組成物で形成されていることを特徴とする圧電セラミック電子部品。
[9] 前記圧電セラミック素体に内部電極が埋設されていることを特徴とする請求項 8記 載の圧電セラミック電子部品。
PCT/JP2006/307769 2005-04-28 2006-04-12 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品 WO2006117990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006529413A JP3945536B2 (ja) 2005-04-28 2006-04-12 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品
CN200680004194A CN100594198C (zh) 2005-04-28 2006-04-12 压电陶瓷组合物及该压电陶瓷组合物的制造方法以及压电陶瓷电子部件
EP20060731705 EP1876156B1 (en) 2005-04-28 2006-04-12 Piezoelectric ceramic composition, process for producing said piezoelectric ceramic composition, and piezoelectric ceramic electronic component
US11/852,678 US7691286B2 (en) 2005-04-28 2007-09-10 Piezoelectric ceramic composition, method for manufacturing the same, and piezoelectric ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-133254 2005-04-28
JP2005133254 2005-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/852,678 Continuation US7691286B2 (en) 2005-04-28 2007-09-10 Piezoelectric ceramic composition, method for manufacturing the same, and piezoelectric ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2006117990A1 true WO2006117990A1 (ja) 2006-11-09

Family

ID=37307793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307769 WO2006117990A1 (ja) 2005-04-28 2006-04-12 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品

Country Status (6)

Country Link
US (1) US7691286B2 (ja)
EP (1) EP1876156B1 (ja)
JP (1) JP3945536B2 (ja)
KR (1) KR100904618B1 (ja)
CN (1) CN100594198C (ja)
WO (1) WO2006117990A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143160A1 (ja) * 2007-05-16 2008-11-27 National Institute Of Advanced Industrial Science And Technology 圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
WO2008152851A1 (ja) * 2007-06-15 2008-12-18 Murata Manufacturing Co., Ltd. 圧電磁器組成物、及び圧電セラミック電子部品
CN100448796C (zh) * 2007-06-14 2009-01-07 北京科技大学 一种低温合成镁掺杂铌酸钾钠基无铅压电陶瓷及制备方法
JP2010095404A (ja) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology 非鉛圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
WO2010050258A1 (ja) * 2008-10-28 2010-05-06 株式会社 村田製作所 圧電磁器組成物、及び圧電セラミック電子部品
CN101823878A (zh) * 2010-04-23 2010-09-08 四川师范大学 铌酸钠钾铪锆钛酸钙系无铅压电陶瓷组合物
JP2011195383A (ja) * 2010-03-19 2011-10-06 Kyocera Corp 圧電体およびそれを用いた圧電素子
JP2011213580A (ja) * 2010-03-18 2011-10-27 Ngk Insulators Ltd 圧電/電歪焼結体、及び圧電/電歪素子
EP2006263A4 (en) * 2006-04-13 2012-02-22 Murata Manufacturing Co CERAMIC POWDER AND MANUFACTURING METHOD THEREFOR
JP2012162408A (ja) * 2011-02-03 2012-08-30 Fdk Corp 圧電材料
JP2012171835A (ja) * 2011-02-22 2012-09-10 Fdk Corp 圧電材料
JP2012195577A (ja) * 2011-02-28 2012-10-11 Canon Inc 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置
JP2013110362A (ja) * 2011-11-24 2013-06-06 Fdk Corp ニオブ酸アルカリ系圧電材料の製造方法
JP2014063994A (ja) * 2012-08-27 2014-04-10 Canon Inc 圧電材料、圧電素子、および電子機器
WO2014084265A1 (ja) * 2012-11-27 2014-06-05 富山県 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
JP2014179609A (ja) * 2013-03-14 2014-09-25 Tdk Corp 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
WO2015093436A1 (ja) * 2013-12-16 2015-06-25 日立金属株式会社 結晶配向圧電セラミックス、その製造方法、及び圧電体素子
JP2015163576A (ja) * 2014-01-29 2015-09-10 キヤノン株式会社 圧電セラミックス、その製造方法、圧電素子、積層圧電素子、液体吐出ヘッド、液体吐出装置、超音波モータ、光学機器、振動装置、塵埃除去装置、撮像装置および電子機器
CN105130422A (zh) * 2007-09-19 2015-12-09 株式会社村田制作所 层叠陶瓷电容器
JP2016066708A (ja) * 2014-09-25 2016-04-28 Tdk株式会社 圧電組成物、圧電素子およびスパッタリングターゲット
JP5975170B2 (ja) * 2013-04-04 2016-08-23 株式会社村田製作所 誘電体磁器組成物およびそれを用いた積層セラミックコンデンサ
JP2016197717A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 圧電材料、圧電素子および電子機器
JP2016197718A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 圧電材料、圧電材料の製造方法、圧電素子および電子機器
US9590168B2 (en) 2011-02-22 2017-03-07 Fdk Corporation Alkali niobate-based piezoelectric material and a method for making the same
WO2017104539A1 (ja) * 2015-12-18 2017-06-22 株式会社村田製作所 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品
JP2019055908A (ja) * 2013-08-07 2019-04-11 ピーアイ セラミック ゲーエムベーハー 鉛含有量が低減された圧電セラミック材料
WO2019181977A1 (ja) * 2018-03-23 2019-09-26 Tdk株式会社 圧電組成物および圧電素子
JP2021005627A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 圧電磁器組成物、圧電磁器組成物の製造方法及び圧電セラミック電子部品
JP2021064765A (ja) * 2019-10-17 2021-04-22 太陽誘電株式会社 圧電セラミックス及びその製造方法、並びに圧電素子
JPWO2021200632A1 (ja) * 2020-03-30 2021-10-07
WO2022255035A1 (ja) * 2021-06-03 2022-12-08 Tdk株式会社 圧電薄膜素子、微小電気機械システム、及び超音波トランスデューサ

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057174A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd セラミック電子部品の製造方法
WO2008123139A1 (ja) * 2007-03-26 2008-10-16 Murata Manufacturing Co., Ltd. 抵抗記憶素子
US8022604B2 (en) * 2007-10-19 2011-09-20 Ngk Insulators, Ltd. (Li, Na, K)(Nb, Ta)O3 type piezoelectric/electrostrictive ceramic composition containing 30-50 mol% Ta and piezoelectric/electrorestrictive device containing the same
JP4724728B2 (ja) * 2008-03-31 2011-07-13 株式会社デンソー 積層型圧電素子の製造方法
US8501031B2 (en) * 2008-09-26 2013-08-06 The Penn State Research Foundation NBT based lead-free piezoelectric materials for high power applications
JP5616130B2 (ja) * 2009-06-08 2014-10-29 富士フイルム株式会社 圧電素子及びそれを備えた圧電アクチュエータ、液体吐出装置、発電装置
US8456066B2 (en) * 2009-07-10 2013-06-04 Ngk Insulators, Ltd. Piezoelectric / electrostrictive material, piezoelectric / electrostrictive ceramic composition, piezoelectric / electrostrictive element, and piezoelectric motor
US20110012051A1 (en) * 2009-07-14 2011-01-20 Ngk Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition
KR101123722B1 (ko) * 2009-07-17 2012-03-15 한국세라믹기술원 무연 압전 세라믹스 및 그 제조 방법
KR101125700B1 (ko) 2009-08-10 2012-03-23 한국과학기술연구원 무연계 압전 세라믹스 및 그의 제조방법
JP2011037149A (ja) * 2009-08-12 2011-02-24 Seiko Epson Corp 液体噴射ヘッド及びそれを用いた液体噴射装置
JP5616171B2 (ja) * 2009-09-28 2014-10-29 富士フイルム株式会社 高分子複合圧電体及びそれを用いた圧電素子
WO2011093021A1 (ja) * 2010-01-29 2011-08-04 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、ノックセンサ、及び、無鉛圧電磁器組成物の製造方法
KR101133808B1 (ko) 2010-04-14 2012-04-05 주식회사 케이원전자 유전체 세라믹 조성물
JP5662888B2 (ja) * 2011-07-04 2015-02-04 太陽誘電株式会社 多積層圧電セラミックス部品
KR20130005518A (ko) * 2011-07-06 2013-01-16 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
CN102924078A (zh) * 2012-10-22 2013-02-13 天津大学 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
KR20150115845A (ko) * 2013-01-29 2015-10-14 캐논 가부시끼가이샤 압전 재료, 압전 소자, 적층 압전 소자, 액체 토출 헤드, 액체 토출 장치, 초음파 모터, 광학 장치, 진동 장치, 먼지 제거 장치, 촬상 장치 및 전자 기기
US9260348B2 (en) 2013-01-29 2016-02-16 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic equipment
TW201434789A (zh) * 2013-01-29 2014-09-16 Canon Kk 壓電材料、壓電元件及電子裝備
CN104969373A (zh) 2013-01-29 2015-10-07 佳能株式会社 压电材料、压电器件和电子装置
CN103274689B (zh) * 2013-06-14 2014-11-26 清华大学 铌酸钾钠基无铅压电陶瓷及其制备方法
CN104876567B (zh) * 2015-04-28 2017-03-08 同济大学 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
CN105636275A (zh) * 2016-02-12 2016-06-01 慈溪锐恩电子科技有限公司 一种压电感应遥控led灯的方法以及压电感应遥控led灯和开关
JP6457415B2 (ja) * 2016-03-10 2019-01-23 太陽誘電株式会社 圧電素子及びその製造方法
JP6646265B2 (ja) * 2016-09-29 2020-02-14 株式会社村田製作所 誘電体磁器組成物、及びセラミックコンデンサ
CN110511026B (zh) * 2019-07-24 2022-01-04 桂林理工大学 一种x8r型陶瓷电容器介质材料及其制备方法
DE102021106699A1 (de) * 2021-03-18 2022-09-22 Technische Universität Darmstadt, Körperschaft des öffentlichen Rechts Verfahren zur Ausscheidungshärtung einer Piezokeramik und Piezokeramik
KR102862491B1 (ko) * 2021-08-27 2025-09-19 니혼도꾸슈도교 가부시키가이샤 무연 압전 자기 조성물, 및 압전 소자
KR20250053164A (ko) 2022-09-30 2025-04-21 니혼도꾸슈도교 가부시키가이샤 무연 압전 조성물 및 압전 소자
CN116063076B (zh) * 2023-02-01 2024-02-27 济南大学 一种多层无铅压电陶瓷及其制备方法和应用
CN118637909B (zh) * 2024-05-24 2025-01-24 湖南省新化县鑫星电子陶瓷有限责任公司 一种温控器用压电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160333A (ja) * 1997-08-21 1999-03-02 Toyota Central Res & Dev Lab Inc 圧電セラミックス
JPH11228228A (ja) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd 圧電磁器組成物
JPH11228227A (ja) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd 圧電磁器組成物
JP2001143907A (ja) * 1999-08-30 2001-05-25 Nippon Soken Inc サーミスタ素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812426A (en) * 1984-08-21 1989-03-14 Denki Kagaku Kogyo Kabushiki Kaisha Lead-containing oxide powder
TW429636B (en) * 1998-02-18 2001-04-11 Murata Manufacturing Co Piezoelectric ceramic composition
TW563265B (en) 1998-02-18 2003-11-21 Murata Manufacturing Co Piezoelectric ceramic composition
WO2001016966A1 (fr) 1999-08-30 2001-03-08 Denso Corporation Dispositif a thermistance
US6514427B2 (en) * 1999-10-18 2003-02-04 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic composition and piezoelectric element containing the same
JP4929522B2 (ja) 2000-08-25 2012-05-09 株式会社豊田中央研究所 圧電磁器組成物
EP1382588B9 (en) * 2002-07-16 2012-06-27 Denso Corporation Piezoelectric ceramic composition and method of production of same
JP2004244300A (ja) * 2003-01-23 2004-09-02 Denso Corp 圧電磁器組成物及びその製造方法,並びに圧電素子及び誘電素子
JP4513948B2 (ja) * 2003-12-22 2010-07-28 Tdk株式会社 圧電磁器およびその製造方法
US7477004B2 (en) * 2004-09-29 2009-01-13 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive article, and piezoelectric/electrostrictive film type element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160333A (ja) * 1997-08-21 1999-03-02 Toyota Central Res & Dev Lab Inc 圧電セラミックス
JPH11228228A (ja) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd 圧電磁器組成物
JPH11228227A (ja) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd 圧電磁器組成物
JP2001143907A (ja) * 1999-08-30 2001-05-25 Nippon Soken Inc サーミスタ素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876156A4 *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006263A4 (en) * 2006-04-13 2012-02-22 Murata Manufacturing Co CERAMIC POWDER AND MANUFACTURING METHOD THEREFOR
EP2159206A4 (en) * 2007-05-16 2012-12-12 Nat Inst Of Advanced Ind Scien PIEZOELECTRIC CERAMICS AND PIEZOELECTRIC, DIELECTRIC AND PYROELECTRIC ELEMENTS USING PIEZOELECTRIC CERAMICS
WO2008143160A1 (ja) * 2007-05-16 2008-11-27 National Institute Of Advanced Industrial Science And Technology 圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
JP5213135B2 (ja) * 2007-05-16 2013-06-19 独立行政法人産業技術総合研究所 圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
US8354038B2 (en) 2007-05-16 2013-01-15 National Institute Of Advanced Industrial Science And Technology Piezoelectric ceramic, and piezoelectric, dielectric or pyroelectric element using the same
CN100448796C (zh) * 2007-06-14 2009-01-07 北京科技大学 一种低温合成镁掺杂铌酸钾钠基无铅压电陶瓷及制备方法
WO2008152851A1 (ja) * 2007-06-15 2008-12-18 Murata Manufacturing Co., Ltd. 圧電磁器組成物、及び圧電セラミック電子部品
JPWO2008152851A1 (ja) * 2007-06-15 2010-08-26 株式会社村田製作所 圧電磁器組成物、及び圧電セラミック電子部品
KR101238870B1 (ko) 2007-06-15 2013-03-04 가부시키가이샤 무라타 세이사쿠쇼 압전 자기 조성물, 및 압전 세라믹 전자부품
US8183747B2 (en) * 2007-06-15 2012-05-22 Murata Manufacturing Co., Ltd. Piezoelectric porcelain composition, and piezoelectric ceramic electronic component
JP2014139132A (ja) * 2007-06-15 2014-07-31 Murata Mfg Co Ltd 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法
CN105130422A (zh) * 2007-09-19 2015-12-09 株式会社村田制作所 层叠陶瓷电容器
JP2010095404A (ja) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology 非鉛圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
USRE45981E1 (en) 2008-10-28 2016-04-19 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric ceramic electronic component
US8076828B2 (en) 2008-10-28 2011-12-13 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric ceramic electronic component
WO2010050258A1 (ja) * 2008-10-28 2010-05-06 株式会社 村田製作所 圧電磁器組成物、及び圧電セラミック電子部品
JP2011213580A (ja) * 2010-03-18 2011-10-27 Ngk Insulators Ltd 圧電/電歪焼結体、及び圧電/電歪素子
JP2011195383A (ja) * 2010-03-19 2011-10-06 Kyocera Corp 圧電体およびそれを用いた圧電素子
CN101823878A (zh) * 2010-04-23 2010-09-08 四川师范大学 铌酸钠钾铪锆钛酸钙系无铅压电陶瓷组合物
JP2012162408A (ja) * 2011-02-03 2012-08-30 Fdk Corp 圧電材料
JP2012171835A (ja) * 2011-02-22 2012-09-10 Fdk Corp 圧電材料
US9590168B2 (en) 2011-02-22 2017-03-07 Fdk Corporation Alkali niobate-based piezoelectric material and a method for making the same
JP2012195577A (ja) * 2011-02-28 2012-10-11 Canon Inc 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置
JP2013110362A (ja) * 2011-11-24 2013-06-06 Fdk Corp ニオブ酸アルカリ系圧電材料の製造方法
JP2014063994A (ja) * 2012-08-27 2014-04-10 Canon Inc 圧電材料、圧電素子、および電子機器
US9780293B2 (en) 2012-08-27 2017-10-03 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
JPWO2014084265A1 (ja) * 2012-11-27 2017-01-05 富山県 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
WO2014084265A1 (ja) * 2012-11-27 2014-06-05 富山県 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
JP2014179609A (ja) * 2013-03-14 2014-09-25 Tdk Corp 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP5975170B2 (ja) * 2013-04-04 2016-08-23 株式会社村田製作所 誘電体磁器組成物およびそれを用いた積層セラミックコンデンサ
JP2019055908A (ja) * 2013-08-07 2019-04-11 ピーアイ セラミック ゲーエムベーハー 鉛含有量が低減された圧電セラミック材料
WO2015093436A1 (ja) * 2013-12-16 2015-06-25 日立金属株式会社 結晶配向圧電セラミックス、その製造方法、及び圧電体素子
JP2015163576A (ja) * 2014-01-29 2015-09-10 キヤノン株式会社 圧電セラミックス、その製造方法、圧電素子、積層圧電素子、液体吐出ヘッド、液体吐出装置、超音波モータ、光学機器、振動装置、塵埃除去装置、撮像装置および電子機器
JP2016066708A (ja) * 2014-09-25 2016-04-28 Tdk株式会社 圧電組成物、圧電素子およびスパッタリングターゲット
JP2016197718A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 圧電材料、圧電材料の製造方法、圧電素子および電子機器
JP2016197717A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 圧電材料、圧電素子および電子機器
WO2017104539A1 (ja) * 2015-12-18 2017-06-22 株式会社村田製作所 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品
JPWO2017104539A1 (ja) * 2015-12-18 2018-09-27 株式会社村田製作所 誘電体磁器組成物、誘電体磁器組成物の製造方法、及び積層型セラミック電子部品
US10519066B2 (en) 2015-12-18 2019-12-31 Murata Manufacturing Co., Ltd. Dielectric porcelain composition, method for producing dielectric porcelain composition, and multilayer ceramic electronic component
WO2019181977A1 (ja) * 2018-03-23 2019-09-26 Tdk株式会社 圧電組成物および圧電素子
JP2019169630A (ja) * 2018-03-23 2019-10-03 Tdk株式会社 圧電組成物および圧電素子
CN111902953A (zh) * 2018-03-23 2020-11-06 Tdk株式会社 压电组合物和压电元件
JP7077704B2 (ja) 2018-03-23 2022-05-31 Tdk株式会社 圧電組成物および圧電素子
CN111902953B (zh) * 2018-03-23 2023-09-26 Tdk株式会社 压电组合物和压电元件
US11271147B2 (en) 2018-03-23 2022-03-08 Tdk Corporation Piezoelectric composition and piezoelectric element
JP2021005627A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 圧電磁器組成物、圧電磁器組成物の製造方法及び圧電セラミック電子部品
JP7352140B2 (ja) 2019-06-26 2023-09-28 株式会社村田製作所 圧電磁器組成物の製造方法及び圧電セラミック電子部品
JP2021064765A (ja) * 2019-10-17 2021-04-22 太陽誘電株式会社 圧電セラミックス及びその製造方法、並びに圧電素子
JP7406952B2 (ja) 2019-10-17 2023-12-28 太陽誘電株式会社 圧電セラミックス及びその製造方法、並びに圧電素子
US11937510B2 (en) 2019-10-17 2024-03-19 Taiyo Yuden Co., Ltd. Piezoelectric ceramics and their manufacturing methods, and piezoelectric device
CN115279713A (zh) * 2020-03-30 2022-11-01 京瓷株式会社 压电陶瓷组合物以及压电致动器
WO2021200632A1 (ja) * 2020-03-30 2021-10-07 京セラ株式会社 圧電磁器組成物及び圧電アクチュエータ
JPWO2021200632A1 (ja) * 2020-03-30 2021-10-07
JP7391186B2 (ja) 2020-03-30 2023-12-04 京セラ株式会社 圧電磁器組成物及び圧電アクチュエータ
WO2022255035A1 (ja) * 2021-06-03 2022-12-08 Tdk株式会社 圧電薄膜素子、微小電気機械システム、及び超音波トランスデューサ

Also Published As

Publication number Publication date
EP1876156B1 (en) 2014-12-10
EP1876156A1 (en) 2008-01-09
US7691286B2 (en) 2010-04-06
CN100594198C (zh) 2010-03-17
JP3945536B2 (ja) 2007-07-18
EP1876156A4 (en) 2011-04-13
JPWO2006117990A1 (ja) 2008-12-18
US20080061263A1 (en) 2008-03-13
CN101115694A (zh) 2008-01-30
KR20070093138A (ko) 2007-09-17
KR100904618B1 (ko) 2009-06-25

Similar Documents

Publication Publication Date Title
JP3945536B2 (ja) 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品
JP4400754B2 (ja) 圧電体磁器組成物、及び圧電セラミック電子部品
CN101374782B (zh) 压电陶瓷组合物
JP5576365B2 (ja) 圧電セラミックスおよびその製造方法ならびに圧電デバイス
JP5214373B2 (ja) 圧電セラミックス及びその製造方法並びに圧電デバイス
CN101547875B (zh) 压电陶瓷及压电元件
KR20160061175A (ko) 압전 세라믹스 조성물, 압전소자 및 그 제조방법
Chang et al. The effects of sintering temperature on the properties of lead-free (Na0. 5K0. 5) NbO3–SrTiO3 ceramics
JP4650695B2 (ja) 圧電体磁器組成物及び圧電セラミック電子部品
JP5392603B2 (ja) 圧電セラミック電子部品の製造方法
JP2011029537A (ja) 積層型電子部品およびその製法
WO2006018930A1 (ja) 圧電磁器組成物、及び圧電素子
JP5190894B2 (ja) 圧電体又は誘電体磁器組成物並びに圧電体デバイス及び誘電体デバイス
CN100503511C (zh) 压电陶瓷组成物及压电元件
JP5894222B2 (ja) 積層型電子部品およびその製法
JP2012250870A (ja) 圧電磁器組成物及び圧電部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006529413

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006731705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077017272

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680004194.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11852678

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731705

Country of ref document: EP