[go: up one dir, main page]

WO2007036109A1 - Procede de selection de reseau en anneau dans les reseaux de fibre optique en anneau et systeme associe - Google Patents

Procede de selection de reseau en anneau dans les reseaux de fibre optique en anneau et systeme associe Download PDF

Info

Publication number
WO2007036109A1
WO2007036109A1 PCT/CN2006/001544 CN2006001544W WO2007036109A1 WO 2007036109 A1 WO2007036109 A1 WO 2007036109A1 CN 2006001544 W CN2006001544 W CN 2006001544W WO 2007036109 A1 WO2007036109 A1 WO 2007036109A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
node
ring
network
state
Prior art date
Application number
PCT/CN2006/001544
Other languages
English (en)
Chinese (zh)
Inventor
You Gao
Peng Lv
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007036109A1 publication Critical patent/WO2007036109A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction
    • H04L49/102Packet switching elements characterised by the switching fabric construction using shared medium, e.g. bus or ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/356Switches specially adapted for specific applications for storage area networks
    • H04L49/357Fibre channel switches

Definitions

  • This invention relates to resilient packet ring techniques and, more particularly, to a method and system for ring selection in an elastic packet ring.
  • RPR Silicon Packet Ring
  • SDH Synchronous Optical Transport Sequence
  • MAC Media Access Control
  • RPR is a reciprocal dual-ring topology, and each optical path on the ring operates at the same rate.
  • the difference is that both rings of RPR can transmit data, and the two rings are called RingletO and Ringletl respectively.
  • the data transmission direction of the RPR 0 ring is clockwise, and the data transmission direction of the 1 ring is counterclockwise.
  • Each RPR node uses the 48-bit MAC address used in the Ethernet as the address identifier. Therefore, from the link layer of the RPR node device, the physical optical interfaces of the two rings of the 0 ring and the 1 ring are only received. A link layer interface.
  • an RPR node has one MAC entity and two physical layer entities.
  • the MAC entity contains a MAC control entity and two MAC data path entities, and is called an access point.
  • the physical layer entity is divided into an east physical layer and a west physical layer according to the loop direction.
  • the "sending port" of the eastward physical layer and the “receiving port” of the westward physical layer are connected by the outer ring data path to form the 0 ring of the RPR; likewise, the "receiving port” of the east physical layer and the westward physical layer”
  • the transmit port "connects through the inner loop data path to form a ring of RPR.
  • RPR nodes when connected to an RPR ring, must use the eastbound interface of the node to connect to the westbound interface of the next node; and use the westbound interface of the node to connect to the eastbound interface of the previous node. All RPR nodes are connected end to end to form a complete RPR ring.
  • the ring selection of the above RPR nodes only depends on the number of hops between the nodes, that is, when the number of hops that are different from the specified node is different, the direction of the hops is selected. This causes a problem: If the selected hop count is small but very congested, and the other loop hop count is large, but the link is idle, then there is no complete ring selection mechanism to ensure full utilization of the ring. The bandwidth advantage of the network may even lead to packet loss. As shown in Figure 3, the traffic from Router 1 to Router 3 is 0. After the hop count ring selection mechanism selects the 0 ring, the traffic is likely to be lost. If the traffic is 1 ring. If you don't go through any congested domains, the chances of losing packets are much smaller.
  • the technical problem to be solved by the present invention is to avoid the prior art that only relying on the number of hops between nodes to perform ring selection, the ring selection mechanism is incomplete, and the bandwidth advantage of the existing ring network cannot be fully utilized, and the defect of packet loss may be caused.
  • the method for selecting a ring of an elastic packet ring includes: a. determining a node hop count and a network state of each optional loop between source and sink nodes for performing data transmission and reception in an elastic packet ring;
  • step b includes: determining each of the optional loop node hop weight level values and the network state weight level value; selecting a loop with the highest sum of the node hop weight level value and the network state weight level value as the data for transmitting and receiving data Loop.
  • the network state weight level value of the loop includes at least a congestion state weight level value, a link state weight level value, a traffic state weight level value, and a node level state weight level value.
  • the network state weight level value may be ranked as follows:
  • Congestion state weight class value link state weight class value, traffic state weight class value, and node level state weight class value.
  • step b includes:
  • the network status includes a congestion status, a link status, a traffic status, and a node level status.
  • Detecting whether the loop network status meets the requirements includes the following steps:
  • the present invention further provides a system for ring selection in an elastic packet ring, comprising: a physical layer, including a plurality of nodes constituting an elastic packet ring; and a network layer, which is based on a source for data transmission and reception in the elastic packet ring Select the number of node hops and network status of each optional loop between the sink nodes, and select the loop for sending and receiving data.
  • the present invention has the following beneficial effects:
  • the present invention When selecting a ring, the present invention first determines the number of node hops of each optional loop between the source and sink nodes in the resilient packet ring and the network state; and then according to the number of node hops of the optional loop between the source and sink nodes and The network status selects a loop from the optional loop that determines the data to be sent and received. Since the network state of the loop is fully considered in the ring selection, the ring selection is more reasonable, the waste of effective bandwidth on the RPR ring network is reduced, and the problem caused by the imbalance of network states in different loop directions is reduced.
  • 1 is a schematic diagram of a prior art RPR reciprocal double loop topology
  • 2 is a schematic diagram of a connection of a prior art RPR node
  • FIG. 3 is a schematic diagram of performing ring selection on a conventional RPR
  • FIG. 4 is a flow chart of performing ring selection on an RPR according to a first embodiment of the present invention
  • Figure 5 is a flow chart showing ring selection on an RPR in accordance with a second embodiment of the present invention.
  • the core of the present invention is to optimize the existing RPR ring selection mechanism and increase the ring selection decision point.
  • selecting a ring not only the number of node hops of the optional loop between the source and sink nodes but also the optional ring between the source and sink nodes is considered.
  • the network status of the road can fully utilize the bandwidth of the entire network, reduce the problems caused by the imbalance of network conditions in different loop directions, and increase the completeness and reliability of the ring selection mechanism. The following describes the specific embodiments.
  • the system for selecting a ring in an elastic packet ring includes at least a physical layer and a network layer, where the physical layer includes a plurality of nodes constituting an elastic packet ring, and the network layer can respectively perform data transmission and reception between the source and sink nodes according to the elastic packet ring. Select the number of node hops of the loop and the network status, and select the loop for sending and receiving data. It should be understood that the system for selecting a ring in the elastic packet ring provided by the present invention has the same structure as the existing system, except that the conditions of the network layer ring selection are changed.
  • the number of hops of the optional loop parameter node between the source and sink nodes and the network state are set.
  • the network state decision is made according to the following network state decision point - the congestion domain decision point
  • the ring selection mechanism should switch the traffic that passes through the congestion domain to the non-congested domain.
  • the ring is up.
  • the default ring selection mechanism of the flow from Router 1 to Router 3 is determined by the number of hops to go through the 0 ring.
  • the detection mechanism detects this. Select 1 ring without selecting 0 ring. This avoids the possibility of packet loss due to congestion.
  • Link status includes transmission delay, bit error rate, link level, and so on.
  • the link level is a letter indicating a link between the previous node and the local node. A value of the degree.
  • the loop with a small traffic flow can be selected at an appropriate timing.
  • a node has a flow rate of 9.5G in the 1st ring and only 0.7G in the 0 ring, and the traffic can be selected to the 0 ring at an appropriate timing.
  • node level (1 to 255).
  • the higher the node level the higher the credit rating of the node.
  • the present invention may add corresponding network state weight level values as follows: a congestion state weight class value, a link state weight class value, a traffic state weight class value, and a node level state weight class value, each of the above network state weights The value is different.
  • the congestion domain decision point has the highest weight value, and then the link state weight level value, the traffic statistics weight level value, and the node level weight level value.
  • the sum of the weights determined by each decision point is used as the criterion for selecting the ring.
  • each optional loop node hop weight level value and a network state weight level value are determined, and the network state weight level value of the loop includes at least a congestion state weight level value.
  • One of the link state weight level value, the traffic state weight level value, and the node level state weight level value; that is, the network state weight level value of the loop may include only one of the weights according to the actual needs of the user.
  • a gradation value (such as a link state weight grading value), or includes several or all of the weight grading values.
  • step 12 the loop with the highest sum of the node hop weight level value and the network state weight level value is selected as the loop for transmitting and receiving data, so that after fully considering the network state of the loop, the selected loop is more consistent.
  • the actual data transmission needs.
  • FIG. 5 a flow chart of a second embodiment of ring selection on the RPR of the present invention.
  • Step 21 Determine a loop with the smallest number of hops of the node
  • Step 22 Detect whether the state of the loop network with the smallest hop count of the node meets the requirement.
  • the network state in the present invention may include a congestion state, a link state, a traffic state, and a node level state, and specifically detect a loop network state. Whether or not the requirements are met is mainly achieved by the following methods:
  • Step 23 If the network state of the loop with the smallest hop count reaches the requirement, select the loop with the smallest hop count for data transmission;
  • Step 24 If the network state of the loop with the smallest hop count reaches the requirement, another loop with a better network state is selected for data transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

La présente invention concerne un procédé de sélection de réseau en anneau dans les réseaux de fibre optique en anneaux, comprenant les étapes suivantes: a) déterminer le numéro de bond de nœud et l’état de réseau de chaque réseau en anneau optionnel entre le nœud de source et le nœud hôte pour la transmission et la réception des données dans les réseaux de fibre optique en anneau; b) sélectionner et déterminer le réseau en anneau pour transmettre et recevoir les données des réseaux en anneau optionnels en fonction du numéro de bond de nœud et de l’état de réseau de chaque réseau en anneau optionnel entre le nœud source et le nœud hôte. Selon la présente invention, l’état du réseau en anneau étant considéré comme suffisant lors de la sélection du réseau en anneau, la sélection de réseau en anneau est plus rationnelle, la perte de bande passante effective dans le réseau de fibre optique en anneau est réduite et le nombre de problèmes issus du déséquilibre entre les états de réseau dans les différentes directions d’anneau est réduit.
PCT/CN2006/001544 2005-09-28 2006-07-03 Procede de selection de reseau en anneau dans les reseaux de fibre optique en anneau et systeme associe WO2007036109A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510100127.1 2005-09-28
CNA2005101001271A CN1859280A (zh) 2005-09-28 2005-09-28 弹性分组环中选环的方法

Publications (1)

Publication Number Publication Date
WO2007036109A1 true WO2007036109A1 (fr) 2007-04-05

Family

ID=37298144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001544 WO2007036109A1 (fr) 2005-09-28 2006-07-03 Procede de selection de reseau en anneau dans les reseaux de fibre optique en anneau et systeme associe

Country Status (2)

Country Link
CN (1) CN1859280A (fr)
WO (1) WO2007036109A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616080B (zh) * 2009-07-17 2011-06-22 北京星网锐捷网络技术有限公司 一种弹性分组环报文保序方法、装置和网络设备
CN108322375B (zh) * 2017-12-27 2021-03-12 瑞斯康达科技发展股份有限公司 一种以太网环保护倒换方法、节点及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567892A (zh) * 2003-06-20 2005-01-19 华为技术有限公司 一种实现对数据业务传输路径选择的方法
CN1567891A (zh) * 2003-06-20 2005-01-19 华为技术有限公司 一种实现对数据业务传输路径选择的方法
US20050030961A1 (en) * 2002-11-18 2005-02-10 Kang-Bok Lee Ring selection method for dual ring network
KR20050046272A (ko) * 2003-11-13 2005-05-18 한국전자통신연구원 회복성 패킷 링 네트워크에서의 최적 경로 선택 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030961A1 (en) * 2002-11-18 2005-02-10 Kang-Bok Lee Ring selection method for dual ring network
CN1567892A (zh) * 2003-06-20 2005-01-19 华为技术有限公司 一种实现对数据业务传输路径选择的方法
CN1567891A (zh) * 2003-06-20 2005-01-19 华为技术有限公司 一种实现对数据业务传输路径选择的方法
KR20050046272A (ko) * 2003-11-13 2005-05-18 한국전자통신연구원 회복성 패킷 링 네트워크에서의 최적 경로 선택 방법

Also Published As

Publication number Publication date
CN1859280A (zh) 2006-11-08

Similar Documents

Publication Publication Date Title
US7876673B2 (en) Prevention of frame duplication in interconnected ring networks
JP5544440B2 (ja) アドレス型キャリアネットワークにおける区別転送
US7619987B2 (en) Node device
US6952397B2 (en) Communication in a bidirectional ring network with single-direction receiving
JP4034782B2 (ja) リング間接続装置、及びデータ転送制御方法
CN100391191C (zh) 由于故障链路的检测而重新路由业务的交换机以及方法
US20050044211A1 (en) Self-healing tree network
EP1619833A1 (fr) Partage de charge dans un réseau privé virtuel
JP2006005941A (ja) パケット・ネットワークにおけるサービス毎の障害保護および復旧のための方法および装置
JPWO2005027427A1 (ja) ノード冗長方法、インタフェースカード、インタフェースデバイス、ノード装置およびパケットリングネットワークシステム
WO2008089633A1 (fr) Procédé et appareil pour protéger un anneau éthernet
US9641396B2 (en) Packet processing method and system
CN1812300B (zh) 环型网络连接控制方法、路由交换设备及环型网络系统
US20080316919A1 (en) Trunk interface in resilient packet ring, method and apparatus for realizing the trunk interface
CN101304380B (zh) 一种弹性分组环的流量传输方法和弹性分组环节点
WO2007140703A1 (fr) Procédé et appareil de nœud rsvp interactif
Huynh et al. Spanning tree elevation protocol: Enhancing metro Ethernet performance and QoS
WO2007036109A1 (fr) Procede de selection de reseau en anneau dans les reseaux de fibre optique en anneau et systeme associe
CN109525492B (zh) 一种不依赖路由协议或算法的ip数据备份传输方法
WO2014040422A1 (fr) Procédé et dispositif de commande pour apprentissage d'adresse de commande d'accès au support et pont-routeur
CN1788455A (zh) 一种自动保护倒换方法
CN100426774C (zh) 用于弹性分组环的闭环确定方法及其装置
CN100493031C (zh) 实现二三层兼容弹性分组数据环网上环和下环处理方法
CN100407681C (zh) 用于取得rpr的最高保护状态的方法和装置
CN100393059C (zh) 一种弹性分组环默认环的确定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06753088

Country of ref document: EP

Kind code of ref document: A1