WO2007066679A1 - 露光装置、露光方法、投影光学系及びデバイス製造方法 - Google Patents
露光装置、露光方法、投影光学系及びデバイス製造方法 Download PDFInfo
- Publication number
- WO2007066679A1 WO2007066679A1 PCT/JP2006/324331 JP2006324331W WO2007066679A1 WO 2007066679 A1 WO2007066679 A1 WO 2007066679A1 JP 2006324331 W JP2006324331 W JP 2006324331W WO 2007066679 A1 WO2007066679 A1 WO 2007066679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exposure
- area
- light
- pattern
- optical system
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 453
- 238000000034 method Methods 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000000758 substrate Substances 0.000 claims abstract description 375
- 238000001514 detection method Methods 0.000 claims description 106
- 239000007788 liquid Substances 0.000 claims description 91
- 238000005259 measurement Methods 0.000 claims description 28
- 230000001678 irradiating effect Effects 0.000 claims description 26
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000005452 bending Methods 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000005286 illumination Methods 0.000 description 232
- 238000007654 immersion Methods 0.000 description 50
- 238000010586 diagram Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 16
- 238000011084 recovery Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 230000007261 regionalization Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000008859 change Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000007493 shaping process Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 230000001427 coherent effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000010436 fluorite Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 241001175904 Labeo bata Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000010627 cedar oil Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 238000000671 immersion lithography Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 1
- 229910001637 strontium fluoride Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70466—Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
Definitions
- 0004 was made in view of this situation, and its purpose is to provide a device and method capable of suppressing and illuminating under the sp, as well as a chair manufacturing method and a projection system.
- the position (P) is defined as the second position (A 2) in the opposite direction, and the exposure () is applied to each of the positions () 2 (A 2).
- the optics () for irradiation and the stem () for relatively moving the () 2 (A 2) (P) in a direction are provided.
- 2 (2) (P) is moved relative to (S), and each of 2 (2) is exposed to () by the optics (), so that () is irradiated ( ), Which is irradiated to 2 (A 2), and 2 tan which is different from the tan and is formed by (), the (X) that multiplexes (S) above (P) Provided.
- a chair can be manufactured using a device capable of lighting.
- the method of (P) is to irradiate each of 2 (A 2) and 2 (A 2) which are set in different directions with exposure (), and (S2), ( P) above (S)
- () 2 is irradiated by moving in the direction of (P) so that it is moved relative to (2).
- a method is provided that includes (3) with (S) above (P) with two tans that are different from the tan and that consist of ().
- 001 Ming it is a system that projects an image of a given tan on the base, and a tan optically conjugate first (CP) is generated based on the beam through the tan.
- (P) (CP) is optically conjugated
- (P) 2 (CPZ) is optically conjugated.
- the light between the 3rd school (33) and the 3rd school (3) 3rd school (33) is arranged in the light between the academic system (33) and introduces the beams of the academic system (3) and the beams of the academic system (32) into the tertiary system (33). ) And () are provided.
- the second position (A 2) is defined in the opposite direction, and the optical unit () that irradiates each of () 2 (A 2) with (), 2 (A 2) (P) and a stem (6 62 63, etc.) that moves relative to it, and the optics () has the academic system (P) as described above, and () 2 ( 2) Move it relative to the upper place (S) and
- (X) is provided with a detection stem (8) that obtains information about its relationship with the tan (P) 2 located in () 2 (PZ) located in (2). It According to item 6 of 0017 Ming, it is possible to use the information on the relationship with the acquired tan 2 tan.
- a chair can be manufactured using a device that can be used.
- (P is a method of irradiating () of () of fixed surface () with () and (2) of 2 fixed surface (2) of (). Irradiate 2 () to 2 (2) (SS2) and detect (s) through constant surface () 2 constant surface (2) (SS3), and based on the detection result, ()
- a method is provided that includes obtaining information (4) about the relationship with the tan (P) 2 (P) 2 (2) located at the tan (P).
- the chair can be manufactured by using the light-generating method.
- 9 6 shows the position related to 6 states.
- FIG. 14 is a plan view showing the first and second discs according to 14 8 state.
- X Z is set, and the explanation will be given with reference to this X Z.
- the predetermined direction in the horizontal plane is X
- the direction in the horizontal plane that is fixed to the X direction is the X direction
- the direction in each of the X direction and the direction (that is, the direct direction) is the Z direction.
- the () directions around X ,, and Z are respectively the and Z directions.
- the optics provide 2 A 2 in opposite directions. In this case, it includes the ones that are coated with various kinds of films such as photosensitive (dist) and protective (top) on the base such as the conductor.
- Step 4 is movable while holding the base P in the area including 2 A 2 where exposure is performed but exposure is performed.
- 003t can form an image of a tan when it is exposed to A and an image of a two tan when it is exposed to 2 A 2. It is possible. In the implementation, it is a different tan 2 tan.
- 003 X is a pattern for forming the image of the first pattern on P.
- the unit is equipped with a (scientific system) P that projects an image of the tan formed by the third item on the base P in the exposure (and).
- the molding system has, for example, an exchangeable diffractive element, a plurality of prisms (such as Aki) with variable spacing, and a zoom system (Aoka system). Then, due to the change of diffractor, the pulsing (of), and the movement of the Zum system, the degree distribution of P on the system optically conjugate with P is changed ( If so, change the shape and / or size of the 2 formed in the lighting system.) This will change the case for Tan 3.
- the lighting system can set the lighting conditions corresponding to the tans formed by tan 3, and can also modify the lighting conditions according to the tans.
- the screened system has a part of it, for example, a vertically movable number.
- (Sking do) is arranged in a plane of the illumination system that is approximately conjugate to the plane of the third turn, and the movement of that number of plates causes the third shift on the third turn. Sa () etc. . Then, with this screened system, it is possible to adjust the size () of (the projection of the tan image, which is conjugate with the region with respect to P). That is, it is possible to control the start and end of the light emitted by A. As a result, unnecessary light is prevented in areas other than the skid area on the multiplex P due to a single operation. However, you can control the position to prevent the necessary light.
- X is a pattern for forming the second image on P.
- the unit is equipped with a 2 (scientific system) P 2 that projects an image of the tan formed by the second tan 3 onto the substrate P within the 2 2 (and) where the exposure is projected.
- a 2 (scientific system) P 2 that projects an image of the tan formed by the second tan 3 onto the substrate P within the 2 2 (and) where the exposure is projected.
- X has 2 2 which are academic systems including molding sciences and screened sciences, respectively. Therefore, lighting conditions can be set independently for tan 3 and tan 3.
- the width of the scanning direction () of 2 A and 2 can be adjusted independently in synchronization with the movement of P for scanning. That is, the start and end of each of the light emitted by irradiating A and the two light emitted by irradiating 2 A 2 can be independently controlled.
- the lighting system for example, the science system located upstream of the science system is used in 22, and the 2 science system including the molding science system and the optics section arranged in the current science system is changed to 22.
- the system also serves as a system, and this system and the academic system including the two academic systems of the pair, the two tan 3 33 are respectively defined by.
- Each of 003 37 and 2 2 is the same as that of 2 tan 3 3. , 2 2
- Kiza such as 248, etc. far-infrared light (, Kisa (93), (a) outside light (), etc.) emitted from a lamp is used as an example.
- Kiza Hikari is used.
- the tan 3A has an electronic disk (transformation disk) that produces a variable tan projected onto A.
- a kind of image display also called pa a gh Mod a o S)
- a reflection tan is generated in the area.
- the surface of tan 3 is located at P, and the tan 3 with the number 2 of tan 3 is radiated onto P via P. , Form a tan image as described above.
- control 7 can refer to the tan (tan) to be generated based on the above-mentioned tan. This makes it possible to control the tans generated by in synchronism with the movement of the scan and the base.
- the skeleton () of the tan generated in is determined by the control 7 as the part of the lamella containing P.
- not only the target but also the size of A () at which the image of the formed tan is formed can be adjusted by the two operations of scanning and. That is, it can control the start and start of the light emitted by A.
- Tan 3 has almost the same composition as Tan 3 and includes multiple 2's (Dg a Mc o m o Devce).
- the 7 drives the 2 based on the electronic data (tan) corresponding to the 2 tan formed on the P, and the 2 reflected is tanned by the reflection 2. Since the formation and operation of 2nd turn 3 are all the same as the 3rd turn of the 3rd turn, detailed description thereof is omitted.
- the surface of 2 tan 3 is located at 2 P 2 and is turned by the number 2 of 2 tan 3.
- 2 tan 3 3 each have a modified molding disk, and this modified molding disk is used. This eliminates the need to replace the disk and the operation of the disk on the disk when the tank is changed, as compared with the case where the disk on which the tank is formed is used. Multiple lights can be better.
- this modified molding disk is used.
- 2 PP 2 respectively project the image of the tan generated by the 2 tan 3 3 onto the base P at a predetermined rate.
- 2 PP 2 each have a plurality of elements, which are optically retained.
- each X, 2 of 2 PP 2 is 2 parallel to the Z direction.
- 2 PP 2 has a reduction rate of, for example, 4, 58.
- the ratio of 2 PP 2 may be set within the range of 5 to.
- 2 PP 2 is not only a reduction, but also a deviation between a system and a system.
- 2 PP 2 may be a deviation that does not include a reflection optics, a reflection that does not include a refractor, or a reflection that includes a reflection optics and an element.
- an optical system (or) having a plurality of and at least an intermediate part is provided in that part, and a single optical system is provided. You may also use a loose, in-line type.
- 2 PP 2 may form a deviation between the inverted image and the normal image.
- the rate of P and the rate of the second P 2 may be different.
- the (exit) face of the 2 P 2 number closest to the 2 P 2 face is arranged so that the P faces held by the stage 4 face each other. Turned in 2 turn 3 goes out of 2 side of 2 P 2.
- Step 4 has a holder 4 that holds P, and by the movement of step 4 that includes actuators such as Ata, while holding P in holder 4, X on P ,, Z, x 6, It is able to move in 6 directions.
- the hod 4 is located at 4 on step 4, and the 4 out of 4 of step 4 is approximately the same as the face of P held by hod 4. The height () becomes flat. It should be noted that there may be a difference between the surface of P held by hodder 4 and step 4 of step 4.
- the hodder 4 may be formed integrally with the step 4, in the present embodiment, the hodder 4 and the step 4 are configured as described above, and the hodder 4 is fixed to the 4 by, for example, wearing. .
- the 4 uses the reflection 4 provided on the stage 4 (or the reflection formed on the surface) to measure information on the X ,, and z directions of the stage 4.
- the plane (with respect to z, x, and orientation) of the plane P held by the stage 4 is detected by the Ocus Bengs. 7 drives Step 4 based on the result of The 4 and the result of Ocus Beng, and controls P held by Step 4.
- Okas Beng measures the information in each z direction by the number and detects the information. In an embodiment, some of this number is set in the second, 2A2, but for example in the 2 (3) position, all of the numbers are in the second, 2A2.
- the 4 has the ability to measure the z and x directions of Stage 4, and is disclosed, for example, in 2 5 577 (published 999 2879). In this case, there is no need to provide an occass bend.
- Each of the two can be exposed to light.
- P for example
- the number of projection PP 2 is also included.
- control 7 When irradiating 050 A with exposure, control 7 emits more. The emitted light is reflected by the reflection laser 5, and is then irradiated on the tan 3 including. 7 drives 2 of tan 3 according to the image of the tan formed on P. The light reflected by 2 is emitted from its surface via P and is irradiated on A. Thus, by irradiating the P emitted from the tan 3 P via the P held on the stage 4, an image of the tan is projected on the substrate P and the P is illuminated. It
- the image of 2 tan is projected on the base P by irradiating the 2 tan 3 2 P 2 emitted from 22 onto the P held on the stage 4. And P is illuminated.
- X in the embodiment is a unit for multiplexing () the area of P by scanning P in a predetermined direction with respect to each of A 2 A 2 being irradiated. That is, in the present embodiment, X moves for 2 2 2 in synchronization with the movement of P while moving P in the predetermined direction.
- 3 3 is controlled to irradiate each of 2 A 2 with the tanned light.
- On P there are areas, and areas are set in multiple-tox.
- X is A
- each of A 2 and A 2 has a shape (stud) having the longitudinal direction in the X direction.
- the distance between the mind of and the mind of the second A is more than that of the heart S.
- it is oriented toward A 2 A 2.
- control 7 is 2, G on the side of Y S
- the width in the scanning direction is zero, the width gradually increases from the beginning of the light, that is, when G reaches to the side of A, and when the width reaches the predetermined constant value, Is held constant.
- Is held constant Is held constant.
- the width of A is gradually narrowed from the time when the light reaches the end of, i.e., when G2 reaches the side of, and the time when G2 reaches the side of A. Then the width becomes. As a result, it is possible to prevent the necessary light in the area facing P toward S on P before the light ends.
- control 7 starts G2 on the side of Y S reaching 2 A 2 by irradiating 2 2 and starts (2 of Y S. More specifically, control 7 controls the emission of A After being started, A's position, 2nd A 2's position, Depending on the direction of P, it controls 2 tan 3, etc., and when G on the side of S reaches 2 2, starts 2 of 2.
- the width is gradually widened from the start point of the two lights, that is, the point when G reaches to the 2 2 side, and reaches a predetermined constant value. At that point, its width remains constant. As a result, before and after two lights, it is possible to prevent the necessary light in the area facing P toward S on P. In addition, as for this 2, the part of the work is described above.
- the control 7 stops when the G2 on the side of the side S reaches the on the side of the side 2 2.
- the width of 2 A 2 is gradually narrowed from the point immediately before 2 lights, that is, when G 2 reaches on the side of 2 A 2 by the scrambled system of 2 2 and G 2 becomes 2 When it reaches on the side of A 2, its width becomes.
- the width of 2 A and A 2 is changed by the screen system, that is, the start and end of the two lights are controlled. You may start and finish.
- the illumination system may not have a screen system, or the screen system may have a function of controlling the start and end of the scanning light.
- the image of Ta is projected on A by 3 and the image of Tan is formed on S passing past A. .
- the image of the tan projected onto 2 A 2 by the second tan 3 was updated while syo S was moving with respect to 2 A 2, and s s S that passed 2 A 2 A two-tan image is also formed. That is, S on P is irradiated on A.
- the tan formed by is irradiated with 2 A 2 and the two tan formed by is multiplexed.
- the scan area can be divided into the first and second turns by one scan operation. Can be improved. Moreover, by repeating the skiyan's work for P and the skiyan's work for P, multiple regions on P can be visited. Further, since the skid can be multiplexed by one scanning operation, the second turn and the second turn can be formed in a desired relationship within the skid.
- 006 in the embodiment is lighting 2, tan 3 3,
- the resolution in the light of the eye is different from that in the light of the second eye, or the function in the light of the eye is different from that in the second light.
- the length of irradiation of A may be different from the length of irradiation of 2 A 2.
- 2 PP 2 having optics (numerical number) according to the target can be provided in response to multiple turns, so that equipment cost can be suppressed and P can be suppressed.
- the tan 3 2 tan 3 since the tan 3 2 tan 3 includes, it is possible to easily form different tan images on each of the 2 A 2 s.
- the embodiment X is, for example, WO 99 495 4 or 2 4 289 26 (
- the exposure wavelength is substantially shortened to improve the resolution and the focus is substantially widened. It has two stems, some of which are filled with Q.
- () is used as Q.
- P can be provided with a top film to protect the photosensitivity from Q.
- the 006 stem is provided for the dew between P and P for supplying Q to it. It has 2 to 3 and 2 to recover 22 to recover 23. Q can be sent to 3
- the control 7 controls the stem, and by controlling the stem so that the action by the device and the action by the device are performed in parallel, the control between the face of P and the face of the base P on stage 4 is performed.
- form Q of in the part on P. Is formed larger than the A-th on P. That is,
- the two stems have the same composition as the second stem, have 3 for having 2 to supply Q, have 23 to recover Q, and have 2 P 2 of
- 2 2 of Q is formed in the part on P so that it is filled with the Q of the dew between the surface of 2 and the surface of the base P on stage 4.
- 22 is formed larger than the second A 2 on P. That is, 2 2 is formed from all 2 2.
- the two stems are (for example,
- the equipment and / or the liquid equipment are not required to be installed in the equipment, and equipment such as a factory in which the equipment is installed may be used instead.
- the system is not limited to the above-mentioned structure, for example, European 42 298 report, international publication 2 4 5583, international publication 2 4 5759, international publication 2 5 29559 (2 6 23 2 6), international publication. 2 4 86468 (
- the Q forming 2 is assumed to have the same (), but the () may be different from each other.
- 2 2 may be formed of bodies of different species (of which the folding rate for exposure) is different.
- 2 may be composed of (), and the other may be composed of a higher folding rate for exposure than (44).
- the degree of Q, the degree of exposure, and the degree of exposure may be different.
- Q when the exposure is the light, the light does not pass through water, so Q may be a body such as, for example, pppotte (PP) ooi.
- PP pppotte
- Q in addition to this, there is a transient against exposure and the folding rate is as high as possible. It is also possible to use a stable one (for example) for jiist.
- a refractive index higher than that is, for example, a sopno with a refractive index of about 5 and a C with a refractive index of about 6 Is an O compound, xanthane, putan, decane, etc. (), or a can (Decan n Decahd on aphhaene) having a refractive index of about 6.
- Q may also be a mixture of the liquids above two of these bodies, to which is added any of these bodies ().
- Q may be added with () a salt or acid such as, Cs, or SP, or may be added with () particles.
- Q has a low light absorption coefficient, low temperature, 2PP2, or is stable against the photosensitivity (or top film or reflective film) applied to the surface of the substrate P. I like it.
- Q it is possible to use one with a refractive index of -6 to -8 degrees. It is also possible to use the body as Q.
- 2 of 2 P P 2 may be made of the same material or may be made of different materials.
- one of the two may be composed of a material such as (mosquito), or (a) or (a), (a), (b), (a), (a), (a), (a), (a), (a), (b), quartz, or (b) quartz.
- It can be made of a material with a high refractive index (eg, • 6 or higher).
- Examples of materials with a folding ratio of 6 include, for example, dia, gallium dioxide, etc. disclosed in International Publication No. 259697, or the materials disclosed in International Publication No. 255968. You can use um (fracture rate is 75).
- the child's fold rate be higher than the Q fold rate for exposure.
- a child is made of (folding rate: 5), and Q has a folding rate higher than that of quartz (for example, 6 to 8). Or, 2 PP 2 is used.
- the child turnover rate May be greater than the odds of.
- a material with a refractive index above 6 forms a terminal, and has a higher refractive index than
- the Q-factor of Sa Q is greater than the Q-factor of the terminal, and is greater than the projection number.
- quartz has a high content with Q and is unnecessary, but it is preferable to form at least fluorite.
- the body (such as the type) that fills the space between 2 P may be different.
- the 2 tan image is made using 2 tan 3 3 including, but the characteristic part of this embodiment is that the cum, etc. This is the point at which the image of the second and second tans is formed on P by using the second disc 2 in which a predetermined tan is formed by blocking the above.
- 2 Suku 2 includes a tan that is reduced and shaded on P. Although a disc is used as the disc in this embodiment, a reflective disc may be used.
- the same as the above 2 Are given the same symbols for equivalent parts, and the explanation is omitted for brevity. 00824 indicates three states. In the embodiment X, the second squeeze stage 6 that holds a skeleton and is movable and the second squeeze stage 6 that holds two skets 2 and is movable is provided.
- the second disk 2 is for forming the image of the second tank on P. Tan is formed on the disk. Similarly, 2 tans are formed on 2 sk 2. Skew Stage 6 is the number on P.
- the 2 sq 2 2 stub stage 6 is used to image the 2 tans on the second A 2 on P.
- Each of 0084 and 2 2 reveals the given 2 2 in a uniform distribution.
- Each of the 2 is set to have a shape (sut) whose longitudinal direction is the X direction.
- X of P is
- the X2 of 2 is almost the same as the A 2 of 2 P 2, and in 4 is parallel to the direction. Then, the squeegee 6 holds the sk with the face of the sk, and the 2 scottage 6 holds the 2 sk 2 with the face of 2 sk 2.
- Each of the 008 and 2 scottages 6 6 can move in the X, Z and directional directions while holding the 2 sk 2 by the movement of the squeegee device including actuators such as ata. , 2 Squeegee 6 6 (and thus 2 Squeeze 2), measured by the.
- the ,, 2 reflections provided on the 2nd stage 6 6 are used to measure the respective reports on the 2nd stage 6 6.
- the control 7 drives the storage device based on the result of the , 2 Squeegee 6 6 held, 2 Squeeze 2 control. It should be noted that, even if the 2nd stage 663 has a structure capable of being disclosed in, for example, 8 3 79 (672 34), when the exposure is applied to 0087 A, the control 7 emits the following. The emitted light illuminates the tan in the area of the sk held by the skute 6. After passing through the screen, it is reflected by the reflection line 8 and then exits from its surface via the Pth and is irradiated to. Thus, by irradiating the light emitted from the laser beam through the mask P onto the P held on the stage 4, the image of the tan is projected onto the substrate P, and the P is illuminated.
- the X in the embodiment synchronizes the constant movement of P with respect to 2 A 2, the movement of the constant movement with respect to 2 A 2, and the constant movement of 2 skew 2 with respect to 2 2. Therefore, the tanned light is radiated to each of 2 and A 2. If multiple S on P are to be multiplexed, control 7 will expose each of A 2 A 2 and A 2 which are set to different orientations, and at the same time, S on P will be A 2 2. By controlling the stage 4 so that it is moved relative to it, and moving it in the direction of P, the tan of which is radiated to A is radiated to 2 of 2 Then, multiplex () S on P with and.
- control 7 holds the disk in synchronization with the direction of step 4 that held P.
- Squeegee 6 2 Move the 2nd squeegee 6 holding the sk 2 in the prescribed direction.
- the control 7 moves the squeeze stage 6 in the Z direction and the 2 squeeze stage 6 in the z direction in synchronization with the movement in the direction of the stage 4 when the P is depressed S. Move toward. As a result, the
- the control 7 moves to S when G on the side of Y reaches S. It controls the movement of the squeeze stage 6 in the scanning direction so that the second shadow of the Tan image starts. Furthermore, when P is moved in the direction of P and S is passing by, the () of S that is irradiated by A is completed. Also, while the number A exists on Yoh S (in the light), G on the side of Yoh S reaches 2 2. 7 shows that when the G on the side of S and S reaches 22, the shadow of the 2nd A 2 of the 2-tan image of 2sk 2 begins, so that Controls the movement of the 6 direction.
- the G on the side of S is 2 2 based on the degree of 2 A 2 (and of A 2), P.
- P Control the movement in the scan direction of the 2nd stage 6 so that the 2nd 2nd shadow of the image of the 2nd stage 2nd tank is started when is reached.
- the (2) of S S due to irradiation of 2 A 2 is completed.
- the tanning that is formed by irradiating () Of S is completed.
- the width of the 2nd A 2 is changed, that is, during the predetermined period immediately after the start of the 2nd light and immediately before the end of the 2nd light, that is, 2 It is preferable to control the start and end of the light.
- the tans formed on the 2 sks 2 are different from each other. It can be different.
- the two discs 2 can be, for example, the discs, and the other can be the disc made of only the cumtans. In this case, for example, the case of the task is small.
- (Hinsactor) is, for example, ⁇ 2 ⁇ ⁇ 4 degrees, and the condition of the inertia is modified (
- 2 and 2 may be toss.
- a partial hint is a value of (the number of parts of) is greater than a greater value
- a hint brightness is a value of or close to and is less than that of a partial hint. It is a fair value.
- a 2 Light may be emitted on the other hand.
- exposure X is a mask for forming an image of the tan.
- the present embodiment has a movable stage 6 that holds 2 discs 2 for forming a 2-tan image.
- the present embodiment is equipped with P that projects the image of the tan of 2 sks 2 that was exposed by exposure onto the base P.
- 2 sk 2 is clarified by 2 (2) and so on.
- the surfaces of P are arranged to face each other.
- 0098 P is located at the A 2 A 2 optically conjugate position (, 2 CP CP2 described later, where the two sk 2 tans are formed respectively), and the two sk 2 and 2 sk are intermediate. It has an academic system 3.
- School 3 has two schools, each of which is two of school. In the embodiment, the middle school 3 includes pus.
- the projection P is derived from sk et al.
- 2nd school system 3 32 is aligned with the prescribed survey direction ().
- 2 graduated 3 32 each has a number of lenses, a reflection that has passed through a number of lenses and is reflected towards an intermediate 3
- 2nd school 3 32 2 bends 2nd school 3 32 2 in the Z plane that includes the prescribed search direction ().
- Each of 0100 and 2 sk 2 is a position that is optically conjugate with 2 sk 2 via 2 3rd system 3 32
- Sk2 and sk2 are each of A2 2 defined by one field of the projection P through the third system 33 including the end that is reflected (bent) in the intermediate system 3. Is irradiated.
- the intermediate system 3 has CP and 2 CP2.
- the projection P of the intermediate system 3 can be introduced into the 3rd system 33 from the 2nd system 3 32.
- a 2 is a sut having a long direction in a direction (X) crossing a predetermined scanning direction (). Therefore, since 2 CP has a shape with a longitudinal direction in the X direction of CP2, it is easy to introduce the 2nd school 3 32 from the 3rd school 3 into the 3rd school 33. can do.
- the parts may overlap in the base.
- P is a double-headed with the field of the object 2 on which the disk 2 is placed. And the image of the second tan is cast on 2 AA 2 while P is placed.
- Reference numeral 0106 shows a squeegee 6 according to this embodiment.
- the stage 6 has a stage 6 and a second stage 62 which is movable on the stage 6 while holding the second disc, and a second stage 62 which is movable on the stage 6 while holding the second disc 2. 3 stages 63 and.
- Stage 6 is for moving towards Suku 2 Suku 2.
- Step 6 moves (turns) the disk skeleton relative to the second and the two disk two tans relative to the second 2 in the light of the upper S. It has a relatively sharp stocking.
- the stage 6 has a stage 64 for moving toward the stage 6.
- the stage 64 includes an actuator such as Ata.
- the stage 64 is provided with a movable 64 provided on the X side of the stage 6 and a stator 64 provided corresponding to the movable 64. 7 can move in the direction of step 6 by driving step 64.
- the second and third stages 62 63 on stage 6, and thus 2 sk 2 also move.
- the 0106 2 stage 62 is provided so that it can move in the X ,, and Z directions on the stage 6, and the 2 stage positions of 0, 6 2 and 6 can protect the stage 6.
- the 3-stage 63 is provided on the stage 6 so as to be movable in the Z direction, and the 3-stage position enables the 2-stage 2 to the stage 6.
- 0107 X is a combination of Stage 6, 2 Stage 62, and 3 Stage 63.
- Stem 7 consists of reflection 72 on 2 stage 62, reflection 73 on 3 stage 63, reflection 74 on stage 6 and reflection 72 73 74.
- the 7 is located on the side of the scottage 6 and the reflections 74 include, for example, a killer (toctor), on the stage 6 with which the 7 et al.
- 73 also includes, for example, Nakira (tok), and is placed in a predetermined position on the 3-stage 63 where the beam from 7 can be used. , (3) for measuring the X-direction information of 3 stages 6 62 63. This X-axis is shown below.
- the 7 will be collectively referred to as the 7.
- the 7 measures the information about the X, Z direction of the stage 6 by using the reflection 74 provided on the stage 6.
- the 7 also uses the reflections 72 73 provided on the 2 and 3 stages 62 63 to measure information on the X and Z directions of the 2 and 3 stages 62 63.
- the 7 moves the 2nd and 3rd steps 6 to 63, and controls the 2nd skew 2 held by the 2nd and 3rd steps 62 63.
- the X in the present embodiment also has a fixed movement direction () of P with respect to 2 AA 2, a fixed movement direction of the skew with respect to 2 AA 2, and a movement of 2 skew 2 with respect to 2 2.
- the tanned radiation is irradiated to each of 2 AA 2 to multiplex the P region. After being transferred at the school, it will be transferred to the later middle school 3 through the third school.
- the light reflected by the 3rd system is radiated to the 3rd system 33 and to the determined A of the projection P through the 3rd system 33.
- the projection P is radiated through the beam, which simplifies the formation of the projection P. Also, since A 2 A 2 is set to a different position, by arranging 2 2 2 optical conjugate position reflection (3) It can be directed to system 33 and can be irradiated to each of 2 A 2. In other words, since A 2 2 is set to a different position, it is possible to derive the two (2) of the masks without using the polarization beam splitter, and to obtain the desired (desired) , 2 A 2 can be irradiated. Further, in P of the present embodiment, the two sks 2 and 2 of the sks reflected by the intermediate system 3 become the third system 33 symmetrically with respect to X3 of the third system 33.
- the degree distribution within each child in the third system 33 can also be made symmetric with respect to the optical axis A 3. Therefore, even if the temperature change (including the degree distribution) occurs in each child in the third school 33, for example, the part of P (for example, the part of the third school 33) is moved, By rubbing, the function of the projection P can be maintained in a desired state.
- the step 4 that holds P is In synchronization with the movement of (for example), by using squeegee 6 to move sk2 and sk2 to (for example) Multiple light is received at two turns.
- 0112 7 is based on the degree of P
- control 7 is
- Control 7 also starts by moving in the direction of step 6 each of the second shadow of the image of the tan of the disk and the second shadow of the image of the tan of the disk 2 at the desired timing. I will be done, A
- control 7 moves in the direction of step 4 based on the result of the 4 and at the same time the step 6 of the step 6 measured using the 7 74 is moved. Based on the report, it controls step 64 and moves step 6 toward.
- the shadow of the tan of 2 sk 2 begins.
- the position of the sk with respect to step 6 and the position of 2 sk 2 with respect to step 6 and the position with respect to sk 2 sk 2 on step 6 are determined based on the position relative to A 2 A 2. Since the dynamic position is adjusted, by moving the stage 4 and the stage 6 in synchronization, when the G on the side of the arm S reaches 2, the 2 You can start the shadow of. In addition, by continuing the movement in the direction of stage 6 and in the direction of stage 4, the second image of the image of 2
- the scan S can be multiplexed () between the turn and the second turn in one scan operation. Also, By repeating the scan operation in the direction of P and the scan operation in the direction of P, multiple regions on P can be obtained.
- the paired position with step 4 and step 6 that is, the paired position with one of P and 2 sk 2
- the deviation of the pair position can be detected from the result of the 47. Therefore, when the control 7 detects the deviation of the counter position, it moves either one of the 2 stage 62 3 stage 63 based on the result of the 4 7 and moves one of the 2nd stage and the 2nd stage. Adjust one position. As a result, the positional relationship between the 2nd and 2nd sk S is always adjusted to the desired state, and the tan and the 2nd tan can be formed in the desired s relation.
- the measuring system 7 uses the reaction 74 provided in the stage 6 to obtain the information of the stage 6, and the control 7 controls the stage 6 based on the information.
- the control 7 controls the stage 6 based on the information.
- the reflection 74 and the reflection of the 2-stage 62 obtained by using the reflection 72 and the reflection of the 3-stage 63 obtained by using the reflection 73 one of them is used. You can control the six movements.
- 2 and 3 stages 62 63 are provided as a mechanism for making the 2nd disc 2 movable, and a reflection 72 73 is provided to obtain information of the 2 and 3 stages 62 63. Is provided, but A 2
- the second and second disks are set to the predetermined positions on step 6, respectively, and using the reflection 74, the information on step 6 acquired on the 7 and the information on step 4 acquired on the 4 are added. All you have to do is to synchronize step 6 and step 4 based on.
- information on the relative position of the second and second sk2 for example, a detection that detects (displacement) of the second sk2 (e.g., a sensor such as under), is used. It may be provided separately. Also, an actuator that adjusts the relative position of the two discs 2, for example, an electric element that moves one of the two discs 2, or a voice eater may be provided.
- the movement in the direction of the sk 2 sk 2 is mainly performed by using the stage 6, but as in the case of the 3 rd state, the skage 2 for the sk 2 is used. You can also set up your own storage space. In this case, it is possible to move the 2nd disk 2 in the XZ plane as in the third state, or, as in the present embodiment, to move the 2nd disk 2 in the X plane.
- the P of the present embodiment has the planes of the base P facing each other, as in the above-mentioned 4 states.
- Each of A 2 2 is exposed to light through. Also, the projection P is located at A 2 A 2 optically conjugate positions CP, CP2), and
- the science system 3 has the science system 3 that forms the 3rd CP3 which is the position optically conjugate to the second CP in that part, and is arranged in (of CP) of this 3CP3. And fold School 3 in the Z plane that includes the prescribed direction (). School 3 is the reflection that forms on each of the two CP3 CPs of the tan of the disk.
- the second system 32 has a second system 32 forming a second CP 2 2 CP2 optically conjugate position 4 CP4 in that part.
- the second system 32 is the reflection formed on the second CP4 CP2 of the second disc 2 respectively.
- 2 bends 2 are arranged (up to 4 CP to CP4), so that these bends 2 can be made into molds.
- the secondary systems 3 32 3 3 3 It can be arranged so as to be partly in the Z direction, and the projection P (with 2 discs 2 P) can be suppressed to a short time.
- the intermediate system 3 is arranged with P and 2 CP2, so that the size of the intermediate system 3 is increased and the projection P is not generated. 3 32 and others can be led to 3rd level 33.
- 2 A 2 corresponding to 2 2 are provided, and these 2 2 are in the shape of a stut having a longitudinal direction in a direction (X) transverse to a predetermined scanning direction ().
- X a direction
- ⁇ 4 CP ⁇ CP4 Since it has a shape having a longitudinal direction in the X direction beside it, it is only necessary to facilitate separation after the LA 34 342, and intermediate between each of the 2nd system 3 32 and the like. It can be easily introduced to the 3rd School 33 using the 3rd School.
- Each S on P can be multiplexed. Also, in P of the present embodiment, no polarization beam splitter is used, and
- the two discs 2 and 3 can be controlled by the third system 33, the desired () can be irradiated to each of the and 2. Further, in P of this embodiment, since each of the 2nd school system 3 32 has a La 34 342, the number of projections P can be easily adjusted so that the sum of the Watutu (P eza) approaches zero. Is big, but big
- a 2 can also be exposed to light. In this case, you don't need to install a squeegee.
- the exposure conditions may be different between the P light emitted by A and the P light emitted by 2A2. For example, taking into account the fact that the tan 2 of the sk Even if it is different from the case of tan.
- the types of the disc and the disc 2 may be different.
- the child of the third system through which the discs pass and the second part of the second system 32 through which the two discs 2 pass can be moved and / or tilted. Then, the data projected on A and the data projected on the second 2 2 may be adjusted vertically.
- each of 2 P P 2 has a plurality of (8 in) P a to P whose regions on the X plane are arranged at different positions with respect to the X axis and direction.
- each of the 8 Pa to P is referred to as ⁇ 8 di Pa to P.
- the description may be mainly given in the case of P a, but in the present embodiment, the structures of P a to P are almost the same.
- 2 2 (in 8) is As described in the above, each of those having the reflection 2 and each of the two tans 33 are described with.
- Each of 0141 to 8 di P a to P has a face (face) which is arranged to face P.
- the heights of P a to P are approximately the same ().
- Each of P 2 P 2 has a plurality of P's held by the stage 4 so that the faces of P are opposed to each other, and each of the P 2 P 2's ejects a child.
- the projections P b P d P f P of the second group are also arranged in a row along the X direction.
- the group's projection P a P c P e P and the second group's projection P b P d P f P are arranged toward each other with a certain amount of deviation in the X direction, and are arranged in a staggered manner as a whole. It has been done.
- the group investment P a P c P e P and the second group investment P b P d P f P are displaced from each other in the X direction and have substantially the same distance.
- the plurality of di P a to P are not limited to the above-mentioned ones, and may be any one as long as the projections (of) are arranged at a predetermined distance in the X direction.
- 0143 2 P 2 are arranged P apart from each other with respect to the search direction () of P, and that number of di P a to P is arranged in the same manner as the number of P di P a to P.
- Di P a to P are emitted from the surface of P and irradiated on P.
- each 2 2 is composed of a plurality of di P a to P regions.
- 0145 is the second A 2 A 2 on P and the
- P a to P irradiates multiple 5 a to 5 on P To do.
- 5 a to 5 correspond to the regions where the Tan images of P a to P are generated, respectively.
- A is composed of multiple 5 a-5.
- 0146 5a to 5a are set to a predetermined shape (for example, a substantially square shape in the embodiment), and the widths in the X direction are almost the same.
- 5a to 5 of the group 5a 5c 5e 5 are arranged at a predetermined distance along the X direction so that their centers are set on the second line parallel to X, and the group 2 5b 5 5 5
- the d 5 f 5 is also arranged along the X direction at the same distance as the field of view of the group so that its center is set on the second line parallel to X.
- the group 5's illumination 5 a 5 c 5 e 5 and the group 2's illumination 5 b 5 5 f 5 are arranged in the X direction.
- the field of view of the group and the field of view of the second group are located in the same position with respect to the direction of the field of view of the group and on the side of the field of view of the two groups, and are displaced by only the field with respect to the X direction.
- the irradiations 5a to 5 each have a slope (sp) at which the intensity distribution in the X direction is gradually reduced, that is, in the present embodiment, the intensity distribution in the X direction becomes almost a shape. Yes, each is shot.
- the X (x) of the group area X (X) is the same as the x (x) of the group 2 area in the X direction.
- the exposure is performed in a wider area than in the X direction.
- the area of the group and the area of the second group partially overlap with each other in the X direction, that is, the area of X (x) of the group and the area of the second group with respect to the X direction. Since the x (x) of the illumination area overlaps with the exposure area, the exposure is performed in a wider area by a width corresponding to the x-side circumference than.
- the spurs at the ends of the X-direction power distribution are set on the x-side circumference of the irradiation area, respectively, and the x (x) of the group irradiation area and the x of the second group irradiation area are set. According to (x), the above () is scanned. As a result, in this embodiment, when the projections P a to PP are moved relative to each other and P is performed, the amount of light at the position on the P within the range becomes.
- the distribution in the X direction described above has a sp portion at its end, but for example, there are at least a number of areas aligned in the X direction on P. If the stitching light of is not performed, then the degree distribution at X of 5 a of projection di P a and X of the region of di P as sp is
- the exposure is performed so that the degree distribution of the projection di P a to P with respect to the direction becomes almost a shape.
- the projections P a to P have a substantially square shape on P, a shape other than the square shape, for example, a shape in which a pair of sides are arranged along the X direction or a parallelogram, or It can be shaped.
- 52a ⁇ is exposed to light and a tan image is generated in that area.
- 2 2 is composed of a plurality of 52a-.
- a including a plurality of 5 a to 5 in P and 2 A 2 including a plurality of 52 a in 2 P 2 are suitable.
- the distance between the heart of A and the second heart is smaller than that of S.
- 0151 7 moves toward P by moving S on P so that it is moved relative to A 2 A 2.
- S on P can be multiplexed in one skiing operation, and the output can be improved.
- the number of di P a to P is suppressed, and the projection di P a to P has good performance. And can improve the resolution.
- the projection S with a certain size if the numerical aperture of the projection is increased in order to improve the resolution, it may cause a projection defect. Difficult optics, manufacturing may be difficult, and manufacturing costs may increase.
- the numerical aperture is increased without increasing the size of the optical element, the area due to (J) becomes smaller, and the size of the area that can be illuminated by one run of light also becomes smaller.
- a plurality of di P a to P are provided in parallel, and the diopter S of P is used by using the di P a to P, so that the children of the di P a to P are suppressed and high It is possible to set the desired size.
- a 2 A 2 is
- 2 and 3 3 3 may each have a number of.
- P is arranged corresponding to each of 5 a to 5 optically conjugate regions with respect to di P a to P.
- the illumination 2 has a number of (areas and conjugates that are conjugate to the area of 2 tans 33, i.e., the tans that are imaged in the illuminants 5a-552a-. Only (including) may be exposed May reveal the entire area, including that number of areas.
- the multiple areas are not limited to this. For example, divide multiple areas into groups on 3 and arrange the groups on 3 in the X direction. In this case, it is preferable that the X-direction positions of all regions be different, as in the present embodiment. Also, the columns of the number region of may intersect with the X direction, in essence, as long as they are parallel to the direction intersecting with the direction. Furthermore, it is not necessary to arrange the regions of the numbers in a line, for example, when they are parallel to the X direction, the orientations of the regions of the above numbers may be different. The point is that multiple areas should be arranged at regular intervals.
- the zones of a plurality of zones at a predetermined distance with respect to the direction without dividing them into groups, for example, to arrange them in a row parallel to the X direction.
- the body in the upper region will be illuminated by at least two striations.
- the X-direction gaps of multiple zones are set with respect to the X-direction of the zone, the light traveling in the direction and the light traveling in the direction Is illuminated.
- the X direction is moved in the X direction during the two runs of light according to the irradiation area.
- 01582 is a device related to 7 states.
- the X in this embodiment fills the space between 2 PP 2 including the dew between P planes of a number of di P a to P, and forms 2 22. And then P through that Q.
- the stem shown in 2 is provided with a collection 23 23 having a collection 22 22 provided so as to surround the projection di P a to P, and a () arranged between the projection di P a to P. . 22 22 is provided so that the P side of the collection 23 23 faces each other. , The surfaces of the supply P are arranged to face each other.
- the 22 Q's including and may have different () 's. For example, you can fill 2 2 with () and fill the other with a higher folding rate for exposure. In addition, 2 2 and 2 may be different from each other in body and exposure.
- the number of A, 5 a-5 is expressed as follows. However, irradiation 5 a-5 can be done in each area. Thus, the 2 A 2 number 52-52 may be in the region of, or each of the irradiations 52a- may be in the region of. You can also set it in the range of 5 a-5 of A and 52 a of 2 2. 01 62 8
- a characteristic part of X in the implementation is that it has a detection system that captures information about the relationship between disk 2 and disk 2.
- 016333 indicates X according to the eight states.
- the X in the embodiment has a composition almost the same as the X described in the above-mentioned 4 embodiments, and the 3 shows the X including the optics shown in 5 schematically.
- the same or equivalent parts as those described above are designated by the same reference numerals, and the description thereof will be omitted.
- the X of the present embodiment is provided with P for projecting the image of the tans of the 2nd sk 2 exposed on the exposure onto the base P.
- 2 sk 2 has 2 tan P 2 different from tan P.
- the exposure X is provided with a skstage (6) for holding the sk 2 sk 2.
- the 2 sk 2 has 2 tans (face) 2 on which the 2 tans P 2 are formed. Disc 2 and 2 are revealed by 2 and 2. As in the above, the first is the second on the screen, and 2 2 reveals 2 2 on 2 sk 2 with.
- X in the present embodiment is a disk tank P2 disk.
- the detection system 8 It is equipped with a detection system 8 that obtains information about its relationship with the 2-tan 2 P 2. As shown in Fig. 3, the detection system 8 emits an emitted light s 8 to obtain information about its relationship with the tan P 2 and the tan P 2 8 and the illuminator 8 emits the light 2 s 2 of the sk 2. And 82 for detecting light s through.
- the detection system 8 emits an emitted light s 8 to obtain information about its relationship with the tan P 2 and the tan P 2 8 and the illuminator 8 emits the light 2 s 2 of the sk 2.
- And 82 for detecting light s through In the implementation,
- Reference numeral 82 is the detection light s emitted from the irradiation 8 through a part of the projection P. Stem 8 is based on 82
- the irradiation 8 is partially arranged on the second sk 2, and the irradiation 82 is partially arranged on the second sk 2. 8 irradiates the detection light s via the reflection laser 8 to 3 1 3 different from that of the disk.
- the irradiation 8 emits light having the same exposure length as the detection light s. In the embodiment, since the exposure is performed, the irradiation 8 also emits the detection light s having a length of. This emitted light s may be generated from a light source other than the above-mentioned light source, or may be generated from the above-mentioned light source.
- the detection light s radiated on 0171 3 13 enters the system 3.
- 82 outputs the light s s from 3 1 3 (), without passing through the school 3 of the projection P, the school 3, the second 32, 41 4 ( Via surface 2).
- 017 3 4 is a front view showing the sk 2 sk 2 held on the squeegee (in the case of 4).
- the disk, disk tan P is formed, it is held on the squeegee 6 so that the X plane is almost parallel, 2 sk 2 is 2 sk 2 2 tan P 2 is formed 2
- 2 of 2 Suku 2 is located at in the projection P.
- 2 2 is set to have a shape (suit) with the X direction as the longitudinal direction. Idemitsu s is emitted 3
- the disk and the tank P are provided with an alignment mark formed by a predetermined engagement
- the 2nd disk 2 is provided with a 2 turn P2, an alignment mark 2 formed by a predetermined engagement. It is.
- a plurality of slabs are formed on the side of the formed tan S.
- the three first alignments (R to) are
- the alignment can be placed within 3 1 3 and the irradiation 8 can illuminate the alignment with the detection light s.
- a plurality of 2 alignment marks 2 are formed on the side of 2 tan S 2 where 2 tan P 2 is formed of 2 sk 2.
- the three second alignments 2 (2 to 2) are 2 sq 2 s 2 tan S 2
- the irradiation 8 can illuminate the 2 alignment marks 2 with the detection light s through the disc, the 3rd system, and the 2nd system 32.
- the alignment marks are sequentially placed on the 3 1 3 and the 2 alignment marks corresponding to the alignment marks placed on the 3 1A 3 are aligned. Are sequentially placed at 4 1 4.
- the alignment of the discs is located within 3 1 3 and the alignment marks 2 of the 2 discs 2 corresponding to the alignment are 4
- the detection light s transmitted through the alignment 3 1 3 and the alignment 2 arranged 4 1 4 is 82.
- 82 emits light s from 8 through alignment clock 2 alignment clock 2.
- 01775 is a view of 82 from below (c). In 5,
- 82 is 85 where () 86 capable of detecting light 5 is formed, It is equipped with 84 which transmits the light passing through 86 of 85 through the optical system. 84 is placed on the side of 85 (3) and is capable of detecting light s through transmission 86. 85 is made of, for example, English and is capable of detecting light s.
- the 86 is an opening formed in an area made of a metal such as C in 85 of 2 sk 2 (Z) of 85. 86 is formed in each of the two positions in the X direction, in line with 3, 4 34. But 85
- a predetermined academic system is arranged between the and 84, and the light passing through 86 of 85 is converted to 84 via that academic system.
- 84 includes photons such as, for example (CC, etc.), and an adhesive (P, photoelectron).
- two 86s are arranged in the X direction corresponding to the pair of two alignments 2 arranged on the X side of the two tank S2.
- 82 has two sets of optics and 84, corresponding to 86 in 2.
- 2 82 may be provided corresponding to the 2 alignments of the pair. It is also possible to spread 3 and 4 3 4 in the same direction to detect 2 alignment marks and 2 that are aligned in the same direction.
- the detected light s emitted from 0180 8 and passing through the disk, the part of the projection P, and the disk 2 is 82.
- 2 alignment marks (for example) 2 for example 2
- the transmission 86 system the light s emitted from the 2 alignment mark R 2 becomes 84, and the image of 2 alignment marks (eg 2 (eg 2)) is formed on it.
- 018 16 shows an example of a state in which the image of 2 alignment mark 2 is formed at 84. As shown in 6, an image of 2 alignment marks (eg) 2 (eg 2) is formed at 84.
- 0182 7 processes the signal output from 84 and obtains (relative displacement) between the alignment mark formed through the part of the projection P in 84 and the second alignment mark 2. .
- the control 7 manages 84 (with a scale, etc.) with X determined by the above-mentioned stem 7, and by calculating the deviation between the alignment mark and the second alignment mark 2, , It is possible to obtain the relative position with respect to the alignment mark 2 alignment mark 2 at X determined by the measurement system 7, for example, the deviation of the X axis and the direction (deviation from the relative position). Control 7 can also find the position of 2 alignment marks 2 in X.
- the control 7 obtains the information about the tan P 2 and the tan P 2 (that is, the deviation between the X-axis and the orientation) based on the relationship between the 2 alignment marks, which is obtained in 82. be able to.
- the relationship between the pair of alignment marks in the X direction and the corresponding pair of two alignment marks 2 can be detected. Based on the relationship between the two alignment marks, it is also possible to obtain information on the rotational position (shift in the 6Z direction) relative to the tan P2 and the tan P2. Also, control 7 The position and rotation of the 2-tan PP 2 can also be obtained.
- 01847 adjusts the relationship with tan P 2 tan P 2 based on the information about the relationship with tan P 2 tan P 2 obtained using the detection system 8.
- control 7 scans S on P (
- the control 7 uses the detection stem 8 to obtain information about the relationship with the tank P 2 and the tank P 2. Can be obtained.
- 0186 in parallel with part of the operation of multiplexing S on P, is related to 2 Alignment 2 which is sequentially arranged to Alignment 4 1 4 which is sequentially arranged in 3 1A3. Obtained using the detection system 8, and based on the obtained information, adjust the relationship with tan P 2 and tan P 2, and
- control 7 uses the operation of S on P including the operation of exposure and the stem 8 including the operation of detected light s. It is possible to perform the operation of acquiring information about the relationship with the tan P 2 and the tan P 2 in parallel.
- 0187 7 is projected on the position of P in S on P, so that the images of 2 tan P, P 2 are projected in the light of that S, 2 for 2 2 Adjust the position and / or rotation of one of the tan P 2 and the tan P 2 so that the tan PP 2 is placed in the desired position.
- the alignment mark moves with the tan P in the scanning direction () and the 2 Align with the 2 tan P 2 Track 2 moves in the scanning direction ().
- multiple alignments are formed on the disk along the scanning direction (), and 2 alignments 2 are formed on 2 disks 2 along the scanning direction ().
- each of a plurality of alignment marks is sequentially placed on 3 1 3 and 4 1 4
- Each of a plurality of 2 alignment marks 2 is sequentially placed in the. Therefore, the detection stem 8 is used to move the skeleton 2 and the second alignment mark 2 when moving the sk 2 and the sk 2 in the scanning direction () in order to multiplex the skew S on P. It is possible to sequentially obtain the relations with and, and based on the obtained relations, it is possible to obtain the information regarding the relations with the tan P 2 and the tan P 2 in the light of S on P. it can.
- the alignment mark and the second alignment mark are
- control 7 receives the image of the alignment mark corresponding to the timing and the image of the second alignment mark 2 in each of the plurality of timings.
- control 7 multiplexes S on P (SS6). That is, in the present embodiment, as shown in the chart 2 above, the light adjustment and the position adjustment of the tan P 2 and the tan P 2 are performed in parallel.
- the relationship with the arm S on P is always adjusted to the desired state, and the tan P and the second tan P 2 can be formed in the arm S on the P.
- control 7 uses the detection stem 8 and
- the irradiation 8 may emit light having different wavelengths of exposure (for example, 633) as the detection light s.
- the detection system 8 can reach 82 without passing through the intermediate system 3 by irradiating the detection light s emitted from the irradiation 8 to 3 13.
- an optical system is arranged above the detected light s so that the 8th disc, the 2nd disc, and the 2nd disc 2 are at positions (or their positions) optically conjugate with each other.
- the detection system 8 since the detection system 8 does not irradiate the detection light s onto P and outputs the light s s from the irradiation 8 to 82, it uses the same length of light as the detection light s as in the present embodiment. However, it is possible to obtain information on the relationship between the tan P 2 and the tan P 2 without performing P.
- the detection light s is applied to the disc first
- the detection stem 8 may irradiate the detected light s to the secondary disc 2 first. It has almost the same structure as the academic system 32 academic system 32, and the detection light s radiated to the 2 sk 2 is radiated to the sk 3 1 3 via the 2 academic system 32 and the scientific system 3. Stem 8 can obtain the relationship with tan P 2 and tan P 2 by using 82 the light output s from 3 1 3 of that sk.
- the information about the relationship with the tan P 2 and the tan P 2 is obtained by using the detection system 8 during the light of the P s S, but the P light is started. Before doing so, you may use the detection system 8 to obtain information about its relationship with tan P 2 tan P 2.
- control 7 uses step 6 of sktage 6 to move sk 2 to sk 2 and place them sequentially in 3 1 3 before starting the light of P. 2 Aligned with the alignment mark 2 1 and 2 aligned with the alignment mark 2 (tan P 2 and P 2) are acquired using the detection stem 8.
- control 7 based on the information obtained using the detection system 8, makes the desired relationship between the disk P 2 and the disk 2 P 2 before starting the light of P. Then, adjust the position and / or the rotation of one of the 2nd stage 62 of the stage 6 and the 3rd stage 63 of the stage 6. Then, after adjusting the relationship with tan P 2 and tan P 2, control 7 maintains the relationship with tan P 2 and tan P 2, and checks P for 2 A 2.
- Direction (), the constant movement of the disk with respect to (2) and the movement of the constant movement of (2) with respect to 2 2 in the constant direction () are synchronized.
- the P and the second tan P2 can be formed on the P in the position S. It should be noted that, based on the information about the relationship with the tan P 2 tan P 2 acquired before starting the light of P using the detection system 8, the second tan P 2 tan You can also adjust the P 2 clerk. Of course, before P, and during the light of P, the relation with tan P 2 tan P 2 and the relation with tan P 2 tan P 2 may be adjusted.
- the above-mentioned 8 states, and the same or equivalent parts as the above-mentioned 8 states are designated by the same symbols, and the explanation is omitted.
- the characteristic part of X in the implementation is The point is that one part of 2 2 and 3 1 3 4 1 4 emits light to obtain information about the relationship with tan P 2 and tan P 2. 02007 indicates X related to the 9th state. Similar to the eight states of the above, the projection P irradiates the two with and the two 2 2 irradiates with the 2 0. In the embodiment 201, the irradiation area can be adjusted.
- the optics may be expanded to include, for example, the alignment mark of the mask, and this large illumination (3 1 3) may be exposed. Now move to include at least some alignment marks and expose this moving illumination (3 1 3) to exposure.
- 7 Before performing the light of P, 7 performs the operation to obtain information about the relationship with tan P 2 and tan P 2.
- the 7 controls the and illuminates the exposure to 3 1 3.
- the 3 1 3 system is changed to the 2nd system 32 by the 3rd system without going through the 3rd system. Irradiation on 4 4 will be carried out on 2 2nd school.
- 82 is arranged toward 4 4 and 82 is 4 1 4 These are used as detection light.
- 7 can obtain information on the relationship with tan P 2 and tan P 2 based on the result of 82 in the same manner as the above-mentioned 8 states.
- the number 0208 is the disk held by the disk stage (6) according to this embodiment.
- Alignment 2 is an example of a plan view showing the disk 2.
- a plurality of alignments are formed in each of the X-side and the X-side edge areas in the tan S of the disk along the direction () of the inspection of the disk. Alignment marks can be placed within 3 1 3 and will be revealed by these.
- a plurality of 2 alignment marks 2 are formed in each of the X side and the x side of the 2 tan S 2 of the 2 sk 2 along the scanning direction () of the 2 sk 2.
- 2 Alignment 2 can be located within 4 1 4 and is revealed through the skeleton, faculty 3 and 2 faculty 32.
- Alignment mark 2 Alignment mark 2 is formed on the disk 2 and on the disk 2 so as to correspond to each other.
- the 0402 82 uses the light from 4 1 4 through the 2 alignment clock R 2 as detection light. Based on the result of 82, the 7 can obtain the relationship between the 2 alignment marks R, and based on the result, can obtain the information regarding the relationship with the tan P 2 and the tan P 2. . Then, the control 7 adjusts the relationship with the tan P 2 tan P 2 based on the information about the relationship with the tan P 2 tan P 2 obtained by using the result of 82.
- control 7 controls the optics so that the area can be irradiated with.
- the 2 alignment mark R 2 is 2 It is formed in the tank SS 2 of the disk 2, but
- part of 3 can be set to the side of tan S, for example, if 3 1 3 can be enlarged in the X direction, then, as shown in 4, It can also be formed on the side of the second area.
- the second skeleton is irradiated first and the second semester, second semester 32, second skeleton is irradiated.
- the exposure X may be through 82, but the exposure X may irradiate 4 1 4 (2 sq 2) with 2 2.
- the control 7 can irradiate 4 1 4 with 2 2 by providing a structure similar to the one described above in 2 2 and adjusting the position and / or size of the 4 areas. .
- School 3 2 School 32 has almost the same composition as 4
- Irradiated to 4 (2 sk 2) is irradiated to 3 1 3 via 2nd system 32 and 3rd system. 7 can obtain the information on the relationship with tan P 2 and tan P 2 by using the results of 3 1 3 from 82.
- 82 receives the detection light through a part of the projection P, but receives the detection light without passing through the projection P. Moyo.
- a dedicated optical system other than P where the detection light from the sk 2 suku 2 is emitted by the human is provided, and the detection light via the science system, suku 2 suku 2 is set at 82. You can do it.
- the detection light is applied to the disk 2 and the detection light 82 is applied to the disk 2 through the other disk.
- the detection system 8 is the logical system, but the system 8 is not limited to the logical system, and other systems may be adopted.
- a method of detecting the diffraction (or scattering) generated from 2 alignment marks 2 may be adopted.
- the second and second alignment marks 2 are used as diffractors, and due to the hinted detection light s, the same order (for example) generated by the second alignment mark R 2 is generated.
- 2 alignment marks 2 may be formed discretely, for example, 2 alignment marks 2 may be formed continuously over the area of the tan area. In addition, the two alignment marks 2 may not be placed symmetrically about a line parallel to the center of the disc. You may also keep 2 sk 2 on each squeegee.
- the size and shape of item 2 may be different. For example,
- the width in the X direction and / or the width in the A direction may differ from A 2. If the widths in the X direction are different, only a part of the area inside S is multiplexed ().
- Exposure of A and 2 A 2 continues while passing 2 2, but at least in one area, only during the part where S is passing. Again. In other words, it is possible to multiplex only within S.
- the base was moved with respect to the projection () upon exposure ( In 3 states etc., it is synchronized with the disk), but not limited to these, the projection may be moved with respect to the base. For example, if you use, you need to synchronize the disk with respect to, so you can scan by moving with respect to.
- each S is doubled, it is also possible to carry out multiple lights on the triple according to the principle of Ming.
- 3 tans can be used, and like the tan 2 tan, a 3 tan image can be generated on the base in synchronization with the movement of the base P. it can.
- the three-tan may be a disc that is physically formed from it, or one that is formed from an electronic tan.
- 3 (3) which is illuminated by the third tan and forms its image, is separated from A 2 A 2 and
- the projections may be three independent, depending on their respective regions, or as shown in 5, the projection P, and further
- an optical system corresponding to the 3rd disc can be provided, and light from this system can be reflected and / or refracted to the 3rd system.
- Squeegee 6 can be used, or another squeegee can be used, as shown in 3 above.
- the exposure apparatus is provided with an image display device as a variable shaping disk (also called an active disk, a certain imager), but the variable shaping disk is not limited to this. Instead of this, you can use the image indicator described below.
- a variable shaping disk also called an active disk, a certain imager
- it is an element that spatially modulates the image display, the vibration of the light traveling in a predetermined direction (), or the state of polarization, and the transmission is the transmission (C qudC sa Dspa, the cook display (C, etc.
- the reflection line Reflectors, electric displays (Pec oPhone cDspa) (or electronic ink), lights (Gang gh Vave), etc. are examples.
- a device including a self-luminous image display element may be provided.
- the self-luminous image display device include C (CahodeRa Tbe, inorganic display, organic display (or O ganc gh Em ngDode) display, display, electric field display (FedEmssonDspa), and plasma display). (P Pasma Dspa Pane), etc.
- a self-luminous image display that can be mounted on a chip, a chip having a plurality of chips, a chip eye in which several chips are arranged in an array, or a plurality of substrates is used. The chips can be formed by electrically controlling the chip using the type built in, etc., solid, inorganic, or organic.
- the stem is used to measure the squeegee stage information, but the present invention is not limited to this.
- a stem for detecting the skeleton () provided on the surface of the stage may be used.
- P in the above state is a conductor window made of a semiconductor chair.
- glass for displays ceramics for beds, discs or slabs (UK, NW), or rims used at the location apply.
- rims used at the location apply.
- it is not limited to the circular shape of P, but other shapes such as a shape may be used.
- X is assumed to have a projection, but instead of projection, an optical system that does not form an image of a tan (for example, a diffractive element) is used. Moyo. Further, in the above-mentioned state, a line unbalance is formed on P by forming one of 2 AA 2 as disclosed in, for example, International Publication No. 2 3568. You can.
- the type of 0225 X is not limited to a semiconductor device manufacturing device in which a semiconductor tank is used for P, and a device manufactured by a child manufacturing display device, a pad, an ink, an S chip, (CC) or a mask or a disk. It can also be widely used as a device for manufacturing.
- the X of the present application is manufactured by assembling various systems including the elements listed in the scope of the present application, with the prescribed mechanical degree, electrical degree, and optical degree maintained. It In order to secure these various degrees, after the preparation, adjustments for achieving optical degrees in various academic systems, adjustments for achieving mechanical degrees in various types, and various adjustments are made. Is adjusted to achieve the electrical level.
- the stand-up process from the system includes mechanical connections, electrical circuit connections, and air pressure connections between the various systems. It goes without saying that there is a system stand-up process before this system stand-up process. After the installation process of the system is completed, comprehensive adjustment is performed to secure the degree of exposure. It is desirable that the temperature and the temperature of the exposure equipment be controlled.
- an equip- ment such as a conductor chair is provided with a step 2 for measuring the equivalency, a step 22 for producing a square based on this step, and a step for producing the chair.
- step 2 Optical process that multiplexes the disk turns with X in the above-mentioned embodiment It is manufactured through steps 2 4 including the steps described above, step 2 of raising the chair (including processes such as the dicing step, bonding step, and cage step) 25, and an inspection step 2 6.
- the light of can be accurately and efficiently realized. Therefore, it is possible to produce with high output a chair that has a high-density and complicated circuit pattern used for children and icons. therefore,
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
露光装置EXは、第1方向の異なる位置に第1露光領域AR1と第2露光領域AR2とを規定するとともに、第1露光領域及び第2露光領域のそれぞれに露光光ELを照射する光学ユニットUと、第1露光領域及び第2露光領域と基板とを第1方向に相対的に移動する第1移動システム4とを備える。第1露光領域及び第2露光領域と基板P上の所定領域とを相対的に移動しつつ、光学ユニットUにより第1露光領域及び第2露光領域のそれぞれに露光光ELを照射することにより、第1露光領域に照射される露光光で形成される第1パターンの像と第2露光領域に照射される露光光で形成される第2パターンの像とで基板P上の所定領域を多重露光する。スループットの低下を抑制し、基板を効率良く多重露光できる。
Description
明 細 書
露光装置、露光方法、投影光学系及びデバイス製造方法
技術分野
[0001] 本発明は、基板を露光する露光装置及び露光方法、投影光学系並びにデバイス 製造方法に関する。
背景技術
[0002] フォトリソグラフイエ程で用いられる露光装置において、例えば下記特許文献に開 示されて!/、るような、基板を多重露光する露光装置が知られて 、る。
特許文献 1:特開平 10— 214783号公報
発明の開示
発明が解決しょうとする課題
[0003] 多重露光において、複数のマスクを用意してマスク毎に露光を実行したり、複数の 照明条件を用意してマスク毎に異なる照明条件で露光を実行したりする場合がある。 この場合、マスクを交換する時間や、照明条件等を変更する時間が必要となるため、 露光装置の稼動率が低下し、スループットが低下する可能性がある。
[0004] 本発明はこのような事情に鑑みてなされたものであって、スループットの低下を抑制 し、基板を効率良く多重露光できる露光装置及び露光方法、並びにデバイス製造方 法、投影光学系を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、基板 (P)を露光する露光装置であって、第 1方向の 異なる位置に第 1露光領域 (AR1)と第 2露光領域 (AR2)とを規定するとともに、第 1 露光領域 (AR1)及び第 2露光領域 (AR2)のそれぞれに露光光 (EL)を照射する光 学ユニット (U)と、第 1露光領域 (AR1)及び第 2露光領域 (AR2)と基板 (P)とを第 1 方向に相対的に移動する第 1移動システム (4)とを備え、第 1露光領域 (AR1)及び
第 2露光領域 (AR2)と基板 (P)上の所定領域 (SH)とを相対的に移動しつつ、光学 ユニット (U)により第 1露光領域 (AR1)及び第 2露光領域 (AR2)のそれぞれに露光 光 (EL)を照射することにより、第 1露光領域 (AR1)に照射される露光光 (EL)で形 成される第 1パターン像と、第 2露光領域 (AR2)に照射される露光光 (EL)で形成さ れる、第 1パターン像とは異なる第 2パターン像とで基板 (P)上の所定領域 (SH)を 多重露光する露光装置 (EX)が提供される。
[0007] 本発明の第 1の態様によれば、基板を効率良く多重露光することができる。
[0008] 本発明の第 2の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
[0009] 本発明の第 2の態様によれば、基板を効率良く多重露光できる露光装置を用いて デバイスを製造することができる。
[0010] 本発明の第 3の態様に従えば、基板 (P)を露光する露光方法であって、第 1方向の 異なる位置に規定された第 1露光領域 (AR1)と第 2露光領域 (AR2)とのそれぞれ に露光光 (EL)を照射することと (S2)、基板 (P)上の所定領域 (SH)が第 1露光領域 (AR1)と第 2露光領域 (AR2)とに対して相対移動されるように基板 (P)を第 1方向に 移動することによって、第 1露光領域 (AR1)に照射される露光光 (EL)で形成される 第 1パターン像と、第 2露光領域 (AR2)に照射される露光光 (EL)で形成される、第 1パターン像とは異なる第 2パターン像とで基板 (P)上の所定領域 (SH)を多重露光 すること (S3)を含む露光方法が提供される。
[0011] 本発明の第 3の態様によれば、基板を効率良く多重露光することができる。
[0012] 本発明の第 4の態様に従えば、所定のパターンの像を基板上に投影する投影光学 系であって、第 1パターンを介した露光ビームに基づいて該第 1パターンと光学的に 共役な第 1共役位置 (CP1)を形成する第 1光学系(31)と、第 2パターンを介した露 光ビームに基づいて該第 2パターンと光学的に共役な第 2共役位置 (CP2)を形成す る第 2光学系(32)と、第 1光学系(31)力 の露光ビームと第 2光学系(32)力 の露 光ビームとに基づいて、基板 (P)と第 1共役位置 (CP1)とを光学的に共役にすると共 に、基板 (P)と第 2共役位置 (CP2)とを光学的に共役にする第 3光学系(33)と、第 1 光学系(31)と第 3光学系(33)との間の光路中であって、且つ第 2光学系(32)と第 3
光学系(33)との間の光路中に配置されて、第 1光学系(31)からの露光ビームと第 2 光学系(32)力 の露光ビームとを第 3光学系(33)に導入する中間光学系(30)とを 備える投影光学系 (PL)が提供される。
[0013] 本発明の第 4の態様によれば、第 1パターンを介した露光ビームと第 2パターンを介 した露光ビームのそれぞれを基板に照射する投影光学系を小型化することができる
[0014] 本発明の第 5の態様に従えば、基板 (P)を露光する露光装置であって、第 1方向の 異なる位置に第 1露光領域 (AR1)と第 2露光領域 (AR2)とを規定するとともに、第 1 露光領域 (AR1)及び第 2露光領域 (AR2)のそれぞれに露光光を照射する光学ュ ニット (U)と、第 1露光領域 (AR1)及び第 2露光領域 (AR2)と基板 (P)とを第 1方向 に相対的に移動する第 1移動システム(61、 62、 63など)とを備え、光学ユニット (U) は、上記態様の投影光学系 (PL)を備え、第 1露光領域 (AR1)及び第 2露光領域( AR2)と基板上の所定領域 (SH)とを相対的に移動しつつ、光学ユニット (U)により 第 1露光領域 (AR1)及び第 2露光領域 (AR2)のそれぞれに露光光を照射すること により、第 1露光領域 (AR1)に照射される露光光で形成される第 1パターン像と、第 2露光領域 (AR2)に照射される露光光で形成される、第 1パターン像とは異なる第 2 ノターン像とで基板上の所定領域 (SH)を多重露光する露光装置 (EX)が提供され る。
[0015] 本発明の第 5の態様によれば、上記態様の投影光学系(PL)を用いて基板を効率 良く多重露光することができる。
[0016] 本発明の第 6の態様に従えば、基板 (P)を露光する露光装置であって、第 1所定面
(K1)の第 1領域 (IA1)力もの第 1露光光 (EL)を第 1露光領域 (AR1)に照射し、第 2所定面 (K2)の第 2領域 (IA2)からの第 2露光光 (EL)を第 2露光領域 (AR2)に照 射する光学ユニット (PL)と、第 1所定面 (K1)及び第 2所定面 (K2)を介した検出光( Ls)を受光する受光装置 (82)を有し、受光装置 (82)の受光結果に基づいて、第 1 領域 (IA1)に配置されて 、る第 1パターン (PA1)と第 2領域 (IA2)に配置されて 、る 第 2パターン (PA2)との位置関係に関する情報を取得する検出システム (80)とを備 えた露光装置 (EX)が提供される。
[0017] 本発明の第 6の態様によれば、取得した第 1パターンと第 2パターンとの位置関係 に関する情報を用いて、基板を効率良く多重露光することができる。
[0018] 本発明の第 7の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
[0019] 本発明の第 7の態様によれば、基板を効率良く多重露光することができる露光装置 を用いてデバイスを製造することができる。
[0020] 本発明の第 8の態様に従えば、基板 (P)を露光する露光方法であって、第 1所定面
(K1)の第 1領域 (IA1)力もの第 1露光光 (EL)を第 1露光領域 (AR1)に照射し (SS
1)、第 2所定面 (K2)の第 2領域 (IA2)からの第 2露光光 (EL)を第 2露光領域 (AR
2)に照射すること (SS2)と、第 1所定面 (K1)及び第 2所定面 (K2)を介した光 (Ls) を検出すること (SS3)と、検出結果に基づいて、第 1領域 (IA1)に配置されている第 1パターン (PA1)と第 2領域 (IA2)に配置されて 、る第 2パターン (PA2)との位置関 係に関する情報を取得すること (SS4)とを含む露光方法が提供される。
[0021] 本発明の第 8の態様によれば、取得した第 1パターンと第 2パターンとの位置関係 に関する情報を用いて、基板を効率良く多重露光することができる。
[0022] 本発明の第 9の態様に従えば、第 3または第 8の態様の露光方法を用いて基板を 多重露光すること(S3、 SS6、 204)と、多重露光した基板を現像すること(204)と、 現像した基板を加工すること (205)を含むデバイス製造方法が提供される。
[0023] 本発明の第 9の態様によれば、基板を効率良く多重露光できる露光方法を用いて デバイスを製造することができる。
発明の効果
[0024] 本発明によれば、スループットの低下を抑制し、基板を効率良く多重露光すること ができ、デバイスの生産性を向上することができる。
図面の簡単な説明
[0025] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]第 1、第 2露光領域とショット領域との関係を示す模式図である。
[図 3]第 2実施形態に係る露光装置を示す概略構成図である。
圆 4]第 3実施形態に係る露光装置を示す概略構成図である。
[図 5]第 4実施形態に係る露光装置を示す概略構成図である。
[図 6]第 4実施形態に係るマスクステージを示す斜視図である。
[図 7]第 5実施形態に係る露光装置を示す概略構成図である。
[図 8]第 6実施形態に係る露光装置を示す概略構成図である。
[図 9]第 6実施形態に係る露光装置を示す斜視図である。
[図 10]第 1、第 2露光領域とショット領域との関係を示す模式図である。
[図 11]第 1、第 2露光領域とショット領域との関係を示す模式図である。
[図 12]第 7実施形態に係る露光装置を示す斜視図である。
[図 13]第 8実施形態に係る露光装置を示す模式図である。
[図 14]第 8実施形態に係る第 1、第 2マスクを示す平面図である。
[図 15]受光装置の一例を示す図である。
[図 16]受光装置の受光面にァライメントマークの像が形成された状態を説明するため の模式図である。
[図 17]第 9実施形態に係る露光装置を示す模式図である。
[図 18]第 10実施形態に係る第 1、第 2マスクを示す平面図である。
[図 19]マイクロデバイスの製造工程の一例を説明するためのフローチャート図である
[図 20]本発明の露光方法を説明するフローチャートである。
[図 21]第 8実施形態における露光方法を説明するフローチャートである。
符号の説明
1A…第 1液浸システム、 1B…第 2液浸システム、 2…反射素子、 3A…第 1パターン 形成装置、 3Β···第 2パターン形成装置、 4…基板ステージ、 6…マスクステージ、 1··· 制御装置、 12…供給口、 22…回収口、 30···中間光学系、 30A…第 1反射面、 30B …第 2反射面、 31···第 1光学系、 32···第 2光学系、 33···第 3光学系、 51a〜51h 照射領域、 52a〜52h…照射領域、 61···第 1ステージ、 62···第 2ステージ、 63···第 3ステージ、 70…計測システム、 71···レーザ干渉計、 72···反射部材、 73…反射部 材、 80···検出システム、 81…照射装置、 82···受光装置、 341、 342…凹面ミラー、 AR1…第 1露光領域、 AR2—第 2露光領域、 EL…露光光、 EX…露光装置、 FL(F
Ll、 FL2)…終端光学素子、 ΙΑ1· ··第 1照明領域、 ΙΑ2· ··第 2照明領域、 ΙΑ3· ··第 3 照明領域、 IA4…第 4照明領域、 Κ1· ··下面、 Κ2· ··下面、 LQ…液体、 LR1…第 1液 浸領域、 LR2 第 2液浸領域、 Ls…検出光、 Ml…第 1マスク、 M2…第 2マスク、 P …基板、 PLa〜PLh…投景モジュール、 RM1…第 1ァライメントマーク、 RM2"-第 2 ァライメントマーク、 SH…ショット領域、 U…光学ユニット
発明を実施するための最良の形態
[0027] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Y軸方 向、 X軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸 方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 θ Y,及び 0 Z方向とする。
[0028] <第 1実施形態 >
第 1実施形態について説明する。図 1は、第 1実施形態に係る露光装置 EXを示す 概略構成図である。本実施形態の露光装置 EXは、所定面 (XY平面)上の互いに異 なる位置に第 1露光領域 AR1と第 2露光領域 AR2とを規定するとともに、第 1露光領 域 AR1及び第 2露光領域 AR2のそれぞれに露光光 ELを照射する光学ユニット Uと 、露光光 ELが照射される第 1露光領域 AR1及び第 2露光領域 AR2を含む所定領域 内で基板 Pを保持して移動可能な基板ステージ 4と、露光装置 EX全体の動作を制御 する制御装置 7とを備えている。本実施形態においては、光学ユニット Uは、 Y軸方 向の異なる位置に、第 1露光領域 AR1と第 2露光領域 AR2とを規定する。なお、ここ でいう基板はシリコンウェハのような半導体ウェハ等の基材上に感光材 (フォトレジス ト)、保護膜 (トップコート膜)などの各種の膜を塗布したものを含む。
[0029] 基板ステージ 4は、露光光 ELが照射される第 1露光領域 AR1及び露光光 ELが照 射される第 2露光領域 AR2を含む所定領域内で基板 Pを保持して移動可能である。
[0030] 光学ユニット Uは、第 1露光領域 AR1に照射される露光光 ELで第 1パターンの像を 形成可能であり、第 2露光領域 AR2に照射される露光光 ELで第 2パターンの像を形
成可能である。本実施形態においては、第 1パターンと第 2パターンとは異なるバタ ーンである。
[0031] 露光装置 EXは、基板 P上に第 1パターンの像を形成するための第 1パターン形成 装置 3Aと、露光光 ELを射出可能な光源装置、及び複数の光学部材を含む照明光 学系(いずれも不図示)を有し、その照明光学系を介して第 1パターン形成装置 3Aを 露光光 ELで照明する第 1照明系 IL1とを備えている。光学ユニット Uは、露光光 EL が照射される第 1照明領域 IA1 (図 1では不図示)内で第 1パターン形成装置 3Aによ り形成されたパターンの像を基板 P上に投影する第 1投影系 (光学系) PL1を備えて いる。
[0032] なお、第 1照明系 IL1の照明光学系は、例えば、第 1パターン形成装置 3Aの照明 条件を可変とする成形光学系、第 1パターン形成装置 3Aでの露光光 ELの照度分布 を均一化する照度均一化部材(内面反射型インテグレータあるいはフライアイレンズ など)、第 1パターン形成装置 3A上の第 1照明領域 IA1を規定するマスクブラインド 系(マスキング ·システム、又は可変視野絞りとも呼ばれる)、及びリレー光学系などを 有する。
[0033] また、成形光学系は、例えば、交換可能な回折光学素子、間隔が可変である複数 のプリズム(アキシコンなど)、及びズーム光学系(ァフォーカル系)を有する。そして、 回折光学素子の交換、プリズムの移動(上記間隔の変更)、及びズーム光学系の移 動の少なくとも 1つによって、第 1投影系 PL1の瞳面と光学的に共役となる照明光学 系の瞳面上での露光光 ILの強度分布を変更する (換言すれば、照明光学系の瞳面 に形成される 2次光源の形状及び Z又は大きさを変更する)。これにより、第 1パター ン形成装置 3Aの照明条件が変更される。従って、照明光学系は、第 1パターン形成 装置 3Aにより形成されるパターンに対応した照明条件を設定できるとともに、そのパ ターンの変更に応じて照明条件の変更も行うことが可能となっている。
[0034] さらに、マスクブラインド系は、その少なくとも一部、例えば独立に可動な複数の遮 光板 (マスキング 'ブレード)が、照明光学系内で第 1パターン形成装置 3Aの表面と 光学的にほぼ共役な面に配置され、その複数の遮光板の少なくとも 1つの移動によ つて、第 1パターン形成装置 3A上の第 1照明領域 IA1の大きさ(幅)などを変更する
。従って、このマスクブラインド系によって、第 1露光領域 AR1 (第 1投影系 PL1に関 して第 1照明領域と共役な、第 1パターンの像の投影領域)の大きさ(幅)などを調整 できる。すなわち、第 1露光領域 AR1に照射される露光光 ELによる基板の走査露光 の開始及び終了を制御可能となっている。これにより、 1回の走査露光動作によって 多重露光すべき基板 P上の 1つのショット領域以外での不要な露光が防止される。な お、光源装置を制御してその不要な露光を防止してもよい。
[0035] また露光装置 EXは、基板 P上に第 2パターンの像を形成するための第 2パターン 形成装置 3Bと、露光光 ELを射出可能な光源装置、及び複数の光学部材を含む照 明光学系 (いずれも不図示)を有し、その照明光学系を介して第 2パターン形成装置 3Bを露光光 ELで照明する第 2照射系 IL2とを備えている。光学ユニット Uは、露光 光 ELが照射される第 2照明領域 IA2 (図 1では不図示)内で第 2パターン形成装置 3 Bにより形成されたパターンの像を基板 P上に投影する第 2投影系(光学系) PL2を 備えている。ここで、第 2照明系 IL2の照明光学系は、その構成が第 1照明系 IL1の 照明光学系と同一であるので、その詳細な説明は省略する。本実施形態の露光装 置 EXは、成形光学系、マスクブラインド系などを含む照明光学系をそれぞれ有する 第 1、第 2照明系 IL1、 IL2を備える。このため、第 1パターン形成装置 3Aと第 2バタ ーン形成装置 3Bとでそれぞれ独立に照明条件を設定可能である。さらに、走査露光 時には基板 Pの移動に同期して、第 1、第 2露光領域 AR1、 AR2の走査方向 (Y軸方 向)の幅をそれぞれ独立に調整可能となっている。すなわち、第 1露光領域 AR1に 照射される露光光 ELによる基板の第 1走査露光と、第 2露光領域 AR2に照射される 露光光 ELによる基板の第 2走査露光とでそれぞれ、その開始及び終了を独立に制 御可能となっている。
[0036] なお、第 1照明系 IL1と第 2照明系 IL2とでその一部を兼用してもよい。例えば、 1つ の光源装置から第 1、第 2照明系 IL1、 IL2の照明光学系にそれぞれ露光光 ELを供 給するようにしてもよい。また、照明光学系の一部を兼用してもよい。本実施形態の 露光装置 EXでは、照明光学系のうち、例えば成形光学系よりも上流に配置される第 1光学系は第 1、第 2照明系 IL1、 IL2で兼用し、成形光学系及びその下流に配置さ れる光学部材を含む第 2光学系は第 1、第 2照明系 IL1、 IL2にそれぞれ設けること
が好ましい。この場合、光源装置も兼用してよぐこの光源装置と、第 1光学系及び一 対の第 2光学系を含む照明光学系とを有する照明系によって、第 1、第 2パターン形 成装置 3A、 3Bはそれぞれ露光光 ELで照明される。
[0037] 第 1、第 2照明系 IL1、 IL2のそれぞれは、第 1、第 2パターン形成装置 3A、 3Bを露 光光 ELで照明するものである。第 1、第 2照明系 IL1、 IL2から射出される露光光 EL としては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrFエキシマレ 一ザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波長 193η m)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本
2
実施形態においては露光光 ELとして ArFエキシマレーザ光が用いられる。
[0038] 第 1パターン形成装置 3Aは、第 1露光領域 AR1に投影される可変のパターンを生 成する電子マスク(可変成形マスク)を有する。本実施形態では、この可変成形マスク として、例えば非発光型画像表示素子(空間光変調器: Spatial Light Modulator (SL M)とも呼ばれる)の一種である DMD (Deformable Micro-mirror Device又は Digital Micro-mirror Device)を用いる。 DMDは、所定の電子データに基づいて駆動する複 数の反射素子 (微小ミラー) 2を有する。この複数の反射素子 2は、 DMDの表面に 2 次元マトリックス状に配列され、かつ素子単位で駆動されて露光光 ELを反射、偏向 する。各反射素子 2はその反射面の角度が調整され、本実施形態では、例えば第 1 投影系 PL1の物体面に対して傾いて反射面が設定される第 1状態 (ON状態)では その反射される露光光 ELが第 1投影系 PL1に入射し、その物体面とほぼ平行に反 射面が設定される第 2状態 (OFF状態)ではその反射される露光光 ELが第 1投影系 PL1に入射しな!、ようになって!/、る。
[0039] DMDを含む第 1パターン形成装置 3Aの動作は、制御装置 7により制御される。制 御装置 7は、基板 P上に形成すべき第 1パターンに応じた電子データ (パターン情報) に基づいて DMDの反射素子 2を駆動し、第 1照明系 IL1により照射される露光光 EL を反射素子 2でパターン化する。すなわち、 DMDの少なくとも一部(例えば、第 1照 明領域内)に反射パターンを生成する。第 1パターン形成装置 3Aはその表面が、第 1投影系 PL1の物体面に配置されており、第 1パターン形成装置 3Aの複数の反射 素子 2でパターン化された露光光 ELは、第 1投影系 PL1を介して基板 P上に照射さ
れ、前述の第 1露光領域 AR1にパターン像を形成する。
[0040] また、制御装置 7は、前述のパターン情報に基づ!/、て DMDに生成すべき反射パタ ーン (表示パターン)を変化させることができる。これにより、走査露光時、基板 Pの移 動に同期して、 DMDで生成されるパターンを適宜変化させることができる。なお、 D MDで生成するパターンのスクロール速度 (表示速度)は、基板 Pの移動速度等を含 む走査露光用パラメータの一部として、制御装置 7によって決定される。また、本実施 形態では走査露光時、 DMDの反射素子 2の駆動により、パターンの生成だけでなく 、その生成されたパターンの像が形成される第 1露光領域 AR1の大きさ(幅)なども 調整可能である。すなわち、第 1露光領域 AR1に照射される露光光 ELによる基板の 走査露光の開始及び終了を制御可能となっている。
[0041] 第 2パターン形成装置 3Bは、第 1パターン形成装置 3Aとほぼ同等の構成を有して おり、複数の反射素子 2を備えた DMD (Digital Micro-mirror Device)を含む。制御 装置 7は、基板 P上に形成すべき第 2パターンに応じた電子データ (パターン情報)に 基づいて DMDの反射素子 2を駆動し、第 2照明系 IL2で照明された露光光 ELを反 射素子 2でパターンィ匕する。第 2パターン形成装置 3Bの DMDは、その構成、動作が 第 1パターン形成装置 3Aの DMDと全く同じであるので、その詳細な説明は省略す る。第 2パターン形成装置 3Bはその表面が、第 2投影系 PL2の物体面に配置されて おり、第 2パターン形成装置 3Bの複数の反射素子 2でパターン化された露光光 EL は、第 2投影系 PL2を介して基板 P上に照射され、前述の第 2露光領域 AR2にバタ 一ン像を形成する。
[0042] 本実施形態では、第 1、第 2パターン形成装置 3A、 3Bがそれぞれ可変成形マスク を有し、この可変成形マスクとして DMDを使用する。これにより、パターンが形成され たマスク(レチクル)を用いて露光する場合に比べて、パターンが変更されたときに、 マスクの交換作業及びマスクステージにおけるマスクの位置合わせ操作が不要にな るため、多重露光を一層効率よく行うことができる。なお、 DMDを用いた露光装置は 、例えば特開平 8— 313842号公報、特開 2004— 304135号公報、米国特許第 6, 778, 257号公報に開示されている。指定国または選択国の法令が許す範囲におい て米国特許第 6, 778, 257号公報の開示を援用して本文の記載の一部とする。
[0043] 第 1、第 2投影系 PL1、 PL2はそれぞれ第 1、第 2パターン形成装置 3A、 3Bで生成 されるパターンの像を所定の投影倍率で基板 Pに投影する。第 1、第 2投影系 PL1、 PL2は、それぞれ、複数の光学素子を有しており、それら光学素子は鏡筒で保持さ れている。本実施形態においては、第 1、第 2投影系 PL1、 PL2のそれぞれの光軸 A XI、 AX2は、 Z軸方向と平行である。本実施形態の第 1、第 2投影系 PL1、 PL2は、 その投影倍率が例えば 1Z4、 1/5, 1Z8等の縮小系である。なお、 DMDを使用 する場合には、第 1、第 2投影系 PL1、 PL2の投影倍率を、例えば 1Z500〜1Z10 0の範囲内にしてもよい。なお、第 1、第 2投影系 PL1、 PL2は縮小系のみならず、等 倍系及び拡大系のいずれでもよい。また、第 1、第 2投影系 PL1、 PL2は、反射光学 素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光 学素子とを含む反射屈折系のいずれであってもよい。例えば、国際公開第 2004Z1 07011号パンフレット(対応米国公開第 2006Z0121364号)に開示されているよう に、複数の反射面を有しかつ中間像を少なくとも 1回形成する光学系 (反射系または 反屈系)がその一部に設けられ、単一の光軸を有する、いわゆるインライン型の反射 屈折系を使用してもよい。また、第 1、第 2投影系 PL1、 PL2は、倒立像と正立像との いずれを形成してもよい。また、第 1投影系 PL1の投影倍率と第 2投影系 PL2の投影 倍率とが異なって 、てもよ 、。
[0044] 第 1投影系 PL1の複数の光学素子のうち、第 1投影系 PL1の像面に最も近い終端 光学素子 FL1の下面 (射出面)は、基板ステージ 4に保持された基板 Pの表面が対 向して配置される。第 1パターン形成装置 3Aでパターン化された露光光 ELは、第 1 投影系 PL1の終端光学素子 FL1の下面力も射出される。
[0045] 同様に、第 2投影系 PL2の複数の光学素子のうち、第 2投影系 PL2の像面に最も 近い終端光学素子 FL2の下面 (射出面)は、基板ステージ 4に保持された基板 Pの 表面が対向して配置される。第 2パターン形成装置 3Bでパターン化された露光光 E Lは、第 2投影系 PL2の終端光学素子 FL2の下面力も射出される。
[0046] 基板ステージ 4は、基板 Pを保持する基板ホルダ 4Hを有しており、リニアモータ等 のァクチユエータを含む基板ステージ駆動装置 4Dの駆動により、基板ホルダ 4Hに 基板 Pを保持した状態で、ベース部材 BP上で、 X軸、 Y軸、 Z軸、 0 X、 Θ Υ 及び Θ
Z方向の 6自由度の方向に移動可能である。本実施形態においては、基板ホルダ 4 Hは、基板ステージ 4上に設けられた凹部 4Rに配置されており、基板ステージ 4のう ち凹部 4R以外の上面 4Fは、基板ホルダ 4Hに保持された基板 Pの表面とほぼ同じ 高さ(面一)になるような平坦面となっている。なお、基板ホルダ 4Hに保持された基板 Pの表面と、基板ステージ 4の上面 4Fとの間に段差があってもよい。また、基板ホル ダ 4Hを基板ステージ 4と一体に形成してもよ ヽが、本実施形態では基板ホルダ 4Hと 基板ステージ 4とを別々に構成し、例えば真空吸着などによって基板ホルダ 4Hを凹 部 4Rに固定している。
[0047] 基板ステージ 4 (ひ 、ては基板 P)の位置情報はレーザ干渉計 4Lによって計測され る。レーザ干渉計 4Lは、基板ステージ 4に設けられた反射鏡 4K (又はその側面に形 成される反射面)を用いて基板ステージ 4の X軸、 Y軸、及び θ Z方向に関する位置 情報を計測する。また、基板ステージ 4に保持されている基板 Pの表面の面位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位置情報)は、不図示のフォーカス'レベリング検 出系によって検出される。制御装置 7は、レーザ干渉計 4Lの計測結果及びフォー力 ス 'レべリング検出系の検出結果に基づいて基板ステージ駆動装置 4Dを駆動し、基 板ステージ 4に保持されている基板 Pの位置制御を行う。
[0048] なお、フォーカス ·レべリング検出系はその複数の計測点でそれぞれ基板 Pの Z軸 方向の位置情報を計測してその面位置情報を検出する。本実施形態では、この複数 の計測点はその少なくとも一部が第 1、第 2露光領域 AR1、 AR2内に設定されるが、 例えば後述の第 2実施形態(図 3)の液浸露光装置では、全ての計測点が第 1、第 2 露光領域 AR1、 AR2 (又は第 1、第 2液浸領域 LR1、 LR2)の外側に設定されてもよ い。また、レーザ干渉計 4Lは基板ステージ 4の Z軸、 θ X及び θ Y方向の位置情報を も計測可能としてよぐその詳細は、例えば特表 2001— 510577号公報 (対応国際 公開第 1999Z28790号パンフレット)に開示されている。この場合、フォーカス'レ ベリング検出系は設けなくてもよい。
[0049] 露光装置 EXは、互いに異なる露光条件で、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに露光光 ELを照射することができる。露光条件は、基板 Pに対する 露光光 ELの照射条件を含む。基板 Pに対する露光光 ELの照射条件は、例えば第 1
、第 2パターンの像などに応じてそれぞれ最適化されるとともに、前述の照明条件、 投影系 PL1、 PL2の開口数などを含む。
[0050] 第 1露光領域 AR1に露光光 ELを照射するとき、制御装置 7は、第 1照明系 IL1より 露光光 ELを射出する。第 1照明系 IL1より射出された露光光 ELは、反射ミラー 5で 反射した後、 DMDを含む第 1パターン形成装置 3Aに照射される。制御装置 7は、基 板 P上に形成すべき第 1パターンの像に応じて第 1パターン形成装置 3Aの反射素子 2を駆動する。反射素子 2で反射した露光光 ELは、第 1投影系 PL1を介してその終 端光学素子 FL1の下面力 射出され、第 1露光領域 AR1に照射される。このように、 第 1照明系 IL1より射出され、第 1パターン形成装置 3A及び第 1投影系 PL1を介した 露光光 ELを、基板ステージ 4に保持された基板 P上に照射することによって、第 1パ ターンの像が基板 P上に投影され、基板 Pが露光される。
[0051] 同様に、第 2照明系 IL2より射出され、第 2パターン形成装置 3B及び第 2投影系 PL 2を介した露光光 ELを、基板ステージ 4に保持された基板 P上に照射することによつ て、第 2パターンの像が基板 P上に投影され、基板 Pが露光される。
[0052] 次に、上述の構成を有する露光装置 EXを用いて基板 Pを露光する方法について、 図 1、 2及び図 20を参照しながら説明する。
[0053] 本実施形態の露光装置 EXは、第 1露光領域 AR1及び第 2露光領域 AR2のそれ ぞれに照射される露光光 ELに対して基板 Pを所定方向に走査することにより基板 P の各ショット領域を多重露光(二重露光)する走査型の露光装置である。すなわち、 本実施形態の露光装置 EXは、第 1、第 2露光領域 AR1、 AR2に対して基板 Pを所 定の走査方向に移動しながら、基板 Pの移動に同期して第 1、第 2パターン形成装置 3A、 3Bを制御して、パターン化された露光光 ELを第 1、第 2露光領域 AR1、 AR2の それぞれに照射する走査型の露光装置である。基板 P上には被露光領域であるショ ット領域が複数マトリクス状に設定されている。露光装置 EXは、第 1露光領域 AR1及 び第 2露光領域 AR2に対して基板 P上のショット領域 SHを Y軸方向に移動しつつ、 光学ユニット Uにより第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに露光光 ELを照射することにより、第 1露光領域 AR1に照射される露光光 ELで形成される第 1パターンの像と、第 2露光領域 AR2に照射される露光光 ELで形成される第 2バタ
ーンの像とで、基板 P上のショット領域 SHを多重(二重)露光する。
[0054] 最初に、制御装置 7により基板ステージ 4を制御して第 1投影系 PL1及び第 2投影 系 PL2の下方に移動し、基板ホルダ 4Hに保持された基板 P (ショット領域 SH)を第 1 投影系 PL1及び第 2投影系 PL2に対して所定位置に位置付ける(図 20の Sl)。図 2 は、基板 Pを Y方向に移動しながら基板 P上の 1つのショット領域を露光していると きの、第 1露光領域 AR1及び第 2露光領域 AR2と、基板 P上のショット領域 SHとの 関係を示す模式図である。本実施形態においては、露光光 ELが照射される第 1露 光領域 AR1は、第 1投影系 PL1の投影領域であり、露光光 ELが照射される第 2露光 領域 AR2は、第 2投影系 PL2の投影領域である。
[0055] 図 2に示すように、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれは、 X軸方 向を長手方向とする矩形状 (スリット状)である。第 1露光領域 AR1と第 2露光領域 A R2とは、 1つのショット領域 SHに同時に配置可能となっている。すなわち、本実施形 態においては、第 1露光領域 AR1の中心と第 2露光領域 AR1の中心との Y軸方向の 距離が、 1つショット領域 SHの Y軸方向の大きさよりも小さい。また、本実施形態にお いては、第 1露光領域 AR1と第 2露光領域 AR2とは Y軸方向に離れている。また、第 1露光領域 AR1は第 2露光領域 AR2に対して +Y側に設定される。なお、第 1露光 領域 AR1と第 2露光領域 AR2とは、必ずしも 1つのショット領域 SHに同時に配置可 能でなくてよぐ第 1露光領域 AR1及び第 2露光領域 AR2は任意に設定可能である
[0056] 制御装置 7により第 1及び第 2照明系 IL1, IL2を制御して、 Y軸方向の異なる位置 に規定された第 1露光領域 AR1と第 2露光領域 AR2とのそれぞれに露光光 ELを照 射する(S2)。この照射とともに、基板 P上のショット領域 SHが第 1露光領域 AR1と第 2露光領域 AR2とに対して相対移動されるように基板ステージ 4を制御して基板 Pを Y軸方向に移動する(S3)。この基板の移動によって、第 1露光領域 AR1に照射され る露光光 ELで形成される第 1パターンの像と、第 2露光領域 AR2に照射される露光 光 ELで形成される第 2パターンの像とで基板 P上のショット領域 SHを多重露光(二 重露光)する(S3)。すなわち、制御装置 7は、第 1露光領域 AR1に照射された露光 光 ELで露光された基板 Pの感光層を、現像工程等を介さずに、第 2露光領域 AR2
に照射された露光光 ELで再度露光(二重露光)する。
[0057] 例えば、基板 Pを— Y方向に移動しながら、基板 P上の 1つのショット領域 SHを露 光するときには、制御装置 7は、図 2中、ショット領域 SHの—Y側のエッジ G1が第 1 露光領域 AR1に到達したときに、第 1露光領域 AR1に照射される露光光 ELによる ショット領域 SHの露光 (第 1走査露光)を開始する。本実施形態では、第 1照明系 IL 1のマスクブラインド系によって、第 1走査露光の開始前は基板 P上での第 1露光領 域 AR1の走査方向の幅が零であるが、第 1走査露光の開始時点、すなわちエッジ G 1が第 1露光領域 AR1の +Y側のエッジに到達した時点力 その幅が徐々に広げら れていき、所定の設定値に達した時点でその幅は一定に維持される。これにより、第 1走査露光の開始前後に、基板 P上でショット領域 SHに対して Y方向のショット領 域の不要な露光を防止できる。なお、第 1走査露光の開始直後は、第 2照明系 IL2の マスクブラインド系によって第 2露光領域 AR2の走査方向の幅が零となっている。
[0058] 更に、基板 Pを— Y方向に移動することにより、基板 P上のショット領域 SHは、第 1 露光領域 AR1に対して相対移動される。そして、制御装置 7は、図 2中、ショット領域 SHの +Y側のエッジ G2が第 1露光領域 AR1の— Y側のエッジに到達したときに、第 1露光領域 AR1に対する露光光 ELの照射を停止する。これにより、ショット領域 SH の第 1走査露光が完了する。本実施形態では、第 1照明系 IL1のマスクブラインド系 によって、第 1走査露光の終了直前、すなわちエッジ G2が第 1露光領域 AR1の +Y 側のエッジに到達した時点から第 1露光領域 AR1の幅が徐々に狭められていき、ェ ッジ G2が第 1露光領域 AR1の—Y側のエッジに到達した時点でその幅が零となる。 これにより、第 1走査露光の終了前に、基板 P上でショット領域 SHに対して +Y方向 のショット領域の不要な露光を防止できる。
[0059] また、ショット領域 SH上に第 1露光領域 AR1が存在している間(第 1走査露光中) に、ショット領域 SHの—Y側のエッジ G1が第 2露光領域 AR2に到達する。制御装置 7は、ショット領域 SHの— Y側のエッジ G1が第 2露光領域 AR2に到達したときに、第 2露光領域 AR2に照射される露光光 ELによるショット領域 SHの露光 (第 2走査露光 )を開始する。より具体的には、制御装置 7は、第 1露光領域 AR1への露光光 ELの 照射が開始された後に、第 1露光領域 AR1の位置、第 2露光領域 AR2の位置、及
び基板 Pの— Y方向への移動速度に基づいて、第 2パターン形成装置 3Βなどを制 御して、ショット領域 SHの—Υ側のエッジ G1が第 2露光領域 AR2に到達したときに、 第 2露光領域 AR2への露光光 ELの照射を開始する。本実施形態では、第 2照明系 I L2のマスクブラインド系によって、第 2走査露光の開始時点、すなわちエッジ G1が第 2露光領域 AR2の +Υ側のエッジに到達した時点からその幅が徐々に広げられて ヽ き、所定の設定値に達した時点でその幅は一定に維持される。これにより、第 2走査 露光の開始前後に、基板 Ρ上でショット領域 SHに対して Υ方向のショット領域の不 要な露光を防止できる。また、この第 2走査露光はその動作の一部が前述の第 1走 查露光と並行して行われる。さらに、第 1露光領域 AR1と第 2露光領域 AR2とで前述 の設定値が等しくなつている。
[0060] 更に、基板 Ρを—Υ方向へ移動することにより、基板 Ρ上のショット領域 SHは、第 2 露光領域 AR2に対しても相対移動される。そして、制御装置 7は、ショット領域 SHの +Υ側のエッジ G2が第 2露光領域 AR2の— Υ側のエッジに到達したときに、第 2露 光領域 AR2に対する露光光 ELの照射を停止する。これにより、ショット領域 SHの第 2走査露光が完了する。本実施形態では、第 2照明系 IL2のマスクブラインド系によ つて、第 2走査露光の終了直前、すなわちエッジ G2が第 2露光領域 AR2の +Υ側の エッジに到達した時点から第 2露光領域 AR2の幅が徐々に狭められていき、エッジ G 2が第 2露光領域 AR2の Υ側のエッジに到達した時点でその幅が零となる。これに より、第 2走査露光の終了前に、基板 Ρ上でショット領域 SHに対して +Υ方向のショッ ト領域の不要な露光を防止できる。なお、本実施形態では、マスクブラインド系によつ て第 1、第 2露光領域 AR1、 AR2の幅を変更する、すなわち第 1、第 2走査露光の開 始及び終了を制御するものとした力 例えば前述の DMDによって走査露光の開始 及び終了の制御を行ってもよい。この場合、照明光学系にマスクブラインド系を設け なくてもょ 、し、ある 、はマスクブラインド系に走査露光の開始及び終了を制御する 機能を持たせなくてもよい。
[0061] 第 1露光領域 AR1に対して基板 P上のショット領域 SHが移動している間、第 1バタ ーン形成装置 3Aにより第 1露光領域 AR1に投影されるパターンの像が逐次変更さ れ、第 1露光領域 AR1を通り過ぎたショット領域 SHには第 1パターンの像が形成され
る。同様に、第 2露光領域 AR2に対してショット領域 SHが移動している間、第 2バタ ーン形成装置 3Bにより第 2露光領域 AR2に投影されるパターンの像が逐次変更さ れ、第 2露光領域 AR2を通り過ぎたショット領域 SHには第 2パターンの像も形成され る。すなわち、基板 P上のショット領域 SHが、第 1露光領域 AR1に照射される露光光 ELで形成される第 1パターンの像と、第 2露光領域 AR2に照射される露光光 ELで 形成される第 2パターンの像とで多重露光(二重露光)される。
[0062] 以上説明したように、 Y軸方向の異なる位置に規定された第 1露光領域 AR1と第 2 露光領域 AR2とのそれぞれに露光光 ELを照射するとともに、基板 P上のショット領域 SHが第 1露光領域 AR1と第 2露光領域 AR2とに対して相対移動されるように基板 P を Y軸方向に移動することで、基板 Pのショット領域 SHを効率良く多重露光すること ができる。本実施形態においては、基板 P上の複数のショット領域 SHを多重露光(二 重露光)するときに、 1回のスキャン動作で、 1つのショット領域を第 1パターンの像と 第 2パターンの像とで露光することができ、スループットを向上できる。また、基板 Pの Y方向へのスキャン動作と +Y方向へのスキャン動作とを繰り返すことによって、基 板 P上の複数のショット領域を効率よく多重露光することができる。また、 1回のスキヤ ン動作で 1つのショット領域を多重露光することができるので、各ショット領域内に第 1 ノターンの像と第 2パターンの像とを所望の位置関係で形成することができる。
[0063] 本実施形態の露光装置 EXは、照明系 IL1、 IL2、パターン形成装置 3 A、 3B、及 び投影系 PL1、 PL2を有しており、基板 Pを多重露光する際にも、例えばマスクを交 換したり、照明条件等の露光条件を変更する動作が低減されるため、露光装置 EX の稼動率の低下、スループットの低下を抑制し、基板 Pを効率良く多重露光すること ができる。
[0064] 多重露光においては、互いに異なるパターンを基板 P上に露光するのが一般的で あるが、それぞれの露光において、必ずしも同等の露光精度が必要とは限らない。基 板 Pを多重露光する場合において、例えば、 1回目の露光における解像度と 2回目の 露光における解像度とが互いに異なっていたり、 1回目の露光における投影系の光 学性能と 2回目の露光における投影系の光学性能とが互いに異なっていてもよい可 能性がある。例えば、 1回目の露光における投影系の開口数を、 2回目の露光にお
ける投影系の開口数よりも小さくしてもよい。また、第 1露光領域 AR1に照射される露 光光 ELの波長を、第 2露光領域 AR2に照射される露光光 ELの波長と異ならせても よい。本実施形態においては、多重露光すべきパターンに対応して、目標解像度に 応じた光学性能(開口数)を有する第 1、第 2投影系 PL1、 PL2を設けることができる ので、装置コストの上昇を抑え、基板 Pを効率良く露光することができる。また、本実 施形態においては、第 1パターン形成装置 3A及び第 2パターン形成装置 3Bの各々 が DMDを含んで!/、るので、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに 互 ヽに異なるパターンの像を容易に形成することができる。
[0065] なお、上述の実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とが Y 軸方向に離れているが、第 1露光領域 AR1と第 2露光領域 AR2とはその一部が Y軸 方向において重複していてもよい。また、本実施形態の露光装置 EXは前述の DMD の位置及び Z又は回転 (傾斜)を調整するァクチユエータを備えて 、てもよ 、。
[0066] <第 2実施形態 >
次に、第 2実施形態について説明する。本実施形態の露光装置及び露光方法の 特徴的な部分は、第 1露光領域 AR1及び第 2露光領域 AR2の少なくとも一方では、 液体 LQを介して露光光 ELが基板に照射される点にある。以下の説明において、上 述の第 1実施形態と同一又は同等の構成部分については同一の符号を付し、その 説明を簡略若しくは省略する。
[0067] 図 3は、第 2実施形態を示す概略構成図である。本実施形態の露光装置 EXは、例 えば国際公開第 99Z49504号パンフレット、特開 2004— 289126号 (対応米国特 許公開第 2004Z0165159号公報)等に開示されているような、露光波長を実質的 に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適 用した露光装置であって、露光光 ELの光路の少なくとも一部を液体 LQで満たす第 1、第 2液浸システム 1A、 IBを備えている。本実施形態では、液体 LQとして、水(純 水)を用いる。また、基板 Pには、液体 LQから感光材ゃ基材を保護するトップコート膜 などを設けることができる。
[0068] 第 1液浸システム 1Aは、第 1投影系 PL1の終端光学素子 FL1と基板 Pとの間の露 光光 ELの光路の近傍に設けられ、その光路に対して液体 LQを供給するための供
給口 12 Aを有する供給部材 13 A、及び液体 LQを回収するための回収口 22Aを有 する回収部材 23Aを有して 、る。供給部材 13Aには液体 LQを送出可能な液体供 給装置 (不図示)が接続されており、液体供給装置は、清浄で温度調整された液体 L Qを供給口 12Aを介して光路に供給可能である。また、回収部材 23Aには、真空系 等を含む液体回収装置 (不図示)が接続されており、液体回収装置は、光路を満た す液体 LQを回収口 22Aを介して回収可能である。液体供給装置及び液体回収装 置の動作は制御装置 7に制御され、制御装置 7は、第 1液浸システム 1 Aを制御して、 液体供給装置による液体供給動作と液体回収装置による液体回収動作とを並行し て行うことで、第 1投影系 PL1の終端光学素子 FL1の下面と、基板ステージ 4上の基 板 Pの表面との間の露光光 ELの光路を液体 LQで満たすように、基板 P上の一部に 液体 LQの第 1液浸領域 LR1を局所的に形成する。第 1液浸領域 LR1は、基板 P上 の第 1露光領域 AR1よりも大きく形成される。すなわち、第 1液浸領域 LR1は、第 1露 光領域 AR1の全てを覆うように形成される。
同様に、第 2液浸システム 1Bは、その構成が第 1液浸システム 1Aと同一であり、液 体 LQを供給するための供給口 12Bを有する供給部材 13B、及び液体 LQを回収す るための回収口 22Bを有する回収部材 23Bを有しており、第 2投影系 PL2の終端光 学素子 FL2の下面と、基板ステージ 4上の基板 Pの表面との間の露光光 ELの光路を 液体 LQで満たすように、基板 P上の一部に液体 LQの第 2液浸領域 LR2を局所的に 形成する。第 2液浸領域 LR2は、基板 P上の第 2露光領域 AR2よりも大きく形成され る。すなわち、第 2液浸領域 LR2は、第 2露光領域 AR2の全てを覆うように形成され る。なお、第 1、第 2液浸システム 1A、 IBは、それぞれその一部(例えば、液体供給 装置及び Z又は液体回収装置を構成する部材)が露光装置に設けられている必要 はなぐ例えば露光装置が設置される工場等の設備を代用してもよい。また、液浸シ ステム 100の構造は、上述の構造に限られず、例えば、欧州特許公開第 1420298 号公報、国際公開第 2004Z055803号パンフレット、国際公開第 2004/057590 号パンフレット、国際公開第 2005Z029559号パンフレット (対応米国特許公開第 2 006/0231206^-)、国際公開第 2004,086468号パンフレツ卜(対応米国特許公 開第 2005Z0280791号)、欄 2004— 289126号公報(対応米国特許第 6,952,
253号)などに記載されているものを用いることができる。液浸露光装置の液浸機構 及びその付属機器について、指定国または選択国の法令が許す範囲において上記 の米国特許又は米国特許公開などの開示を援用して本文の記載の一部とする。
[0070] 露光装置 EXは、基板ステージ 4に保持された基板 P上に液体 LQの第 1、第 2液浸 領域 LR1、 LR2を形成し、第 1、第 2液浸領域 LR1、 LR2の液体 LQを介して基板 P 上の第 1、第 2露光領域 AR1、 AR2のそれぞれに露光光 ELを照射して、基板 Pを露 光する。
[0071] 露光装置 EXは、第 1、第 2液浸領域 LR1、 LR2を形成した状態で、第 1、第 2露光 領域 AR1、 AR2に対して基板 P上のショット領域 SHを Y軸方向に移動しつつ、第 1、 第 2露光領域 AR1、 AR2のそれぞれに露光光 ELを照射することにより、第 1露光領 域 AR1に液体 LQを介して照射される露光光 ELで形成される第 1パターンの像と、 第 2露光領域 AR2に液体 LQを介して照射される露光光 ELで形成される第 2パター ンの像とで、基板 P上のショット領域 SHを多重露光(二重露光)する。
[0072] 本実施形態において、第 1露光領域 AR1と第 2露光領域 AR2とは Y軸方向に離れ て 、るが、第 1露光領域 AR1と第 2露光領域 AR2とはその一部が Y軸方向にぉ 、て 重複していてもよい。
[0073] なお、本実施形態にぉ 、て、第 1液浸領域 LR1を形成する液体 LQと、第 2液浸領 域 LR2を形成する液体 LQとは、その種類 (物性)が同一であるものとしたが、互いに その種類 (物性)が異なっていてもよい。例えば、第 1、第 2液浸領域 LR1、 LR2を種 類 (少なくとも露光光 ELに対する屈折率)が異なる液体でそれぞれ形成してもよい。 一例としては、第 1、第 2液浸領域 LR1、 LR2の一方を、水(純水)で形成し、他方を 、水(屈折率は 1. 44程度)よりも露光光 ELに対する屈折率が高い液体で形成しても よい。また、第 1液浸領域 LR1と第 2液浸領域 LR2とで、液体 LQの粘度、露光光 EL の透過率、及び温度の少なくとも 1つが互 、に異なって!/、てもよ!/、。
[0074] 例えば、露光光 ELが Fレーザ光である場合、この Fレーザ光は水を透過しないの
2 2
で、液体 LQは、例えば過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素 系流体であってもよい。また、液体 LQとしては、その他にも、露光光 ELに対する透 過性があってできるだけ屈折率が高ぐ投影系や基板 P表面に塗布されているフォト
レジストに対して安定なもの(例えばセダー油)を用いることも可能である。
[0075] ここで、純水よりも屈折率が高い(例えば 1. 5以上)の液体 LQとしては、例えば、屈 折率が約 1. 50のイソプロパノール、屈折率が約 1. 61のグリセロール(グリセリン)と いった C—H結合あるいは O—H結合を持つ所定液体、へキサン、ヘプタン、デカン 等の所定液体 (有機溶剤)、あるいは屈折率が約 1. 60のデカリン (Decalin: Decahydr ◦naphthalene)などが挙げられる。また、液体 LQは、これら液体のうち任意の 2種類以 上の液体を混合したものでもよいし、純水にこれら液体の少なくとも 1つを添カ卩(混合) したものでもよい。さらに、液体 LQは、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_等
4 4 の塩基又は酸を添加(混合)したものでもよ ヽし、純水に A1酸ィ匕物等の微粒子を添カロ (混合)したものでもよい。なお、液体 LQとしては、光の吸収係数が小さぐ温度依存 性が少なぐ第 1、第 2投影系 PL1、 PL2、及び Z又は基板 Pの表面に塗布されてい る感光材 (又はトップコート膜あるいは反射防止膜など)に対して安定なものであるこ とが好ましい。また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用しても よい。液体 LQとして、超臨界流体を用いることも可能である。
[0076] なお、第 1、第 2投影系 PL1、 PL2の終端光学素子 FL1、 FL2を同一材料で形成し てもよいし、あるいは異なる材料で形成してもよい。また、終端光学素子 FL1、 FL2の 少なくとも一方を、例えば石英 (シリカ)、あるいは、フッ化カルシウム (蛍石)、フッ化バ リウム、フッ化ストロンチウム、フッ化リチウム、及びフッ化ナトリウム等のフッ化化合物 の単結晶材料で形成してもよいし、石英や蛍石よりも屈折率が高い(例えば 1. 6以上 )材料で形成してもよい。屈折率が 1. 6以上の材料としては、例えば、国際公開第 20 05Z059617号パンフレットに開示される、サファイア、二酸化ゲルマニウム等、ある いは、国際公開第 2005Z059618号パンフレットに開示される、塩化カリウム (屈折 率は約 1. 75)等を用いることができる。
[0077] また、第 1、第 2投影系 PL1、 PL2の少なくとも一方では、露光光 ELに対する終端 光学素子の屈折率 nを、露光光 ELに対する液体 LQの屈折率 nよりも小さくしてもよ
1 2
い。例えば、終端光学素子を石英 (屈折率は約 1. 5)で形成し、液体 LQはその屈折 率 nが石英の屈折率よりも高い(例えば 1. 6〜1. 8程度)のものが使用される。ある
2
いは、第 1、第 2投影系 PL1、 PL2の少なくとも一方では、終端光学素子の屈折率 n
を、液体 LQの屈折率 nよりも大きくしてもよい。例えば、屈折率が 1. 6以上の材料で
2
終端光学素子を形成し、液体 LQはその屈折率 nが純水よりも大きくかつ終端光学
2
素子よりも小さいものが使用される。この場合、終端光学素子の屈折率 nよりも小さい 液体 LQの屈折率 nを、投影系の開口数 NAよりも大きくすることが好ましい。
2
[0078] また、本実施形態の投影系において、例えば、国際公開第 2004Z019128号パ ンフレット(対応米国特許公開第 2005Z0248856号)に開示されているように、終 端光学素子の像面側の光路に加えて、終端光学素子の物体面側の光路も液体で満 たすようにしてもよい。さらに、終端光学素子の表面の一部 (少なくとも液体 LQとの接 触面を含む)又は全部に、親液性及び Z又は溶解防止機能を有する薄膜を形成し てもよい。なお、石英は液体 LQとの親和性が高ぐかつ溶解防止膜も不要であるが、 蛍石は少なくとも溶解防止膜を形成することが好ましい。
[0079] また、例えば、終端光学素子 FL1と基板 Pとの間の空間、及び終端光学素子 FL2と 基板 Pとの間の空間の!/、ずれか一方を液体 LQで満たし、他方を気体で満たすように してもよい。このように、終端光学素子 FL1と基板 Pとの間の空間を満たす媒体、及び 終端光学素子 FL2と基板 Pとの間の空間を満たす媒体の条件 (種類など)が異なつ ていてもよい。
[0080] なお、第 2実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とは、第 1 液浸領域 LR1と第 2液浸領域 LR2とによって別々に覆われているが、第 1露光領域 AR1と第 2露光領域 AR2とを 1つの液浸領域で覆うようにしてもよい。
[0081] <第 3実施形態 >
次に、本発明の露光装置及び露光方法の第 3実施形態について説明する。上述 の第 1、第 2実施形態においては、第 1、第 2パターンの像は、 DMDを含む第 1、第 2 パターン形成装置 3A、 3Bを用いて形成されるが、本実施形態の特徴的な部分は、 ガラス板等の透明部材上にクロム等の遮光膜を用いて所定のパターンが形成された 第 1、第 2マスク Ml、 M2を用いて、基板 P上に第 1、第 2パターンの像を形成する点 にある。第 1、第 2マスク Ml、 M2は、基板 P上に縮小投影されるパターンが形成され たレチクルを含む。なお、本実施形態においては、マスクとして透過型のマスクを用 いるが、反射型のマスクを用いてもよい。なお、上述の第 1、第 2実施形態と同一また
は同等の構成部分については同一符号を付し、その説明を簡略若しくは省略する。
[0082] 図 4は、第 3実施形態を示す概略構成図である。本実施形態の露光装置 EXは、第 1マスク Mlを保持して移動可能な第 1マスクステージ 6Aと、第 2マスク M2を保持し て移動可能な第 2マスクステージ 6Bとを備えて 、る。
[0083] 第 1マスク Mlは、基板 P上に第 1パターンの像を形成するための部材である。第 2 マスク M2は、基板 P上に第 2パターンの像を形成するための部材である。第 1マスク Mlには、第 1パターンが形成されている。同様に、第 2マスク M2には、第 2パターン が形成されている。第 1マスク Ml及び第 1マスクステージ 6Aは、基板 P上の第 1露光 領域 AR1に第 1パターンの像を形成するために用いられ、第 2マスク M2及び第 2マ スクステージ 6Bは、基板 P上の第 2露光領域 AR2に第 2パターンの像を形成するた めに用いられる。
[0084] 第 1、第 2照明系 IL1、 IL2のそれぞれは、所定の第 1、第 2照明領域 IA1、 IA2を均 一な照度分布の露光光 ELで照明する。本実施形態においては、第 1、第 2照明領 域 IA1、 IA2のそれぞれは、 X軸方向を長手方向とする矩形状 (スリット状)に設定さ れている。
[0085] 本実施形態においては、第 1照明系 IL1の光軸 BX1は、第 1投影系 PL1の光軸 A XIとほぼ直交しており、図 4においては、 Y軸方向と平行である。同様に、第 2照明 系 IL2の光軸 BX2は、第 2投影系 PL2の光軸 AX2とほぼ直交しており、図 4におい ては、 Y軸方向と平行である。そして、第 1マスクステージ 6Aは、第 1マスク Mlの表 面と Y軸とが直交するように第 1マスク Mlを保持し、第 2マスクステージ 6Bは、第 2マ スク M2の表面と Y軸とが直交するように第 2マスク M2を保持する。
[0086] 第 1、第 2マスクステージ 6A、 6Bのそれぞれは、リニアモータ等のァクチユエータを 含むマスクステージ駆動装置の駆動により、第 1、第 2マスク Ml、 M2を保持した状態 で、 X軸、 Z軸、及び θ Y方向に移動可能である。第 1、第 2マスクステージ 6A、 6B ( ひいては第 1、第 2マスク Ml、 M2)の位置情報は、不図示のレーザ干渉計によって 計測される。レーザ干渉計は、第 1、第 2マスクステージ 6A、 6Bに設けられた反射面 を用いて第 1、第 2マスクステージ 6A、 6Bのそれぞれの位置情報を計測する。制御 装置 7は、レーザ干渉計の計測結果に基づ 、てマスクステージ駆動装置を駆動し、
第 1、第 2マスクステージ 6A、 6Bに保持されている第 1、第 2マスク Ml、 M2の位置 制御を行う。なお、第 1、第 2マスクステージ 6A、 6B3は、例えば特開平 8— 130179 号公報 (対応米国特許第 6,721,034号)に開示される粗微動可能な構成としてもよ い。
[0087] 第 1露光領域 AR1に露光光 ELを照射するとき、制御装置 7は、第 1照明系 IL1より 露光光 ELを射出する。第 1照明系 IL1より射出された露光光 ELは、第 1マスクステー ジ 6Aに保持された第 1マスク Mlの第 1照明領域内のパターンを照明する。第 1マス ク Mlを通過した露光光 ELは、反射ミラー 8で反射した後、第 1投影系 PL1を介して その終端光学素子 FL1の下面から射出され、第 1露光領域 AR1に照射される。この ように、第 1照明系 IL1より射出され、第 1マスク Ml及び第 1投影系 PL1を介した露 光光 ELを、基板ステージ 4に保持された基板 P上に照射することによって、第 1バタ ーンの像が基板 P上に投影され、基板 Pが露光される。
[0088] 同様に、第 2照明系 IL2より射出され、第 2マスク M2及び第 2投影系 PL2を介した 露光光 ELを、基板ステージ 4に保持された基板 P上に照射することによって、第 2パ ターンの像が基板 P上の第 2露光領域 AR2に投影され、基板 Pが露光される。
[0089] 本実施形態の露光装置 EXは、第 1、第 2露光領域 AR1、 AR2に対する基板 Pの所 定の走査方向への移動と、第 1照明領域 IA1に対する第 1マスク Mlの所定の走査 方向への移動と、第 2照明領域 IA2に対する第 2マスク M2の所定の走査方向への 移動とを同期して行うことによって、パターン化された露光光 ELを第 1、第 2露光領域 AR1、 AR2のそれぞれに照射する走査型の露光装置である。基板 P上のショット領 域 SHを多重露光する場合には、制御装置 7は、 Y軸方向の異なる位置に規定され た第 1露光領域 AR1と第 2露光領域 AR2とのそれぞれに露光光 ELを照射するととも に、基板 P上のショット領域 SHが第 1露光領域 AR1と第 2露光領域 AR2とに対して 相対移動されるように基板ステージ 4を制御して基板 Pを Y軸方向に移動することによ つて、第 1露光領域 AR1に照射される露光光 ELで形成される第 1パターンの像と、 第 2露光領域 AR2に照射される露光光 ELで形成される第 2パターンの像とで、基板 P上のショット領域 SHを多重露光(二重露光)する。このとき、制御装置 7は、基板 Pを 保持した基板ステージ 4の Y軸方向への移動と同期して、第 1マスク Mlを保持した第
1マスクステージ 6A及び第 2マスク M2を保持した第 2マスクステージ 6Bを、所定の 走査方向に移動する。本実施形態においては、制御装置 7は、基板 Pのショット領域 SHを露光するとき、例えば基板ステージ 4の一 Y方向への移動と同期して、第 1マス クステージ 6 Aを Z方向に移動するとともに、第 2マスクステージ 6Bを + Z方向に移 動する。これにより、上述の実施形態と同様に、第 1露光領域 AR1に照射された露光 光 ELで露光された基板 Pの感光層が、現像工程などを介さずに、第 2露光領域 AR2 に照射された露光光 ELで再度露光(二重露光)される。
例えば、図 2に示したように、基板 Pを Y方向に移動しながら基板 P上の一つのシ ヨット領域 SHを多重露光する場合、制御装置 7は、図 2において、ショット領域 SHの —Y側のエッジ G1が第 1露光領域 AR1に到達したときに、第 1マスク Mlのパターン の像の第 1露光領域 AR1への投影が開始されるように、第 1マスクステージ 6Aの走 查方向への移動を制御する。さらに基板 Pを Y方向に移動させ、ショット領域 SHが 第 1露光領域 AR1を通り過ぎることによって、第 1露光領域 AR1に照射される露光光 ELによるショット領域 SHの露光 (第 1走査露光)が完了する。また、ショット領域 SH 上に第 1露光領域 AR1が存在している間(第 1走査露光中)に、ショット領域 SHの— γ側のエッジ G1が第 2露光領域 AR2に到達する。制御装置 7は、図 2において、ショ ット領域 SHの— Y側のエッジ G1が第 2露光領域 AR2に到達したときに、第 2マスク M2の第 2パターンの像の第 2露光領域 AR2への投影が開始されるように、第 2マス クステージ 6Bの走査方向への移動を制御する。より具体的には、第 1露光領域 AR1 への第 1パターンの像の投影が開始された後に、第 1、第 2露光領域 AR1、 AR2の 位置 (AR1と AR2の相対距離)、及び基板 Pの Y方向への移動速度に基づいて、 ショット領域 SHの— Y側のエッジ G1が第 2露光領域 AR2に到達したときに、第 2マス ク M2のパターンの像の第 2露光領域 AR2への投影が開始されるように、第 2マスク ステージ 6Bの走査方向への移動を制御する。さらに基板 Pを Y方向に移動させ、 ショット領域 SHが第 2露光領域 AR2を通り過ぎることによって、第 2露光領域 AR2に 照射される露光光 ELによるショット領域 SHの露光 (第 2走査露光)が完了する。これ により、第 1露光領域 AR1に照射される露光光 ELで形成される第 1パターンの像と、 第 2露光領域 AR2に照射される露光光 ELで形成される第 2パターンの像とによるシ
ヨット領域 SHの多重露光(二重露光)が完了する。なお、本実施形態でも、前述の第 1実施形態と同様にマスクブラインド系によって、第 1、第 2走査露光の開始直後及び 終了直前の所定期間中に第 1、第 2露光領域 AR1、 AR2の幅を変化させる、すなわ ち第 1、第 2走査露光の開始及び終了を制御することが好ましい。
[0091] 以上説明したように、本実施形態においては、基板 P上の各ショット領域 SHを多重 露光するための第 1露光領域 AR1と第 2露光領域 AR2とを Y軸方向の異なる位置に 規定した場合にも、第 1マスク Mlのノターンの像の第 1露光領域 AR1への投影と第 2マスク M2のパターンの像の第 2露光領域 AR2への投影とが所定のタイミングで開 始されるように、基板ステージ 4、第 1マスクステージ 6A、及び第 2マスクステージ 6B の同期移動が制御されているので、基板 P上の各ショット領域 SH内に第 1パターン 像と第 2パターン像とを所望の位置関係で形成することができる。
[0092] 本実施形態において、第 1、第 2マスク Ml、 M2に形成されているパターンが互い に異なっているので、そのパターンに応じて第 1、第 2照明系 IL1、 IL2による第 1、第 2マスク Ml、 M2の照明条件、ひいては基板 Pに対する露光光 ELの照射条件を互 いに異ならせてもよい。
[0093] また、第 1、第 2マスク Ml、 M2の一方を、例えば位相シフトマスクとし、他方を、クロ ムパターンのみで形成されたノイナリーマスクとすることができる。この場合、例えば、 位相シフトマスクの照明条件を小 σ照明(コヒーレンスファクター( σ値)力 例えば 0 . 2〜0. 4程度の通常照明)とし、バイナリーマスクの照明条件を変形照明(輪帯照明 又は多極照明など)としてもよい。さらに、第 1、第 2マスク Ml、 Μ2はそれぞ; tl^立相シ フトマスクでもよい。
[0094] また、第 1照明系 IL1はコヒーレント照明とし、第 2照明系は部分的コヒーレント照明 とする等、互いに異なった最適な照明条件で第 1、第 2マスク Ml、 M2を照明するよう にしてもよい。部分的コヒーレント照明とは、 σ = (照明系の開口数 Z投影系の開口 数)の値がゼロより大きく 1より小さい照明であり、コヒーレント照明とは、 σの値がゼロ またはそれに近い値であり、部分的コヒーレント照明の σに比べて相当小さい値であ る。また、第 1露光領域 AR1及び第 2露光領域 AR2の少なくとも一方で、二光束干渉 露光を行うようにしてもよい。また、本実施形態においても、第 1露光領域 AR1と第 2
露光領域 AR2の少なくとも一方で液浸露光を行ってもよい。
[0095] <第 4実施形態 >
次に、本発明の露光装置及び露光方法の第 4実施形態について説明する。図 5は 、第 4実施形態を示す概略構成図である。なお、上述の第 1〜第 3実施形態と同一ま たは同等の構成部分については同一符号を付し、その説明を簡略若しくは省略する 。また、本実施形態の露光装置 EXも、第 1、第 2露光領域 AR1、 AR2に対する基板 Pの所定の走査方向 (Y軸方向)への移動と、第 1照明領域 IA1に対する第 1マスク M 1の所定の走査方向への移動と、第 2照明領域 IA2に対する第 2マスク M2の所定の 走査方向への移動とを同期して行うことによって、パターン化された露光光 ELを第 1 、第 2露光領域 AR1、 AR2のそれぞれに照射する走査型の露光装置である。
[0096] 図 5において、露光装置 EXは、第 1パターンの像を形成するための第 1マスク Ml 及び第 2パターンの像を形成するための第 2マスク M2を保持して移動可能なマスク ステージ 6を備えている。また、本実施形態の光学ユニット Uは、露光光 ELで照明さ れた第 1、第 2マスク Ml、 M2のパターンの像を基板 P上に投影する投影系 PLを備 えている。図 5には不図示である力 第 1マスク Mlは第 1照明系(IL1)力もの露光光 ELで照明され、第 2マスク M2は第 2照明系(IL2)力 の露光光 ELで照明される。
[0097] 本実施形態の投影系 PLは、基板 Pの表面が対向して配置される 1つの終端光学素 子 FLを有し、その 1つの終端光学素子 FLを介して、第 1露光領域 AR1及び第 2露 光領域 AR2のそれぞれに露光光 ELを照射する。
[0098] 投影系 PLは、第 1露光領域 AR1及び第 2露光領域 AR2と光学的に共役な位置( 第 1、第 2マスク Ml、 M2のパターンの中間像がそれぞれ形成される後述の第 1、第 2共役位置 CP1、 CP2)の近傍に配置され、第 1マスク Mlからの露光光 ELと第 2マ スク M2からの露光光 ELとを終端光学素子 FLへ導く中間光学系 30を有している。 中間光学系 30は、第 1マスク Mlからの露光光 ELと第 2マスク M2からの露光光をそ れぞれ反射する二つの反射面を有している。本実施形態においては、中間光学系 3 0は、プリズムを含む。
[0099] また、投影系 PLは、第 1マスク Mlからの露光光 ELを中間光学系 30に導く第 1光 学系 31と、第 2マスク M2からの露光光 ELを中間光学系 30に導く第 2光学系 32とを
有している。これらの第 1、第 2光学系 31、 32は所定の走査方向(Y軸方向)に沿つ て並置されている。第 1、第 2光学系 31、 32のそれぞれは複数のレンズ、及び複数の レンズを通過した露光光 ELを中間光学系 30に向けて反射する反射面を有する反射 部材 FM1、 FM2を含む。第 1、第 2光学系 31、 32の反射部材 FM1、 FM2は、所定 の走査方向(Y軸方向)を含む YZ平面内において第 1、第 2光学系 31、 32の光路を それぞれ折り曲げる。
[0100] 第 1、第 2マスク Ml、 M2でパターンィ匕された露光光 ELのそれぞれは、第 1、第 2光 学系 31、 32を介して、第 1、第 2マスク Ml、 M2と光学的に共役な位置である第 1共 役位置 CP1、第 2共役位置 CP2で中間結像をした後、中間光学系 30に導かれる。 第 1マスク Mlからの露光光 ELと第 2マスク M2からの露光光 ELとは、中間光学系 30 で反射された (折り曲げられた)後、終端光学素子 FLを含む第 3光学系 33を介して、 投影系 PLの同一視野内に規定される第 1露光領域 AR1及び第 2露光領域 AR2の それぞれに照射される。
[0101] 本実施形態では中間光学系 30が第 1共役位置 CP1、第 2共役位置 CP2の近傍に 配置されているため、中間光学系 30の大型化や投影系 PLの長大化を招くことなぐ 第 1、第 2光学系 31、 32からの露光光 ELを第 3光学系 33に導くことができる。
[0102] そして、本実施形態の投影系 PLは、第 1照明領域 IA1に対応した第 1露光領域 A R1と、第 2照明領域 IA2に対応した第 2露光領域 AR2とを備えており、この第 1、第 2 露光領域 AR1、 AR2は、所定の走査方向(Y軸方向)を横切る方向(X軸方向)に長 手方向を有するスリット形状である。したがって、第 1、第 2共役位置 CP1、 CP2の近 傍での露光光 ELの断面形状は X軸方向に長手方向を有する形状となっているため 、第 1、第 2光学系 31、 32からの露光光 ELを中間光学系 30を用いて第 3光学系 33 に容易に導入することができる。
[0103] なお、本実施形態においても、一つの終端光学素子 FL力 の露光光 ELが照射さ れる第 1露光領域 AR1の中心と第 2露光領域 AR2の中心との Y軸方向の距離は、図 2に示したように、基板 P上の 1つのショット領域よりも小さい。また、第 1、第 2露光領 域 AR1、 AR2はその一部が基板上で重複していてもよい。本実施形態の投影系 PL は、第 1、第 2マスク Ml、 M2が配置される物体面側に 2つの視野を有する双頭型の
反射屈折系であり、その 2つの視野内のパターンの像が、基板 Pが配置される像面側 の 1つの視野内の第 1、第 2露光領域 AR1、 AR2にそれぞれ投影される。
[0104] 図 6は、本実施形態に係るマスクステージ 6を示す斜視図である。マスクステージ 6 は、第 1ステージ 61と、第 1ステージ 61上で第 1マスク Mlを保持した状態で移動可 能な第 2ステージ 62と、第 1ステージ 61上で第 2マスク M2を保持した状態で移動可 能な第 3ステージ 63とを備えて 、る。
[0105] 第 1ステージ 61は、第 1マスク Mlと第 2マスク M2とを Y軸方向に移動するためのも のである。第 1ステージ 61は、基板上の 1つのショット領域 SHの走査露光中に、第 1 マスク Mlの第 1パターン全体が第 1照明領域 IA1に対して相対移動される(横切る) とともに、第 2マスク Mの第 2パターン全体が第 2照明領域 IA2に対して相対移動され る(横切る)ように、 Y軸方向に比較的大きなストロークを有している。マスクステージ 6 は、第 1ステージ 61を Y軸方向に移動するための第 1ステージ駆動装置 64を備えて いる。第 1ステージ駆動装置 64は、例えばリニアモータ等のァクチユエータを含む。 本実施形態においては、第 1ステージ駆動装置 64は、第 1ステージ 61の X軸方向両 側に設けられた可動子 64Aと、可動子 64Aに対応して設けられた固定子 64Bとを備 えている。制御装置 7は、第 1ステージ駆動装置 64を駆動することにより、第 1ステー ジ 61を Y軸方向に移動可能である。第 1ステージ 61が Y軸方向に移動することにより 、第 1ステージ 61上の第 2、第 3ステージ 62、 63、ひいては第 1、第 2マスク Ml、 M2 も移動する。
[0106] 第 2ステージ 62は、第 1ステージ 61上で X軸、 Y軸、及び θ Z方向に移動可能に設 けられ、不図示の第 2ステージ駆動装置により、第 1ステージ 61に対して第 1マスク M 1を微小移動可能である。同様に、第 3ステージ 63は、第 1ステージ 61上で X軸、 Y 軸、及び θ Z方向に移動可能に設けられ、不図示の第 3ステージ駆動装置により、第 1ステージ 61に対して第 2マスク M2を微小移動可能である。
[0107] 露光装置 EXは、第 1ステージ 61、第 2ステージ 62、及び第 3ステージ 63の位置情 報をそれぞれ計測可能な計測システム 70を備えている。計測システム 70は、第 2ス テージ 62に設けられた反射部材 72、第 3ステージ 63に設けられた反射部材 73、及 び第 1ステージ 61に設けられた反射部材 74と、反射部材 72、 73、 74の反射面に計
測ビームを投射するとともに、その反射光を受光して第 1ステージ 61、第 2ステージ 6 2、及び第 3ステージ 63のそれぞれの位置情報を取得するレーザ干渉計 71とを含む 。本実施形態においては、レーザ干渉計 71は、マスクステージ 6の +Y側に配置され 、反射部材 74は、例えばコーナーキューブミラー(レトロリフレクタ)を含み、レーザ干 渉計 71からの計測ビームが照射可能な第 1ステージ 61上の所定位置に 2つ設けら れ、反射部材 72は、例えばコーナーキューブミラー(レトロリフレクタ)を含み、第 2ス テージ 62上におけるレーザ干渉計 71からの計測ビームが照射可能な所定位置に 2 つ設けられている。反射部材 73も、例えばコーナーキューブミラー(レトロリフレクタ) を含み、第 3ステージ 63上におけるレーザ干渉計 71からの計測ビームが照射可能な 所定位置に 2つ設けられている。また、不図示ではあるが、計測システム 70は、第 1、 第 2、第 3ステージ 61、 62、 63の X軸方向の位置情報を計測するための反射部材( 反射面)及びレーザ干渉計も備えている。以下では、この X軸用のレーザ干渉計と Y 軸用のレーザ干渉計 71とをまとめてレーザ干渉計 71と呼ぶものとする。
[0108] レーザ干渉計 71は、第 1ステージ 61に設けられた反射部材 74などを用いて第 1ス テージ 61の X軸、 Y軸、及び θ Z方向に関する位置情報を計測する。また、レーザ干 渉計 71は、第 2、第 3ステージ 62、 63に設けられた反射部材 72、 73などを用いて第 2、第 3ステージ 62、 63の X軸、 Y軸、及び θ Z方向に関する位置情報を計測する。 制御装置 7は、レーザ干渉計 71の計測結果に基づいて、第 1、第 2、及び第 3ステー ジ 61〜63を適宜駆動し、第 2、第 3ステージ 62、 63に保持されている第 1、第 2マス ク Ml、 M2の位置制御を行う。
[0109] 次に、本実施形態の露光方法及び露光装置 EXによる基板 Pの露光動作を説明す る。
[0110] 上述したように、本実施形態の露光装置 EXも、第 1、第 2露光領域 AR1、 AR2に 対する基板 Pの所定の走査方向 (Y軸方向)への移動と、第 1照明領域 IA1に対する 第 1マスク Mlの所定の走査方向への移動と、第 2照明領域 IA2に対する第 2マスク M2の所定の走査方向への移動とを同期して行うことによって、パターン化された露 光光 ELを第 1、第 2露光領域 AR1、 AR2のそれぞれに照射して、基板 Pの各ショット 領域を多重露光する。
第 1マスク Mlでパターン化された第 1照明領域 IA1からの露光光 ELは、第 1光学 系 31を介して中間光学系 30の二つの反射面のうちの一方に入射する。中間光学系 30の一方の反射面で反射した露光光 ELは、第 3光学系 33に入射し、第 3光学系 33 の終端光学素子 FLを介して投影系 PLの像面側に規定された第 1露光領域 AR1〖こ 照射される。また、第 2マスク M2でパターンィ匕された第 2照明領域 IA2からの露光光 ELは、第 2光学系 32を介して中間光学系 30の他方の反射面に入射する。中間光 学系 30の他方の反射面で反射した露光光 ELは、第 3光学系 33に入射し、第 3光学 系 33の終端光学素子 FLを介して、投影系 PLの像面側に第 1露光領域 AR1とは異 なる位置 (第 1露光領域 AR1から +Y方向に離れた位置)に規定された第 2露光領 域 AR2に照射される。本実施形態においては、第 1露光領域 AR1へ照射される露 光光 EL、及び第 2露光領域 AR2へ照射される露光光 ELが 1つの終端光学素子 FL を介して基板 Pに照射されるので、投影系 PLの構成を簡素化することができる。また 、第 1露光領域 AR1と第 2露光領域 AR2とを異なる位置に規定しているので、第 1、 第 2露光領域 AR1、 AR2と光学的な共役な位置近傍に反射面 (30)を配置すること によって、第 1マスク Mlからの露光光 ELと第 2マスク M2からの露光光 ELとを第 3光 学系 33に導くことができ、第 1、第 2露光領域 AR1、 AR2のそれぞれに照射すること ができる。すなわち、第 1露光領域 AR1と第 2露光領域 AR2とを異なる位置に規定し ているので、偏光ビームスプリッタを使わずに、第 1マスク Mlからの露光光 ELと第 2 マスク M2からの露光光 ELとを終端光学素子 FLに導くことができ、所望の状態 (所望 の偏光状態)の露光光 ELを第 1、第 2露光領域 AR1、 AR2のそれぞれに照射するこ とができる。また、本実施形態の投影系 PLにおいては、中間光学系 30で反射した第 1マスク Mlからの露光光 ELと第 2マスク M2からの露光光 ELとが、第 3光学系 33の 光軸 AX3に対して対称に第 3光学系 33に入射するので、第 3光学系 33内の各素子 内の温度分布も光軸 AX3に対して対称にすることができる。したがって、第 3光学系 33内の各素子に温度変化 (温度分布変化を含む)が生じても、例えば投影系 PL内 の一部の光学素子 (例えば、第 3光学系 33内の一部のレンズ)を移動したり、傾斜さ せたりすることによって、投影系 PLの光学性能を所望状態に維持することができる。 上述したように、本実施形態においては、基板 Pを保持する基板ステージ 4の Y軸方
向(例えば Y方向)への移動に同期して、マスクステージ 6を用いて第 1マスク Mlと 第 2マスク M2とを Y軸方向(例えば +Y方向)に移動することにより、基板 P上の各シ ヨット領域 SHは、第 1マスク Mlの第 1パターンの像と第 2マスク M2の第 2パターンの 像とで多重露光される。
[0112] 制御装置 7は、基板 Pの露光の開始前に、基板 Pの感光材の感度などに基づいて 基板 Pの各ショット領域を露光するときの基板ステージ 4の移動速度(走査速度)を決 定するとともに、投影系 PLの投影倍率と基板 Pの走査速度とに基づいてマスクステー ジ 6の第 1ステージ 61の走査速度を決定する。また上述の各実施形態と同様に、制 御装置 7は、レーザ干渉計 4Lの計測軸で規定される XY座標系内における第 1露光 領域 AR1および第 2露光領域の各位置情報を予め記憶して 、る。また制御装置 7は 、第 1ステージ 61の Y軸方向への移動によって、第 1マスク Mlのパターンの像の第 1 露光領域 AR1への投影、及び第 2マスク M2のパターンの像の第 2露光領域 AR2へ の投影のそれぞれが所望のタイミングで開始されるように、第 1露光領域 AR1及び第 2露光領域 AR2の位置情報 (例えば、第 1露光領域 AR1と第 2露光領域 AR2との距 離)に基づいて、第 2、第 3ステージ 62、 63を移動し、第 1ステージ 61上におけるマス ク Ml、マスク M2の各位置(マスク Mlとマスク M2の相対位置関係)を調整する。こ の調整が完了した後に、制御装置 7は、基板 P上の各ショット領域を順次多重露光す る。
[0113] 例えば、図 2に示すように、第 1、第 2露光領域 AR1、 AR2に対して基板 Pを Y方 向に移動しながら基板 Pの 1つのショット領域 SHを多重露光する場合、制御装置 7は 、レーザ干渉計 4Lの計測結果に基づ 、て基板ステージ 4の Y方向に移動するとと もに、レーザ干渉計 71及び反射部材 74を用いて計測される第 1ステージ 61の位置 情報に基づ!、て第 1ステージ駆動装置 64を制御して、第 1ステージ 61を + Y方向に 移動する。
[0114] そして、図 2において、ショット領域 SHの—Y側のエッジ G1が第 1露光領域 AR1に 到達したときに第 1マスク Mlのパターンの投影が開始される。さらに、第 1ステージ 6 1の +Y方向への移動と、基板ステージ 4の Y方向への移動を続けることによって、 マスク Mlのパターンの像の第 1露光領域 AR1への投影が連続的に行われ、マスク
Mlの第 1パターンが第 1照明領域 IA1に対して相対移動されるとともに、ショット領域 SHが第 1露光領域 AR1に対して相対移動される。そして、図 2において、ショット領 域 SHの + Y側のエッジ G2が第 1露光領域 AR1の Y側エッジに到達した時点で、 第 1マスク Mlのパターンの投影が終了する。これにより、第 1露光領域 AR1に照射さ れる露光光 ELによるショット領域 SHの露光 (第 1走査露光)が完了する。ショット領域 SH上に第 1露光領域 AR1が存在している間(第 1走査露光中)に、ショット領域 SH の Y側のエッジ G1が第 2露光領域 AR2に到達する。ショット領域 SHの Y側のェ ッジ G 1が第 2露光領域 AR1に到達したときに第 2マスク M2のパターンの投影が開 始される。上述したように、第 1露光領域 AR1と第 2露光領域 AR2との相対的な位置 関係 (Y軸方向の距離)に基づいて、第 1ステージ 61に対する第 1マスク Mlの位置 及び第 2マスク M2の位置、すなわち第 1ステージ 61上における第 1マスク Mlと第 2 マスク M2との相対的な位置関係が予め調整されているので、基板ステージ 4と第 1ス テージ 61とを同期して移動することによって、ショット領域 SHの一 Y側のエッジ G1が 第 2露光領域 AR1に到達したときに第 2マスク M2のパターンの投影を開始すること ができる。さらに、第 1マスクステージ 61の +Y方向への移動と、基板ステージ 4の一 Y方向への移動を続けることによって、第 2マスク M2のパターンの像の第 2露光領域 AR2への投影が連続的に行われ、第 2マスク M2の第 2パターンが第 2照明領域 IA2 に対して相対移動されるとともに、ショット領域 SHが第 2露光領域 AR2に対して相対 移動される。そして、図 2において、ショット領域 SHの +Y側のエッジ G2が第 2露光 領域 AR2の Y側エッジに到達した時点で、第 2マスク M2のパターンの投影が終了 する。これにより、ショット領域 SHの第 1走査露光完了後に、第 2露光領域 AR2に照 射される露光光 ELによるショット領域 SHの露光 (第 2走査露光)も完了する。すなわ ち、第 1マスク Mlの第 1パターンの像と、第 2マスク M2の第 2パターンの像とによるシ ヨット領域 SHの多重露光も完了する。なお、本実施形態でも、前述の第 1実施形態と 同様に、各照明系内に配置される可変視野絞り(マスクブラインド系)によって、各走 查露光の開始及び終了を制御してもよい。
このように、本実施形態においても、 1回のスキャン動作で 1つのショット領域 SHを 第 1パターンの像と第 2パターンの像とで多重(二重)露光することができる。また、基
板 Pの Y方向へのスキャン動作と +Y方向へのスキャン動作とを繰り返すことによつ て、基板 Ρ上の複数のショット領域を効率良く多重露光することができる。
[0116] また、本実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2との相対位 置関係などに基づいて、第 1ステージ 61上での第 1、第 2マスク Ml、 Μ2の位置(第 1マスク Mlと第 2マスク Μ2との相対位置)を予め調整するとともに、レーザ干渉計 4L 、 71の計測結果に基づいて基板ステージ 4と第 1ステージ 61とを同期移動することに よって、第 1マスク Mlの第 1パターンの投影と第 2マスク M2の第 2パターンの投影と のそれぞれを所望のタイミングで実行することができ、各ショット領域 SH内に第 1マス ク Mlの第 1パターンの像と第 2マスク M2の第 2パターンの像とを所望の位置関係で 形成することができる。なお、本実施形態では、第 1、第 2パターンの投影タイミングの 調整は前述のマスクブラインド系で行うこととし、第 1、第 2パターンの像と基板上のシ ヨット領域との高精度な位置合わせ (ァライメント)のために、第 1、第 2マスク Ml、 M2 の相対的な位置関係の調整を行うだけでもよ 、。
[0117] なお、図 2のように、基板 P上の 1つのショット領域 SHを多重露光しているときに、基 板ステージ 4と第 1ステージ 61との相対位置、すなわち基板 Pと第 1、第 2マスク Ml、 M2の少なくとも一方との相対位置が目標相対位置力 ずれる可能性がある。本実施 形態では、その相対位置のずれをレーザ干渉計 4L、 71の計測結果力 検知するこ とができる。そこで、制御装置 7は、その相対位置のずれを検知した場合には、レー ザ干渉計 4L、 71の計測結果に基づ ヽて第 2ステージ 62及び第 3ステージ 63の少な くとも一方を移動して、第 1マスク Ml及び第 2マスク M2の少なくとも一方の位置を調 整する。これにより、第 1、第 2マスク Ml、 M2とショット領域 SHとの各位置関係が常 に所望状態に調整され、第 1パターンの像と第 2パターンの像とをショット領域 SH内 に所望の位置関係で形成することができる。
[0118] なお、投影系 PLへの露光光 ELの照射、投影系 PLの周囲の環境変化 (温度変化、 圧力変化含む)などにより投影系 PLの光学特性が変化して、第 1露光領域 AR1と第 2露光領域 AR2との相対位置関係に変化が生じる可能性がある。この場合には、投 影系 PLへの露光光 ELの照射量、投影系 PLの周囲の環境変化を検出して、第 1マ スク Mlの第 1パターンと第 2マスク M2の第 2パターンとのそれぞれがショット領域 SH
内の所望の位置に形成されるように、その検出結果に基づいて第 2ステージ 62及び 第 3ステージ 63の少なくとも一方を動かして、第 1マスク Ml及び第 2マスク M2の少な くとも一方の位置を調整してもよ 、。
[0119] また、第 1光学系 31、第 2光学系 32、及び第 3光学系 33の少なくとも 1つを調整し て、第 1露光領域 AR1と第 2露光領域 AR2との相対位置関係 (Y軸方向の距離など) を補正してもよい。さらに、上記の照射量や環境変化に起因して投影系 PLの結像特 性も変動する。そこで、上記の検出結果に基づいて、例えば、投影系 PLの調整 (光 学素子の移動を含む)、露光光 ELの波長特性(中心波長、スペクトル幅など)の調整 、及び基板 Pの移動 (Z軸、 Θ X及び Θ Y方向の位置調整)の少なくとも 1つを行うこと が好ましい。これにより、結像特性の変動の抑制 (補正)、及び Z又はその変動に起 因する露光精度の低下の防止を図ることが可能となる。
[0120] また、本実施形態においては、計測システム 70は第 1ステージ 61に設けられた反 射部材 74を使って第 1ステージ 61の位置情報を取得し、制御装置 7はその位置情 報に基づいて第 1ステージ 61の位置制御をしている力 反射部材 74を省いて、反射 部材 72を使って得られる第 2ステージ 62の位置情報と、反射部材 73を使って得られ る第 3ステージ 63の位置情報との少なくとも一方を使って第 1ステージ 61の移動を制 御するようにしてちょい。
[0121] なお、本実施形態においては、第 1、第 2マスク Ml、 M2を可動にするための機構 として第 2、第 3ステージ 62、 63を設け、第 2、第 3ステージ 62、 63の位置情報を取 得するために反射部材 72、 73を設けているが、第 1露光領域 AR1と第 2露光領域 A R2との相対位置の変化、及び第 1ステージ 61と基板ステージ 4との同期誤差 (位置 誤差)が許容できる場合には、これらを省いてもよい。この場合、第 1マスク Ml及び 第 2マスク M2を第 1ステージ 61上の所定位置にそれぞれ固定し、反射部材 74を用 いてレーザ干渉計 71で取得された第 1ステージ 61の位置情報とレーザ干渉計 4Lで 取得された基板ステージ 4の位置情報とに基づ 、て、第 1ステージ 61と基板ステージ 4とを同期移動させるだけでよい。この場合、第 1、第 2マスク Ml、 M2の相対的な位 置関係に関する情報、例えば第 1、第 2マスク Ml、 M2の位置情報 (位置又は変位) などを検出する検出系(例えば、エンコーダなどの光学センサ)を、レーザ干渉計 71
とは別に設けてもよい。また、第 1、第 2マスク Ml、 M2の相対的な位置関係を調整 するァクチユエータ、例えば第 1、第 2マスク Ml、 M2の少なくとも一方を微動する圧 電素子、あるいはボイスコイルモータなどを設けてもょ 、。
[0122] また、本実施形態においては、第 1マスク Ml及び第 2マスク M2の Y軸方向の移動 を、主に第 1ステージ 61を用いて行っている力 第 3実施形態のように、第 1マスク M 1用のマスクステージと第 2マスク M2用のマスクステージとを別々に設けてもよい。こ の場合、第 3実施形態のように第 1、第 2マスク Ml、 M2を XZ面内で移動するようにし てもよいし、本実施形態と同様に、第 1、第 2マスク Ml、 M2を XY面内で移動するよう にしてもよい。
[0123] <第 5実施形態 >
次に、本発明の露光装置及び露光方法の第 5実施形態について説明する。図 7は 、第 5実施形態を示す概略構成図である。本実施形態の第 4実施形態と異なる部分 は、第 1光学系 31及び第 2光学系 32が凹面ミラー 341、 342を有している点にある。 以下では、その差異を中心に説明し、上述の第 4実施形態と同一または同等の構成 部分については同一符号を付し、その説明を簡略若しくは省略する。
[0124] 図 7に示すように、本実施形態の投影系 PLは、上述の第 4実施形態と同様、基板 P の表面が対向して配置される 1つの終端光学素子 FLを有し、その 1つの終端光学素 子 FLを介して、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに露光光 EL を照射する。また、投影系 PLは、第 1露光領域 AR1及び第 2露光領域 AR2と光学的 に共役な位置 (CP1、 CP2)の近傍に配置され、第 1マスク Mlからの露光光 ELと第 2マスク M2からの露光光 ELとを第 3光学系 33へ導く中間光学系 30を有している。
[0125] 第 1マスク Mlからの露光光 ELを中間光学系 30に導く第 1光学系 31は、凹面ミラ 一 341を有している。同様に、第 2マスク M2からの露光光 ELを中間光学系 30に導く 第 2光学系 32も、凹面ミラー 342を有している。
[0126] 第 1、第 2マスク Ml、 M2のそれぞれでパターン化された露光光 ELのそれぞれは、 第 1、第 2光学系 31、 32により中間光学系 30に導かれる。第 1マスク Mlからの露光 光 ELと第 2マスク M2からの露光光 ELとは、中間光学系 30で反射された後、終端光 学素子 FLを含む第 3光学系 33を介して、第 1露光領域 AR1及び第 2露光領域 AR2
のそれぞれに照射される。
[0127] ここで、第 1光学系 31は、その内部の光路に第 1マスク Ml及び第 1共役位置 CP1 と光学的に共役な位置である第 3共役位置 CP3を形成する第 1結像光学系 311を備 え、第 1光路折曲げ鏡 FM1は、この第 3共役位置 CP3の近傍 (第 1共役位置 CP1の 近傍)に配置されており、所定の走査方向(Y軸方向)を含む YZ平面内において第 1 光学系 31の光路を折り曲げる。第 1光学系 31は、第 1マスク Mlのパターンの中間像 を 2つの位置 CP3、 CP1にそれぞれ形成する反射屈折系である。また、第 2光学系 3 2は、その内部の光路に第 2マスク M2及び第 2共役位置 CP2と光学的に共役な位 置である第 4共役位置 CP4を形成する第 2結像光学系 321を備え、第 2光路折曲げ 鏡 FM1は、この第 4共役位置 CP4の近傍 (第 2共役位置 CP2の近傍)に配置されて おり、所定の走査方向(Y軸方向)を含む YZ平面内において第 2光学系 32の光路を 折り曲げる。第 2光学系 32は、第 2マスク M2のパターンの中間像を 2つの位置 CP4 、 CP2にそれぞれ形成する反射屈折系である。本実施形態では、第 1、第 2光路折り 曲げ鏡 FM1、 FM2が像共役位置 (第 1〜第 4共役位置 CP1〜CP4)の近傍に配置 されているため、これらの光路折り曲げ鏡 FM1, FM2の小型化を図ることができる。 また、本実施形態では、第 1結像光学系 311から凹面ミラー 341へ至る光路と、第 2 結像光学系 321から第 2凹面ミラー 342へ至る光路との間に反射面が介在しないた め、第 1、第 2光学系 31、 32と第 3光学系 33とを Z方向において一部重複するように 配置でき、投影系 PLの全長 (第 1、第 2マスク Ml、 M2と基板 Pとの距離)を短く抑え ることがでさる。
[0128] 本実施形態においても、第 4実施形態と同様に中間光学系 30が第 1共役位置 CP 1、第 2共役位置 CP2の近傍に配置されているため、中間光学系 30の大型化ゃ投 影系 PLの長大化を招くことなぐ第 1、第 2光学系 31、 32からの露光光 ELを第 3光 学系 33に導くことができる。
[0129] そして、本実施形態の投影系 PLも、第 1照明領域 IA1に対応した第 1露光領域 AR 1と第 2照明領域 IA2に対応した第 2露光領域 AR2とを備えており、これらの第 1、第 2露光領域 AR1、 AR2は、所定の走査方向(Y軸方向)を横切る方向(X軸方向)に 長手方向を有するスリット形状である。従って、第 1〜第 4共役位置 CP1〜CP4の近
傍での露光光 ELの断面形状は X軸方向に長手方向を有する形状となっているため 、凹面ミラー 341、 342の前後での光路分離を容易に行うことができるば力りでなぐ 第 1、第 2光学系 31, 32からの露光光 ELのそれぞれを中間光学系 30を用いて容易 に第 3光学系 33に導入することができる。
[0130] 本実施形態においても、スループットの低下を招くことなぐ 1回のスキャン動作で基 板 P上の各ショット領域 SHを多重露光することができる。また、本実施形態の投影系 PLにおいても、偏光ビームスプリッタを用いることなぐ第 1マスク Mlからの露光光 E Lと第 2マスク M2からの露光光 ELとを第 3光学系 33へ導くことができるので、第 1、 第 2露光領域 AR1、 AR2のそれぞれに、所望の状態 (偏光状態)の露光光 ELを照 射することができる。また、本実施形態の投影系 PLにおいては、第 1、第 2光学系 31 、 32のそれぞれが凹面ミラー 341、 342を有しているので、いわゆるペッツバール(P etzval)和を零に近づけやすぐ投影系 PLの像側開口数が大きくても、大きな露光 領域 (AR1、 AR2)を得ることができる。
[0131] また、本実施形態においては、第 1、第 2光路折り曲げ鏡 FM1、 FM2と中間光学 系 30の各反射面との間に像共役位置 (第 1、第 2共役位置 CP1、 CP2)が位置して いるため、第 1、第 2光路折り曲げ鏡 FM1、 FM2での反射による偏光の影響と、中間 光学系 30の各反射面での反射による偏光の影響とが逆方向の影響となる。これによ り、露光光 ELが偏光光であっても、その偏光状態への影響を低減することができる。
[0132] なお、第 4、第 5実施形態において、 DMDでパターンィ匕された露光光 ELを、図 5、 図 7を参照して説明した投影系 PLに入射し、基板 P上に規定された第 1、第 2露光領 域 AR1、 AR2に露光光 ELを照射するようにしてもよい。この場合、マスクステージを 設けなくてもよい。
[0133] なお、第 4、第 5実施形態においても、第 1露光領域 AR1及び第 2露光領域 AR2の 少なくとも一方で液浸露光を実行するようにしてもよい。
[0134] また、第 4、第 5実施形態においても、第 1露光領域 AR1に照射される露光光 ELに よる基板 Pの露光と、第 2露光領域 AR2に照射される露光光 ELによる基板 Pの露光 とで、露光条件を異ならせるようにしてもよい。例えば、第 1マスク Mlの第 1パターン と第 2マスク M2の第 2パターンとの違 、を考慮して、第 1パターンの照明条件と第 2パ
ターンの照明条件とを異ならせるようにしてもよい。
[0135] また、第 1マスク Ml、第 2マスク M2の種類を異ならせてもよい。例えば一方を位相 シフトマスクとし、他方をバイナリーマスクとすることができる。
[0136] また、第 4、第 5実施形態において、第 1マスク Mlからの露光光 ELが通過する第 1 光学系 31の一部の光学素子と、第 2マスク M2からの露光光 ELが通過する第 2光学 系 32の一部の光学素子とを移動及び Z又は傾斜可能にして、第 1露光領域 AR1に 投影されるパターン像と第 2露光領域 AR2に投影されるパターン像とをそれぞれ独 立に調整するようにしてもょ ヽ。
[0137] なお、第 4、第 5実施形態においては、第 1マスク Mlに第 1パターンが形成され、第 1マスク Mlとは別の第 2マスク M2に第 2パターンが形成されている力 1つのマスク 上に第 1パターン及び第 2パターンを形成してもよい。その 1つのマスク上に設けられ ている第 1パターンの像と第 2パターンの像とで基板 Pを多重露光することができる。
[0138] <第 6実施形態 >
次に、本発明の露光装置及び露光方法の第 6実施形態について説明する。図 8は 、第 6実施形態に係る露光装置 EXの概略構成図、図 9は、その露光装置 EXの斜視 図である。本実施形態の第 1実施形態と異なる点は、第 1、第 2投影系 PL1、 PL2の それぞれが複数の投影系を備え、第 1、第 2パターン形成装置 3A、 3Bからの露光光 ELがそれぞれ複数の投影系を介して第 1、第 2露光領域 AR1、 AR2に照射されるこ とである。以下では、その差異を中心に説明し、上述の第 1実施形態と同一または同 等の構成部分については同一符号を付し、その説明を簡略若しくは省略する。
[0139] 本実施形態において、第 1、第 2投影系 PL1、 PL2はそれぞれ、 XY平面上で露光 光 ELの照射領域が X軸及び Y軸方向に関して異なる位置に配置される複数 (本例 では 8つ)の投影系 PLa〜PLhを備えている。以下の説明においては、 8つの投影系 PLa〜PLhのそれぞれを適宜、第 1〜第 8投影モジュール PLa〜PLhと称する。また 、以下においては、投影モジュールを説明するときに、第 1投影モジュール PLaにつ いて主に説明する場合がある力 本実施形態においては、各投影モジュール PLa〜 PLhはほぼ同じ構成を有する。
[0140] 本実施形態の第 1、第 2照明系 IL1、 IL2 (図 8では不図示)は、上述の第 1、第 2実
施形態で説明したような、反射素子 2を有する DMDをそれぞれ含む第 1、第 2パター ン形成装置 3A、 3Bを露光光 ELで照明する。
[0141] 第 1〜第 8投影モジュール PLa〜PLhはそれぞれ、基板 Pの表面が対向して配置さ れる下面 (光射出面)を有する終端光学素子 FLを備えている。投影モジュール PLa 〜PLhの下面はそれぞれほぼ同じ高さ(面一)となっている。このように、第 1投影系 PL1及び第 2投影系 PL2のそれぞれは、基板ステージ 4に保持された基板 Pの表面 が対向して配置される複数の終端光学素子 FLを有し、終端光学素子のそれぞれか ら露光光 ELを射出する。
[0142] 第 1投影系 PL1の複数の投影モジュール PLa〜PLhのうち、第 1群の投影モジュ ール PLa、 PLc、 PLe、 PLgが X軸方向に沿って列を成して配置され、第 2群の投影 モジュール PLb、 PLd、 PLf、 PLhも X軸方向に沿って列を成して配置されている。ま た、第 1群の投影モジュール PLa、 PLc、 PLe、 PLgと、第 2群の投影モジュール PLb 、 PLd、 PLf、 PLhとは、 Y軸方向に離れかつ X軸方向に所定量ずれて配置され、全 体で千鳥状に配置されている。すなわち、第 1群の投影モジュール PLa、 PLc、 PLe 、 PLgと、第 2群の投影モジュール PLb、 PLd、 PLf、 PLhとは、 X軸方向に関して位 置が互いにずれかつほぼ同じ配列間隔を有する。なお、複数の投影モジュール PLa 〜PLhは上記構成に限られるものでなぐ投影領域 (露光光の照射領域)が X軸方向 に関して所定間隔で配置されて 、れば、その構成は任意で構わな 、。
[0143] 第 2投影系 PL2は、基板 Pの走査方向 (Y軸方向)に関して第 1投影系 PL1と離れ て配置されるとともに、その複数の投影モジュール PLa〜PLh力 第 1投影系 PL1の 複数の投影モジュール PLa〜PLhと同様に配置されている。
[0144] 投影モジュール PLa〜PLhに入射した露光光 ELは、終端光学素子 FLの下面から それぞれ射出され、基板 P上に照射される。本実施形態では、第 1、第 2投影系 PL1 、 PL2を介して露光光 ELが照射される第 1、第 2露光領域 AR1、 AR2はそれぞれ、 複数の投影モジュール PLa〜PLhの投影領域力も構成される。
[0145] 図 10は、基板 P上の第 1露光領域 AR1及び第 2露光領域 AR2と、基板 P上のショッ ト領域 SHとの関係を示す模式図である。図 10において、第 1投影系 PL1の投影モ ジュール PLa〜PLhは、基板 P上の複数の照射領域 51a〜51hに露光光 ELを照射
する。照射領域 51a〜51hは、それぞれ投影モジュール PLa〜PLhの視野内でパタ ーン像が生成される投影領域に対応する。第 1露光領域 AR1は、複数の照射領域 5 la〜51hにより構成される。
[0146] 照射領域 51a〜51hは、所定の形状、例えば矩形状 (本実施形態ではほぼ正方形 状)に設定され、かつ X軸方向の幅がほぼ同一となっている。照射領域 51a〜51hの うち、第 1群の照射領域 51a、 51c, 51e、 51gはその中心が X軸と平行な第 1直線上 に設定されるように X軸方向に沿って所定間隔で配置され、第 2群の照射領域 51b、 51d、 5 If, 5 lhもその中心が X軸と平行な第 2直線上に設定されるように X軸方向に 沿って第 1群の照射領域と同じ間隔で配置されている。また、第 1群の照射領域 51a 、 51c、 51e、 51gと、第 2群の照射領域 51b、 51d、 51f、 51hとは、 Y軸方向に離れ かつ X軸方向にずれて配置されている。本実施形態では、第 1群の照射領域と第 2 群の照射領域とは、 Υ軸方向に関して第 1群の照射領域の +Υ側のエッジと第 2群の 照射領域の Υ側のエッジとが同一位置に配置され、 X軸方向に関して照射領域の 幅だけずれて配置される。さらに、照射領域 51a〜51hは、 X軸方向に関する露光光 ELの強度分布がその両端にそれぞれ、強度が徐々に減少する傾斜部 (スロープ部) を有する、すなわち本実施形態では X軸方向の強度分布がほぼ台形状となるように、 それぞれ露光光 ELが照射される。
[0147] なお、図 10では、強度がピーク値の半分となる露光光 ELの照射領域が示されてい るので、 X軸方向に関して第 1群の照射領域の X側(+X側)のエッジと第 2群の照 射領域の +X側(一 X側)のエッジとが同一位置となるように、第 1及び第 2群の照射 領域が示されている。し力 実際には、 X軸方向に関しては図 10の照射領域よりも僅 かに広い領域に露光光 ELが照射される。具体的には、 X軸方向に関して第 1群の照 射領域と第 2群の照射領域とがその端部で部分的に重なる、すなわち、 X軸方向に 関して第 1群の照射領域の X側(+X側)の周辺部と第 2群の照射領域の +X側 ( —X側)の周辺部とが重なるように、図 10の照射領域よりも、 ±X側の周辺部の 1つに 対応した幅だけ広い領域に露光光 ELが照射される。また、前述した X軸方向の強度 分布のうち両端のスロープ部は、照射領域の ±X側の周辺部にそれぞれ設定される とともに、第 1群の照射領域の— X側(+X側)の周辺部と第 2群の照射領域の +X側
(一 X側)の周辺部とによって、基板 P上の同一領域 (重複領域)が走査露光される。 これにより、本実施形態では、投影モジュール PLa〜PLhと基板 Pとを Y軸方向に相 対的に移動しつつ基板 Pを露光したときに、基板 P上のショット領域内の各位置での 積算露光量が等しくなる。
[0148] また、投影モジュール PLa〜PLhの各照射領域では、前述した X軸方向の強度分 布がその両端にスロープ部を有するものとした力 例えば、基板 P上で少なくとも X軸 方向に並ぶ複数のショット領域のステイッチング露光を行わな 、場合などは、投影モ ジュール PLaの照射領域 51 aの + X側周辺部、及び投影モジュール PLhの照射領 域の—X側周辺部での各強度分布をスロープ部としなくてょ 、、ある 、は露光時にマ スクブラインド系によってその周辺部への露光光 ELの照射を阻止してもよ 、。さらに 、投影モジュール PLa〜PLhの各照射領域は、 Y軸方向に関する露光光 ELの強度 分布がほぼ矩形状となるように露光光 ELが照射される。また、投影モジュール PLa 〜PLhの各照射領域は基板 P上でほぼ正方形状であるものとした力 その形状は正 方形以外、例えば X軸方向に沿って一対の平行な辺が配置される台形または平行 四辺形、あるいは菱形などでもよい。
[0149] 同様に、第 2投影系 PL2の投影モジュール PLa〜PLhは、基板 P上の複数の照射 領域 52a〜52hに露光光 ELを照射し、その照射領域にパターン像を生成する。第 2 露光領域 AR2は、複数の照射領域 52a〜52hにより構成される。
[0150] 第 2投影系 PL2における複数の照射領域 52a〜52hの配置は、第 1投影系 PL1に おける複数の照射領域 51a〜51hの配置とほぼ同等である。第 1投影系 PL1におけ る複数の照射領域 51a〜51hを含む第 1露光領域 AR1と、第 2投影系 PL2における 複数の照射領域 52a〜52hを含む第 2露光領域 AR2とは、 Y軸方向に離れている。 図 10に示すように、本実施形態においても、第 1露光領域 AR1の中心と第 2露光領 域 AR1の中心との Y軸方向の距離力 一つショット領域 SHの Y軸方向の大きさよりも 小さい。
[0151] 制御装置 7は、基板 P上のショット領域 SHが第 1露光領域 AR1と第 2露光領域 AR 2とに対して相対移動されるように基板 Pを Y軸方向に移動することによって、第 1露 光領域 AR1に照射される露光光 ELで形成される第 1パターンの像と、第 2露光領域
AR2に照射される露光光 ELで形成される第 2パターンの像とで、基板 P上のショット 領域 SHを多重露光する。
[0152] 以上説明したように、本実施形態においても、基板 P上のショット領域 SHを 1回のス キャン動作で多重露光することができ、スループットを向上できる。また、基板 P上で の第 1パターンと第 2パターンとの位置合わせ精度も向上できる。
[0153] また、第 1、第 2露光領域 AR1、 AR2のそれぞれに露光光 ELを照射するために複 数の投景モジュール PLa〜PLhを設けたので、各投景モジュール PLa〜PLhの光 学素子の大型化を抑え、投影モジュール PLa〜PLhの光学特性を良好に維持しつ つ、解像度を向上することができる。すなわち、所定の大きさを有するショット領域 SH を 1つの投影系で露光する場合、解像度の向上を図るために投影系の開口数を大き くすると、投影系の光学素子の大型化を招く可能性がある。大型な光学素子は、製 造が困難であったり、製造コストが上昇する可能性がある。一方、光学素子を大型化 することなぐ開口数を大きくしょうとすると、 1つの投影系 (投影モジュール)による投 影領域が小さくなり、 1回の走査露光で露光できるショット領域の大きさも小さくなつて しまう。本実施形態においては、複数の投影モジュール PLa〜PLhを並べて設け、 各投影モジュール PLa〜PLhを用いて基板 Pの所定のショット領域 SHを露光するの で、各投影モジュール PLa〜PLhの光学素子の大型化を抑えつつ、高い解像度で 所望の大きさを有するショット領域 SHを露光することができる。
[0154] なお、本実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とは Y軸方 向に離れているが、図 11に示すように、第 1露光領域 AR1と第 2露光領域 AR2とを Y軸方向にぉ ヽて接近させてもょ ヽし、第 1露光領域 AR1と第 2露光領域 AR2とは その一部が Y軸方向にぉ 、て重複して 、てもよ 、。
[0155] また、第 1、第 2パターン形成装置 3A、 3Bはそれぞれ複数の DMDを備えてもよい 。例えば、第 1投影系 PL1の投影モジュール PLa〜PLhに関して照射領域 51a〜51 hと光学的に共役な領域にそれぞれ対応して配置される DMDを備えてもよい。さら に、照明系 IL1、 IL2は、第 1、第 2パターン形成装置 3A、 3Bの一部、すなわち、照 射領域 51a〜51h、 52a〜52hに像が形成されるパターンを生成するのに必要な複 数の領域 (照射領域と共役な領域を含む)のみ、露光光で照明してもよいし、あるい
は、その複数の領域を含む所定領域全体を露光光で照明してもよい。また、本実施 形態でも、前述の第 1実施形態と同様に、マスクブラインド系、及び Z又は DMDによ つて、第 1、第 2露光領域 AR1、 AR2による走査露光の開始及び終了を制御すること が好ましい。
[0156] なお、本実施形態では、複数の投影モジュール PLa〜PLhの照射領域を第 1群と 第 2群とに分け、その群毎に複数の照射領域を XY平面上で X軸方向と平行に一列 に配置するものとした力 複数の照射領域の配置はこれに限られるものではない。例 えば、複数の照射領域を 3つ以上の群に分け、この 3つ以上の群を X軸方向に離して 配置してもよい。この場合、本実施形態と同様に、全ての照射領域の X軸方向の位 置を異ならせることが好ましい。また、各群の複数の投影領域の列は X軸方向と交差 してもよく、要は Y軸方向と交差する方向と平行であればよい。さらに、各群の複数の 照射領域を一列に配置しなくてもよぐ例えば上記列が X軸方向と平行である場合は 、上記列をなす複数の照射領域の一部又は全部につ!、て Y軸方向の位置を異なら せてもよい。要は、複数の照射領域が Y軸方向に関して所定間隔で配置されていれ ばよい。また、複数の投影モジュールの照射領域を複数の群に分けず、複数の照射 領域を Y軸方向に関して所定間隔で配置する、例えば X軸方向と平行に一列に配置 してもよい。この場合、少なくとも 2回の走査露光によって、基板上の 1つのショット領 域の全体が露光されることになる。例えば、複数の照射領域の X軸方向の間隔を、 1 つの照射領域の X軸方向の幅と等しく設定する場合、 +Y軸方向に基板を移動する 走査露光と、 Y軸方向に基板を移動する走査露光とによって、基板上の 1つのショ ット領域の全体が露光される。ここで、基板はその 2回の走査露光の間に、照射領域 の間隔に応じた距離だけ X軸方向に移動される。
[0157] <第 7実施形態 >
次に、本発明の露光装置及び露光方法の第 7実施形態について説明する。第 7実 施形態は、第 6実施形態の変形例であり、上述の第 6実施形態と同一または同等の 構成部分については同一符号を付し、その説明を簡略若しくは省略する。第 7実施 形態の露光装置 EXにおいては液浸露光が行われる。なお、本実施形態の露光装 置は、第 2実施形態の露光装置との差異が投影系 PL1、 PL2の構成、及び液浸シス
テム 1A、 IBの一部 (供給部材及び回収部材)の構成のみであるとも言える。本実施 形態の投影系は第 6実施形態と同一であるので、以下では、液浸システムについて は第 2実施形態との差異のみ、説明する。
[0158] 図 12は、第 7実施形態に係る露光装置の斜視図である。図 12に示すように、本実 施形態の露光装置 EXは、第 1、第 2投影系 PL1、 PL2でそれぞれ複数の投影モジュ ール PLa〜PLhの終端光学素子 FLと基板 Pの表面との間の露光光 ELの光路を含 む空間を液体 LQで満たして第 1、第 2液浸領域 LR1、 LR2を形成し、その液体 LQ を介して基板 Pを露光する。図 12に示す液浸システム 1A、 IBは、投影モジュール P La〜PLhを囲むように設けられた回収口 22A、 22Bを有する回収部材 23A、 23Bと 、投影モジュール PLa〜PLhの間に配置された供給口を有する供給部材 (不図示) とを備えている。回収口 22A、 22Bは、回収部材 23A、 23Bのうち基板 Pの表面が対 向して配置される下面に設けられている。供給口も、供給部材のうち基板 Pの表面が 対向して配置される下面に設けられて!/、る。
[0159] なお、本実施形態において、上述の第 2実施形態と同様に、第 1投影系 PL1の露 光光 ELの光路を含む第 1液浸領域 LR1の液体 LQと、第 2投影系 PL2の露光光 EL の光路を含む第 2液浸領域 LR2の液体 LQとはその種類 (物性)が互いに異なって ヽ てもよい。例えば、第 1、第 2液浸領域 LR1、 LR2の一方を、水(純水)で満たし、他 方を、水よりも露光光 ELに対する屈折率が高い液体で満たすようにしてもよい。また 、第 1液浸領域 LR1と第 2液浸領域 LR2とで、液体の粘度、露光光 ELの透過率、及 び温度の少なくとも 1つが互いに異なって 、てもよ 、。
[0160] また、例えば、第 1投影系 PL1及び第 2投影系 PL2のいずれか一方の露光光 ELの 光路を液体 LQで満たし、他方の露光光 ELの光路を気体で満たすようにしてもょ ヽ。
[0161] なお、本実施形態においては、第 1露光領域 AR1の複数の照射領域 51a〜51hは 、 1つの液浸領域 LR1で覆われる力 照射領域 51a〜51hのそれぞれを別々の液浸 領域で覆うようにしてもよい。同様に、第 2露光領域 AR2の複数の照射領域 52a〜5 2hは、 1つの液浸領域で覆われてもよいし、照射領域 52a〜52hのそれぞれが別々 の液浸領域で覆われてもよい。また、第 1露光領域 AR1の照射領域 51a〜51hと、 第 2露光領域 AR2の照射領域 52a〜52hとを 1つの液浸領域で覆うようにしてもよい
[0162] <第 8実施形態 >
次に、本発明の露光装置及び露光方法の第 8実施形態について説明する。本実 施形態の露光装置 EXの特徴的な部分は、第 1マスク Mlの第 1パターンと第 2マスク M2の第 2パターンとの位置関係に関する情報を取得する検出システムを備えた点に ある。
[0163] 図 13は、第 8実施形態に係る露光装置 EXを示す概略構成図である。本実施形態 の露光装置 EXは、上述の第 4実施形態で説明した露光装置 EXとほぼ同等の構成 を有しており、図 13は、図 5で示した光学ユニット Uを含む露光装置 EXを模式的に 示したものである。以下の説明において、上述の実施形態と同一または同等の構成 部分については同一の符号を付し、その説明を簡略若しくは省略する。
[0164] 上述の第 4実施形態と同様、本実施形態の露光装置 EXは、露光光 ELで照明され た第 1、第 2マスク Ml、 M2のノ《ターンの像を基板 P上に投影する投影系 PLを備え ている。第 1マスク Mlは第 1パターン PA1を有し、第 2マスク M2は第 1パターン PA1 とは異なる第 2パターン PA2を有する。また、図 13には示されていないが、上述の第 4実施形態と同様、露光装置 EXは、第 1マスク Ml及び第 2マスク M2を保持するマス クステージ 6 (図 6参照)を備えて!/、る。
[0165] また、本実施形態の露光装置 EXも、第 1、第 2露光領域 AR1、 AR2に対する基板 Pの所定の走査方向 (Y軸方向)への移動と、第 1照明領域 IA1に対する第 1マスク M 1の所定の走査方向 (Y軸方向)への移動と、第 2照明領域 IA2に対する第 2マスク M 2の所定の走査方向 (Y軸方向)への移動とを同期して行うことによって、第 1、第 2露 光領域 AR1、 AR2のそれぞれに露光光 ELを照射して、基板 P上のショット領域 SH を露光する走査型の露光装置である。
[0166] 第 1マスク Mlは、第 1パターン PA1が形成された第 1パターン形成面(下面) K1を 有し、第 2マスク M2は、第 2パターン PA2が形成された第 2パターン形成面(下面) K 2を有する。第 1マスク Mlは、第 1照明系 IL1からの露光光 ELで照明され、第 2マス ク M2は、第 2照明系 IL2からの露光光 ELで照明される。上述の実施形態と同様、第 1照明系 IA1は、第 1マスク Ml上の第 1照明領域 IA1を露光光 ELで照明し、第 2照
明系 IA2は、第 2マスク M2上の第 2照明領域 IA2を露光光 ELで照明する。
[0167] 投影系 PLは、第 1マスク Mlの第 1パターン形成面(下面) K1の第 1照明領域 (第 1 視野領域) IA1からの露光光 ELを第 1露光領域 AR1に照射可能であり、第 2マスク M2の第 2パターン形成面(下面) K2の第 2照明領域 (第 2視野領域) IA2からの露光 光 ELを第 2露光領域 AR2に照射可能である。
[0168] また、本実施形態の露光装置 EXは、第 1マスク Mlの第 1パターン PA1と第 2マスク M2の第 2パターン PA2との位置関係に関する情報を取得する検出システム 80を備 えている。図 13に示すように、検出システム 80は、第 1パターン PA1と第 2パターン P A2との位置関係に関する情報を取得するための検出光 Lsを射出する照射装置 81 と、照射装置 81から射出され、第 1マスク Mlの下面 K1及び第 2マスク M2の下面 K2 を介して検出光 Lsを受光する受光装置 82とを有して 、る。本実施形態にぉ 、ては、 受光装置 82は、投影系 PLの少なくとも一部を介して、照射装置 81から射出された 検出光 Lsを受光する。検出システム 80は、受光装置 82の受光結果に基づいて、第 1照明領域 (第 1視野領域) IA1に配置される第 1パターン PA1と第 2照明領域 (第 2 視野領域) IA2に配置される第 2パターン PA2との位置関係に関する情報を取得す る。
[0169] 本実施形態においては、照射装置 81は、その少なくとも一部が第 1マスク Mlの上 方に配置され、受光装置 82は、その少なくとも一部が第 2マスク M2の上方に配置さ れている。照射装置 81は、第 1マスク Mlの下面 K1の、第 1照明領域 IA1とは異なる 第 3照明領域 IA3に、反射ミラー 81Mを介して検出光 Lsを照射する。
[0170] 本実施形態においては、照射装置 81は、露光光 ELと同一波長の光を検出光 と して照射する。本実施形態においては、露光光 ELの波長は 193nmであるので、照 射装置 81も、 193nmの波長を有する検出光 Lsを照射する。この検出光 Lsは、前述 の光源装置とは別の光源力も発生させてもよいし、あるいは、前述の光源装置から発 生される露光光を用いてもょ 、。
[0171] 第 3照明領域 IA3に照射された検出光 Lsは、第 1光学系 31に入射する。第 1照明 領域 IA1からの光 (露光光 EL)と、第 3照明領域 IA3からの光 (検出光 Ls)とは、第 1 光学系 31において、互いに異なる光路を進行する。上述のように、第 1照明領域 IA
1からの光 (露光光 EL)は、第 1光学系 31を介して、中間光学系 30の第 1反射面 30 Aに入射する。一方、第 3照明領域 IA3からの光 (検出光 Ls)は、第 1光学系 31を介 して、中間光学系 30を介さずに、第 2光学系 32に入射する。すなわち、第 1光学系 3 1は、第 3照明領域 IA3からの光 (検出光 Ls)を、第 2光学系 32に供給可能である。 第 3照明領域 IA3の位置は、その第 3照明領域 IA3に照射された光 (検出光 Ls)が、 第 1光学系 31を通過した後、中間光学系 30を介さずに第 2光学系 32に供給される ように、投影系 PLの各光学素子の配置などに応じて、最適な位置に設定されている
[0172] 第 2光学系 32に入射した検出光 Lsは、第 2マスク M2の下面 K2の、第 2照明領域 I A2とは異なる第 4照明領域 IA4に照射され、第 2マスク M2を介して、受光装置 82に 入射する。このように、本実施形態においては、受光装置 82は、第 3照明領域 IA3 ( 下面 K1)力もの検出光 Lsを、投影系 PLの中間光学系 30を介さずに、第 1光学系 31 、第 2光学系 32、及び第 4照明領域 IA4 (下面 K2)を介して受光する。
[0173] 図 14は、マスクステージ 6 (図 14では不図示)に保持された第 1マスク Ml及び第 2 マスク M2を示す平面図である。第 1マスク Mlは、第 1マスク Mlの第 1パターン PA1 が形成された下面 K1と XY平面とがほぼ平行となるように、マスクステージ 6に保持さ れ、第 2マスク M2は、第 2マスク M2の第 2パターン PA2が形成された下面 K2と XY 平面とがほぼ平行となるように、マスクステージ 6に保持される。なお、第 1、第 2マスク Ml、 M2の下面 K1、K2は投影系 PLの物体面に配置されている。図 14に示すよう に、露光光 ELが照射される第 1照明領域 IA1、及び第 2照明領域 IA2は、 X軸方向 を長手方向とする矩形状 (スリット状)に設定されている。検出光 Lsが照射される第 3 照明領域 IA3は、第 1照明領域 IA1と異なる位置に設定され、第 1マスク Ml、第 1光 学系 31,第 2光学系 32を介して、検出光 Lsが照射される第 4照明領域 IA4は、第 2 照明領域 IA2とは異なる位置に設定されている。
[0174] 図 14に示すように、第 1マスク Mlは、第 1パターン PA1と所定の位置関係で形成さ れた第 1ァライメントマーク RM1を備えており、第 2マスク M2は、第 2パターン PA2と 所定の位置関係で形成された第 2ァライメントマーク RM2を備えている。
[0175] 第 1ァライメントマーク RM1は、第 1マスク Mlの下面 K1のうち、第 1パターン PA1
が形成された第 1パターン形成領域 SA1の外側に複数形成されている。本実施形態 においては、 13個の第 1ァライメントマーク RM1 (RM1〜RM1 )は、第 1マスク M
1 13
1の第 1パターン形成領域 SA1の +X側及び—X側の外側の領域のそれぞれにおい て、第 1マスク Mlの走査方向(Y軸方向)に沿って形成されている。また、第 1ァラィメ ントマーク RM1は、第 3照明領域 IA3内に配置可能であり、照射装置 81は、検出光 Lsで第 1ァライメントマーク RM1を照明可能である。第 2ァライメントマーク RM2は、 第 2マスク M2の下面 K2のうち、第 2パターン PA2が形成された第 2パターン形成領 域 SA2の外側に複数形成されている。本実施形態においては、 13個の第 2ァラィメ ントマーク RM2 (RM2〜RM2 )は、第 2マスク M2の第 2パターン形成領域 SA2の
1 13
+X側及び—X側の外側の領域のそれぞれにおいて、第 2マスク M2の走査方向(Y 軸方向)に沿って形成されている。また、第 2ァライメントマーク RM2は、第 4照明領 域 IA4内に配置可能であり、照射装置 81は、第 1マスク Ml、第 1光学系 31、及び第 2光学系 32を介して、検出光 Lsで第 2ァライメントマーク RM2を照明可能である。本 実施形態においては、第 1ァライメントマーク RM1 (RM1〜RM1 )と第 2ァライメン
1 13
トマーク RM2 (RM2〜RM2 )とは、互いに対応するように第 1マスク Ml上及び第
1 13
2マスク M2上のそれぞれに形成されている。マスクステージ 6を制御して、マスク Ml とマスク M2とを Y軸方向に移動することによって、第 3照明領域 IA3には第 1ァラィメ ントマーク RM1が順次配置され、第 3照明領域 IA3に配置された第 1ァライメントマー ク RM1に対応する第 2ァライメントマーク RM2が第 4照明領域 IA4に順次配置される 。図 14においては、第 1マスク Mlのァライメント RM1が第 3照明領域 IA3内に配置 され、ァライメント RM1に対応する第 2マスク M2のァライメントマーク RM2が第 4照 明領域 IA4内に配置されている。
[0176] 第 1ァライメントマーク RM1が配置される第 3照明領域 IA3、及び第 2ァライメントマ ーク RM2が配置される第 4照明領域 IA4を介した検出光 Lsは、受光装置 82に入射 する。受光装置 82は、第 1ァライメントマーク RM1及び第 2ァライメントマーク RM2を 介して照射装置 81からの検出光 Lsを受光する。
[0177] 図 15は、受光装置 82を下方(ウェハ側)から見た概念図である。図 15において、受 光装置 82は、検出光 Lsを透過可能な透過部(開口) 86が形成された板部材 85と、
板部材 85の透過部 86を通過した光を光学系を介して受光する受光素子 84とを備え ている。受光素子 84は、板部材 85の +Z側に配置されており(図 13参照)、透過部 8 6を介した検出光 Lsを受光可能である。板部材 85は、例えば石英などによって形成 されており、検出光 Lsを透過可能である。透過部 86は、板部材 85の第 2マスク M2 側(― Z側)の面 85Aに例えば Cr (クロム)等の金属で形成された遮光領域に開口を 形成したものである。透過部 86は、第 3、第 4照明領域 IA3, IA4に合わせて、 X軸方 向に離れた 2つの位置のそれぞれに形成されている。不図示ではあるが、板部材 85 と受光素子 84との間には所定の光学系が配置されており、板部材 85の透過部 86を 通過した光は、その光学系を介して受光素子 84に受光される。受光素子 84の受光 面は、この光学系に関して第 2マスク M2の下面 K2と光学的に共役に配置されてい る。受光素子 84は、例えば撮像素子 (CCD等)、フォト'マルチプライャ 'チューブ MT、光電子増倍管)等の光電変換素子を含む。
[0178] 本実施形態では、第 2パターン形成領域 SA2の ±X側に配置される一対の第 2ァ ライメントマーク RM2に対応して 2つの透過部 86が X軸方向に離れて配置される。こ のため、実際には、受光装置 82は 2つの透過部 86に対応して 2組の光学系及び受 光素子 84を備えている。なお、その一対の第 2ァライメントマーク RM2に対応して 2 つの受光装置 82を設けてもよい。また、第 3、第 4照明領域 IA3、 IA4を Y軸方向に 広げて、 Y軸方向に並ぶ複数の第 1、第 2ァライメントマーク RM1、 RM2を検出可能 としてちよい。
[0179] 受光素子 84の受光面は、第 1マスク Mlの下面 Kl、及び第 2マスク Μ2の下面 Κ2 と光学的に互いに共役な位置 (又はその近傍)に配置されている。なお、例えば投影 系 PLの構成などによっては、第 1、第 2光学系 31、 32に関して第 1マスク Mlの下面 K1と第 2マスク M2の下面 K2とが光学的に共役とならないことがある。この場合、検 出光 Lsの光路に補正光学系を設け、第 1マスク Mlの下面 K1と第 2マスク M2の下 面 K2とを光学的に共役な関係にすることが好ましい。
[0180] 照射装置 81より射出され、第 1マスク Ml、投影系 PLの一部、及び第 2マスク M2を 介した検出光 Lsは、受光装置 82に入射する。第 3、第 4照明領域 IA3、 IA4のそれ ぞれに第 1、第 2ァライメントマーク RM1 (例えば RM1;)、 RM2 (例えば RM2 )が配
置された場合、透過部 86及び光学系を介して第 1、第 2ァライメントマーク RM1、 RM 2からの検出光 Lsが受光素子 84に入射し、その受光面には、第 1、第 2ァライメントマ ーク RM1 (例えば RM1 )、RM2 (例えば RM2 )の像が形成される。
[0181] 図 16は、第 1、第 2ァライメントマーク RM1、 RM2の像力 受光素子 84の受光面に 形成されている状態の一例を示す模式図である。図 16に示すように、受光素子 84の 受光面には、第 1、第 2ァライメントマーク RM1 (例えば RM1;)、 RM2 (例えば RM2 )の像が形成される。
[0182] 制御装置 7は、受光素子 84から出力される撮像信号を処理して、受光素子 84の受 光面に投影系 PLの一部を介して形成される第 1ァライメントマーク RM1の像と第 2ァ ライメントマーク RM2の像との位置関係 (相対的な位置ずれ)を求める。なお、制御 装置 7は、受光素子 84の受光面と、上述の計測システム 70で規定される XY座標系 との対応関係(方向、及びスケールなど)を管理しており、第 1ァライメントマーク RM1 の像と第 2ァライメントマーク RM2の像との位置ずれを求めることによって、計測シス テム 70で規定される XY座標系内における第 1ァライメントマーク RM1と第 2ァラィメ ントマーク RM2との相対的な位置関係、例えば X軸及び Y軸方向の位置ずれ(目標 相対位置からのずれ)を求めることができる。また、制御装置 7は XY座標系内におけ る第 1、第 2ァライメントマーク RM1、 RM2の位置も求めることができる。
[0183] また、上述したように、第 1マスク Ml上の第 1パターン PA1と第 1ァライメントマーク RM1とは所定の位置関係で形成されており、第 2マスク M2上の第 2パターン PA2と 第 2ァライメントマーク RM2とは所定の位置関係で形成されている。したがって、制御 装置 7は、受光装置 82の受光結果から得られる第 1、第 2ァライメントマーク RM1、 R Mの位置関係に基づいて、第 1パターン PA1と第 2パターン PA2との位置関係(例え ば、 X軸及び Y軸方向の位置ずれ)に関する情報を取得することができる。なお、本 実施形態においては、 X軸方向に離れた一対の第 1ァライメントマーク RM1と、対応 する一対の第 2ァライメントマーク RM2との位置関係を検出することができるので、制 御装置 7はその 2組の第 1、第 2ァライメントマーク RM1、 RMの位置関係に基づいて 、第 1パターン PA1と第 2パターン PA2との相対的な回転位置関係( θ Z方向の位置 ずれ)に関する情報も求めることができる。また、制御装置 7は XY座標系内における
第 1、第 2パターン PA1、 PA2の位置及び回転も求めることができる。
[0184] 制御装置 7は、検出システム 80を用いて取得した第 1パターン PA1と第 2パターン PA2との位置関係に関する情報に基づいて、第 1パターン PA1と第 2パターン PA2 との位置関係を調整する。
[0185] 本実施形態において、制御装置 7は、基板 P上のショット領域 SHを走査露光(多重 露光)する動作と、検出システム 80を用いた第 1パターン PA1と第 2パターン PA2と の位置関係に関する情報を取得する動作とを並行して行う。すなわち、基板 P上のシ ヨット領域 SHの露光中に、第 1、第 2マスク Ml、 M2を走査方向(Y軸方向)へ移動し ながら、制御装置 7は、検出システム 80を用いて、第 1パターン PA1と第 2パターン P A2との位置関係に関する情報を取得することができる。
[0186] 制御装置 7は、基板 P上のショット領域 SHを多重露光する動作の少なくとも一部と 並行して、第 3照明領域 IA3内に順次配置される第 1ァライメントマーク RM1と第 4照 明領域 IA4に順次配置される第 2ァライメントマーク RM2との位置関係を、検出シス テム 80を用いて順次取得し、その取得した情報に基づいて、第 1パターン PA1と第 2 パターン PA2との位置関係を調整しつつ、第 1照明領域 IA1からの露光光 EL及び 第 2照明領域 IA2からの露光光 ELを第 1露光領域 AR1及び第 2露光領域 AR2のそ れぞれに照射する。露光光 ELが照射される第 1照明領域 IA1と検出光 Lsが照射さ れる第 3照明領域 IA3とは異なる位置に設定され、露光光 ELが照射される第 2照明 領域 IA2と検出光 Lsが照射される第 4照明領域 IA4とは異なる位置に設定されてお り、制御装置 7は、露光光 ELの照射動作を含む基板 P上のショット領域 SHの露光動 作と、検出光 Lsの照射動作を含む検出システム 80を用いた第 1パターン PA1と第 2 パターン PA2との位置関係に関する情報を取得する動作とを並行して行うことができ る。
[0187] 制御装置 7は、基板 P上のショット領域 SH内の所望位置に、第 1、第 2パターン PA 1、 PA2の像のそれぞれが投影されるように、そのショット領域 SHの露光中に、第 1、 第 2照明領域 IA1、 IA2に対して第 1、第 2パターン PA1、 PA2が所望位置に配置さ れるように、第 1パターン PA1及び第 2パターン PA2の少なくとも一方の位置及び Z 又は回転を調整する。
[0188] 基板 P上のショット領域 SHを多重露光するために、第 1マスク Mlと第 2マスク M2と を走査方向 (Y軸方向)に移動したとき、第 1パターン PA1とともに第 1ァライメントマ ーク RM1が走査方向(Y軸方向)に移動し、第 2パターン PA2とともに第 2ァライメント マーク RM2が走査方向(Y軸方向)に移動する。図 14に示したように、第 1ァライメン トマーク RM1は、第 1マスク Mlに走査方向(Y軸方向)に沿って複数形成され、第 2 ァライメントマーク RM2は、第 2マスク M2に走査方向(Y軸方向)に沿って複数形成 されている。したがって、基板 P上のショット領域 SHを多重露光するために、第 1マス ク Mlと第 2マスク M2とを各走査方向 (Y軸方向)に移動したとき、第 3照明領域 IA3 には複数の第 1ァライメントマーク RM1のそれぞれが順次配置され、第 4照明領域 I A4には複数の第 2ァライメントマーク RM2のそれぞれが順次配置される。したがって 、検出システム 80を使って、基板 P上のショット領域 SHを多重露光するために、第 1 マスク Mlと第 2マスク M2とを各走査方向(Y軸方向)に移動しているときに、第 1ァラ ィメントマーク RM1の像と第 2ァライメントマーク RM2の像との位置関係を順次取得 することができ、その取得した位置関係に基づいて、基板 P上のショット領域 SHの露 光中に、第 1パターン PA1と第 2パターン PA2との位置関係に関する情報を取得す ることがでさる。
[0189] 本実施形態の露光装置 EXを用いた露光動作 (露光方法)を図 13〜15及び図 21 を参照しながら説明する。まず、第 1照明系 IA1により、第 1マスク Ml上の第 1照明領 域 IA1を露光光 ELで照明し、所定のタイミングで第 2照明系 IA2により第 2マスク M2 上の第 2照明領域 IA2を露光光 ELで照明する。第 1マスク Mlの第 1パターン形成面 (下面) K1の第 1照明領域 IA1からの露光光 ELは投影系 PLにより第 1露光領域 AR 1に照射される (SS1)。また、第 2マスク M2の第 2パターン形成面(下面) K2の第 2照 明領域 IA2からの露光光 ELは投影系 PLを介して第 2露光領域 AR2に照射される( SS2)。
[0190] このように第 1露光領域 AR1が照射されて基板 P上のショット領域 SHが露光されて いる第 1のタイミングにおいて、例えば、図 14に示すように、第 1マスク Ml上の複数 の第 1ァライメントマーク RM1のうち、第 1ァライメントマーク RM1を第 3照明領域 IA 3において検出光 Lsで照明し、第 2マスク M2上の複数の第 2ァライメントマーク RM2
のうち、第 2ァライメントマーク RM27を第 4照明領域 IA4において検出光 Lsで照明す るものとする。なお、第 1のタイミングは、第 2照明系 IA2により第 2マスク M2上の第 2 照明領域 IA2が露光光 ELで照明開始される前が望ましい。
[0191] 第 1のタイミングにおいて、第 1ァライメントマーク RM1の像と第 2ァライメントマーク RM2の像とを受光素子 84により同時に検出する(SS3)。すなわち、第 1パターン形 成面 K1及び第 2パターン形成面 K2を介した検出光 Lsを検出する。第 1パターン PA 1と第 2パターン PA2とが目標相対位置力もずれている場合、受光素子 84の受光面 において第 1ァライメントマーク RM1 の像と第 2ァライメントマーク RM2の像とに位 置ずれが生じる。こうして、第 1パターン PA1と第 2パターン PA2との位置関係を取得 することができる(SS4)。
[0192] したがって、制御装置 7は、複数のタイミングのそれぞれにお 、て、各タイミングに 対応する第 1ァライメントマーク RM1の像と第 2ァライメントマーク RM2の像の受光素 子 84の受光面上での位置情報 (位置関係)を求めることによって、複数のタイミング のそれぞれにおいて、第 1パターン PA1と第 2パターン PA2との位置関係を取得す ることがでさる。
[0193] そして、制御装置 7は、基板 P上のショット領域 SHの多重露光中に、第 1パターン P A1と第 2パターン PA2とが所望の位置関係になるように、検出システム 80 (受光装 置 82)の出力に基づいて、第 2ステージ 62及び第 3ステージ 63の少なくとも一方の 位置及び Z又は回転を調整する(SS5)。この調整を行いながら制御装置 7は、基板 P上のショット領域 SHを多重露光する(SS6)。すなわち、本実施形態では、図 21の フローチャートに示したように、基板の多重露光と、第 1パターン PA1と第 2パターン P
A2の位置調整が並行して行われる。
[0194] これにより、第 1マスク Mlの第 1パターン PA1と第 2マスク M2の第 2パターン PA2と 基板 P上のショット領域 SHとの位置関係は常に所望状態に調整され、第 1パターン P A1の像と第 2パターン PA2の像とを基板 P上のショット領域 SH内の所望位置に形成 することができる。
[0195] 以上説明したように、制御装置 7は、検出システム 80を用いて、第 1パターン PA1と 第 2パターン PA2との位置関係に関する情報を取得することができ、その検出システ
ム 80で取得した情報に基づいて、第 1パターン PA1と第 2パターン PA2との位置関 係を調整することができる。したがって、第 1パターン PA1の像と第 2パターン PA2の 像とを基板 P上のショット領域 SH内の所望位置に形成することができる。
[0196] なお、本実施形態において、照射装置 81は、露光光 ELと異なる波長(例えば 633 nmの波長)の光を検出光 Lsとして照射してもよい。この場合も、検出システム 80は、 照射装置 81から射出した検出光 Lsを第 3照明領域 IA3に照射することによって、中 間光学系 30を介さずに、受光装置 82に入射させることができる。ただし、受光素子 8 4の受光面、第 1マスク Mlの下面 Kl、及び第 2マスク Μ2の下面 Κ2は、光学的に互 いに共役な位置 (又はその近傍)となるように、検出光 Lsの光路上に不図示の光学 系が配置されている。一方、検出システム 80は、基板 Pに検出光 Lsが照射されること なぐ照射装置 81からの検出光 Lsを受光装置 82に入射させているので、本実施形 態のように、検出光 Lsとして露光光 ELと同じ波長の光を用いても、基板 Pを露光する ことなぐ第 1パターン PA1と第 2パターン PA2との位置関係に関する情報を取得す ることがでさる。
[0197] なお、本実施形態においては、検出光 Lsは第 1マスク Mlに先に照射され、第 1マ スク Ml、第 1光学系 31、第 2光学系 32、及び第 2マスク M2を介して受光装置 82で 検出光 Lsを受光している力 検出システム 80は、検出光 Lsを第 2マスク M2に先に 照射してもよい。第 1光学系 31と第 2光学系 32とはほぼ同じ構成であり、第 2マスク M 2に照射された検出光 Lsは、第 2光学系 32、及び第 1光学系 31を介して、第 1マスク Mlの第 3照明領域 IA3に照射される。検出システム 80は、その第 1マスク Mlの第 3 照明領域 IA3からの検出光 Lsを受光装置 82を用いて受光することによって、第 1パ ターン PA1と第 2パターン PA2との位置関係を取得することができる。
[0198] また、本実施形態において、基板 Pのショット領域 SHの露光中に、検出システム 80 を使って第 1パターン PA1と第 2パターン PA2との位置関係に関する情報を取得して いるが、基板 Pの露光を開始する前に、検出システム 80を使って第 1パターン PA1と 第 2パターン PA2との位置関係に関する情報を取得してもよい。この場合、制御装置 7は、基板 Pの露光を開始する前に、マスクステージ 6の第 1ステージ 61を使って、第 1マスク Mlと第 2マスク M2を Y軸方向に移動し、第 3照明領域 IA3内に順次配置さ
れる第 1ァライメントマーク RM1と第 4照明領域 IA4に順次配置される第 2ァライメント マーク RM2との位置関係(第 1パターン PA1と第 2パターン PA2との位置関係)を検 出システム 80を用いて取得する。さらに、制御装置 7は、検出システム 80を用いて取 得した情報に基づいて、基板 Pの露光を開始する前に、第 1マスク Mlの第 1パター ン PA1と第 2マスク M2の第 2パターン PA2とが所望の位置関係となるように、マスク ステージ 6の第 2ステージ 62及び第 3ステージ 63の少なくとも一方の位置及び Z又 は回転を調整する。そして、第 1パターン PA1と第 2パターン PA2との位置関係の調 整を行った後、制御装置 7は、その第 1パターン PA1と第 2パターン PA2との位置関 係を維持しつつ、第 1、第 2露光領域 AR1、 AR2に対する基板 Pの所定の走査方向 (Y軸方向)への移動と、第 1照明領域 IA1に対する第 1マスク Mlの所定の走査方向 (Y軸方向)への移動と、第 2照明領域 IA2に対する第 2マスク M2の所定の走査方向 (Y軸方向)への移動とを同期して行い、第 1露光領域 AR1に形成される第 1パター ン PA1の像と、第 2露光領域 AR2に形成される第 2パターン PA2の像とで、基板 P上 のショット領域 SHを多重露光する。このように、基板 Pの露光を開始する前に、第 1パ ターン PA1と第 2パターン PA2との位置関係を取得するとともに、第 1パターン PA1と 第 2パターン PA2との位置関係を調整することによって、第 1パターン PA1の像と第 2 パターン PA2の像とを基板 P上のショット領域 SH内の所望位置に形成することがで きる。なお、検出システム 80を使って、基板 Pの露光を開始する前に取得された第 1 パターン PA1と第 2パターン PA2との位置関係に関する情報に基づいて、基板 Pの 各ショットの露光中に第 1パターン PA1と第 2パターン PA2の位置関係を調整するよ うにしてもよい。もちろん、基板 Pの露光前、及び基板 Pの露光中に、第 1パターン PA 1と第 2パターン PA2との位置関係の取得と、第 1パターン PA1と第 2パターン PA2と の位置関係の調整を実行するようにしてもょ 、。
<第 9実施形態 >
次に、本発明の露光装置及び露光方法の第 9実施形態について説明する。第 9実 施形態は、上述の第 8実施形態の変形例であり、上述の第 8実施形態と同一または 同等の構成部分については同一符号を付し、その説明を簡略若しくは省略する。本 実施形態の露光装置 EXの特徴的な部分は、第 1照明系 IL1からの露光光 EL及び
第 2照明系 IL2からの露光光 ELの少なくとも一方の一部を、第 3照明領域 IA3及び 第 4照明領域 IA4の少なくとも一方に、第 1パターン PA1と第 2パターン PA2との位 置関係に関する情報を取得するための検出光として照射する点にある。
[0200] 図 17は、第 9実施形態に係る露光装置 EXを示す概略構成図である。上述の第 8 実施形態と同様、投影系 PLは、第 1照明領域 IA1からの露光光 ELを第 1露光領域 AR1に照射し、第 2照明領域 IA2からの露光光 ELを第 2露光領域 AR2に照射する
[0201] 本実施形態の第 1照明系 IL1は、露光光 ELを照射する照明領域を調整することが できる。第 1照明系 IL1は、照明領域の位置及び Z又は大きさを調整可能な可変視 野絞り(マスクブラインド系)等を含む光学機構 BR1を備えている。制御装置 7は、そ の光学機構 BR1を制御することによって、第 1マスク Ml上での照明領域の位置及び Z又は大きさを調整することができる。すなわち、基板露光動作では露光光 ELを第 1 照明領域 IA1に照射し、ァライメントマーク検出動作では露光光 ELを検出光として第 3照明領域 IA3に照射する。ァライメントマーク検出動作では、光学機構 BR1によつ て、例えば、第 1マスク Mlの少なくとも 1つの第 1ァライメントマーク RM1を含むように 第 1照明領域 IA1を拡大し、この拡大した照明領域 (第 3照明領域 IA3)に露光光 EL を照射してもよいが、本実施形態では、少なくとも 1つの第 1ァライメントマーク RM1を 含むように第 1照明領域 IA1を移動し、この移動した照明領域 (第 3照明領域 IA3)に 露光光 ELを照射する。
[0202] 本実施形態においては、第 1パターン PA1と第 2パターン PA2との位置関係に関 する情報を取得するための検出光として、第 1照明系 IL1から射出される露光光 EL を用いる。制御装置 7は、基板 Pの露光を開始する前に、第 1パターン PA1と第 2バタ ーン PA2との位置関係に関する情報を取得するための動作を実行する。制御装置 7 は、第 1照明系 IL1の光学機構 BR1を制御して、露光光 ELを第 3照明領域 IA3に照 射する。これにより、第 1照明系 IL1から第 3照明領域 IA3に入射した露光光 ELは、 第 1光学系 31によって、中間光学系 30を介さずに、第 2光学系 32に入射する。第 2 光学系 32に入射した露光光 ELは、第 4照明領域 IA4に照射される。第 4照明領域 I A4の上方には受光装置 82が配置されており、受光装置 82は、第 4照明領域 IA4か
らの露光光 ELを検出光として受光する。制御装置 7は、上述の第 8実施形態と同様 にして、受光装置 82の受光結果に基づいて、第 1パターン PA1と第 2パターン PA2 との位置関係に関する情報を取得することができる。
[0203] 図 18は、本実施形態に係るマスクステージ 6 (図 6参照)に保持された第 1マスク M 1及び第 2マスク M2を示す平面図の一例である。本実施形態においては、第 1ァライ メントマーク RM1は、第 1マスク Mlの第 1パターン形成領域 SA1内の +X側及び X側のエッジ領域のそれぞれにおいて、第 1マスク Mlの走査方向(Y軸方向)に沿つ て複数形成されている。第 1ァライメントマーク RM1は、第 3照明領域 IA3内に配置 可能であり、第 1照明系 IL1からの露光光 ELで照明される。第 2ァライメントマーク R M2は、第 2マスク M2の第 2パターン形成領域 SA2内の +X側及び—X側のエッジ 領域のそれぞれにおいて、第 2マスク M2の走査方向(Y軸方向)に沿って複数形成 されている。第 2ァライメントマーク RM2は、第 4照明領域 IA4内に配置可能であり、 第 1マスク Ml、第 1光学系 31、及び第 2光学系 32を介した第 1照明系 IL1からの露 光光 ELで照明される。第 1ァライメントマーク RM1と第 2ァライメントマーク RM2とは 、互いに対応するように第 1マスク Ml上及び第 2マスク M2上のそれぞれに形成され ている。
[0204] 受光装置 82は、第 4照明領域 IA4力 の第 1、第 2ァライメントマーク RM1、 RM2を 介した露光光 ELを検出光として受光する。制御装置 7は、受光装置 82の受光結果 に基づいて、第 1、第 2ァライメントマーク RM1、 RMの位置関係を求めることができ、 その位置関係に基づ!/、て、第 1パターン PA1と第 2パターン PA2との位置関係に関 する情報を取得することができる。そして、制御装置 7は、受光装置 82の受光結果を 用いて取得した、第 1パターン PA1と第 2パターン PA2との位置関係に関する情報に 基づいて、第 1パターン PA1と第 2パターン PA2との位置関係を調整して、第 1照明 領域 IA1からの露光光 EL及び第 2照明領域 IA2からの露光光 ELを、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに照射する。ここで、検出システム 80による 第 1、第 2ァライメントマーク RM1、 RM2の検出後、制御装置 7は光学機構 BR1を制 御して露光光 ELを第 1照明領域に照射可能とする。
[0205] なお、図 18の例では、第 1、第 2ァライメントマーク RM1, RM2が、第 1マスク Ml,
第 2マスク M2のパターン形成領域 SA1、 SA2内に形成されているが、第 3照明領域 IA3の少なくとも一部をパターン形成領域 SA1の外側に設定できる、例えば第 3照明 領域 IA3を X軸方向に拡大することができる場合には、図 14に示したように、第 1、第 2ァライメントマーク RM1, RM2を、第 1マスク Ml,第 2マスク M2のパターン形成領 域の外側に形成することもできる。
[0206] なお、本実施形態においては、第 1パターン PA1と第 2パターン PA2との位置関係 に関する情報を取得するための露光光 ELは、先に第 1マスク Mlに照射され、第 1光 学系 31、第 2光学系 32、及び第 2マスク M2を介して受光装置 82で受光されるが、 露光装置 EXは、第 2照明系 IL2によって、第 4照明領域 IA4 (第 2マスク M2)に露光 光 ELを照射してもよい。第 2照明系 IL2に、例えば前述の光学機構 BR1と同様の構 成の光学機構を設け、第 4照明領域の位置及び Z又は大きさを調整可能とすること により、制御装置 7は、第 2照明系 IL2からの露光光 ELを第 4照明領域 IA4に照射す ることができる。第 1光学系 31と第 2光学系 32とはほぼ同じ構成であり、第 4照明領域 IA4 (第 2マスク M2)に照射された露光光 ELは、第 2光学系 32、及び第 1光学系 31 を介して第 3照明領域 IA3に照射される。制御装置 7は、第 3照明領域 IA3からの露 光光 ELを受光装置 82で受光し、その受光した結果を用いて、第 1パターン PA1と第 2パターン PA2との位置関係に関する情報を取得することができる。
[0207] なお、上述の第 8、第 9実施形態においては、受光装置 82は、投影系 PLの少なくと も一部を介して検出光を受光しているが、投影系 PLを介さずに、検出光を受光して もよい。例えば、第 1マスク Ml及び第 2マスク M2の一方を介した検出光が入射する 投影系 PLとは別の専用の光学系を設け、その専用の光学系、及び第 1マスク Ml及 び第 2マスク M2の他方を介した検出光を、受光装置 82で受光するようにしてもょ 、。
[0208] なお、上述の第 8、第 9実施形態においては、第 1マスク Ml及び第 2マスク M2の一 方に検出光を照射し、受光装置 82は、その一方のマスクに照射された検出光を他方 のマスクを介して受光している力 例えば、第 1パターン PA1及び第 2パターン PA2 の少なくとも一方と所定の位置関係で発光可能な発光素子を設け、その発光素子か ら発生した光を第 1マスク Ml及び第 2マスク M2の少なくとも一方を介して受光しても よい。
[0209] なお、上述の第 8、第 9実施形態では、検出システム 80が画像処理方式であるもの とした力 この検出システム 80は画像処理方式に限られるものでなく他の方式を採用 してもよい。例えば、第 1、第 2ァライメントマーク RM1、 RM2から発生する回折光 (又 は散乱光)を検出する方式などを採用してもよい。この場合、第 1、第 2ァライメントマ ーク RM1、 RM2を回折格子とし、コヒーレントな検出光 Lsの照射によって第 1、第 2 ァライメントマーク RM 1、 RM2の一方から発生する同次数 (例えば ± 1次)の回折光 を、第 1、第 2光学系 31、 32を介して他方のァライメントマークに照射し、この他方の ァライメントマーク力も発生する 2つの回折光を干渉させて受光してもよい。
[0210] また、上述の第 8、第 9実施形態では Y軸方向に関して第 1、第 2ァライメントマーク RM1、 RM2を離散的に形成するものとした力 例えばパターン形成領域の全域に 渡って、第 1、第 2ァライメントマーク RM1、 RM2を連続的に形成してもよい。さらに、 第 1、第 2ァライメントマーク RM1、 RM2は、マスクの中心を通りかつ Y軸と平行な直 線に関して対称に配置されていなくてもよい。また、第 1、第 2マスク Ml、 M2をそれ ぞれ異なるマスクステージに保持してもよ 、。
[0211] なお、上述の第 1〜第 9実施形態において、第 1パターンの像及び第 2パターンの 像の一方を形成するために DMDを用い、他方を形成するためにマスク(レチクル)を 用いるようにしてもよい。
[0212] また、上述の第 1〜第 9実施形態において、第 1露光領域 AR1及び第 2露光領域 A R2の大きさと形状との少なくとも一方が異なっていてもよい。例えば、第 1露光領域 A R1と第 2露光領域 AR2とで X軸方向の幅及び Z又は Y軸方向の幅が異なっていて もよい。なお、 X軸方向の幅が異なる場合には、ショット領域 SH内の一部の領域だけ が多重(二重)露光される。
[0213] また、上述の各実施形態においては、ショット領域 SHが第 1露光領域 AR1及び第 2露光領域 AR2を通過する間、第 1露光領域 AR1、第 2露光領域 AR2のそれぞれ に露光光 ELの照射が続けられる力 少なくとも一方の露光領域において、ショット領 域 SHが通過する間の一部の期間だけで露光光 ELが照射されるようにしてもよい。 すなわち、ショット領域 SH内の一部だけ多重(二重)露光するようにしてもよい。
[0214] 上述の実施形態においては、露光時に基板を投影系(露光光)に対して移動した(
第 3実施形態などではマスクも基板と同期移動した)が、これらに限らず、投影系を基 板に対して移動してもよい。例えば、第 1実施形態のように DMDを用いている場合 にはマスクを基板に対して同期移動する必要がないために、 DMDと投影系を基板 に対して移動することで基板を走査露光することが可能である。
[0215] 上記各実施形態では第 1パターンの像と、第 2パターンの像により基板 Pの各ショッ ト領域 Sをそれぞれ二重露光したが、本発明の原理に従い、三重以上の多重露光を 行うことも可能である。三重露光を行う場合には、第 1パターンと、第 2パターンに加え て、第 3パターンを用い、第 1パターン及び第 2パターンと同様に基板 Pの移動と同期 して第 3パターンの像を基板上に生成させることができる。第 3パターンは、それを物 理的に形成したマスクまたは、それを電子パターンで形成する DMDを用いてもょ ヽ 。三重露光の場合、第 3パターンに照明光が照射されてその像が形成される第 3露 光領域 (AR3)を、第 1露光領域 AR1及び第 2露光領域 AR2とは別に、あるいは第 1 露光領域 AR1及び第 2露光領域 AR2の少なくとも一方とその一部が重複するよう〖こ 設定することができる。この場合、投影系はそれぞれの露光領域に応じて独立して 3 つ設けてもよぐあるいは図 5に示したような投影系 PLに、さらに、第 1マスク Ml及び 第 2マスク M2に対応する第 1及び第 2光学系 31, 32と同様に、第 3マスクに対応す る光学系を設けるとともに、この光学系からの光を第 3光学系に導く反射及び Zまた は屈折系を設けることができる。なお、第 3マスクを用いる場合は、第 1マスク Ml及び 第 2マスク M2が搭載されるマスクステージ 6に搭載してもよぐ第 3実施形態に示した ように別のマスクステージに搭載してもよ 、。
[0216] なお、上記実施形態では、露光装置が可変成形マスク (アクティブマスク、あるいは イメージジェネレータとも呼ばれる)として非発光型画像表示素子である DMDを備え るものとした力 可変成形マスクは DMDに限られるものでなぐ DMDに代えて、以 下に説明する非発光型画像表示素子を用いても良い。ここで、非発光型画像表示素 子は、所定方向へ進行する光の振幅(強度)、位相あるいは偏光の状態を空間的に 変調する素子であり、透過型空間光変調器としては、透過型液晶表示素子 (LCD : L iquid Crystal Display)以外に、エレクト口クロミックディスプレイ(ECD)等が例として挙 げられる。また、反射型空間光変調器としては、上述の DMDの他に、反射ミラーァレ
ィ、反射型液晶表示素子、電気泳動ディスプレイ(EPD: Electro Phonetic Display)、 電子ペーパー(または電子インク)、光回折型ライトバルブ(Grating Light Valve)等が 例として挙げられる。
[0217] また、上記実施形態の露光装置は、非発光型画像表示素子を備える可変成形マス クに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても 良い。この場合、照明系は不要となる。ここで自発光型画像表示素子としては、例え ば、 CRT (Cathode Ray Tube)、無機 ELディスプレイ、有機 ELディスプレイ(または O LED : Organic Light Emitting Diode)、 LEDディスプレイ、 LDディスプレイ、電界放 出ディスプレイ(FED: Field Emission Display)、プラズマディスプレイ (PDP: Plasma Display Panel)等が挙げられる。また、パターン形成装置が備える自発光型画像表示 素子として、複数の発光点を有する固体光源チップ、チップを複数個アレイ状に配列 した固体光源チップアレイ、または複数の発光点を 1枚の基板に作り込んだタイプの もの等を用い、該固体光源チップを電気的に制御してパターンを形成しても良い。な お、固体光源素子は、無機、有機を問わない。
[0218] なお、上記各実施形態では干渉計システムを用いてマスクステージ及び基板ステ ージの位置情報を計測するものとした力 これに限らず、例えば基板ステージの上面 に設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもょ 、。こ の場合、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステムと し、干渉計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キヤ リブレーシヨン)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを 切り替えて用いる、あるいはその両方を用いて、基板ステージの位置制御を行うよう にしてもよい。
[0219] また、上記各実施形態では、露光光 ELとして ArFエキシマレーザ光を発生する光 源装置として、 ArFエキシマレーザを用いてもよいが、例えば、国際公開第 1999Z4 6835号パンフレット(対応米国特許 7,023,610号)に開示されているように、 DFB半 導体レーザ又はファイバーレーザなどの固体レーザ光源、ファイバーアンプなどを有 する光増幅部、及び波長変換部などを含み、波長 193nmのパルス光を出力する高 調波発生装置を用いてもよい。さらに、上記実施形態では、前述の各照明領域と、第
1、第 2露光領域 (但し、第 6、第 7実施形態は除く)がそれぞれ矩形状であるものとし たが、他の形状、例えば円弧状などでもよい。
[0220] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみならず 、矩形など他の形状でもよい。
[0221] また、本発明は、例えば特開平 10— 163099号公報、特開平 10— 214783号公 報(対応する米国特許 6, 341, 007, 6, 400, 441, 6, 549, 269及び 6, 590,634 号)、特表 2000— 505958号公報(対応する米国特許 5, 969, 441号)などに開示 されて ヽるような複数の基板ステージを備えたツインステージ (マルチステージ)型の 露光装置にも適用できる。マルチステージ型の露光装置に関して、指定国及び選択 国の国内法令が許す限りにおいて、上記米国特許の開示を援用して本文の記載の 一部とする。
[0222] 更に、例えば特開平 11— 135400号公報 (対応する国際公開第 1999Z23692 号パンフレット)、特開 2000— 164504号公報(対応する米国特許 6,897,963号)に 開示されているように、基板を保持する基板ステージと、計測部材 (例えば、基準マ ークが形成された基準部材、及び Z又は各種の光電センサ)を搭載した計測ステー ジとを備えた露光装置にも本発明を適用することができ、指定国または選択国の法 令が許す範囲にぉ 、てそれらの米国特許の開示を援用して本文の記載の一部とす る。
[0223] また、上述の各実施形態のうち、露光光 ELの光路を液体で満たす実施形態にお いては、投影系と基板 Pとの間に局所的に液体を満たす露光装置を採用して 、るが 、本発明は、例えば特開平 6— 124873号公報、特開平 10— 303114号公報、米国 特許第 5, 825, 043号などに開示されているような露光対象の基板の表面全体が液 体中に浸かって 、る状態で露光を行う液浸露光装置にも適用可能である。
[0224] なお、上記各実施形態では露光装置 EXが投影系を備えるものとしたが、投影系の 代わりに、パターンの像を形成しない光学系(例えば、回折光学素子など)を用いて
もよい。また、上記各実施形態では第 1、第 2露光領域 AR1、 AR2の少なくとも一方 において、例えば国際公開第 2001Z035168号パンフレットに開示されているよう に干渉縞を形成することによって、基板 P上にライン 'アンド'スペースパターンを露光 してちよい。
[0225] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、マイクロマシン、 MEMS, DNAチップ、撮像素子 (C CD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0226] 本願明細書に掲げた種々の米国特許及び米国特許出願公開については、特に援 用表示をしたもの以外についても、指定国または選択国の法令が許す範囲において それらの開示を援用して本文の一部とする。
[0227] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びタリ ーン度等が管理されたクリーンルームで行うことが望ましい。
[0228] 半導体デバイス等のマイクロデバイスは、図 19に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に多重露光する露光工程及
び露光した基板の現像工程を含む基板処理ステップ 204、デバイス組み立てステツ プ (ダイシング工程、ボンディング工程、ノ ッケージ工程などの加工プロセスを含む) 2 05、検査ステップ 206等を経て製造される。
産業上の利用可能性
本発明によれば、基板の多重露光を正確に且つ高!、効率で実現することができる 。このため、液晶表示素子やマイクロマシンなどに使用される高密度で複雑な回路パ ターンを有するデバイスを高いスループットで生産することができる。それゆえ、本発 明は、我国の半導体産業を含む精密機器産業の発展に著しく貢献するであろう。
Claims
[1] 基板を露光する露光装置であって、
第 1方向の異なる位置に第 1露光領域と第 2露光領域とを規定するとともに、前記第 1露光領域及び前記第 2露光領域のそれぞれに露光光を照射する光学ユニットと、 前記第 1露光領域及び前記第 2露光領域と前記基板とを前記第 1方向に相対的に 移動する第 1移動システムとを備え、
前記第 1露光領域及び前記第 2露光領域と前記基板上の所定領域とを相対的に 移動しつつ、前記光学ユニットにより前記第 1露光領域及び前記第 2露光領域のそ れぞれに露光光を照射することにより、前記第 1露光領域に照射される露光光で形 成される第 1パターン像と、前記第 2露光領域に照射される露光光で形成される、前 記第 1パターン像とは異なる第 2パターン像とで前記基板上の所定領域を多重露光 する露光装置。
[2] 前記第 1露光領域と前記第 2露光領域とが前記第 1方向に離れている請求項 1記 載の露光装置。
[3] 前記第 1露光領域と前記第 2露光領域の一部とが前記第 1方向において重複して
V、る請求項 1記載の露光装置。
[4] 前記光学ユニットは、互いに異なる露光条件で、前記第 1露光領域及び前記第 2露 光領域のそれぞれに露光光を照射する請求項 1記載の露光装置。
[5] 前記露光条件は、前記基板に対する露光光の照射条件、及び前記光学ユニットと 前記基板との間の空間を満たす媒体条件の少なくとも一方を含む請求項 4記載の露 光装置。
[6] 前記第 1露光領域及び前記第 2露光領域の少なくとも一方には、液体を介して露 光光が照射される請求項 5記載の露光装置。
[7] 所定の電子データに基づいて駆動する反射素子を更に備え、
前記反射素子で反射した露光光が前記第 1露光領域と前記第 2露光領域とのそれ ぞれに照射される請求項 1記載の露光装置。
[8] 前記光学ユニットは、前記第 1露光領域に露光光を照射する第 1光学システムと、 前記第 2露光領域に露光光を照射する第 2光学システムとを有する請求項 1記載の
露光装置。
[9] 前記第 1光学システム及び前記第 2光学システムのそれぞれは、前記基板が対向 して配置される複数の終端素子を有し、前記終端素子のそれぞれから露光光が射出 される請求項 8記載の露光装置。
[10] 前記複数の終端素子は、前記第 1方向と直交する第 2方向に隣合う終端素子の照 射領域が前記第 1方向に離れるように配置されている請求項 9記載の露光装置。
[11] 前記光学ユニットは、前記基板が対向して配置される 1つの終端素子を有し、前記
1つの終端素子を介して、前記第 1露光領域及び前記第 2露光領域のそれぞれに露 光光が照射される請求項 1記載の露光装置。
[12] 前記第 1パターン像を形成するための第 1パターン形成部材と、
前記第 2パターン像を形成するための第 2パターン形成部材とを更に備え、 前記光学ユニットは、前記第 1露光領域及び前記第 2露光領域と光学的に共役な 位置の近傍に配置され、前記第 1パターン形成部材からの露光光と前記第 2パター ン形成部材からの露光光とを前記終端素子へ導く中間光学部材を有し、
前記第 1パターン形成部材からの露光光と前記第 2パターン形成部材からの露光 光とが、前記中間光学部材と前記終端素子とを介して、前記第 1露光領域及び前記 第 2露光領域のそれぞれに照射される請求項 11記載の露光装置。
[13] 前記光学ユニットは、前記第 1パターン形成部材からの露光光を前記中間光学部 材に導く第 1光学システムと、前記第 2パターン形成部材からの露光光を前記中間光 学部材に導く第 2光学システムとを有する請求項 12記載の露光装置。
[14] 前記中間光学部材は、前記第 1光学システムからの露光光を反射する第 1反射面 と前記第 2光学システム力もの露光光を反射する第 2反射面とを有する請求項 13記 載の露光装置。
[15] 前記第 1光学システム及び前記第 2光学システムの少なくとも一方は凹面ミラーを 含む請求項 13記載の露光装置。
[16] 前記第 1パターン形成部材及び前記第 2パターン形成部材の少なくとも一方は、所 定の電子データに基づいて駆動する複数の反射素子を含み、
前記複数の反射素子で反射された露光光が前記中間光学部材に入射する請求項
12記載の露光装置。
[17] 前記第 1パターン形成部材及び前記第 2パターン形成部材を保持して移動可能な 第 2移動システムを更に備え、
前記第 1移動システムによる前記基板の前記第 1方向への移動に同期して、前記 第 2移動システムを用いて前記第 1パターン形成部材と前記第 2パターン形成部材と を所定方向に移動することによって、前記第 1パターン像と前記第 2パターン像とで 前記基板上の所定領域が多重露光される請求項 12記載の露光装置。
[18] 前記第 2移動システムは、前記第 1パターン形成部材と前記第 2パターン形成部材 とを前記所定方向に移動するための第 1ステージと、前記第 1ステージに対して前記 第 1パターン形成部材を移動する第 2ステージと、前記第 1ステージに対して前記第 2パターン形成部材を移動する第 3ステージとを有する請求項 17記載の露光装置。
[19] 前記第 2ステージ及び前記第 3ステージの位置情報をそれぞれ計測する計測シス テムを更に備える請求項 18記載の露光装置。
[20] 前記計測システムは、前記第 2ステージに設けられた反射部及び前記第 3ステージ に設けられた反射部と、前記反射部に計測ビームを投射するとともに、その反射光を 受光して前記第 2ステージ及び前記第 3ステージのそれぞれの位置情報を取得する 干渉計システムとを含む請求項 19記載の露光装置。
[21] 前記第 1ステージに対して前記第 2ステージ及び前記第 3ステージの少なくとも一 方を移動することによって、前記第 1パターン形成部材と前記第 2パターン形成部材 との相対的な位置関係が調整される請求項 18記載の露光装置。
[22] 前記第 2移動システムは、前記第 1、第 2パターン形成部材を同一のステージで保 持するとともに、前記ステージ上で前記第 1、第 2パターン形成部材の少なくとも一方 を移動可能であり、前記多重露光時に前記ステージを前記所定方向に移動する請 求項 17記載の露光装置。
[23] 前記第 2移動システムは、前記第 1、第 2パターン形成部材を同一のステージで保 持し、
前記ステージで保持される前記第 1、第 2パターン形成部材の相対的な位置関係に 関する情報を計測する計測システムを更に備える請求項 17記載の露光装置。
[24] 前記第 1、第 2パターン形成部材は、前記ステージ上で前記所定方向に沿って並 ぶ請求項 23記載の露光装置。
[25] 前記基板は半導体ウェハを含む請求項 1記載の露光装置。
[26] 請求項 1〜25のいずれか一項記載の露光装置を用いるデバイス製造方法。
[27] 基板を露光する露光方法であって、
第 1方向の異なる位置に規定された第 1露光領域と第 2露光領域とのそれぞれに露 光光を照射することと、
前記基板上の所定領域が前記第 1露光領域と前記第 2露光領域とに対して相対移 動されるように前記基板を前記第 1方向に移動することによって、前記第 1露光領域 に照射される露光光で形成される第 1パターン像と、前記第 2露光領域に照射される 露光光で形成される、前記第 1パターン像とは異なる第 2パターン像とで前記基板上 の所定領域を多重露光することを含む露光方法。
[28] 所定の電子データに基づいて駆動する反射素子により第 1パターン像及び第 2パ ターン像を形成する請求項 27記載の露光方法。
[29] 前記基板の移動に同期して、前記第 1、第 2パターン像を形成するためのパターン 形成部材を露光光に対して移動することを含む請求項 27記載の露光方法。
[30] 前記第 1、第 2パターン像をそれぞれ形成するための第 1、第 2パターン形成部材を 同一のステージで保持し、前記多重露光時に前記ステージを移動して、前記第 1、 第 2パターン形成部材の前記基板との同期移動を行う請求項 27記載の露光方法。
[31] 前記第 1、第 2露光領域は、互いに異なる露光条件で、前記露光光が照射される請 求項 27記載の露光方法。
[32] 液体を介して前記基板上の所定領域を多重露光する請求項 27記載の露光方法。
[33] 露光光が複数の光学系を介して第 1露光領域に照射され、露光光が複数の光学 系を介して第 2露光領域に照射される請求項 27記載の露光方法。
[34] 前記第 1、第 2パターン像を形成するための第 1、第 2パターン形成部材をそれぞれ 露光光で照明し、前記第 1パターン形成部材及び第 1、第 3光学系を介して露光光を 前記第 1露光領域に照射するとともに、前記第 2パターン形成部材、前記第 1光学系 と異なる第 2光学系、及び前記第 3光学系を介して露光光を前記第 2露光領域に照
射する請求項 27記載の露光方法。
[35] 前記第 1、第 2光学系によって前記第 1、第 2パターン形成部材の中間像をそれぞ れ形成し、前記第 3光学系による前記 2つの中間像の再結像により、前記第 1、第 2 露光領域に前記第 1、第 2パターン像を形成する請求項 34記載の露光方法。
[36] 前記 2つの中間像の形成位置近傍に配置される光学部材を介して、前記第 1、第 2 パターン形成部材からの露光光をそれぞれ前記第 3光学系に導く請求項 35記載の 露光方法。
[37] 所定のパターンの像を基板上に投影する投影光学系であって、
第 1パターンを介した露光ビームに基づいて該第 1パターンと光学的に共役な第 1 共役位置を形成する第 1光学系と、
第 2パターンを介した露光ビームに基づいて該第 2パターンと光学的に共役な第 2 共役位置を形成する第 2光学系と、
前記第 1光学系からの露光ビームと前記第 2光学系からの露光ビームとに基づいて 、前記基板と前記第 1共役位置とを光学的に共役にすると共に、前記基板と前記第 2 共役位置とを光学的に共役にする第 3光学系と、
前記第 1光学系と前記第 3光学系との間の光路中であって、且つ前記第 2光学系と 前記第 3光学系との間の光路中に配置されて、前記第 1光学系からの露光ビームと 前記第 2光学系からの露光ビームとを前記第 3光学系に導入する中間光学系とを備 える投影光学系。
[38] 前記第 1光学系と前記第 2光学系とは第 1方向に沿って並置されており、
前記第 1光学系は、前記第 1方向を含む面内で光路を折り曲げる第 1光路折り曲げ 面を備え、
前記第 2光学系は、前記第 1方向を含む面内で光路を折り曲げる第 2光路折り曲げ 面を備える請求項 37記載の投影光学系。
[39] 前記第 1光学系は、前記第 1共役位置と光学的に共役な第 3共役位置を形成する 第 1結像光学系と、前記第 1共役位置と前記第 3共役位置との間の光路中に配置さ れた第 1凹面とを備え、
前記第 2光学系は、前記第 2共役位置と光学的に共役な第 4共役位置を形成する
第 2結像光学系と、前記第 1共役位置と前記第 3共役位置との間の光路中に配置さ れた第 2凹面とを備える請求項 38記載の投影光学系。
[40] 前記第 1光路折り曲げ面は前記第 1凹面と前記中間光学系との間の光路中に配置 され、
前記第 2光路折り曲げ面は前記第 2凹面と前記中間光学系との間の光路中に配置 される請求項 39記載の投影光学系。
[41] 前記第 1結像光学系から前記第 1凹面へ向かう露光ビームと、前記第 2結像光学系 力も前記第 2凹面へ向力 露光ビームとは反射面を経由しない請求項 39記載の投影 光学系。
[42] 前記第 1光学系と前記第 2光学系とは第 1方向に沿って並置されており、
前記中間光学系は、前記第 1方向を含む面内で前記第 1光学系からの露光ビーム の光路を折り曲げると共に、前記第 1方向を含む面内で前記第 2光学系からの露光 ビームの光路を折り曲げる請求項 37〜41のいずれか一項記載の投影光学系。
[43] 前記第 1光学系は、前記第 1方向を横切る方向である第 2方向に長手方向を持つ 第 1視野領域内に位置する前記第 1パターンを介した露光ビームを受け、
前記第 2光学系は、前記第 2方向に長手方向を持つ第 2視野領域内に位置する前 記第 2パターンを介した露光ビームを受ける請求項 37〜41のいずれか一項記載の 投影光学系。
[44] 基板を露光する露光装置であって、
第 1方向の異なる位置に第 1露光領域と第 2露光領域とを規定するとともに、前記第
1露光領域及び前記第 2露光領域のそれぞれに露光光を照射する光学ユニットと、 前記第 1露光領域及び前記第 2露光領域と前記基板とを前記第 1方向に相対的に 移動する第 1移動システムとを備え、
前記光学ユニットは、請求項 37記載の投影光学系を備え、
前記第 1露光領域及び前記第 2露光領域と前記基板上の所定領域とを相対的に 移動しつつ、前記光学ユニットにより前記第 1露光領域及び前記第 2露光領域のそ れぞれに露光光を照射することにより、前記第 1露光領域に照射される露光光で形 成される第 1パターン像と、前記第 2露光領域に照射される露光光で形成される、前
記第 1パターン像とは異なる第 2パターン像とで前記基板上の所定領域を多重露光 する露光装置。
[45] 前記基板は半導体ウェハを含む請求項 44記載の露光装置。
[46] 基板を露光する露光装置であって、
第 1所定面の第 1領域力 の第 1露光光を第 1露光領域に照射し、第 2所定面の第
2領域からの第 2露光光を第 2露光領域に照射する光学ユニットと、
前記第 1所定面及び前記第 2所定面を介した検出光を受光する受光装置を有し、 前記受光装置の受光結果に基づいて、前記第 1領域に配置されている第 1パターン と前記第 2領域に配置されている第 2パターンとの位置関係に関する情報を取得する 検出システムとを備えた露光装置。
[47] 前記受光装置は、前記光学ユニットの少なくとも一部を介して前記検出光を受光す る請求項 46記載の露光装置。
[48] 前記光学ユニットは、前記第 1露光領域及び前記第 2露光領域と光学的に共役な 位置の近傍に配置され、前記第 1領域からの前記第 1露光光と前記第 2領域からの 前記第 2露光光とが入射されるとともに、前記第 1領域からの前記第 1露光光と前記 第 2領域からの前記第 2露光光とを前記第 1露光領域と前記第 2露光領域とに導く中 間光学部材を有する請求項 46記載の露光装置。
[49] 前記中間光学部材は、前記第 1領域から入射された前記第 1露光光を反射する第
1反射面と、前記第 2領域から入射された前記第 2露光光を反射する第 2反射面とを 有する請求項 48記載の露光装置。
[50] 前記光学ユニットは、前記基板が対向して配置される 1つの光学素子を有し、 前記中間光学部材は、前記第 1領域からの前記第 1露光光と前記第 2領域からの 前記第 2露光光とを前記 1つの光学素子へ導き、
前記 1つの光学素子を介して、前記第 1露光領域及び前記第 2露光領域のそれぞ れに前記第 1露光光及び前記第 2露光光が照射される請求項 48記載の露光装置。
[51] 前記受光装置は、前記中間光学部材を介さずに、前記検出光を受光する請求項 4
8記載の露光装置。
[52] 前記受光装置は、前記第 1所定面の前記第 1領域とは異なる第 3領域からの光、及
び前記第 2所定面の前記第 2領域とは異なる第 4領域からの光の少なくとも一方を、 前記検出光として受光する請求項 46記載の露光装置。
[53] 前記光学ユニットは、前記第 1領域からの第 1露光光が入射する第 1光学システムと 、前記第 2領域力 の第 2露光光が入射する第 2光学システムとを有し、
前記第 1光学システムは、前記第 3領域からの光を前記第 2光学システムに供給可 能であり、
前記第 2光学システムは、前記第 4領域からの光を前記第 1光学システムに供給可 能であり、
前記受光装置は、前記第 3領域からの光及び前記第 4領域からの光の少なくとも一 方を、前記第 1光学システム及び前記第 2光学システムを介して、前記検出光として 受光する請求項 52記載の露光装置。
[54] 前記受光装置は、前記第 1パターンと所定の位置関係で配置される第 1マーク、及 び前記第 2パターンと所定の位置関係で配置される第 2マークの少なくとも一方から の光を、前記検出光として受光する請求項 53記載の露光装置。
[55] 前記検出システムは、前記第 3領域及び前記第 4領域の少なくとも一方に検出光を 照射する照射装置を備える請求項 53記載の露光装置。
[56] 前記検出光は、前記露光光と異なる波長を有する請求項 55記載の露光装置。
[57] 前記検出光は、前記露光光と同じ波長を有する請求項 55記載の露光装置。
[58] 前記第 1露光光及び前記第 2露光光の少なくとも一方の一部が、前記第 3領域及 び前記第 4領域の少なくとも一方に前記検出光として照射される請求項 52記載の露 光装置。
[59] 前記検出システムで取得した情報に基づいて、前記第 1パターンと前記第 2パター ンとの位置関係を調整しつつ、前記第 1露光光及び前記第 2露光光を前記第 1露光 領域及び前記第 2露光領域のそれぞれに照射する請求項 46〜58のいずれか一項 記載の露光装置。
[60] 前記光学ユニットは、前記第 1露光領域に前記第 1露光光を照射して前記第 1露光 領域に前記第 1パターンの像を形成可能であり、前記第 2露光領域に前記第 2露光 光を照射して前記第 2露光領域に前記第 2パターンの像を形成可能であり、
前記第 1露光領域に形成される第 1パターンの像と前記第 2露光領域に形成される 第 2パターンの像とで前記基板上の所定領域を多重露光する請求項 46〜58のいず れか一項記載の露光装置。
[61] 請求項 46〜58のいずれか一項記載の露光装置を用いるデバイス製造方法。
[62] 基板を露光する露光方法であって、
第 1所定面の第 1領域力 の第 1露光光を第 1露光領域に照射し、第 2所定面の第 2領域からの第 2露光光を第 2露光領域に照射することと、
第 1所定面及び第 2所定面を介した光を検出することと、
検出結果に基づいて、第 1領域に配置されている第 1パターンと第 2領域に配置さ れている第 2パターンとの位置関係に関する情報を取得することとを含む露光方法。
[63] さらに、前記位置関係に関する情報に基づいて第 1パターンと第 2パターンの位置 関係を調整することを含む請求項 62記載の露光方法。
[64] 前記第 1、第 2パターンの位置関係の調整は、少なくとも前記第 1、第 2露光光の照 射中に行われる請求項 63記載の露光方法。
[65] 前記第 1、第 2パターンの位置関係の調整は、少なくとも前記第 1、第 2露光光によ る前記基板の露光前に行われる請求項 63記載の露光方法。
[66] 前記第 1所定面及び第 2所定面に配置されるマークを検出することで第 1パターン と第 2パターンとの位置関係に関する情報を取得する請求項 62記載の露光方法。
[67] 前記マークは、前記第 1領域及び第 2領域の外側に配置される請求項 66記載の露 光方法。
[68] 前記第 1所定面及び第 2所定面を介した光は、前記露光光と異なる波長を有する 請求項 62記載の露光方法。
[69] 前記第 1所定面及び第 2所定面を介した光は、前記露光光と同じ波長を有する請 求項 62記載の露光方法。
[70] 前記基板は、前記第 1、第 2露光光の照射により前記第 1、第 2露光領域に形成され る第 1、第 2パターンの像で多重露光される請求項 62〜69のいずれか一項記載の 露光方法。
[71] 請求項 27〜36、 62〜69のいずれか一項記載の露光方法を用いて基板を多重露
光することと;
多重露光された基板を現像することと;
現像された基板を加工することを含むデバイス製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06834086A EP1970944A4 (en) | 2005-12-06 | 2006-12-06 | EXPOSURE APPARATUS AND METHOD, OPTICAL PROJECTION SYSTEM, AND DEVICE MANUFACTURING METHOD |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351658 | 2005-12-06 | ||
JP2005-351658 | 2005-12-06 | ||
JP2005379137 | 2005-12-28 | ||
JP2005-379137 | 2005-12-28 | ||
JP2006119212 | 2006-04-24 | ||
JP2006-119212 | 2006-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007066679A1 true WO2007066679A1 (ja) | 2007-06-14 |
Family
ID=38122825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/324331 WO2007066679A1 (ja) | 2005-12-06 | 2006-12-06 | 露光装置、露光方法、投影光学系及びデバイス製造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1970944A4 (ja) |
KR (1) | KR20080071555A (ja) |
TW (1) | TW200722935A (ja) |
WO (1) | WO2007066679A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114675506A (zh) * | 2022-04-02 | 2022-06-28 | 京东方科技集团股份有限公司 | 一种扫描曝光方法及装置、扫描曝光设备 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HK1256939A1 (zh) * | 2016-02-29 | 2019-10-04 | 株式会社尼康 | 曝光装置、平板显示器的制造方法、器件制造方法、遮光装置及曝光方法 |
CN109613802B (zh) * | 2018-12-24 | 2021-07-30 | 无锡影速半导体科技有限公司 | 一种多波段分别曝光的曝光装置及方法 |
CN109407473B (zh) * | 2018-12-24 | 2021-06-11 | 江苏影速集成电路装备股份有限公司 | 一种多波段光学曝光系统、设备及方法 |
JP7265827B2 (ja) * | 2019-02-18 | 2023-04-27 | キヤノン株式会社 | 露光システム、および、物品製造方法 |
CN111552125B (zh) * | 2020-05-27 | 2022-11-22 | 成都中电熊猫显示科技有限公司 | 掩膜版及掩膜组 |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59123230A (ja) * | 1982-12-28 | 1984-07-17 | Toshiba Corp | 半導体素子の製造装置 |
JPH05175102A (ja) * | 1991-12-25 | 1993-07-13 | Oki Electric Ind Co Ltd | 位相差露光法 |
JPH06124873A (ja) | 1992-10-09 | 1994-05-06 | Canon Inc | 液浸式投影露光装置 |
JPH0757986A (ja) * | 1993-06-30 | 1995-03-03 | Nikon Corp | 露光装置 |
JPH08130179A (ja) | 1994-11-01 | 1996-05-21 | Nikon Corp | ステージ装置 |
JPH08313842A (ja) | 1995-05-15 | 1996-11-29 | Nikon Corp | 照明光学系および該光学系を備えた露光装置 |
JPH0945603A (ja) * | 1995-07-28 | 1997-02-14 | Ushio Inc | マスクとマスクまたはマスクとワークの位置合わせ方法および装置 |
JPH10163099A (ja) | 1996-11-28 | 1998-06-19 | Nikon Corp | 露光方法及び露光装置 |
JPH10214783A (ja) | 1996-11-28 | 1998-08-11 | Nikon Corp | 投影露光装置及び投影露光方法 |
JPH10232497A (ja) * | 1997-02-20 | 1998-09-02 | Nikon Corp | 露光装置 |
US5825043A (en) | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
JPH10303114A (ja) | 1997-04-23 | 1998-11-13 | Nikon Corp | 液浸型露光装置 |
JPH1123692A (ja) | 1997-06-30 | 1999-01-29 | Sekisui Chem Co Ltd | 地中探査用アンテナ |
JPH1146835A (ja) | 1997-08-04 | 1999-02-23 | Haruyo Fukuoka | 着用式貴重品入れ |
JPH11135400A (ja) | 1997-10-31 | 1999-05-21 | Nikon Corp | 露光装置 |
WO1999049504A1 (fr) | 1998-03-26 | 1999-09-30 | Nikon Corporation | Procede et systeme d'exposition par projection |
US5969441A (en) | 1996-12-24 | 1999-10-19 | Asm Lithography Bv | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
JP2000164504A (ja) | 1998-11-30 | 2000-06-16 | Nikon Corp | ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法 |
JP2000284492A (ja) * | 1999-03-30 | 2000-10-13 | Seiko Epson Corp | 露光装置、露光方法及びプログラムを記録した記憶媒体 |
JP2001035168A (ja) | 1999-06-30 | 2001-02-09 | Samsung Electronics Co Ltd | データ出力パスのデータライン上のデータをラッチする回路を具備する半導体メモリ装置及びこの半導体メモリ装置のデータラッチ方法 |
JP2001291654A (ja) * | 2000-04-07 | 2001-10-19 | Canon Inc | 投影露光装置および方法 |
US6341007B1 (en) | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
JP2003045797A (ja) * | 2001-05-04 | 2003-02-14 | Asml Netherlands Bv | リソグラフィ装置、デバイス製造方法、およびそれによって製造されるデバイス |
US6721034B1 (en) | 1994-06-16 | 2004-04-13 | Nikon Corporation | Stage unit, drive table, and scanning exposure apparatus using the same |
EP1420298A2 (en) | 2002-11-12 | 2004-05-19 | ASML Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method |
US20040107011A1 (en) | 2002-10-09 | 2004-06-03 | Giovanni Moselli | Arrangement for controlling operation of fuel cells in electric vehicles |
WO2004055803A1 (en) | 2002-12-13 | 2004-07-01 | Koninklijke Philips Electronics N.V. | Liquid removal in a method and device for irradiating spots on a layer |
JP2004519850A (ja) * | 2001-02-27 | 2004-07-02 | エイエスエムエル ユーエス, インコーポレイテッド | デュアルレチクルイメージを露光する方法および装置 |
WO2004057590A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
US6778257B2 (en) | 2001-07-24 | 2004-08-17 | Asml Netherlands B.V. | Imaging apparatus |
US20040165159A1 (en) | 2002-11-12 | 2004-08-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2004289126A (ja) | 2002-11-12 | 2004-10-14 | Asml Netherlands Bv | リソグラフィ装置およびデバイス製造方法 |
JP2004304135A (ja) | 2003-04-01 | 2004-10-28 | Nikon Corp | 露光装置、露光方法及びマイクロデバイスの製造方法 |
JP2005039221A (ja) * | 2003-07-14 | 2005-02-10 | Samsung Electronics Co Ltd | 選択トランジスタを有するeeprom素子及びその製造方法 |
WO2005029559A1 (ja) | 2003-09-19 | 2005-03-31 | Nikon Corporation | 露光装置及びデバイス製造方法 |
US6897963B1 (en) | 1997-12-18 | 2005-05-24 | Nikon Corporation | Stage device and exposure apparatus |
US20050248856A1 (en) | 2002-08-23 | 2005-11-10 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
US20050280791A1 (en) | 2003-02-26 | 2005-12-22 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7023610B2 (en) | 1998-03-11 | 2006-04-04 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
US20060121364A1 (en) | 2003-05-06 | 2006-06-08 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
-
2006
- 2006-12-06 WO PCT/JP2006/324331 patent/WO2007066679A1/ja active Application Filing
- 2006-12-06 EP EP06834086A patent/EP1970944A4/en not_active Withdrawn
- 2006-12-06 TW TW095145268A patent/TW200722935A/zh unknown
- 2006-12-06 KR KR1020087009620A patent/KR20080071555A/ko not_active Withdrawn
Patent Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59123230A (ja) * | 1982-12-28 | 1984-07-17 | Toshiba Corp | 半導体素子の製造装置 |
JPH05175102A (ja) * | 1991-12-25 | 1993-07-13 | Oki Electric Ind Co Ltd | 位相差露光法 |
JPH06124873A (ja) | 1992-10-09 | 1994-05-06 | Canon Inc | 液浸式投影露光装置 |
JPH0757986A (ja) * | 1993-06-30 | 1995-03-03 | Nikon Corp | 露光装置 |
US6721034B1 (en) | 1994-06-16 | 2004-04-13 | Nikon Corporation | Stage unit, drive table, and scanning exposure apparatus using the same |
JPH08130179A (ja) | 1994-11-01 | 1996-05-21 | Nikon Corp | ステージ装置 |
JPH08313842A (ja) | 1995-05-15 | 1996-11-29 | Nikon Corp | 照明光学系および該光学系を備えた露光装置 |
JPH0945603A (ja) * | 1995-07-28 | 1997-02-14 | Ushio Inc | マスクとマスクまたはマスクとワークの位置合わせ方法および装置 |
US5825043A (en) | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
JPH10163099A (ja) | 1996-11-28 | 1998-06-19 | Nikon Corp | 露光方法及び露光装置 |
JPH10214783A (ja) | 1996-11-28 | 1998-08-11 | Nikon Corp | 投影露光装置及び投影露光方法 |
US6341007B1 (en) | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US6590634B1 (en) | 1996-11-28 | 2003-07-08 | Nikon Corporation | Exposure apparatus and method |
US6549269B1 (en) | 1996-11-28 | 2003-04-15 | Nikon Corporation | Exposure apparatus and an exposure method |
US6400441B1 (en) | 1996-11-28 | 2002-06-04 | Nikon Corporation | Projection exposure apparatus and method |
US5969441A (en) | 1996-12-24 | 1999-10-19 | Asm Lithography Bv | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
JP2000505958A (ja) | 1996-12-24 | 2000-05-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置 |
JPH10232497A (ja) * | 1997-02-20 | 1998-09-02 | Nikon Corp | 露光装置 |
JPH10303114A (ja) | 1997-04-23 | 1998-11-13 | Nikon Corp | 液浸型露光装置 |
JPH1123692A (ja) | 1997-06-30 | 1999-01-29 | Sekisui Chem Co Ltd | 地中探査用アンテナ |
JPH1146835A (ja) | 1997-08-04 | 1999-02-23 | Haruyo Fukuoka | 着用式貴重品入れ |
JPH11135400A (ja) | 1997-10-31 | 1999-05-21 | Nikon Corp | 露光装置 |
US6897963B1 (en) | 1997-12-18 | 2005-05-24 | Nikon Corporation | Stage device and exposure apparatus |
US7023610B2 (en) | 1998-03-11 | 2006-04-04 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
WO1999049504A1 (fr) | 1998-03-26 | 1999-09-30 | Nikon Corporation | Procede et systeme d'exposition par projection |
JP2000164504A (ja) | 1998-11-30 | 2000-06-16 | Nikon Corp | ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法 |
JP2000284492A (ja) * | 1999-03-30 | 2000-10-13 | Seiko Epson Corp | 露光装置、露光方法及びプログラムを記録した記憶媒体 |
JP2001035168A (ja) | 1999-06-30 | 2001-02-09 | Samsung Electronics Co Ltd | データ出力パスのデータライン上のデータをラッチする回路を具備する半導体メモリ装置及びこの半導体メモリ装置のデータラッチ方法 |
JP2001291654A (ja) * | 2000-04-07 | 2001-10-19 | Canon Inc | 投影露光装置および方法 |
JP2004519850A (ja) * | 2001-02-27 | 2004-07-02 | エイエスエムエル ユーエス, インコーポレイテッド | デュアルレチクルイメージを露光する方法および装置 |
JP2003045797A (ja) * | 2001-05-04 | 2003-02-14 | Asml Netherlands Bv | リソグラフィ装置、デバイス製造方法、およびそれによって製造されるデバイス |
US6778257B2 (en) | 2001-07-24 | 2004-08-17 | Asml Netherlands B.V. | Imaging apparatus |
US20050248856A1 (en) | 2002-08-23 | 2005-11-10 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
US20040107011A1 (en) | 2002-10-09 | 2004-06-03 | Giovanni Moselli | Arrangement for controlling operation of fuel cells in electric vehicles |
US6952253B2 (en) | 2002-11-12 | 2005-10-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20040165159A1 (en) | 2002-11-12 | 2004-08-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2004289126A (ja) | 2002-11-12 | 2004-10-14 | Asml Netherlands Bv | リソグラフィ装置およびデバイス製造方法 |
EP1420298A2 (en) | 2002-11-12 | 2004-05-19 | ASML Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method |
WO2004055803A1 (en) | 2002-12-13 | 2004-07-01 | Koninklijke Philips Electronics N.V. | Liquid removal in a method and device for irradiating spots on a layer |
WO2004057590A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
US20050280791A1 (en) | 2003-02-26 | 2005-12-22 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
JP2004304135A (ja) | 2003-04-01 | 2004-10-28 | Nikon Corp | 露光装置、露光方法及びマイクロデバイスの製造方法 |
US20060121364A1 (en) | 2003-05-06 | 2006-06-08 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
JP2005039221A (ja) * | 2003-07-14 | 2005-02-10 | Samsung Electronics Co Ltd | 選択トランジスタを有するeeprom素子及びその製造方法 |
WO2005029559A1 (ja) | 2003-09-19 | 2005-03-31 | Nikon Corporation | 露光装置及びデバイス製造方法 |
US20060231206A1 (en) | 2003-09-19 | 2006-10-19 | Nikon Corporation | Exposure apparatus and device manufacturing method |
Non-Patent Citations (1)
Title |
---|
See also references of EP1970944A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114675506A (zh) * | 2022-04-02 | 2022-06-28 | 京东方科技集团股份有限公司 | 一种扫描曝光方法及装置、扫描曝光设备 |
Also Published As
Publication number | Publication date |
---|---|
KR20080071555A (ko) | 2008-08-04 |
EP1970944A1 (en) | 2008-09-17 |
TW200722935A (en) | 2007-06-16 |
EP1970944A4 (en) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7782442B2 (en) | Exposure apparatus, exposure method, projection optical system and device producing method | |
US8027020B2 (en) | Exposure apparatus, exposure method, and method for producing device | |
TWI402627B (zh) | 曝光裝置與曝光方法以及微元件的製造方法 | |
US7932994B2 (en) | Exposure apparatus, exposure method, and method for producing device | |
CN101689026B (zh) | 移动体装置、图案形成装置、曝光装置及元件制造方法 | |
US8390779B2 (en) | Exposure apparatus, exposure method, and method for producing device | |
JP2009105414A (ja) | 露光方法、及びデバイス製造方法 | |
KR20080068006A (ko) | 노광 장치와, 노광 방법 및 디바이스 제조 방법 | |
CN101385120A (zh) | 测定装置及方法、处理装置及方法、图案形成装置及方法、曝光装置及方法、以及元件制造方法 | |
EP2003683A1 (en) | Exposure apparatus and device manufacturing method | |
US20080297751A1 (en) | Exposure method, exposure apparatus, and method for producing device | |
WO2007119501A1 (ja) | 露光装置及び露光方法、並びにデバイス製造方法 | |
EP2003682A1 (en) | Exposure apparatus and device production method | |
WO2007066679A1 (ja) | 露光装置、露光方法、投影光学系及びデバイス製造方法 | |
JP2007318069A (ja) | 露光装置及び露光方法、並びにデバイス製造方法、投影光学系 | |
JP2007287824A (ja) | 露光装置及びデバイス製造方法 | |
JP2007281169A (ja) | 投影光学系、露光装置及び露光方法、並びにデバイス製造方法 | |
US20080316453A1 (en) | Exposure apparatus, exposure method, and method for producing device | |
JPWO2007066687A1 (ja) | 温度計測方法、露光方法、露光装置、及びデバイス製造方法 | |
JP2012146701A (ja) | 露光方法及び露光装置 | |
JP4957281B2 (ja) | 露光装置、露光方法及びデバイス製造方法 | |
HK1115232A (en) | Exposure apparatus, exposure method, projection optical system and device manufacturing method | |
HK1115671A (en) | Exposure apparatus, exposure method, and device production method | |
HK1118384A (en) | Exposure apparatus, exposing method, and device manufacturing method | |
HK1118380A (en) | Exposure apparatus, exposing method, and device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020087009620 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006834086 Country of ref document: EP |