WO2007069369A1 - Signal processing device, and signal processing method - Google Patents
Signal processing device, and signal processing method Download PDFInfo
- Publication number
- WO2007069369A1 WO2007069369A1 PCT/JP2006/315932 JP2006315932W WO2007069369A1 WO 2007069369 A1 WO2007069369 A1 WO 2007069369A1 JP 2006315932 W JP2006315932 W JP 2006315932W WO 2007069369 A1 WO2007069369 A1 WO 2007069369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- signal processing
- bits
- output
- filter
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims description 34
- 238000003672 processing method Methods 0.000 title claims description 16
- 238000012937 correction Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000013139 quantization Methods 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000003044 adaptive effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10527—Audio or video recording; Data buffering arrangements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10527—Audio or video recording; Data buffering arrangements
- G11B2020/10537—Audio or video recording
- G11B2020/10546—Audio or video recording specifically adapted for audio data
Definitions
- the present invention relates to a signal processing device and a signal processing method suitable for use when, for example, expanding the number of bits of a quantized acoustic signal. Specifically, the number of bits can be expanded well while blocking the harmonic components due to the expanded bits.
- CD compact disc
- DZA Digital to Analog
- the present invention has been made in view of such problems, and an object of the present invention is to reduce an information signal quantized with a small number of bits, such as recording on a compact disc.
- Bi In addition to expanding the number of mobile stations, the deterioration of information such as the occurrence of noise during the expansion is prevented.
- the present application provides a signal processing device for extending the number of bits of a quantized signal.
- Filter means that expands the number of bits of the quantized original signal and blocks the harmonic component due to the extended bits, and the output of the filter means is a signal in which any lower bits of the extension are added to the original signal.
- the filter unit includes a variable filter including a delay unit and a correction unit that controls a coefficient thereof, and the correction unit is determined by a tendency of the original signal.
- the error ⁇ between the output of the low-pass filter whose cutoff frequency is controlled and the output of the variable filter is calculated according to the external signal generated, and the coefficient of the variable filter is controlled using a correction algorithm that minimizes the error ⁇ . It is characterized by that.
- the moving correction average value of the peak is calculated with a time constant longer than the quantization sampling with respect to the output of the first arithmetic means, and the calculated movement is calculated.
- the amplitude of the output of the first calculation means is controlled by the corrected average value, and the second calculation means adds to the output of the filter means.
- the original signal is a signal obtained by quantizing an acoustic signal.
- the original signal is a signal obtained by quantizing the acoustic signal, and the tendency of the original signal includes the distinction between the conversation of the acoustic signal and the music, and the song or music. It is characterized by being Jeyangle.
- a signal processing method for extending the number of bits of a quantized signal comprising: The number of bits is expanded and the harmonic components due to the expanded bits are cut off. The signal with the harmonic component cut off is also subtracted by subtracting the signal power obtained by adding any lower bits of the extension to the original signal. The number of bits is expanded by adding the signal to the signal whose harmonic components are cut off. It is characterized by obtaining a quantized signal.
- the number of bits of an information signal quantized with a small number of bits, such as recording on a compact disc is expanded, and noise is generated during the expansion. Therefore, it is possible to provide a signal processing apparatus and a signal processing method that can be applied as they are to recording on a conventional compact disc or the like.
- FIG. 1 is a block diagram showing a configuration of an embodiment of an acoustic signal processing device to which a signal processing device and a signal processing method according to the present invention are applied.
- FIG. 2 is a block diagram showing the configuration of the main part.
- FIG. 3 is a diagram for explaining that.
- FIG. 4 is a diagram for explaining that.
- FIG. 5 is a diagram for explaining this.
- FIG. 6 is a diagram for explaining that.
- FIG. 7 is a diagram for explaining that.
- FIG. 8 is a waveform diagram for explaining the effect.
- FIG. 1 is a block diagram showing a configuration of an embodiment of an acoustic signal processing apparatus to which a signal processing apparatus and a signal processing method according to the present invention are applied. .
- a 16-bit PCM signal is supplied to the input terminal 1.
- a signal from the input terminal 1 is supplied to the variable filter 3 through a predetermined delay means 2.
- a signal from the input terminal 1 is supplied to the computing means 5 through the low-pass filter (LPF) 4, and a difference from the output of the variable filter 3 is calculated and supplied to the coefficient correcting means 6. Then, the coefficient obtained by the coefficient correcting means 6 is supplied to the variable filter 3.
- LPF low-pass filter
- the signal from the input terminal 1 is supplied to the lower bit tracking circuit 8 through the predetermined delay means 7, and, for example, 8 bits of the value 0 are inserted into the lower order of the 16-bit input signal to obtain 24 bits. It is said that This 24-bit signal is supplied to the arithmetic means 9 and the output of the variable filter 3 is output. The difference from the force is calculated. Then, this difference value (24 bits) is added to the output of the variable filter 3 by the addition circuit 11 through the weighting circuit 10 and taken out to the output terminal 12.
- the difference value from the calculation means 9 is supplied to the peak detection circuit 13, and the peak detected signal is supplied to the limiter circuit 15 through the low-pass filter (LPF) 14, and the signal corresponding to the lower 8 bits is deleted. Is done.
- the weighting circuit 10 performs weighting based on the output of the limiter circuit 15. As a result, the number of bits of the information signal is expanded and correction processing for information deterioration due to the expansion is performed.
- variable filter 3 is an FIR type digital filter as shown in FIG. 2, for example, and is supplied to a plurality of unit delay means Z-1 in which input signals are connected in cascade.
- the outputs of each stage are added by the adding means (+) through the weighting circuit h.
- This added value is taken out as an output value y (n), and a difference from the target value d (n) is calculated by the calculation means 5 and the weighting circuit h is calculated by the coefficient correction means 6 so that this difference value is minimized.
- the coefficient of is obtained.
- the output value y (n) is expressed as follows.
- the coefficient correction means 6 determines the coefficient so that is minimized. [0021] Therefore, the condition that the mean square error e is minimum is
- the low-pass filter (LPF) output is a signal obtained by deleting the bits below the original quantization with a limiter from the difference signal between the input signal and the output of the low-pass filter (LPF). Add to.
- the waveform is smoothed as shown in (b) of FIG. 5 by the signal power low pass filter (LPF) quantized as shown in (a) of B of FIG.
- the high-frequency component deleted by the low-pass filter (LPF) is added, so that this kind of sound can be prevented.
- the low-pass filter (LPF) band has high sound quality of 24 bits, and high sound is added through as it is.
- the quantization noise is high even in the case of force continuity signals that are extracted by an adaptive filter (LMS) focusing on the continuity signals.
- LMS adaptive filter
- the low-pass filter (LPF) is used to remove high-frequency quantization noise and correct the adaptive filter (LMS) coefficient.
- the cutoff frequency of the low-pass filter (LPF) is generally about 1 OkHz when the sampling frequency force is 4.1 kHz, that is, half the frequency of Nyquist.
- the cut-off frequency of the low-pass filter is the original acoustic signal conversation and music.
- changes such as narrowing the passband can be made.
- better sound quality improvement can be performed according to the genre of music.
- the music information of a compact disc is 16 bits. Therefore, an adaptive filter is formed by the delay unit + variable filter unit, and the variable filter is controlled by the least square method so as to approach the signal source expanded to 24 bits by removing harmonics from the reference signal through LPF. As a result, for continuous (highly reproducible signals) due to the delay, the filtering effect is used to interpolate from 16 bits to 24 bits. However, since this sound is a reproducible signal, it becomes a muffled sound.
- the lower 8 bits of the source signal delayed by the variable filter processing are added (the lower 8 bits are 0), and the difference from the adaptive filter is calculated.
- This difference signal can be expanded to 24 bits by not adding it in the case of a signal with a magnitude less than the force quantization error, which is a high-frequency signal, and the conventional signal is added to the high-frequency information. Therefore, it can solve the problem.
- the peak detection in FIG. 1 is a pop-up because a scene of sudden addition or supple force occurs if it is determined whether or not the force to add is based on the magnitude of the quantization error alone. There is a risk of noise. Therefore, the peak error is calculated as 1.0 at maximum, and the amount of error is multiplied by the amount of error, so the high frequency signal can be added smoothly, eliminating pop noise. be able to.
- the sound source of a compact disk (CD) is 16 bits, which is insufficient in terms of high sound quality.
- 24-bit DACs can be used at low cost, so there are many 24-bit sound sources. Therefore, the present invention has an effect of improving the sound quality by predicting and extending the lower 8 bits, and can easily cope with a conventional CD.
- FIG. 8 the effect of the present invention is described with reference to waveforms.
- a in Fig. 8 shows the waveform immediately after the start of calculation, and here the quantization noise is generated.
- B in the figure shows the waveform after 100 ms from the start of the calculation, which shows that the quantization noise is reduced.
- the number of bits of the information signal quantized with a small number of bits, for example, recording on a compact disc is expanded, and information such as the occurrence of noise is generated during the expansion.
- a signal processing apparatus and a signal processing method that can be directly applied to recording on a conventional compact disc or the like.
- the signal processing device expands the number of bits of the quantized signal, and extends the number of bits of the quantized original signal and uses the expanded bits.
- Filter means for cutting off harmonic components first calculation means for subtracting the signal power obtained by adding an arbitrary lower bit of the extension to the original signal, and filtering the output of the first calculation means
- the second calculation means for adding to the output of the means the number of bits can be expanded well.
- the signal processing method extends the number of bits of the quantized signal, and extends the number of bits of the quantized original signal.
- the harmonic component due to the bit is cut off, the signal with the harmonic component cut off is also subtracted from the original signal, and the signal power with any lower bits added to the extension is subtracted, and the subtracted signal is subtracted from the harmonic component.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Abstract
It is intended to expand the bit number of information signals and to prevent the information at that time from degradation. For this intention, a signal from an input terminal (1) is fed through predetermined delay means (2) to a variable filter (3), and is then fed through an arbitrary low-pass filter (4) to operation means (5), and its difference from the output of the variable filter (3) is calculated and fed to coefficient correction means (6). The coefficient determined by the coefficient correction means (6) is fed to the variable filter (3). Moreover, the signal from the input terminal (1) is fed through predetermined delay means (7) and a less significant bit addition circuit (8) to operation means (9), and its difference from the output of the variable filter (3) is calculated. This difference is added through a weighting circuit (10) to the output of an addition circuit (11), and is extracted from an output terminal (12). Moreover, the difference from the operation means (9) is fed through a peak detection circuit (13) and a low-pass filter (14) to a limiter circuit (15), and the signal corresponding to the less significant value is deleted so that the weighting at the weighting circuit (10) is performed.
Description
明 細 書 Specification
信号処理装置及び信号処理方法 Signal processing apparatus and signal processing method
技術分野 Technical field
[0001] 本発明は、例えば量子化された音響信号のビット数を拡張する際に使用して好適 な信号処理装置及び信号処理方法に関する。詳しくは、拡張されたビットによる高調 波成分を遮断しつつ、良好なビット数の拡張が行われるようにしたものである。 The present invention relates to a signal processing device and a signal processing method suitable for use when, for example, expanding the number of bits of a quantized acoustic signal. Specifically, the number of bits can be expanded well while blocking the harmonic components due to the expanded bits.
背景技術 Background art
[0002] 従来の信号処理装置及び信号処理方法では、例えば米国特許 6055318号公報 や、米国特許 6154547号公報に記載されているように、帰還形のフィルタを用いて ノイズ低減等の処理を行うことが知られている。また、量子化された信号に対しては、 例えば米国特許 3889108号公報に記載されているように、帰還形のフィルタを用い てバンド幅を変換する装置も提案されている。すなわち、従来から量子化された信号 に対して、帰還形のフィルタを用いて処理を行う装置は知られているものである。 発明の開示 In a conventional signal processing apparatus and signal processing method, for example, as described in US Pat. No. 6055318 and US Pat. No. 6154547, processing such as noise reduction is performed using a feedback filter. It has been known. For quantized signals, as described in, for example, US Pat. No. 3,889,108, a device for converting the bandwidth using a feedback filter has been proposed. That is, a device for processing a quantized signal using a feedback filter is known. Disclosure of the invention
[0003] 例えばコンパクトディスク(CD)にお!/ヽては、音響信号(audio signal)をサンプリング 周波数 44. lkHz、量子化ビット数 16ビットでデジタルィ匕して記録することが、一般的 に広く普及している。ところが、記録された 16ビットの信号をそのまま DZA (Digital to Analog)変換して 、ると、再生音質の微妙な部分でニュアンスが物足りな 、と 、う意 見が出てくるようになってきた。 [0003] For example, for a compact disc (CD), it is generally recorded as an audio signal digitally with a sampling frequency of 44. lkHz and a quantization bit rate of 16 bits. Widely used. However, when the recorded 16-bit signal is directly converted to DZA (Digital to Analog), it appears that the subtlety of the playback sound quality is not enough nuance.
[0004] 一方、音響信号の DZA変換では、例えば 24ビットの変換手段も安価に入手可能 となってきており、そのような変換手段を用いることで音質の改善を図ることが考えら れる。しかし、例えば 16ビットの情報の下位に、単純に 8ビットの値 0を挿入して拡張 を行うと、多量のノイズが発生して著しく音質が劣化するなどの問題が生じる。また、 このようなノイズをローパスフィルタを用いて除去すると、全体にこもった感じの音にな つてしまうものである。 [0004] On the other hand, in the DZA conversion of acoustic signals, for example, 24-bit conversion means have become available at low cost, and it is conceivable to improve sound quality by using such conversion means. However, for example, if an extension is performed by simply inserting an 8-bit value of 0 below the 16-bit information, a large amount of noise is generated and the sound quality is significantly degraded. Moreover, if such noise is removed using a low-pass filter, it will result in a sound that feels full.
[0005] この発明はこのような問題点に鑑みて成されたものであって、本発明の目的は、例 えばコンパクトディスクでの記録のように少な 、ビット数で量子化された情報信号のビ
ット数を拡張すると共に、その拡張の際にノイズの発生等の情報の劣化が生じないよ うにするものである。これにより、従来のコンパクトディスク等の記録にもそのまま応用 可能な信号処理装置及び信号処理方法を提供することができる。 [0005] The present invention has been made in view of such problems, and an object of the present invention is to reduce an information signal quantized with a small number of bits, such as recording on a compact disc. Bi In addition to expanding the number of mobile stations, the deterioration of information such as the occurrence of noise during the expansion is prevented. As a result, it is possible to provide a signal processing apparatus and a signal processing method that can be directly applied to recording on a conventional compact disc or the like.
[0006] すなわち本願は、上記の課題を解決し、本発明の目的を達成するため、請求項 1 に記載された発明では、量子化された信号のビット数を拡張する信号処理装置であ つて、量子化された原信号のビット数を拡張すると共に拡張されたビットによる高調波 成分を遮断するフィルタ手段と、フィルタ手段の出力を原信号に対して拡張分の任意 の下位ビットを追加した信号力も減算する第 1の演算手段と、第 1の演算手段の出力 をフィルタ手段の出力に加算する第 2の演算手段とを有することを特徴とする。 [0006] That is, in order to solve the above-described problems and achieve the object of the present invention, the present application provides a signal processing device for extending the number of bits of a quantized signal. Filter means that expands the number of bits of the quantized original signal and blocks the harmonic component due to the extended bits, and the output of the filter means is a signal in which any lower bits of the extension are added to the original signal The first calculating means for subtracting the force and the second calculating means for adding the output of the first calculating means to the output of the filter means.
[0007] また、請求項 2に記載の信号処理装置においては、フィルタ手段は遅延手段を含 む可変フィルタとその係数を制御する修正部を有し、修正部では、原信号の傾向に よって決定される外部信号に応じて遮断周波数の制御されるローパスフィルタの出 力と可変フィルタの出力との誤差 εを計算し、誤差 εを最小とする修正アルゴリズム を用いて可変フィルタの係数の制御を行うことを特徴とする。 [0007] In addition, in the signal processing device according to claim 2, the filter unit includes a variable filter including a delay unit and a correction unit that controls a coefficient thereof, and the correction unit is determined by a tendency of the original signal. The error ε between the output of the low-pass filter whose cutoff frequency is controlled and the output of the variable filter is calculated according to the external signal generated, and the coefficient of the variable filter is controlled using a correction algorithm that minimizes the error ε. It is characterized by that.
[0008] 請求項 3に記載の信号処理装置においては、第 1の演算手段の出力に対して量子 化のサンプリングより長 、時定数でピークの移動修正平均値を計算し、計算された移 動修正平均値により第 1の演算手段の出力の振幅を制御して、第 2の演算手段でフ ィルタ手段の出力に加算することを特徴とする。 [0008] In the signal processing device according to claim 3, the moving correction average value of the peak is calculated with a time constant longer than the quantization sampling with respect to the output of the first arithmetic means, and the calculated movement is calculated. The amplitude of the output of the first calculation means is controlled by the corrected average value, and the second calculation means adds to the output of the filter means.
[0009] 請求項 4に記載の信号処理装置にお 、ては、原信号は音響信号を量子化した信 号であることを特徴とする。 [0009] In the signal processing device according to claim 4, the original signal is a signal obtained by quantizing an acoustic signal.
[0010] 請求項 5に記載の信号処理装置においては、原信号は音響信号を量子化した信 号であり、原信号の傾向とは、音響信号の会話と音楽の別、及び Ζまたは音楽のジ ヤンルであることを特徴とする。 [0010] In the signal processing device according to claim 5, the original signal is a signal obtained by quantizing the acoustic signal, and the tendency of the original signal includes the distinction between the conversation of the acoustic signal and the music, and the song or music. It is characterized by being Jeyangle.
[0011] さらに、本発明の目的を達成するため、請求項 6に記載された発明では、量子化さ れた信号のビット数を拡張する信号処理方法であって、量子化された原信号のビット 数を拡張すると共に拡張されたビットによる高調波成分を遮断し、高調波成分の遮断 された信号を原信号に対して拡張分の任意の下位ビットを追加した信号力も減算し、 減算された信号を高調波成分の遮断された信号に加算して、ビット数の拡張された
量子化された信号を得ることを特徴とする。 [0011] Furthermore, in order to achieve the object of the present invention, in the invention described in claim 6, there is provided a signal processing method for extending the number of bits of a quantized signal, the method comprising: The number of bits is expanded and the harmonic components due to the expanded bits are cut off. The signal with the harmonic component cut off is also subtracted by subtracting the signal power obtained by adding any lower bits of the extension to the original signal. The number of bits is expanded by adding the signal to the signal whose harmonic components are cut off. It is characterized by obtaining a quantized signal.
[0012] これにより、本願の発明によれば、例えばコンパクトディスクでの記録のように少ない ビット数で量子化された情報信号のビット数を拡張すると共に、その拡張の際にノィ ズの発生等の情報の劣化が生じないようにすることができ、これにより、従来のコンパ タトディスク等の記録にもそのまま応用可能な信号処理装置及び信号処理方法を提 供することができる。 Thus, according to the invention of the present application, for example, the number of bits of an information signal quantized with a small number of bits, such as recording on a compact disc, is expanded, and noise is generated during the expansion. Therefore, it is possible to provide a signal processing apparatus and a signal processing method that can be applied as they are to recording on a conventional compact disc or the like.
図面の簡単な説明 Brief Description of Drawings
[0013] [図 1]本発明による信号処理装置及び信号処理方法を適用した音響信号処理装置 の一実施形態の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of an embodiment of an acoustic signal processing device to which a signal processing device and a signal processing method according to the present invention are applied.
[図 2]その要部の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the main part.
[図 3]その説明のための図である。 FIG. 3 is a diagram for explaining that.
[図 4]その説明のための図である。 FIG. 4 is a diagram for explaining that.
[図 5]その説明のための図である。 FIG. 5 is a diagram for explaining this.
[図 6]その説明のための図である。 FIG. 6 is a diagram for explaining that.
[図 7]その説明のための図である。 FIG. 7 is a diagram for explaining that.
[図 8]その効果の説明のための波形図である。 FIG. 8 is a waveform diagram for explaining the effect.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図面を参照して本発明を説明するに、図 1は本発明による信号処理装置及 び信号処理方法を適用した音響信号処理装置の一実施形態の構成を示すブロック 図である。 Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an embodiment of an acoustic signal processing apparatus to which a signal processing apparatus and a signal processing method according to the present invention are applied. .
[0015] 図 1において、入力端子 1には、例えば 16ビットの PCM信号が供給される。この入 力端子 1からの信号が所定の遅延手段 2を通じて可変フィルタ 3に供給される。また、 入力端子 1からの信号がローパスフィルタ (LPF) 4を通じて演算手段 5に供給され、 前記可変フィルタ 3の出力との差分が算出されて係数修正手段 6に供給される。そし てこの係数修正手段 6で求められた係数が可変フィルタ 3に供給される。 In FIG. 1, for example, a 16-bit PCM signal is supplied to the input terminal 1. A signal from the input terminal 1 is supplied to the variable filter 3 through a predetermined delay means 2. A signal from the input terminal 1 is supplied to the computing means 5 through the low-pass filter (LPF) 4, and a difference from the output of the variable filter 3 is calculated and supplied to the coefficient correcting means 6. Then, the coefficient obtained by the coefficient correcting means 6 is supplied to the variable filter 3.
[0016] さらに、入力端子 1からの信号が所定の遅延手段 7を通じて下位ビット追カ卩回路 8に 供給され、例えば 16ビットの入力信号の下位に値 0のビットが 8ビット挿入されて 24ビ ットとされる。この 24ビットの信号が演算手段 9に供給され、前記可変フィルタ 3の出
力との差分が算出される。そしてこの差分値 (24ビット)が加重回路 10を通じて加算 回路 11で可変フィルタ 3の出力に加算され、出力端子 12に取り出される。 [0016] Further, the signal from the input terminal 1 is supplied to the lower bit tracking circuit 8 through the predetermined delay means 7, and, for example, 8 bits of the value 0 are inserted into the lower order of the 16-bit input signal to obtain 24 bits. It is said that This 24-bit signal is supplied to the arithmetic means 9 and the output of the variable filter 3 is output. The difference from the force is calculated. Then, this difference value (24 bits) is added to the output of the variable filter 3 by the addition circuit 11 through the weighting circuit 10 and taken out to the output terminal 12.
[0017] また、演算手段 9からの差分値がピーク検出回路 13に供給され、ピーク検出された 信号がローパスフィルタ (LPF) 14を通じてリミッタ回路 15に供給されて下位 8ビットに 相当する信号が削除される。そしてこのリミッタ回路 15の出力により、加重回路 10で の加重が行われる。これによつて情報信号のビット数の拡張が行われると共に、その 拡張による情報の劣化等に対する補正処理が行われる。 In addition, the difference value from the calculation means 9 is supplied to the peak detection circuit 13, and the peak detected signal is supplied to the limiter circuit 15 through the low-pass filter (LPF) 14, and the signal corresponding to the lower 8 bits is deleted. Is done. The weighting circuit 10 performs weighting based on the output of the limiter circuit 15. As a result, the number of bits of the information signal is expanded and correction processing for information deterioration due to the expansion is performed.
[0018] さらにこの回路において、可変フィルタ 3は、例えば図 2に示すような FIR形のデジ タルフィルタであって、入力信号が縦続に接続された複数段の単位遅延手段 Z-1に 供給され、各段の出力が重み付け回路 hを通じて加算手段(+ )で加算される。この 加算値が出力値 y(n)として取り出されると共に、演算手段 5で目的値 d(n)との差分が 算出され、この差分値が最小になるように、係数修正手段 6で重み付け回路 hの係数 が求められる。 Further, in this circuit, the variable filter 3 is an FIR type digital filter as shown in FIG. 2, for example, and is supplied to a plurality of unit delay means Z-1 in which input signals are connected in cascade. The outputs of each stage are added by the adding means (+) through the weighting circuit h. This added value is taken out as an output value y (n), and a difference from the target value d (n) is calculated by the calculation means 5 and the weighting circuit h is calculated by the coefficient correction means 6 so that this difference value is minimized. The coefficient of is obtained.
[0019] すなわち、可変フィルタ 3に供給される信号を x(n)とすると、その出力値 y(n)は次の ように表される。 That is, if the signal supplied to the variable filter 3 is x (n), the output value y (n) is expressed as follows.
[数 1] [Number 1]
MM
k=0 k = 0
また、差分値 (誤差信号) ε (η)は The difference value (error signal) ε (η) is
ε (n) = d(n)-y(n) ε (n) = d (n) -y (n)
であり、この 2乗平均誤差 e And this mean square error e
β = Ε{ ε 2(η)} β = Ε {ε 2 (η)}
が最小となるように係数修正手段 6で係数が求められる。
[0021] そこで、 2乗平均誤差 eが最小となる条件は、 The coefficient correction means 6 determines the coefficient so that is minimized. [0021] Therefore, the condition that the mean square error e is minimum is
e=E{d2(n)}-2E{d(n)-y(n)}+E{y2(n)} e = E {d 2 (n)}-2E {d (n) -y (n)} + E {y 2 (n)}
として、 As
E{d2(n)}=Pd E {d 2 (n)} = Pd
とすると、以下のようになる。 Then, it becomes as follows.
[0022] すなわち、 [0022] That is,
[数 2] M [Equation 2] M
{ d (n) - y (n) } = E { d (n) · ∑ h k (n— k) } =∑ h k E { d (n) · x (n— k) } k=0 k=0 であるから、 {d (n)-y (n)} = E {d (n) · ∑ h k (n— k)} = ∑ h k E {d (n) · x (n— k)} k = 0 k = 0, so
[数 3] [Equation 3]
M M M M M M
e = Pd-2∑ h k P (k) +∑∑ h k h n y (|n-k|) k=0 k=0 n=0 e = Pd-2∑ h k P (k) + ∑∑ hkh n y (| nk |) k = 0 k = 0 n = 0
となるものである。 It will be.
[0023] 一方、[0023] Meanwhile,
であり、 And
d(n) = Cos (2 π n/N) + s(n) d (n) = Cos (2 π n / N) + s (n)
ただし、 s(n)は白色信号であり、 Where s (n) is a white signal,
s(n)=E{s2(n)} = σ2 s (n) = E {s 2 (n)} = σ2
である。 It is.
[0024] ここで、図 3の Αに示すような例えば周波数 1kHzの正弦波信号に対して、図 3の B に示すような回路で下位に値 0のビットを 8ビット挿入した場合には、図 3の Cの (a)に 示すように量子化された信号が、同図の (b)に示すように量子化の各段の段差が大き
くなるような変化となる。そしてこのような信号の周波数スペクトラムは、元の正弦波信 号では図 3の D(a)に示すように単一であったもの力 ビットの挿入によって同図の (b) に示すように高調波が発生してしまうものである。 [0024] Here, for example, when a bit having a value of 0 is inserted in the lower order in a circuit as shown in B of FIG. 3 with respect to a sine wave signal having a frequency of 1 kHz as shown in FIG. As shown in Fig. 3C (a), the quantized signal has a large step at each quantization step as shown in Fig. 3 (b). Changes. Then, the frequency spectrum of such a signal is the same as the original sinusoidal signal as shown in D (a) of Fig. 3. Waves are generated.
[0025] これに対して図 4の Aに示すようにローパスフィルタ(LPF)を設けることによって、図 4の Bの (a)に示すように高調波の発生した信号から、同図の (b)に示すように高調波 成分を除去することができる。し力しこれだけではこもった音になってしまうものである 。そこで、さらに図 5の Aに示すように、入力信号とローノ スフィルタ (LPF)の出力との 差分信号から、リミッタで元の量子化以下のビットを削除した信号をローパスフィルタ( LPF)の出力に加算する。 [0025] On the other hand, by providing a low pass filter (LPF) as shown in Fig. 4A, from the signal in which harmonics are generated as shown in Fig. 4B (a), (b As shown in (), harmonic components can be removed. However, if you use it alone, you will end up with a muffled sound. Therefore, as shown in Fig. 5A, the low-pass filter (LPF) output is a signal obtained by deleting the bits below the original quantization with a limiter from the difference signal between the input signal and the output of the low-pass filter (LPF). Add to.
[0026] これによれば、図 5の Bの (a)に示すように量子化された信号力 ローパスフィルタ(L PF)によって同図の (b)に示すように波形が滑らかにされ、さらに同図の (c)に示すよう にローパスフィルタ (LPF)によって削除された高周波成分が加算されることで、こもつ た音になることを防止することができる。すなわちこの場合には、ローノ スフィルタ (L PF)の帯域は 24ビットの高音質になると共に、高い音はそのままスルーして加算され るので、こもった音〖こなることが防止される。 According to this, the waveform is smoothed as shown in (b) of FIG. 5 by the signal power low pass filter (LPF) quantized as shown in (a) of B of FIG. As shown in (c) of the figure, the high-frequency component deleted by the low-pass filter (LPF) is added, so that this kind of sound can be prevented. In other words, in this case, the low-pass filter (LPF) band has high sound quality of 24 bits, and high sound is added through as it is.
[0027] さらに図 4、図 5の構成では、波形を滑らかにする手段としてローパスフィルタ (LPF )を用いている力 これでは遮断周波数が固定に掛カつてしまう問題がある。そこで、 図 6の Aに示すように遅延手段を利用した適応フィルタ (LMS)を用いる。すなわち、 このような適応フィルタは、図 1及び図 2に示した可変フィルタと同等のものであって、 これによつて図 6の Bの (a)に示すような高調波成分の含まれた信号から、同図の (b) に示すように高調波成分を適応的に除去して波形を滑らかにすることができる。 Furthermore, in the configurations of FIGS. 4 and 5, there is a problem in that the cutoff frequency is fixedly applied by force using a low-pass filter (LPF) as means for smoothing the waveform. Therefore, an adaptive filter (LMS) using delay means is used as shown in Fig. 6A. That is, such an adaptive filter is equivalent to the variable filter shown in FIGS. 1 and 2, and thus includes harmonic components as shown in FIG. 6B (a). As shown in (b) of the figure, harmonic components can be adaptively removed from the signal to smooth the waveform.
[0028] また、図 6の Aの回路では、連続性のある信号に着目して適応フィルタ (LMS)によ り取り出すようにしたものである力 連続性のある信号でも量子化ノイズは高い周波数 には多く存在する。そこで図 7に示すように、ローパスフィルタ(LPF)を用いて高い周 波数の量子化ノイズを除去して適応フィルタ(LMS)の係数の修正を行う。ここでロー パスフィルタ (LPF)の遮断周波数は、サンプリング周波数力 4. 1kHzの場合は約 1 OkHz、すなわちナイキストの半分の周波数を用いるのが一般的である。 [0028] In the circuit A of Fig. 6, the quantization noise is high even in the case of force continuity signals that are extracted by an adaptive filter (LMS) focusing on the continuity signals. There are many. Therefore, as shown in Fig. 7, the low-pass filter (LPF) is used to remove high-frequency quantization noise and correct the adaptive filter (LMS) coefficient. Here, the cutoff frequency of the low-pass filter (LPF) is generally about 1 OkHz when the sampling frequency force is 4.1 kHz, that is, half the frequency of Nyquist.
[0029] さらに、このローパスフィルタ (LPF)の遮断周波数は、元の音響信号の会話と音楽
の別や音楽のジャンル等によって、例えば通過帯域を狭くするなどの変更を加えるこ とができる。これによつて、例えば音楽のジャンル等に応じてより良好な音質改善を行 うことができるものである。 [0029] Further, the cut-off frequency of the low-pass filter (LPF) is the original acoustic signal conversation and music. Depending on the type of music or the genre of music, changes such as narrowing the passband can be made. Thus, for example, better sound quality improvement can be performed according to the genre of music.
[0030] すなわち、上述の図 1において、例えばコンパクトディスク(CD)の音楽情報は 16ビ ットである。よって、ディレイ部 +可変フィルタ部によって適応フィルタを形成して、基 準信号に LPFを通して高調波を削除して 24ビットに拡張した信号源に近づく様に最 小二乗法で可変フィルタ制御する。この結果、ディレイの影響で連続的(再現性の高 い信号)に関してはフィルタリング効果で、 16ビットから 24ビットへと補間される。ただ し、この音は再現性のある信号なので、こもった音になる。 That is, in FIG. 1 described above, for example, the music information of a compact disc (CD) is 16 bits. Therefore, an adaptive filter is formed by the delay unit + variable filter unit, and the variable filter is controlled by the least square method so as to approach the signal source expanded to 24 bits by removing harmonics from the reference signal through LPF. As a result, for continuous (highly reproducible signals) due to the delay, the filtering effect is used to interpolate from 16 bits to 24 bits. However, since this sound is a reproducible signal, it becomes a muffled sound.
[0031] そこで次に、可変フィルタ処理分のみ遅延した源信号の下位 8ビットを追加し(下位 8ビットは 0)、適応フィルタとの差分を計算する。この差分信号は、高域部分の信号 である力 量子化誤差以下の大きさの信号の場合には追加しないことで 24ビットへ 拡張することが可能となり、高域情報は従来の信号が追加されるので、こもる問題を 解決できる。 [0031] Then, the lower 8 bits of the source signal delayed by the variable filter processing are added (the lower 8 bits are 0), and the difference from the adaptive filter is calculated. This difference signal can be expanded to 24 bits by not adding it in the case of a signal with a magnitude less than the force quantization error, which is a high-frequency signal, and the conventional signal is added to the high-frequency information. Therefore, it can solve the problem.
[0032] また、図 1のピーク検出は、追加する力否かを、量子化誤差だけの大きさで判断す ると、急激に追加したり、しな力つたりする場面が発生するのでポップ雑音が発生する 恐れがある。そこで、ピーク検出で量子化誤差を最大 1. 0として計算して、誤差の大 きさに応じて、誤差量を掛け算することでスムーズに、高域信号を追加できるのでポッ プ雑音を除去することができる。 [0032] In addition, the peak detection in FIG. 1 is a pop-up because a scene of sudden addition or supple force occurs if it is determined whether or not the force to add is based on the magnitude of the quantization error alone. There is a risk of noise. Therefore, the peak error is calculated as 1.0 at maximum, and the amount of error is multiplied by the amount of error, so the high frequency signal can be added smoothly, eliminating pop noise. be able to.
[0033] さらに、本発明の信号処理装置及び信号処理方法にお!、ては、ジャンル別の LPF [0033] Further, the signal processing apparatus and signal processing method of the present invention!
(または固定の LPF)を設けることで、目的信号の低域部分だけを、適応フィルタのタ 一ゲット値とすることができる。これによれば、 LPFによりビット精度を 24ビットへ拡張 することが可能なのと適応フィルタも連続性の高い信号でも高域の信号には追従しな くなる。 By providing (or a fixed LPF), only the low frequency part of the target signal can be used as the target value of the adaptive filter. According to this, it is possible to extend the bit precision to 24 bits by LPF, and the adaptive filter does not follow high-frequency signals even with highly continuous signals.
[0034] これは、高域の信号の場合、量子化誤差でサイクリックな信号もあるので、この様な 信号には反応しない様にしたものである。また、誤差信号をピーク検出して移動修正 平均 (LPF)を使うことで急激な音楽信号に過敏に反応することを抑制する。これよつ てポップノイズを無くすことができる。また、ピーク検出にリミットをかけて、誤差信号の
振幅を制御することで、変化率を 2乗にすることができるものである。 [0034] In the case of a high-frequency signal, there is a cyclic signal due to a quantization error, so that it does not react to such a signal. In addition, peak detection of the error signal and use of the moving correction average (LPF) suppresses excessive response to sudden music signals. As a result, pop noise can be eliminated. In addition, limit the peak detection and error signal By controlling the amplitude, the rate of change can be made square.
[0035] こうして、本発明の信号処理装置及び信号処理方法によれば、例えばコンパクトデ イスク (CD)の音源は 16ビットであり、高音質と言う面でみると足りない。一方、現在は 24ビットの DACも安価に使えることで、 24ビット音源も少なくない。そこで本発明は、 下位 8ビットを予測して拡張することで音質を良くする効果があり、従来の CDにも容 易に対応できるものである。 Thus, according to the signal processing device and the signal processing method of the present invention, for example, the sound source of a compact disk (CD) is 16 bits, which is insufficient in terms of high sound quality. On the other hand, 24-bit DACs can be used at low cost, so there are many 24-bit sound sources. Therefore, the present invention has an effect of improving the sound quality by predicting and extending the lower 8 bits, and can easily cope with a conventional CD.
[0036] なお、図 8には、波形により本発明の効果を説明する。ここで図 8の Aは計算開始直 後の波形を示し、ここでは量子化のィズが発生している。これに対して同図の Bは計 算開始から 100ms後の波形を示し、ここでは量子化のィズが減少されていることを表 しているものである。 In FIG. 8, the effect of the present invention is described with reference to waveforms. Here, A in Fig. 8 shows the waveform immediately after the start of calculation, and here the quantization noise is generated. On the other hand, B in the figure shows the waveform after 100 ms from the start of the calculation, which shows that the quantization noise is reduced.
[0037] 従って上述の実施形態においては、例えばコンパクトディスクでの記録のように少 ないビット数で量子化された情報信号のビット数を拡張すると共に、その拡張の際に ノイズの発生等の情報の劣化が生じないようにすることができ、これにより、従来のコ ンパクトディスク等の記録にもそのまま応用可能な信号処理装置及び信号処理方法 を提供することができる。 Accordingly, in the above-described embodiment, the number of bits of the information signal quantized with a small number of bits, for example, recording on a compact disc, is expanded, and information such as the occurrence of noise is generated during the expansion. As a result, it is possible to provide a signal processing apparatus and a signal processing method that can be directly applied to recording on a conventional compact disc or the like.
[0038] こうして本発明の信号処理装置によれば、量子化された信号のビット数を拡張する 信号処理装置であって、量子化された原信号のビット数を拡張すると共に拡張された ビットによる高調波成分を遮断するフィルタ手段と、フィルタ手段の出力を原信号に 対して拡張分の任意の下位ビットを追加した信号力も減算する第 1の演算手段と、第 1の演算手段の出力をフィルタ手段の出力に加算する第 2の演算手段とを有すること により、良好なビット数の拡張を行うことができるものである。 Thus, according to the signal processing device of the present invention, the signal processing device expands the number of bits of the quantized signal, and extends the number of bits of the quantized original signal and uses the expanded bits. Filter means for cutting off harmonic components, first calculation means for subtracting the signal power obtained by adding an arbitrary lower bit of the extension to the original signal, and filtering the output of the first calculation means By having the second calculation means for adding to the output of the means, the number of bits can be expanded well.
[0039] また、本発明の信号処理方法によれば、量子化された信号のビット数を拡張する信 号処理方法であって、量子化された原信号のビット数を拡張すると共に拡張されたビ ットによる高調波成分を遮断し、高調波成分の遮断された信号を原信号に対して拡 張分の任意の下位ビットを追加した信号力も減算し、減算された信号を高調波成分 の遮断された信号に加算して、ビット数の拡張された量子化された信号を得ること〖こ より、良好なビット数の拡張を行うことができるものである。 [0039] Further, according to the signal processing method of the present invention, the signal processing method extends the number of bits of the quantized signal, and extends the number of bits of the quantized original signal. The harmonic component due to the bit is cut off, the signal with the harmonic component cut off is also subtracted from the original signal, and the signal power with any lower bits added to the extension is subtracted, and the subtracted signal is subtracted from the harmonic component. By adding to the blocked signal to obtain a quantized signal with an extended number of bits, a good number of bits can be expanded.
[0040] なお本発明は、上述の説明した実施形態に限定されるものではなぐ特許請求の
範囲の記載を逸脱しない範囲において、種々の変形が可能とされるものである。 引用符号の説明 [0040] The present invention is not limited to the above-described embodiment. Various modifications can be made without departing from the scope description. Explanation of quotation marks
1…入力端子、 2…遅延手段、 3…可変フィルタ、 4…ローパスフィルタ(LPF)、 5· ·· 演算手段、 6…係数修正手段、 7…遅延手段、 8…下位ビット追加回路、 9…演算手 段、 10…加重回路、 11…加算回路、 12· ··出力端子、 13…ピーク検出回路、 14…口 一パスフィルタ(LPF)、 15· ··リミッタ回路
DESCRIPTION OF SYMBOLS 1 ... Input terminal, 2 ... Delay means, 3 ... Variable filter, 4 ... Low pass filter (LPF), 5 ... Calculation means, 6 ... Coefficient correction means, 7 ... Delay means, 8 ... Lower bit addition circuit, 9 ... Arithmetic unit, 10 ... Weight circuit, 11 ... Adder circuit, 12 ... Output terminal, 13 ... Peak detection circuit, 14 ... Single pass filter (LPF), 15 ... Limiter circuit
Claims
[1] 量子化された信号のビット数を拡張する信号処理装置であって、 [1] A signal processing device for extending the number of bits of a quantized signal,
量子化された原信号のビット数を拡張すると共に拡張されたビットによる高調波成 分を遮断するフィルタ手段と、 Filter means for extending the number of bits of the quantized original signal and blocking harmonic components due to the expanded bits;
前記フィルタ手段の出力を、前記原信号に対して前記拡張分の任意の下位ビット を追加した信号から減算する第 1の演算手段と、 First arithmetic means for subtracting the output of the filter means from a signal obtained by adding an arbitrary lower bit of the extension to the original signal;
前記第 1の演算手段の出力を前記フィルタ手段の出力に加算する第 2の演算手段 と Second computing means for adding the output of the first computing means to the output of the filter means;
を有することを特徴とする信号処理装置。 A signal processing apparatus comprising:
[2] 請求項 1記載の信号処理装置において、 [2] In the signal processing device according to claim 1,
前記フィルタ手段は遅延手段を含む可変フィルタとその係数を制御する修正部を 有し、 The filter means has a variable filter including a delay means and a correction unit for controlling the coefficient thereof,
前記修正部では、前記原信号の傾向によって決定される外部信号に応じて遮断周 波数の制御されるローパスフィルタの出力と前記可変フィルタの出力との誤差 εを計 算し、前記誤差 εを最小とする修正アルゴリズムを用いて前記可変フィルタの係数の 制御を行う The correction unit calculates an error ε between the output of the low-pass filter whose cutoff frequency is controlled according to the external signal determined by the tendency of the original signal and the output of the variable filter, and minimizes the error ε. The coefficient of the variable filter is controlled using a correction algorithm
ことを特徴とする信号処理装置。 A signal processing apparatus.
[3] 請求項 1記載の信号処理装置において、 [3] The signal processing device according to claim 1,
前記第 1の演算手段の出力に対して前記量子化のサンプリングより長い時定数で ピークの移動修正平均値を計算し、前記計算された移動修正平均値により前記第 1 の演算手段の出力の振幅を制御して、前記第 2の演算手段で前記フィルタ手段の出 力に加算する A peak moving correction average value is calculated with a time constant longer than the quantization sampling with respect to the output of the first calculation means, and the output amplitude of the first calculation means is calculated based on the calculated movement correction average value. Is added to the output of the filter means by the second computing means.
ことを特徴とする信号処理装置。 A signal processing apparatus.
[4] 請求項 1〜3のいずれか一つに記載の信号処理装置において、 [4] In the signal processing device according to any one of claims 1 to 3,
前記原信号は音響信号を量子化した信号である The original signal is a signal obtained by quantizing an acoustic signal.
ことを特徴とする信号処理装置。 A signal processing apparatus.
[5] 請求項 2記載の信号処理装置において、 [5] The signal processing device according to claim 2,
前記原信号は音響信号を量子化した信号であり、
前記原信号の傾向とは、前記音響信号の会話と音楽の別、及び Zまたは音楽のジ ヤンノレである The original signal is a signal obtained by quantizing an acoustic signal, The tendency of the original signal is the conversation between the acoustic signal and the music, and the Z or music Giannole.
ことを特徴とする信号処理装置。 A signal processing apparatus.
量子化された信号のビット数を拡張する信号処理方法であって、 A signal processing method for extending the number of bits of a quantized signal,
量子化された原信号のビット数を拡張すると共に拡張されたビットによる高調波成 分を遮断し、 Extends the number of bits of the quantized original signal and cuts off harmonic components due to the expanded bits,
前記高調波成分の遮断された信号を前記原信号に対して前記拡張分の任意の下 位ビットを追加した信号力も減算し、 Subtract the signal power obtained by adding the arbitrary lower bits of the extension from the original signal to the signal from which the harmonic component is cut off,
前記減算された信号を前記高調波成分の遮断された信号に加算して、 前記ビット数の拡張された量子化された信号を得る The subtracted signal is added to the signal from which the harmonic component is cut off to obtain the quantized signal with the extended number of bits.
ことを特徴とする信号処理方法。
And a signal processing method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005360789A JP5103606B2 (en) | 2005-12-14 | 2005-12-14 | Signal processing device |
JP2005-360789 | 2005-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007069369A1 true WO2007069369A1 (en) | 2007-06-21 |
Family
ID=38162685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315932 WO2007069369A1 (en) | 2005-12-14 | 2006-08-11 | Signal processing device, and signal processing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5103606B2 (en) |
WO (1) | WO2007069369A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009104710A1 (en) * | 2008-02-21 | 2009-08-27 | 株式会社ケンウッド | Data conversion device, program and method |
JP2010114553A (en) * | 2008-11-05 | 2010-05-20 | Mitsubishi Electric Corp | Audio signal processing apparatus and method |
EP2244261A3 (en) * | 2009-04-13 | 2011-12-28 | Panasonic Corporation | Bit depth upscaling of digital audio data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03267808A (en) * | 1990-03-16 | 1991-11-28 | Toshiba Corp | Digital signal processing circuit |
JPH05304474A (en) * | 1991-05-18 | 1993-11-16 | Nippon Columbia Co Ltd | Digital/analog converter |
JPH08223036A (en) * | 1995-02-16 | 1996-08-30 | Hitachi Ltd | Frequency synthesizer |
JPH0964750A (en) * | 1995-08-18 | 1997-03-07 | Victor Co Of Japan Ltd | Acoustic signal processing unit |
-
2005
- 2005-12-14 JP JP2005360789A patent/JP5103606B2/en active Active
-
2006
- 2006-08-11 WO PCT/JP2006/315932 patent/WO2007069369A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03267808A (en) * | 1990-03-16 | 1991-11-28 | Toshiba Corp | Digital signal processing circuit |
JPH05304474A (en) * | 1991-05-18 | 1993-11-16 | Nippon Columbia Co Ltd | Digital/analog converter |
JPH08223036A (en) * | 1995-02-16 | 1996-08-30 | Hitachi Ltd | Frequency synthesizer |
JPH0964750A (en) * | 1995-08-18 | 1997-03-07 | Victor Co Of Japan Ltd | Acoustic signal processing unit |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009104710A1 (en) * | 2008-02-21 | 2009-08-27 | 株式会社ケンウッド | Data conversion device, program and method |
JP2009198834A (en) * | 2008-02-21 | 2009-09-03 | Kenwood Corp | Data conversion device, program and method |
US8368569B2 (en) | 2008-02-21 | 2013-02-05 | Kabushiki Kaisha Kenwood | Data converting device, program and method |
JP2010114553A (en) * | 2008-11-05 | 2010-05-20 | Mitsubishi Electric Corp | Audio signal processing apparatus and method |
EP2244261A3 (en) * | 2009-04-13 | 2011-12-28 | Panasonic Corporation | Bit depth upscaling of digital audio data |
US8443017B2 (en) | 2009-04-13 | 2013-05-14 | Panasonic Corporation | Digital data processor |
Also Published As
Publication number | Publication date |
---|---|
JP5103606B2 (en) | 2012-12-19 |
JP2007166315A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5038417B2 (en) | Slow and rapid voice peak value limits | |
EP2209116B1 (en) | Device and method for high-frequency range interpolation of an audio signal | |
US7369906B2 (en) | Digital audio signal processing | |
CN100550131C (en) | Method for extending frequency band of audio signal and apparatus thereof | |
JP2010020356A (en) | Apparatus for extending band of audio signal | |
JP3810257B2 (en) | Voice band extending apparatus and voice band extending method | |
JP2004266358A (en) | Band restoring device and telephone set | |
JP5237637B2 (en) | Apparatus and method for extending the bandwidth of an audio signal | |
JP2006526328A (en) | Adaptive filtering | |
WO2007069369A1 (en) | Signal processing device, and signal processing method | |
JP4787316B2 (en) | Digital signal processing apparatus and overtone generation method | |
JP3888239B2 (en) | Digital audio processing method and apparatus, and computer program | |
JP2007028291A (en) | Noise canceller | |
JP2007181136A (en) | Agc circuit, agc method, program and recording medium | |
US5157396A (en) | D/a conversion apparatus | |
JP4803193B2 (en) | Audio signal gain control apparatus and gain control method | |
JP4852612B2 (en) | Harmonic generation apparatus and harmonic generation method | |
JP5145733B2 (en) | Audio signal processing apparatus, audio signal processing method, and program | |
JPH0855428A (en) | Sound recording signal processor | |
JP6511988B2 (en) | Digital voice processing apparatus, digital voice processing method, digital voice processing program | |
JP2005033245A (en) | Audio signal playback device | |
JP4556866B2 (en) | High efficiency encoding program and high efficiency encoding apparatus | |
JPH05275950A (en) | Dynamic range compressor for acoustic signal | |
JP6603725B2 (en) | Audio signal generation apparatus, audio signal generation method, and program | |
JP2020088789A (en) | Signal processing device and radio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06796370 Country of ref document: EP Kind code of ref document: A1 |