WO2007108360A1 - Method for detecting substance by surface-enhanced raman scattering using small-diameter blind pipe, substance detecting device, device for detecting plurality of substances, and blind pipe - Google Patents
Method for detecting substance by surface-enhanced raman scattering using small-diameter blind pipe, substance detecting device, device for detecting plurality of substances, and blind pipe Download PDFInfo
- Publication number
- WO2007108360A1 WO2007108360A1 PCT/JP2007/054897 JP2007054897W WO2007108360A1 WO 2007108360 A1 WO2007108360 A1 WO 2007108360A1 JP 2007054897 W JP2007054897 W JP 2007054897W WO 2007108360 A1 WO2007108360 A1 WO 2007108360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blind
- metal
- tube
- detecting
- blind tube
- Prior art date
Links
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000000126 substance Substances 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 191
- 239000002184 metal Substances 0.000 claims abstract description 191
- 239000012491 analyte Substances 0.000 claims abstract description 43
- 239000000084 colloidal system Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 25
- 239000010419 fine particle Substances 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 239000010408 film Substances 0.000 claims description 65
- 238000001514 detection method Methods 0.000 claims description 32
- 238000005259 measurement Methods 0.000 claims description 20
- 239000003550 marker Substances 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 16
- 239000007769 metal material Substances 0.000 claims description 12
- 239000002923 metal particle Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 31
- 230000003287 optical effect Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 239000002105 nanoparticle Substances 0.000 description 9
- 238000003841 Raman measurement Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 3
- 229960005305 adenosine Drugs 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000002082 metal nanoparticle Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 210000004534 cecum Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/651—Cuvettes therefore
Definitions
- Substance detection method substance detection apparatus, multi-substance detection device, blind tube using surface enhanced Raman scattering using small diameter blind tube
- the present invention relates to a method and an apparatus for detecting a trace substance by surface enhanced Raman scattering (SERS).
- SERS surface enhanced Raman scattering
- surface-enhanced Raman scattering light obtained by irradiating a laser beam to a site where analytes, metal particles, and metal colloids are mixed together using a colloid in which metal particles or metal film and metal fine particles are suspended.
- the present invention uses a thin blind tube also called a Pasteur tube.
- Patent Document 1 discloses a simple method for preparing a substrate exhibiting high SERS activity by dispersing a SER S substrate in a liquid and fixing it on a solid surface.
- Patent Document 3 A technique for obtaining strong SERS activity by self-assembling a group of nanoparticles has been studied.
- Patent Document 2 is also a method of forming a SERS substrate in which particles are periodically aligned and deposited by repeatedly pulling up a flat plate immersed in a solution containing metal fine particles at a predetermined speed.
- SERS substrate manufacturing methods For example, there is a method for producing a SERS substrate using a surface having affinity with water (hydrophilicity and water repellency) (see Patent Document 5).
- a colloidal SERS substrate is easier to produce than a solid-phase SERS substrate, but has the disadvantage that the SERS activity disappears in the state of separation and precipitation and in the state of separation and precipitation. For this reason, methods for stabilizing a SERS substrate for a long period of time with a clay-like substance such as smectite (see Patent Document 4) have been studied.
- Patent Document 8 discloses a trace substance detection method and apparatus using the "Blasmon mirror effect".
- the plasmon mirror effect means that a group of nanoparticles is self-assembled (self-aligned) in the vicinity of a relatively clean metal surface that induces surface plasmon polaritons with the same applied light energy, and obtains stronger and SERS activity. That is.
- the conditions and mechanism for obtaining the plasmon mirror effect are not clear, but it is considered important to self-assemble the nanoparticle group in the vicinity of a relatively clean metal surface (Patent Document 8). reference).
- the nanoparticles are self-assembled (self-aligning IJ) on the metal surface, and further metal deposition is performed on the upper surface, or the nanoparticles are stacked in two steps on the metal surface, thereby sandwiching the sandwich.
- “Sandwich Substrates” or “Sandwich architecture” is also known. Power, In some sandwich configurations, SERS activity stronger than a single layer may be obtained (see Patent Document 9, Non-Patent Document 4, and Non-Patent Document 5).
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2005-077362 “Method for producing surface-enhanced Raman scattering active substrate” (Keio University)
- Patent Document 2 Japanese Patent Application Laid-Open No. 2004-170334 “Raman scattering measurement sensor and manufacturing method thereof” (Japan Science and Technology Agency, etc.)
- Patent Document 3 Japanese Laid-Open Patent Publication No. 2005-233637 “Raman Spectroscopic Analysis with Gold Nanorod Thin Film” (Japan Science and Technology Agency)
- Patent Document 4 Japanese Patent Application Laid-Open Publication No. 2004-205435 “Analytical method of binding analysis target substance that does not require labeling dye and analysis kit used therefor” (Fukuo Takao)
- Patent Document 5 Japanese Laid-Open Patent Publication No. 2005-219184 “Metal Nano-Triangular Column Structure for Single-Molecular Raman Spectroscopy, Array Substrate Formation Method and Single-Molecule Analysis Method Using the Same” (AIST)
- Patent Document 6 Patent No. 3462339 No. "Capillary electrophoresis detector” (Nippon Telegraph and Telephone Corporation)
- Patent Document 7 Special Table 2005-507500 Publication “Detection of microfluids by surface-enhanced resonance Raman scattering” (University of Strathclyde et al.)
- Patent Document 8 International Publication WO2005 114298 Publication ⁇ OPTICAL SENSOR WITH LAYERED P LASMON STRUCTURE FOR ENHANCED DETECTION OF CHEMICAL GROUPS BY SERSJ VP HODLINGS'LLC
- Patent Document 9 US Patent US6149868 ⁇ Surface enhanced raman scattering from meta
- Non-Patent Document 2 Takayuki Okamoto (RIKEN) “Investigative Research on Metal Nanoparticle Interactions and Biosensors” 2002 Grant-in-Aid for Scientific Research (C) “Localization of surface plasmons and their applications Investigative research ”report on research results Individual report
- Non-Patent Document 3 Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Coop er JM. "SERRS. In situ substrate formation and improved detection using microfluidic sJ Anal Chem. 2002 Apr 1; 74 (7): 1503— 8 ⁇
- Non-Patent Document 4 Jacquitta K. Daniels and George Chumanov (Clemson University) “Na noparticle-Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering” _J. Phys. Chem. B, 109 (38), 17936 -17942, 2005.
- Non-Patent Document 5 Orendorff, CJ Gole, A. Sau, TK Murphy, CJ (University of South Carolina) ⁇ Surface-enhanced Raman spectroscopy of Self-assembled monolayers: S andwich architecture and nanoparticle shape dependencej Anal Chem. 2005 May 15 ; 77 (10): 3261--6.
- An object of the present invention is to propose a method and apparatus that are more practical than conventional methods and apparatuses for detecting trace substances using a SERS substrate or SERS substrate.
- a method and apparatus that uses a colloidal SERS substrate but does not cause separation and precipitation of the substrate, without using a substrate in which metal fine particles are arranged through complicated processes.
- An object of the present invention is to propose an effective method and apparatus using both metal particles (or metal films) and metal colloids. Means for solving the problem
- the method of the present invention is a surface-enhanced Raman scattering light obtained by irradiating laser light to a site where analyte, metal particles, and metal colloid are close to each other.
- a method for discriminating and detecting an analyte in which the analyte and the metal fine particle colloid prepared in advance are provided in a blind tube in which a metal lump is disposed in the blind part or in a blind tube in which a metal film is disposed on the inner surface of the blind part And a step of injecting a mixture of the analyte and the metal fine particle colloid into the blind tube, and in the vicinity of the solid-liquid interface where the mixture of the injected blind tube is in contact with the blind metal mass.
- This is a method for detecting trace substances by surface-enhanced Raman scattering, which has a step of observing Raman scattered light by irradiating laser light.
- the analyte has a small amount of several ⁇ litter, so that the inner diameter is preferably about 1 millimeter. If the mixture is sucked by capillary action (cylinder) and the opening is closed after suction, the inner diameter may be on the order of 100 micrometers.
- mechanical vibration including sound wave vibration may be applied from the outside in the vicinity of the blind portion.
- Fig. 2 is a means to vibrate the blind tube (a means to induce a mixture of A and C to the blind part in the blind tube by vibration).
- Figure 3 shows the Raman scattered light observation process when the blind tube is laid sideways
- Figure 4 shows the Raman scattered light observation process when the blind tube is upright
- Figs. 5 and 6 show the observation example and figure. 7 is a photograph of the cecum and blind part used in the examples.
- the position in the blind part of the metal mass or the inner surface of the blind part of the metal film it is preferable to have a step of measuring the position and arranging a marker at the position of the blind tube based on the measured position so that the measurement position information can be read by observation of the blind tube.
- the present invention is more practical than conventional SERS substrates and methods and apparatuses for detecting trace substances using SERS substrates. This is because the detection can be carried out only with a blind tube such as glass and a pre-fabricated metal microparticle colloid, which is low in cost. A substrate in which metal fine particles are aligned through a complicated process is not used, but a colloidal SERS substrate is used, but the separation and precipitation of the substrate is not a problem. Even if a metal thin film is disposed on the inner surface of the blind tube, the cost is low. It can be said that this technique is suitable for automatic analysis of a large amount of various analytes.
- FIG. 1 is an explanatory view of a blind tube of the present invention.
- A is an example in which metal particles P, which are metal lumps, are arranged in the blind portion
- (b) is an example in which the diameter of the metal particles is relatively small as in (a).
- C) is an example in which the metal film S is arranged on the inner surface of the blind part, and (d) is the same as (c), and the arrangement part of the metal film S is arranged so as not to interfere with the Raman measurement from the side of the blind tube.
- An example of discontinuous dispersion is an example in which metal particles P, which are metal lumps, are arranged in the blind portion
- (b) is an example in which the diameter of the metal particles is relatively small as in (a).
- C) is an example in which the metal film S is arranged on the inner surface of the blind part, and (d) is the same as (c), and the arrangement part of the metal film S is arranged so as not to interfere with the Raman measurement from the side of the blind
- FIG. 2 is a flow explanatory diagram of the detection method of the present invention. 2 by vibration to the blind in the blind tube
- An oscillating means having an ultrasonic vibrator or an eccentric rotor that applies mechanical vibration including sound waves to the blind tube by means of guiding the mixture.
- FIG. 5 Data of an embodiment of the present invention, where Peakl is Raman data of a site where the analyte and metal colloid are close together, and Peak2 is a site where the analyte and metal colloid are close together.
- Datal Raman data, Raman data of the site (data2) where Peak2 analyte, metal particle, and metal colloid are close together.
- the analyte is adenosine.
- leveU ⁇ -leveLn is the horizontal plane level including the position of the metal mass or metal film of the 1st ⁇ nth blind tube blind portion of the multiple blind tubes
- dl ⁇ 'dn is leveU from the optical system reference part of the Raman measurement means, for example ⁇
- the distance to 'leveLn' is set so that the optical focus of the optical system is all at the horizontal plane level including the position of the metal mass or metal film of the 1st ⁇ nth blind tube blind.
- FIG. 9 An example of a blind tube in which the position of the metal lump (metal film) in the blind part is measured in advance and a storage medium is provided as a storage means for storing position information in the blind part of the metal lump (metal film).
- Position information Bl, B2, B3 for the optical marker M placed in the blind part of the blind canal as a reference for the measurement position is encoded by the encoding means 4 and printed by the printing means 5, for example, a bar code 9 (printed on the blind pipe) Printed as Bl, B2 and B3).
- FIG. 10 An example of a blind tube in which the position of the metal lump (metal film) in the blind portion is measured in advance, and a marker is disposed at the position of the blind tube based on the measured position, as shown in FIG.
- Position information Bl, B2, B3 is grasped from the marker placement position itself.
- Ml is the first optical marker placed in the blind canal after the actual measurement of the position of the metal lump or metal film
- M2 is the blind in the blind canal after the actual measurement of the position of the metal lump or metal film.
- the arranged second optical marker, ML is a predetermined distance apart from the position of the metal block or metal film (the marker position is separated so as not to obstruct the Raman measurement).
- FIG.11 There is a margin for grinding 7 at the end of the blind tube, and the grinding margin 7 is ground according to the position of the metal mass of the blind part or the metal film on the inner surface of the blind part, and multiple blind pipes are ground to the reference surface
- 7 is the margin of the bottom of the blind tube for leveling the metal lump or metal film
- 8 is the bottom of the blind tube after being ground for leveling
- G is the reference plane corresponding to the focal point of the laser beam irradiation
- H is one of the focal planes of the actual laser beam irradiation, and is the highest level in the horizontal plane including the position of the metal block or metal film
- J is a certain level difference from the actual focal plane H of the reference plane G.
- a cone-shaped reference shape 7A is provided at the end of the blind tube, and has a reference surface corresponding to the focal point of the laser beam irradiation, and a conical knife that fits the above-described cone-shaped shape on the reference surface.
- the mold is opened, and the depth of the cone-female mold is determined according to the position of the blind metal block or the metal film on the inner surface of the blind part.
- a plurality of blind tubes are arranged in parallel by fitting the cone-shaped reference shape 7A at the end of the blind tube into the conical female-type opening.
- 7A is a cone-shaped reference shape for leveling the metal mass or metal film position.
- FIG. 13 This is an example of a blind tube according to the present invention, in which (a) is a method of charging a metal material into a glass empty blind tube, (b) is a metal melting by heating the blind portion of a glass empty blind tube, c) shows the steps of forming the constricted part to prevent the metal from falling off by pressurizing and constricting the blind part.
- Printing method 6 Trace substance detection chip with multiple blind tubes 1 arranged in parallel
- ACP AC is close to P (or metal film)
- level_2 The horizontal plane including the position of the metal mass or metal film of the second blind canal of multiple blind tubes
- level_3 Horizontal plane level including the location of the metal mass or metal film of the 3rd culm
- n Horizontal plane level including the position of the metal mass or metal film of the nth cephalic blind region of several culm
- Peak2 A characteristic peak of adenosine (analyte) in data2
- QL1 A level corresponding to the PL1 level. It corresponds to a female cone to be fitted.
- QL2 Level corresponding to PL2 level Corresponds to the female cone to be fitted.
- QL3 A level corresponding to the PL3 level. It corresponds to a female cone to be fitted.
- the device according to the present invention includes a blind tube in which a metal lump is disposed in the blind part, or a blind tube in which a metal film is disposed on the inner surface of the blind part, and laser light is applied to the blind tube.
- the device according to the present invention may be provided with means for applying vibration to the blind tube to guide the mixture of the analyte and the metal fine particle colloid to the blind part.
- the device according to the present invention (Claim 7) is provided in the position of the blind portion of the metal mass or the inner surface of the blind portion of the metal film before the step of mixing the analyte and the colloidal metal colloid prepared in advance.
- the position is measured in advance, and a blind tube in which a single force is arranged at the position of the blind tube based on the measurement position, and the detection device has a means for reading the marker position and also has a fixed position.
- the means for focusing the laser beam near the liquid interface discriminates and focuses the solid-liquid interface based on the marker position read by the reading means.
- the marker is located most in the plane group perpendicular to the tube axis of the blind tube and including the blind metal mass or the metal film of the blind inner surface.
- the position included in the plane close to the open end of the cephalic tube (see PLU in Figure 4) and / or the position closest to the blind end of the cephalic canal and the position of the plane (see PLL in Figure 4) is preferred.
- the storage means for storing the measurement position information and the information reading means for the storage means are combined, and the laser beam is focused near the solid-liquid interface.
- the means for determining and focusing the solid-liquid interface based on the position information on the blind portion of the metal lump read by the reading means or the position information on the inner surface of the blind portion of the metal film may be used.
- a storage medium as storage means for storing measurement position information in the blind tube is provided, and information reading means in the storage means is information reading means in the storage medium provided in the blind tube. Is preferred (see brief description of FIGS. 9 and 9).
- the present invention provides a multiple detection for detecting a minute amount of analyte latent in a plurality of sampling solutions. It may constitute a several substance detection device. Here, it is hoped that the position of the metal inside the plurality of blind tubes approximately coincides with the axial direction of the blind tubes so that the focusing of the laser light can be omitted in the vicinity of each solid-liquid interface. Masle.
- the parallel condition is as follows: the parallel condition is: in a plane perpendicular to one blind tube axis and in a group of planes including a blind metal mass or a metal film on the inner surface of the blind. The surface closest to the open end of the blind canal or the surface closest to the blind canal is perpendicular to the axis of the other canal and is included in the group of surfaces including the blind metal mass or the metal film on the inside of the blind (See Figure 8).
- this is a multi-substance detection device having the following structure (refer to claims 12, FIG. 11 and a brief description of FIG. 11).
- the multiple substance detection device has a reference surface corresponding to the focal point of the laser beam irradiation.
- the grinding margin at the end of the blind pipe is ground according to the position of the metal block of the blind block or the metal film on the inner surface of the blind block.
- a plurality of blind tubes are arranged in parallel with the ground surface ground to the reference surface.
- FIG. 12 and FIG. 12 Another specific embodiment (see the brief description of claim 13, FIG. 12 and FIG. 12) is as follows: 1) There is a conical oscillating reference shape at the end of the blind tube before the parallel arrangement. . 2) The multi-substance detection device has a reference plane corresponding to the focal point of the laser beam irradiation, and a conical knife type that fits the circular cone type is opened on the reference plane. 3) The depth of the conical knife type is determined in accordance with the position of the blind metal block or the metal film on the inner surface of the blind part. 4) A plurality of blind tubes are arranged in parallel by fitting the cone-shaped reference shape at the end of the blind tube into the conical female opening.
- FIG. 13 A preferred embodiment of the blind tube of the present invention is shown in FIG. 13 together with its production method. That is, (Claim 14) is a blind tube in which metal is disposed in the blind part, and after the step of introducing the metal material into the blind tube (FIG. 13 (a)), the metal in the blind part is melted. A blind tube in which the input metal material is melted and fixed to the inner surface of the blind tube blind part by the step of heating above the temperature (FIG. 13 (b)) is suitable.
- (Claim 15) A blind tube in which a thin film in which the above-mentioned metal material is melt-extended is disposed on the inner surface of the blind tube blind portion by the same metal material charging step and heating step is also suitable.
- (Claim 16) is a blind tube in which metal is disposed in the blind portion, and after the step of disposing the metal material in the blind tube, the open end side of the blind tube metal disposed portion. Even if a part having an inner diameter smaller than the inner diameter of the blind tube metal placement part is formed on the open end side of the metal placement part by the process of constricting the pressure from the outside of the blind pipe (Fig. 13 (c)) Good. This small inner diameter portion is suitable because it is difficult for the metal material to separate from the blind portion without being melt-fixed or melt-extended by heating.
- the blind tube member is made of heat resistant material (heat resistant glass), it is easy to heat, and only the metal in the blind tube blind part is locally heated by local heating means such as laser heating to avoid melting of the blind tube material. You can do it.
- all or part of the metal may be a low melting point alloy having a low melting point, and only the alloy may be melted.
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
This invention provides a method and apparatus for detecting a very small amount of a substance by surface-enhanced Raman scattering (SERS), which can realize excellent practicality and rapid observation. The method for detecting a very small amount of a substance by surface-enhanced Raman scattering comprises the step of mixing an analyte and a previously provided metal fine particle colloid to prepare a mixture for placing in a blind pipe in which a metal mass is provided in its blind part, the step of pouring the mixture of the analyte with the metal fine particle colloid into the blind pipe, and the step of applying a laser beam to a part around a solid-liquid interface where the mixture in the blind pipe is in contact with the blind part metal mass to observe Raman scattered light. The apparatus can realize the method.
Description
明 細 書 Specification
細径盲管を用いた表面増強ラマン散乱による物質検知方法および物質 検知装置、複数物質検知デバイス、盲管 Substance detection method, substance detection apparatus, multi-substance detection device, blind tube using surface enhanced Raman scattering using small diameter blind tube
技術分野 Technical field
[0001] 本発明は、表面増強ラマン散乱 (SERS)による微量物質検知方法ならびに装置であ る。本発明では金属粒子または金属膜および金属微粒子を懸濁したコロイドを用い て、アナライト'金属粒子 ·金属コロイドの 3者が近接混在する部位にレーザ光を照射 して得られる表面増強ラマン散乱光で微量アナライトを弁別検知する方法であって、 特に本発明は、パスツール管とも称される細径の盲管を用いる。 [0001] The present invention relates to a method and an apparatus for detecting a trace substance by surface enhanced Raman scattering (SERS). In the present invention, surface-enhanced Raman scattering light obtained by irradiating a laser beam to a site where analytes, metal particles, and metal colloids are mixed together using a colloid in which metal particles or metal film and metal fine particles are suspended. In particular, the present invention uses a thin blind tube also called a Pasteur tube.
背景技術 Background art
[0002] 金や銀など貴金属ナノ粒子群のプラズモン効果による表面増強ラマン散乱(Surface- Enhanced Raman Scattering = SERS)を観測することでアナライトをラマン分析して微 量物質を弁別検知することは公知である。ナノ粒子が存在しなレ、状態ではラマン信 号が微弱な極微量の物質でも、プラズモン効果によってラマン信号が増強され、弁 別検知することが可能となる。 SERSのプラズモン効果発現メカニズムは十分解明さ れていないが、有害物質センサーなどへの応用を目的に研究開発が行われている。 ここで、弁別検知対象物質をアナライトとも呼ぶことにする。 [0002] It is well known to detect analytes by Raman analysis by observing surface-enhanced Raman scattering (SERS) due to the plasmon effect of a group of noble metal nanoparticles such as gold and silver. It is. Even in the absence of nanoparticles, the Raman signal is enhanced by the plasmon effect and can be discriminated even with a very small amount of material with a weak Raman signal. The mechanism of SERS plasmon effect expression has not been fully elucidated, but research and development is being conducted for the purpose of application to harmful substance sensors. Here, the discrimination detection target substance is also called an analyte.
[0003] 金や銀など貴金属ナノ粒子を含有する SERS基材を滴下し乾燥することで SERS活 性のある固体基板を得る方法は公知である。たとえば特許文献 1は、液体中で SER S基材を分散させ固体表面に定着させ、高い SERS活性を示す基板の簡便な作成 法を開示している。 [0003] A method of obtaining a SERS-active solid substrate by dropping a SERS base material containing noble metal nanoparticles such as gold and silver and drying it is known. For example, Patent Document 1 discloses a simple method for preparing a substrate exhibiting high SERS activity by dispersing a SER S substrate in a liquid and fixing it on a solid surface.
[0004] ナノ粒子群をセルフアセンブル(自己整列)させ強レ、SERS活性を得る工夫も研究さ れている。たとえば LB膜(Langmuir-Blodgett膜)の製法に準じて界面にセルファセ ンブルさせた金属微粒子群を掬い取って金属微粒子が整列した SERS基板作成す る方法も公知である(特許文献 3参照)。特許文献 2も、金属微粒子の含有溶液中に 浸した平板を所定速度で引き上げることを繰り返して粒子を周期的に整列堆積させ た SERS基板を形成する方法である。
[0005] LB膜を利用したナノ粒子整列の工夫以外にも、 SERS基板製法が多く提案されてい る。たとえば、水との親和性 (親水.撥水性)をもつ表面を利用した SERS基板の製法 (特許文献 5参照)がある。 [0004] A technique for obtaining strong SERS activity by self-assembling a group of nanoparticles has been studied. For example, a method for producing a SERS substrate in which metal fine particles are aligned by picking up a group of metal fine particles that are self-assembled at the interface in accordance with a manufacturing method of an LB film (Langmuir-Blodgett film) is also known (see Patent Document 3). Patent Document 2 is also a method of forming a SERS substrate in which particles are periodically aligned and deposited by repeatedly pulling up a flat plate immersed in a solution containing metal fine particles at a predetermined speed. [0005] Besides the nanoparticle alignment technique using LB films, many SERS substrate manufacturing methods have been proposed. For example, there is a method for producing a SERS substrate using a surface having affinity with water (hydrophilicity and water repellency) (see Patent Document 5).
[0006] 以上のような固相の SERS活性基板ではなぐ貴金属ナノ粒子を懸濁させたコロイド を SERS基質 (液状なので基板とは言わない)として、これにアナライトを液相混合し たもので表面増強ラマン散乱を観測してアナライトを弁別検知することも公知である( 特許文献 4参照)。 [0006] A colloid in which precious metal nanoparticles suspended in a solid-state SERS active substrate as described above is suspended as a SERS substrate (not called a substrate because it is liquid), and this is a liquid phase mixture of analyte. It is also known to discriminate and detect analytes by observing surface-enhanced Raman scattering (see Patent Document 4).
[0007] コロイド SERS基質は、固相 SERS基板よりも作成が容易であるが、分離沈殿しやす ぐ分離沈殿状態では SERS活性が消失するという欠点がある。そのため、スメクタイ トのような粘土質の物質で SERS基質を長期間安定化する方法 (特許文献 4参照)な どが研究されている。 [0007] A colloidal SERS substrate is easier to produce than a solid-phase SERS substrate, but has the disadvantage that the SERS activity disappears in the state of separation and precipitation and in the state of separation and precipitation. For this reason, methods for stabilizing a SERS substrate for a long period of time with a clay-like substance such as smectite (see Patent Document 4) have been studied.
[0008] また極微量のアナライトの分析には毛細管現象 (キヤビラリ)を利用することも公知で ある(特許文献 6参照)。毛細管現象(キヤビラリ)中でアナライトとコロイド SERS基質 を混合し、 SERSのラマン信号を分析して極微量物質を弁別検知することも公知であ る。 [0008] It is also known to use capillary action (analysis) for analysis of a very small amount of analyte (see Patent Document 6). It is also known to detect and detect trace amounts of substances by mixing analyte and colloidal SERS substrate in a capillary phenomenon and analyzing the Raman signal of SERS.
[0009] 同様に、マイクロリットルレベルの極微量のアナライトとコロイド SERS基質を公知のマ イク口流路で流動混合して、 SERSのラマン信号を分析して極微量物質を弁別検知 することも公知である (特許文献 7、非特許文献 3参照)。 [0009] Similarly, it is also possible to detect and detect trace amounts of substances by analyzing and mixing the SERS Raman signal by fluidly mixing microliter-level analytes and colloidal SERS substrates in a known microphone port channel. Known (see Patent Document 7 and Non-Patent Document 3).
[0010] 一方、特許文献 8にて「ブラズモンミラー効果」を利用した微量物質の検知方法なら びに装置が開示されている。ここでプラズモンミラー効果とは、照射された光エネルギ 一で表面プラズモンポラリトンを誘起する比較的清浄な金属面の近傍にナノ粒子群 をセルフアセンブル(自己整列)させ、さらに強レ、 SERS活性を得ることである。プラズ モンミラー効果を得るための条件やその機序は明らかでないが、比較的清浄な金属 面の近傍にナノ粒子群をセルフアセンブル(自己整列)させることが重要であるとされ ている(特許文献 8参照)。 [0010] On the other hand, Patent Document 8 discloses a trace substance detection method and apparatus using the "Blasmon mirror effect". Here, the plasmon mirror effect means that a group of nanoparticles is self-assembled (self-aligned) in the vicinity of a relatively clean metal surface that induces surface plasmon polaritons with the same applied light energy, and obtains stronger and SERS activity. That is. The conditions and mechanism for obtaining the plasmon mirror effect are not clear, but it is considered important to self-assemble the nanoparticle group in the vicinity of a relatively clean metal surface (Patent Document 8). reference).
[0011] さらに一方、金属面上にナノ粒子群をセルフアセンブル(自己整歹 IJ)させ、その上部 にさらに金属蒸着する、または、金属面上にナノ粒子を二段に積層することでサンド イッチとした「Sandwich Substrates」または「Sandwich architecture」も公知である。力力、
るサンドイッチ構成で単層よりも強レ、SERS活性が得られる場合がある(特許文献 9、 非特許文献 4、非特許文献 5参照)。 [0011] On the other hand, the nanoparticles are self-assembled (self-aligning IJ) on the metal surface, and further metal deposition is performed on the upper surface, or the nanoparticles are stacked in two steps on the metal surface, thereby sandwiching the sandwich. “Sandwich Substrates” or “Sandwich architecture” is also known. Power, In some sandwich configurations, SERS activity stronger than a single layer may be obtained (see Patent Document 9, Non-Patent Document 4, and Non-Patent Document 5).
特許文献 1 :特開 2005-077362号公報「表面増強ラマン散乱活性基板の作成方法」 ( 学校法人慶應義塾) Patent Document 1: Japanese Unexamined Patent Application Publication No. 2005-077362 “Method for producing surface-enhanced Raman scattering active substrate” (Keio University)
特許文献 2:特開 2004-170334号公報「ラマン散乱測定センサ及びその製造方法」 ( 科学技術振興機構ほか) Patent Document 2: Japanese Patent Application Laid-Open No. 2004-170334 “Raman scattering measurement sensor and manufacturing method thereof” (Japan Science and Technology Agency, etc.)
特許文献 3:特開 2005-233637号公報「金ナノロッド薄膜によるラマン分光分析」(科 学技術振興機構) Patent Document 3: Japanese Laid-Open Patent Publication No. 2005-233637 “Raman Spectroscopic Analysis with Gold Nanorod Thin Film” (Japan Science and Technology Agency)
特許文献 4:特開 2004-205435号公報「標識色素を不要とする結合性分析対象物質 の分析方法ならびにそれに用いる分析キット」(福岡隆夫) Patent Document 4: Japanese Patent Application Laid-Open Publication No. 2004-205435 “Analytical method of binding analysis target substance that does not require labeling dye and analysis kit used therefor” (Fukuo Takao)
特許文献 5:特開 2005-219184号公報「単一分子ラマン分光用金属ナノ三角柱構造 アレイ基板の形成方法及びそれによる単一分子分析法」(産業技術総合研究所) 特許文献 6:特許第 3462339号公報「キヤピラリー電気泳動用検出器」 (日本電信電話 株式会社) Patent Document 5: Japanese Laid-Open Patent Publication No. 2005-219184 “Metal Nano-Triangular Column Structure for Single-Molecular Raman Spectroscopy, Array Substrate Formation Method and Single-Molecule Analysis Method Using the Same” (AIST) Patent Document 6: Patent No. 3462339 No. "Capillary electrophoresis detector" (Nippon Telegraph and Telephone Corporation)
特許文献 7:特表 2005-507500号公報「マイクロ流体の表面増強共鳴ラマン散乱法に よる検出」(ュニバーシティォブストラスクライドほか) Patent Document 7: Special Table 2005-507500 Publication “Detection of microfluids by surface-enhanced resonance Raman scattering” (University of Strathclyde et al.)
特許文献 8 :国際公開 WO2005 114298公報「OPTICAL SENSOR WITH LAYERED P LASMON STRUCTURE FOR ENHANCED DETECTION OF CHEMICAL GROUPS BY SERSJ VP HODLINGS'LLC Patent Document 8: International Publication WO2005 114298 Publication `` OPTICAL SENSOR WITH LAYERED P LASMON STRUCTURE FOR ENHANCED DETECTION OF CHEMICAL GROUPS BY SERSJ VP HODLINGS'LLC
特許文献 9 :米国特許 US6149868公報「Surface enhanced raman scattering from metaPatent Document 9: US Patent US6149868 `` Surface enhanced raman scattering from meta
1 nanoparticle-analyte-noble metal substrate sandwiches」 (Michael J. Natan) 非特許文献 1:梶川浩太郎 (東工大)、三井圭太「局在プラズモン共鳴を利用したバイ ォセンシング」応用物理、 第 72卷、第 12号、 p.1541-1544 (2003) 1 nanoparticle-analyte-noble metal substrate sandwiches ”(Michael J. Natan) Non-patent document 1: Kotaro Kajikawa (Tokyo Tech), Yuta Mitsui“ Bio-sensing using localized plasmon resonance ”Applied Physics, No. 72, No. 12, p.1541-1544 (2003)
非特許文献 2 :岡本隆之 (理化学研究所)「金属ナノ粒子相互作用および、バイオセン サーに関する調査研究」平成 14年度科学研究費補助金 (基礎研究 C)「表面ブラズモ ンの局在化とその応用に関する調査研究」研究成果報告書 個別報告 Non-Patent Document 2: Takayuki Okamoto (RIKEN) “Investigative Research on Metal Nanoparticle Interactions and Biosensors” 2002 Grant-in-Aid for Scientific Research (C) “Localization of surface plasmons and their applications Investigative research ”report on research results Individual report
非特許文献 3 : Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Coop er JM.「SERRS. In situ substrate formation and improved detection using microfluidic
s.J Anal Chem. 2002 Apr 1 ;74(7): 1503— 8· Non-Patent Document 3: Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Coop er JM. "SERRS. In situ substrate formation and improved detection using microfluidic sJ Anal Chem. 2002 Apr 1; 74 (7): 1503— 8 ·
非特許文献 4 : Jacquitta K. Daniels and George Chumanov (Clemson University)「Na noparticle-Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering」_J. Phys. Chem. B, 109 (38), 17936 -17942, 2005. Non-Patent Document 4: Jacquitta K. Daniels and George Chumanov (Clemson University) “Na noparticle-Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering” _J. Phys. Chem. B, 109 (38), 17936 -17942, 2005.
非特許文献 5 : Orendorff, C. J. Gole, A. Sau, T. K. Murphy, C. J. (University of Sout h Carolina)「 Surface-enhanced Raman spectroscopy of Self-assembled monolayers: S andwich architecture and nanoparticle shape dependencej Anal Chem. 2005 May 15; 77(10):3261- 6. Non-Patent Document 5: Orendorff, CJ Gole, A. Sau, TK Murphy, CJ (University of South Carolina) `` Surface-enhanced Raman spectroscopy of Self-assembled monolayers: S andwich architecture and nanoparticle shape dependencej Anal Chem. 2005 May 15 ; 77 (10): 3261--6.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0013] 本発明の課題は、従来の SERS基板や SERS基質による微量物質の検知方法と装 置よりも実用性に優れた方法と装置を提案するものである。すなわち、金属微粒子を 複雑な工程を経て整列させた基板は用いず、コロイド状 SERS基質を利用するが基 質の分離沈殿が問題にならない方法と装置を提案する。本発明は、金属粒子 (また は金属膜)と金属コロイドの両方を利用した有効な方法と装置の提案を課題とする。 課題を解決するための手段 [0013] An object of the present invention is to propose a method and apparatus that are more practical than conventional methods and apparatuses for detecting trace substances using a SERS substrate or SERS substrate. In other words, we propose a method and apparatus that uses a colloidal SERS substrate but does not cause separation and precipitation of the substrate, without using a substrate in which metal fine particles are arranged through complicated processes. An object of the present invention is to propose an effective method and apparatus using both metal particles (or metal films) and metal colloids. Means for solving the problem
[0014] 本発明の方法は (請求項 1、図 1参照)、 アナライトと金属粒子と金属コロイドの 3者 が近接混在する部位にレーザ光を照射して得られる表面増強ラマン散乱光で微量ァ ナライトを弁別検知する方法であって、盲部に金属塊が配設された盲管、または盲部 内面に金属膜が配設された盲管にアナライトとあらかじめ用意された金属微粒子コロ イドとを混合する工程と、アナライトと金属微粒子コロイドの混合物を前記の盲管に注 入する工程と、注入された盲管の前記混合物が前記の盲部金属塊と接する固液界 面近傍にレーザ光を照射してラマン散乱光を観測する工程を有する表面増強ラマン 散乱による微量物質の検知方法である。 [0014] The method of the present invention (see claim 1, FIG. 1) is a surface-enhanced Raman scattering light obtained by irradiating laser light to a site where analyte, metal particles, and metal colloid are close to each other. A method for discriminating and detecting an analyte, in which the analyte and the metal fine particle colloid prepared in advance are provided in a blind tube in which a metal lump is disposed in the blind part or in a blind tube in which a metal film is disposed on the inner surface of the blind part And a step of injecting a mixture of the analyte and the metal fine particle colloid into the blind tube, and in the vicinity of the solid-liquid interface where the mixture of the injected blind tube is in contact with the blind metal mass. This is a method for detecting trace substances by surface-enhanced Raman scattering, which has a step of observing Raman scattered light by irradiating laser light.
[0015] 本発明の盲管の内径には限定がないが、アナライトは数 μリツターの少量が望ましい ので、内径は 1ミリメーター前後が好適である。また毛細管現象(キヤビラリ)で混合物 を吸引させ、吸引後に開口部を閉塞して盲部としてもよぐその場合は内径は 100ミク ロンメートルのオーダである。
[0016] キヤビラリを利用しない場合、盲部へアナライトと金属微粒子コロイドの混合物を注入 するには、盲部近傍に外部から音波振動を含む機械的振動を付与すればよい。す なわち(請求項 2)、アナライトと金属微粒子コロイドの混合物を盲管に注入する工程 の後に、盲管に振動を与えてアナライトと金属微粒子コロイドの混合物を盲部に誘導 する工程を有するとすればよい。図 2の 2が盲管を振動させる手段 (振動によって盲 管内の盲部に Aと Cの混合物を誘導する手段)である。図 3は盲管を横に寝かせた状 態でのラマン散乱光の観測工程、図 4は盲管を立てた状態でのラマン散乱光の観測 工程、図 5と図 6は観測実施例、図 7は実施例に用いた盲管盲部写真である。 [0015] Although there is no limitation on the inner diameter of the blind tube of the present invention, it is preferable that the analyte has a small amount of several μlitter, so that the inner diameter is preferably about 1 millimeter. If the mixture is sucked by capillary action (cylinder) and the opening is closed after suction, the inner diameter may be on the order of 100 micrometers. [0016] In the case of not using the fly, in order to inject the mixture of the analyte and the metal fine particle colloid into the blind portion, mechanical vibration including sound wave vibration may be applied from the outside in the vicinity of the blind portion. In other words, after the step of injecting the mixture of the analyte and the metal fine particle colloid into the blind tube, the step of inducing the mixture of the analyte and the metal fine particle colloid to the blind portion by applying vibration to the blind tube. You just have to. 2 in Fig. 2 is a means to vibrate the blind tube (a means to induce a mixture of A and C to the blind part in the blind tube by vibration). Figure 3 shows the Raman scattered light observation process when the blind tube is laid sideways, Figure 4 shows the Raman scattered light observation process when the blind tube is upright, and Figs. 5 and 6 show the observation example and figure. 7 is a photograph of the cecum and blind part used in the examples.
[0017] 本発明の方法では (請求項 3)、アナライトとあらかじめ用意された金属微粒子コロイド とを混合する工程の前に、金属塊の盲部における位置、または金属膜の盲部内面に おける位置を計測し、かつ、該計測位置に基く盲管の位置にマーカーを配設して盲 管の観測で前記計測位置情報を読み取れるようにする工程を有するのが好ましい。 あるいは、該計測位置情報を記憶した記憶媒体を盲管に配設して盲管の観測で前 記計測位置情報を読み取れるようにする工程を有するのが好ましい。これらの態様は 本方法によるデバイスの説明にて後述する。 [0017] In the method of the present invention (Claim 3), before the step of mixing the analyte and the metal fine particle colloid prepared in advance, the position in the blind part of the metal mass or the inner surface of the blind part of the metal film It is preferable to have a step of measuring the position and arranging a marker at the position of the blind tube based on the measured position so that the measurement position information can be read by observation of the blind tube. Alternatively, it is preferable to have a step of arranging the storage medium storing the measurement position information in the blind tube so that the measurement position information can be read by observation of the blind tube. These aspects will be described later in the description of the device according to the present method.
発明の効果 The invention's effect
[0018] 本発明は、従来の SERS基板や SERS基質による微量物質の検知方法と装置よりも 実用性に優れる。なぜなら、ガラスなどの盲管とあらかじめ製作しておいた金属微粒 子コロイドのみで検知が実施できるので、低コストである。金属微粒子を複雑な工程 を経て整列させた基板は用いず、コロイド状 SERS基質を利用するが基質の分離沈 殿が問題にならない。盲管の内面に金属薄膜を配設するにしても、費用は廉価であ る。大量多種のアナライトの自動分析に適する技術であるといえる。 [0018] The present invention is more practical than conventional SERS substrates and methods and apparatuses for detecting trace substances using SERS substrates. This is because the detection can be carried out only with a blind tube such as glass and a pre-fabricated metal microparticle colloid, which is low in cost. A substrate in which metal fine particles are aligned through a complicated process is not used, but a colloidal SERS substrate is used, but the separation and precipitation of the substrate is not a problem. Even if a metal thin film is disposed on the inner surface of the blind tube, the cost is low. It can be said that this technique is suitable for automatic analysis of a large amount of various analytes.
図面の簡単な説明 Brief Description of Drawings
[0019] [図 1]本発明の盲管説明図。 (a)は金属塊である金属粒子 Pを盲部に配設した例、 (b )は(a)同様であり、金属粒子の径が比較的小さい例。 (c)は盲部内面に金属膜 Sを 配設した例、(d)は(c)同様であり、盲管側面からのラマン計測に支障が出ないように 金属膜 Sの配設部位が不連続に分散している例。 [0019] FIG. 1 is an explanatory view of a blind tube of the present invention. (A) is an example in which metal particles P, which are metal lumps, are arranged in the blind portion, (b) is an example in which the diameter of the metal particles is relatively small as in (a). (C) is an example in which the metal film S is arranged on the inner surface of the blind part, and (d) is the same as (c), and the arrangement part of the metal film S is arranged so as not to interfere with the Raman measurement from the side of the blind tube. An example of discontinuous dispersion.
[図 2]本発明の検知方法のフロー説明図。 2は振動によって盲管内の盲部に Aと Cの
混合物を誘導する手段で音波を含む機械振動を盲管に与える超音波振動子または 偏芯回転子を有する振動手段。 FIG. 2 is a flow explanatory diagram of the detection method of the present invention. 2 by vibration to the blind in the blind tube An oscillating means having an ultrasonic vibrator or an eccentric rotor that applies mechanical vibration including sound waves to the blind tube by means of guiding the mixture.
園 3]混合物 ACが盲部金属塊と接する固液界面近傍にレーザ光を照射してラマン散 乱光を観測する工程の説明であって、盲管を水平にした例。 Sono 3] Mixture This is an explanation of the process of observing Raman scattered light by irradiating laser light near the solid-liquid interface where it comes into contact with the blind metal block.
園 4]図 3同様にラマン散乱光を観測する工程の説明であって、盲管を垂直にした例 。 (a)は焦点位置が高ぐ混合物 ACが盲部金属塊と接していない部位、(b)は混合 物 ACが盲部金属塊と接してレ、る部位。 En 4] This is an explanation of the process of observing Raman scattered light as in Fig. 3, with the blind tube vertical. (A) is the part where the mixture AC with high focal position is not in contact with the blind metal block, and (b) is the part where the mixture AC is in contact with the blind metal block.
[図 5]本発明の実施例のデータであって、 Peaklはアナライトと金属コロイドの 2者が 近接混在する部位のラマンデータ、 Peak2はアナライトと金属コロイドの 2者が近接混 在する部位(datal)のラマンデータ、 Peak2アナライトと金属粒子と金属コロイドの 3 者が近接混在する部位(data2)のラマンデータである。なおアナライトはアデノシン。 [Fig. 5] Data of an embodiment of the present invention, where Peakl is Raman data of a site where the analyte and metal colloid are close together, and Peak2 is a site where the analyte and metal colloid are close together. (Datal) Raman data, Raman data of the site (data2) where Peak2 analyte, metal particle, and metal colloid are close together. The analyte is adenosine.
[図 6]図 5の Arealおよび Area2の典型的なスペクトル(datalと data2)と別測定した アナライトと金属の 2者が近接混在する部位のラマンデータ(dataO)のスペクトルダラ フ。本案の実施結果である data2の優位性は明らかである。 [Fig.6] Spectral graph of Raman data (dataO) of the region where the analyte and metal are in close proximity, separately from the typical spectra (datal and data2) of Areal and Area2 in Fig. 5. The superiority of data2, the implementation result of this proposal, is clear.
園 7]盲管の盲部に配設した金属粒子の例図 7] Example of metal particles placed in the blind part of the blind tube
園 8]盲部に金属塊が配設された複数本の盲管 1および/または盲部内面に金属膜 が配設された複数本の盲管 1を並列配歹 1Jしたデバイス Dの説明図。 leveU · -leveLn は複数の盲管の第 1 · ·第 nの盲管盲部の金属塊または金属膜の位置含む水平面レ ベル、 dl · ' dnはたとえばラマン計測手段の光学系基準部位から leveU · 'leveLnに 至る距離であって、光学系の光学焦点はすべて第 1 · ·第 nの盲管盲部の金属塊また は金属膜の位置含む水平面レベルにあるように各盲管を配設する。 8] Explanation of device D with 1J parallel arrangement of multiple blind tubes 1 with metal lump arranged in the blind and / or multiple blind tubes 1 with metal film arranged inside the blind . leveU · -leveLn is the horizontal plane level including the position of the metal mass or metal film of the 1st · nth blind tube blind portion of the multiple blind tubes, dl · 'dn is leveU from the optical system reference part of the Raman measurement means, for example · The distance to 'leveLn' is set so that the optical focus of the optical system is all at the horizontal plane level including the position of the metal mass or metal film of the 1st · nth blind tube blind. To do.
園 9]金属塊 (金属膜)の盲部における位置があらかじめ計測され、金属塊 (金属膜) の盲部における位置情報を記憶する記憶手段である記憶媒体が配設された盲管の 例。計測位置の基準として盲管盲部に配設された光学マーカー Mに対する位置情 報 Bl、 B2、 B3が符号化手段 4で符号化され印字手段 5でたとえばバーコードである 9 (盲管に印字された Bl、 B2、 B3を符号化したコード)として印字される。 9] An example of a blind tube in which the position of the metal lump (metal film) in the blind part is measured in advance and a storage medium is provided as a storage means for storing position information in the blind part of the metal lump (metal film). Position information Bl, B2, B3 for the optical marker M placed in the blind part of the blind canal as a reference for the measurement position is encoded by the encoding means 4 and printed by the printing means 5, for example, a bar code 9 (printed on the blind pipe) Printed as Bl, B2 and B3).
園 10]金属塊 (金属膜)の盲部における位置があらかじめ計測されており、該計測位 置に基く盲管の位置にマーカーが配設された盲管の例であって、図 9でいうところの
位置情報 Bl、 B2、 B3がマーカー配設位置自体から把握される。 Mlは実測によつ て金属塊または金属膜の位置の実測後に盲管盲部に配設された第 1光学マーカー 、M2は実測によって金属塊または金属膜の位置の実測後に盲管盲部に配設された 第 2光学マーカー、 MLは金属塊または金属膜の位置から離隔した所定の距離 (ラマ ン測定の障害にならぬようマーカー位置を離隔)である。 10] An example of a blind tube in which the position of the metal lump (metal film) in the blind portion is measured in advance, and a marker is disposed at the position of the blind tube based on the measured position, as shown in FIG. Where Position information Bl, B2, B3 is grasped from the marker placement position itself. Ml is the first optical marker placed in the blind canal after the actual measurement of the position of the metal lump or metal film, and M2 is the blind in the blind canal after the actual measurement of the position of the metal lump or metal film. The arranged second optical marker, ML, is a predetermined distance apart from the position of the metal block or metal film (the marker position is separated so as not to obstruct the Raman measurement).
[図 11]盲管の端部に研削しろ 7があり、その研削しろ 7が盲部の金属塊または盲部内 面の金属膜の位置に応じて研削され、複数の盲管が基準面に研削された面をあわ せて並列配列される例。 7は金属塊または金属膜位置のレべリングのための盲管底 部の研削しろ、 8はレべリングのため研削されたあとの盲管底部、 Gはレーザ光照射 焦点に対応した基準面、 Hは実際のレーザ光照射の焦点面のひとつであって、金属 塊または金属膜の位置含む水平面最高位レベル、 Jは基準面 Gの実際の焦点面 Hに 対する一定のレベル差である。 [Fig.11] There is a margin for grinding 7 at the end of the blind tube, and the grinding margin 7 is ground according to the position of the metal mass of the blind part or the metal film on the inner surface of the blind part, and multiple blind pipes are ground to the reference surface An example of parallel arrangement with aligned surfaces. 7 is the margin of the bottom of the blind tube for leveling the metal lump or metal film, 8 is the bottom of the blind tube after being ground for leveling, G is the reference plane corresponding to the focal point of the laser beam irradiation , H is one of the focal planes of the actual laser beam irradiation, and is the highest level in the horizontal plane including the position of the metal block or metal film, and J is a certain level difference from the actual focal plane H of the reference plane G.
[図 12]盲管端部に円錐ォス型状の基準形状物 7Aがあり、レーザ光照射焦点に対応 した基準面を有するとともに該基準面に前記の円錐ォス型と嵌合する円錐メス型が 開口されていて、前記円錐メス型の深さは盲部の金属塊または盲部内面の金属膜の 位置に応じて決定されている。それらによって、複数の盲管が前記円錐メス型開口に 盲管端部の円錐ォス型状基準形状物 7Aを嵌合して並列配列される。 7Aは金属塊 または金属膜位置のレべリングのための円錐ォス型状の基準形状物。 [FIG. 12] A cone-shaped reference shape 7A is provided at the end of the blind tube, and has a reference surface corresponding to the focal point of the laser beam irradiation, and a conical knife that fits the above-described cone-shaped shape on the reference surface. The mold is opened, and the depth of the cone-female mold is determined according to the position of the blind metal block or the metal film on the inner surface of the blind part. As a result, a plurality of blind tubes are arranged in parallel by fitting the cone-shaped reference shape 7A at the end of the blind tube into the conical female-type opening. 7A is a cone-shaped reference shape for leveling the metal mass or metal film position.
[図 13]本案の盲管の態様例であって、(a)は金属材料をガラスの空盲管への投入、( b)はガラスの空盲管の盲部の加熱による金属溶融、(c)は盲管盲部を加圧狭窄し、 金属脱落を防ぐ狭窄部形成加工、の各工程を示す。 [FIG. 13] This is an example of a blind tube according to the present invention, in which (a) is a method of charging a metal material into a glass empty blind tube, (b) is a metal melting by heating the blind portion of a glass empty blind tube, c) shows the steps of forming the constricted part to prevent the metal from falling off by pressurizing and constricting the blind part.
符号の説明 Explanation of symbols
1 盲部に金属塊が配設された盲管または盲部内面に金属膜が配設された盲管1 Blind tube with a metal block on the blind part or a blind tube with a metal film on the inner surface of the blind part
2 盲管を振動させる手段 (振動によって盲管内の盲部に Aと Cの混合物を誘導する 手段) 2 Means to vibrate the blind tube (Means to induce a mixture of A and C into the blind part of the blind tube by vibration)
3 Bl、 B2、 B3データを入力し符号化手段へ出力する手段 Means to input 3 Bl, B2, B3 data and output to encoding means
4 符号化手段 4 Encoding means
5 印字手段
6 複数の盲管 1を並列配設した微量物質検知チップ 5 Printing method 6 Trace substance detection chip with multiple blind tubes 1 arranged in parallel
7 金属塊または金属膜位置のレべリングのための盲管底部の研削しろ 7 Grind the bottom of the blind tube for leveling the metal mass or metal film position
7A金属塊または金属膜位置のレべリングのための円錐ォス型状の基準形状物 7A metal mass or reference shape in the shape of a cone for leveling a metal film
8 レべリングのため研削されたあとの盲管底部 8 Blind tube bottom after being ground for leveling
9 盲管に印字された Bl、 B2、 B3を符号化したコード 9 Code encoded Bl, B2, B3 printed on the blind tube
A アナライト A Analyte
AC アナライトと金属コロイドの混合物 Mixture of AC analyte and colloidal metal
ACP ACが P (または金属膜)と近接する部位 ACP AC is close to P (or metal film)
Areal アナライトと金属コロイドの 2者が近接混在する部位 Areal Analyte and colloidal metal
Area2 アナライトと金属粒子と金属コロイドの 3者が近接混在する部位 Area2 Area where the analyte, metal particles, and metal colloids are close together
Bl M力、ら最も近い Pの表面部位までの距離 Bl M force, the distance to the closest surface part of P
B2 M力、ら最も遠い Pの表面部位までの距離 B2 M force, distance to the farthest surface part of P
B3 Mから Fまでの距離 Distance from B3 M to F
C 金属コロイド C Metal colloid
D 盲部に金属塊および/または金属膜が配設された複数本の盲管 1を並列配列し たデバイス D Device in which multiple blind tubes 1 with metal blocks and / or metal films arranged in the blind are arranged in parallel
dl たとえばラマン計測手段の光学系基準部位から leveLlに至る距離 dl For example, the distance from the optical system reference part of the Raman measurement means to leveLl
d2 たとえばラマン計測手段の光学系基準部位から level_2に至る距離 d2 For example, the distance from the optical system reference part of Raman measurement means to level_2
d3 たとえばラマン計測手段の光学系基準部位から level_3に至る距離 d3 For example, the distance from the optical system reference part of Raman measurement means to level_3
dn たとえばラマン計測手段の光学系基準部位から level_4に至る距離 dn For example, the distance from the optical system reference part of Raman measurement means to level_4
dataO アナライトと金属の 2者が近接混在する部位のラマンデータ dataO Raman data of the site where the analyte and metal are in close proximity
datal アナライトと金属コロイドの 2者が近接混在する部位のラマンデータ datal Raman data of the site where the analyte and metal colloid are close together
data2 アナライトと金属粒子と金属コロイドの 3者が近接混在する部位のラマンデー タ data2 Raman data of the site where the analyte, metal particles, and metal colloid are in close proximity
F P同士が適度に近接して SERS効果が顕著である部位 Site where FPs are close enough and SERS effect is remarkable
G レーザ光照射焦点に対応した基準面 G Reference plane corresponding to laser beam irradiation focus
H 実際のレーザ光照射の焦点面のひとつであって、金属塊または金属膜の位置含 む水平面最高位レベル
J 基準面 Gの実際の焦点面 Hに対する一定のレベル差 H One of the focal planes of actual laser light irradiation, the highest level in the horizontal plane including the position of the metal lump or metal film J A certain level difference from the reference plane G to the actual focal plane H
level.l 複数の盲管の第 1の盲管盲部の金属塊または金属膜の位置含む水平面レ ベノレ level.l Horizontal plane level including the position of the metal mass or metal film of the first cephalic blind region of multiple blind tubes
level_2 複数の盲管の第 2の盲管盲部の金属塊または金属膜の位置含む水平面レ ベノレ level_2 The horizontal plane including the position of the metal mass or metal film of the second blind canal of multiple blind tubes
level_3 複数の盲管の第 3の盲管盲部の金属塊または金属膜の位置含む水平面レ ベノレ level_3 Horizontal plane level including the location of the metal mass or metal film of the 3rd culm
level n 複数の盲管の第 nの盲管盲部の金属塊または金属膜の位置含む水平面レ ベノレ level n Horizontal plane level including the position of the metal mass or metal film of the nth cephalic blind region of several culm
M 計測位置の基準として盲管盲部に配設された光学マーカー M Optical marker placed in the blind part of the blind tube as a reference for the measurement position
Ml 実測によって金属塊または金属膜の位置の実測後に盲管盲部に配設された第 After the actual measurement of the position of the metal lump or metal film by Ml measurement,
1光学マーカー 1 Optical marker
M2 実測によって金属塊または金属膜の位置の実測後に盲管盲部に配設された第 2光学マーカー M2 Second optical marker placed in the blind canal after the actual measurement of the position of the metal mass or metal film
ML 金属塊または金属膜の位置から離隔した所定の距離 (ラマン測定の障害になら ぬようマーカー位置を離隔) ML Predetermined distance away from the position of the metal mass or metal film (the marker position is separated so as not to obstruct Raman measurement)
P 金属粒子 P metal particles
Peakl datalにおけるアデノシン(アナライト)の特徴ピーク A characteristic peak of adenosine (analyte) in Peakl datal
Peak2 data2におけるアデノシン(アナライト)の特徴ピーク Peak2 A characteristic peak of adenosine (analyte) in data2
PL1 第 1の盲管盲部の金属塊または金属膜の位置含む水平面最高位レベル PL1 The highest level in the horizontal plane including the position of the metal mass or metal film of the first blind canal
PL2 第 2の盲管盲部の金属塊または金属膜の位置含む水平面最高位レベル PL2 The highest level in the horizontal plane, including the location of the metal mass or metal film of the second blind canal
PL3 第 3の盲管盲部の金属塊または金属膜の位置含む水平面最高位レベル PL3 The highest level in the horizontal plane including the position of the metal mass or metal film of the third blind canal
PLU 盲管盲部の金属塊または金属膜の位置含む水平面最高位レベル PLU The highest level in the horizontal plane, including the position of the metal mass or metal film in the blind canal
PLL 盲管盲部の金属塊または金属膜の位置含む水平面最低位レベル The lowest level in the horizontal plane, including the position of the metal mass or film in the PLL blind tube
QL1 PL1レベルに対応したレベル 嵌合するメス型円錐体に対応するものである。 QL1 A level corresponding to the PL1 level. It corresponds to a female cone to be fitted.
QL2 PL2レベルに対応したレベル 嵌合するメス型円錐体に対応するものである。 QL2 Level corresponding to PL2 level Corresponds to the female cone to be fitted.
QL3 PL3レベルに対応したレベル 嵌合するメス型円錐体に対応するものである。 QL3 A level corresponding to the PL3 level. It corresponds to a female cone to be fitted.
S 盲部内面の金属膜
発明を実施するための最良の形態 S Metal film inside the blind part BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明による装置は(請求項 5)、盲部に金属塊が配設された盲管、または盲部内面 に金属膜が配設された盲管と、前記盲管にレーザ光を照射してラマン散乱光を観測 する手段と、アナライトと金属微粒子コロイドの混合物が注入された前記盲管にて、 該混合物と金属塊または金属膜とが接する固液界面近傍にレーザ光の焦点合わせ をする手段とを有するものである。 [0021] The device according to the present invention (Claim 5) includes a blind tube in which a metal lump is disposed in the blind part, or a blind tube in which a metal film is disposed on the inner surface of the blind part, and laser light is applied to the blind tube. The means for observing the Raman scattered light by irradiation, and the blind tube into which the mixture of the analyte and the metal fine particle colloid is injected, the focus of the laser beam near the solid-liquid interface where the mixture and the metal lump or metal film are in contact with each other. And means for matching.
[0022] また本発明による装置は (請求項 6)、盲管に振動を与えてアナライトと金属微粒子コ ロイドの混合物を盲部に誘導する手段を兼備したものでもよい。 [0022] Further, the device according to the present invention (Claim 6) may be provided with means for applying vibration to the blind tube to guide the mixture of the analyte and the metal fine particle colloid to the blind part.
[0023] また本発明による装置は (請求項 7)、アナライトとあらかじめ用意された金属微粒子 コロイドとを混合する工程の前に、金属塊の盲部における位置、または金属膜の盲部 内面における位置があらかじめ計測されており、該計測位置に基く盲管の位置にマ 一力一が配設された盲管であって、その検知装置が、前記マーカー位置の読み取り 手段を兼備するとともに、固液界面近傍にレーザ光の焦点合わせをする手段が、前 記読み取り手段で読み取ったマーカー位置に基いて固液界面を判別し焦点合わせ をするものである。 (図 10および図 10の簡単な説明参照) [0023] Further, the device according to the present invention (Claim 7) is provided in the position of the blind portion of the metal mass or the inner surface of the blind portion of the metal film before the step of mixing the analyte and the colloidal metal colloid prepared in advance. The position is measured in advance, and a blind tube in which a single force is arranged at the position of the blind tube based on the measurement position, and the detection device has a means for reading the marker position and also has a fixed position. The means for focusing the laser beam near the liquid interface discriminates and focuses the solid-liquid interface based on the marker position read by the reading means. (Refer to the brief explanation of Fig. 10 and Fig. 10.)
[0024] またここで、マーカーの位置は (請求項 8)、盲管の管軸に直交する面で、かつ、盲部 の金属塊または盲部内面の金属膜を含む面群にて、最も盲管開放端に近い面に含 まれる位置(図 4の PLU参照)、および/または最も盲管盲端に近レ、面の位置(図 4 の PLL参照)に対応した位置が好ましい。 [0024] In addition, here, the marker is located most in the plane group perpendicular to the tube axis of the blind tube and including the blind metal mass or the metal film of the blind inner surface. The position included in the plane close to the open end of the cephalic tube (see PLU in Figure 4) and / or the position closest to the blind end of the cephalic canal and the position of the plane (see PLL in Figure 4) is preferred.
[0025] また他の態様として (請求項 9)、計測位置情報を記憶する記憶手段と、前記記憶手 段の情報の読み取り手段を兼備するとともに、固液界面近傍にレーザ光を焦点合わ せをする手段が、前記読み取り手段で読み取った金属塊の盲部における位置情報、 または金属膜の盲部内面における位置情報に基づいて固液界面を判別し焦点合わ せをするものでもよレ、。特に (請求項 10)、盲管に計測位置情報を記憶する記憶手段 である記憶媒体が配設され、記憶手段の情報の読み取り手段が、盲管に配設された 前記記憶媒体の情報読み取り手段であるのが好適である(図 9および図 9の簡単な 説明参照)。 [0025] As another aspect (Claim 9), the storage means for storing the measurement position information and the information reading means for the storage means are combined, and the laser beam is focused near the solid-liquid interface. The means for determining and focusing the solid-liquid interface based on the position information on the blind portion of the metal lump read by the reading means or the position information on the inner surface of the blind portion of the metal film may be used. In particular (Claim 10), a storage medium as storage means for storing measurement position information in the blind tube is provided, and information reading means in the storage means is information reading means in the storage medium provided in the blind tube. Is preferred (see brief description of FIGS. 9 and 9).
[0026] さらに本発明は、複数のサンプリング液に潜在する微量アナライトを弁別検知する複
数物質検知デバイスを構成するものであってもよい。ここで、複数本の盲管内部の金 属の位置が、盲管の軸方向に概一致し、個々の固液界面近傍にレーザ光の焦点合 わせを略すことができるようにすることが望ましレ、。 [0026] Further, the present invention provides a multiple detection for detecting a minute amount of analyte latent in a plurality of sampling solutions. It may constitute a several substance detection device. Here, it is hoped that the position of the metal inside the plurality of blind tubes approximately coincides with the axial direction of the blind tubes so that the focusing of the laser light can be omitted in the vicinity of each solid-liquid interface. Masle.
[0027] すなわち(請求項 11)、盲部に金属塊が配設された複数本の盲管および Zまたは盲 部内面に金属膜が配設された複数本の盲管を次の並列条件で並列配歹' Jしたデバィ スであり、該並列条件は; 1つの盲管管軸に直交する面で、かつ、盲部の金属塊また は盲部内面の金属膜を含む面群にて、最も盲管開放端に近い面または最も盲管盲 端に近い面が他の盲管管軸に直交する面で、かつ、盲部の金属塊または盲部内面 の金属膜を含む面群に含まれることである(図 8参照)。 [0027] That is, (Claim 11), a plurality of blind tubes with a metal lump disposed in the blind portion and a plurality of blind tubes with a metal film disposed on the inner surface of the Z or blind portion under the following parallel conditions: The parallel condition is as follows: the parallel condition is: in a plane perpendicular to one blind tube axis and in a group of planes including a blind metal mass or a metal film on the inner surface of the blind The surface closest to the open end of the blind canal or the surface closest to the blind canal is perpendicular to the axis of the other canal and is included in the group of surfaces including the blind metal mass or the metal film on the inside of the blind (See Figure 8).
[0028] これは具体的には、以下の構造を有する複数物質検知デバイスである(請求項 12、 図 11および図 11の簡単な説明参照)。すなわち、 1)並列配列前の盲管の端部に研 肖 IJしろがあること。 2)複数物質検知デバイスが、レーザ光照射焦点に対応した基準 面を有すること。 3)盲管端部の研削しろが盲部の金属塊または盲部内面の金属膜 の位置に応じて研削されていること。 4)複数の盲管が前記基準面に研削された面を あわせて並列配列されてレヽること。 [0028] Specifically, this is a multi-substance detection device having the following structure (refer to claims 12, FIG. 11 and a brief description of FIG. 11). In other words, 1) There must be an IJ margin at the end of the blind tubes before the parallel arrangement. 2) The multiple substance detection device has a reference surface corresponding to the focal point of the laser beam irradiation. 3) The grinding margin at the end of the blind pipe is ground according to the position of the metal block of the blind block or the metal film on the inner surface of the blind block. 4) A plurality of blind tubes are arranged in parallel with the ground surface ground to the reference surface.
[0029] また別の具体的態様は (請求項 13、図 12および図 12の簡単な説明参照)、 1)並列 配列前の盲管端部に円錐ォス型状の基準形状物があること。 2)複数物質検知デバ イスが、レーザ光照射焦点に対応した基準面を有するとともに該基準面に前記の円 錐ォス型と嵌合する円錐メス型が開口されてレ、ること。 3)前記円錐メス型の深さは盲 部の金属塊または盲部内面の金属膜の位置に応じて決定されていること。 4)複数の 盲管が前記円錐メス型開口に盲管端部の円錐ォス型状基準形状物を嵌合して並列 配列されていること。 [0029] Another specific embodiment (see the brief description of claim 13, FIG. 12 and FIG. 12) is as follows: 1) There is a conical oscillating reference shape at the end of the blind tube before the parallel arrangement. . 2) The multi-substance detection device has a reference plane corresponding to the focal point of the laser beam irradiation, and a conical knife type that fits the circular cone type is opened on the reference plane. 3) The depth of the conical knife type is determined in accordance with the position of the blind metal block or the metal film on the inner surface of the blind part. 4) A plurality of blind tubes are arranged in parallel by fitting the cone-shaped reference shape at the end of the blind tube into the conical female opening.
[0030] 本発明の盲管の好適な態様をその製法とともに図 13に示す。すなわち(請求項 14) 、盲部に金属が配設された盲管であって、盲管に金属材を投入する工程 (図 13 (a) ) の後に、該盲管盲部の金属を溶融温度以上に加熱する工程(図 13 (b) )によって、 該盲管盲部内面に投入金属材が溶融固着して配設された盲管が好適である。 A preferred embodiment of the blind tube of the present invention is shown in FIG. 13 together with its production method. That is, (Claim 14) is a blind tube in which metal is disposed in the blind part, and after the step of introducing the metal material into the blind tube (FIG. 13 (a)), the metal in the blind part is melted. A blind tube in which the input metal material is melted and fixed to the inner surface of the blind tube blind part by the step of heating above the temperature (FIG. 13 (b)) is suitable.
[0031] また(請求項 15)、同様の金属材投入工程と加熱工程によって、盲管盲部内面に前 記投入金属材が溶融延展した薄膜が配設された盲管も好適である。
[0032] さらにまた (請求項 16)、盲部に金属が配設された盲管であって、金属材料を盲管に 配設する工程の後に、該盲管金属配設部の開放端側を盲管外部から加圧狭窄する 工程(図 13 (c) )によって、盲管金属配設部の盲管内径よりも小さな内径である部位 を金属配設部の開放端側に形成してもよい。この小さな内径部によって、加熱による 溶融固着や溶融延展しなくても金属材が盲部から離脱しにくくなるので好適である。 [0031] (Claim 15) A blind tube in which a thin film in which the above-mentioned metal material is melt-extended is disposed on the inner surface of the blind tube blind portion by the same metal material charging step and heating step is also suitable. [0032] Furthermore, (Claim 16) is a blind tube in which metal is disposed in the blind portion, and after the step of disposing the metal material in the blind tube, the open end side of the blind tube metal disposed portion. Even if a part having an inner diameter smaller than the inner diameter of the blind tube metal placement part is formed on the open end side of the metal placement part by the process of constricting the pressure from the outside of the blind pipe (Fig. 13 (c)) Good. This small inner diameter portion is suitable because it is difficult for the metal material to separate from the blind portion without being melt-fixed or melt-extended by heating.
[0033] なお、盲管盲部の金属を溶融温度以上に加熱する工程にては、金属が金のような比 較的溶融温度が低レ、ものであれば盲管を外部から火炎加熱(図 13参照)すればょレ、 [0033] In the process of heating the metal in the blind portion above the melting temperature, if the metal has a relatively low melting temperature, such as gold, the blind tube is heated from outside (see FIG. (See Fig. 13)
[0034] もちろん、盲管部材を耐熱性のもの(耐熱ガラス)にすると加熱しやすいし、盲管盲部 の金属のみをレーザ加熱などの局部加熱手段で局部加熱し、盲管材溶融を回避す るようにしてもよレ、。さらに、金属の全部または一部を溶融点の低い低融点合金として 、該合金のみが溶融するようにしてもよい。
[0034] Of course, if the blind tube member is made of heat resistant material (heat resistant glass), it is easy to heat, and only the metal in the blind tube blind part is locally heated by local heating means such as laser heating to avoid melting of the blind tube material. You can do it. Further, all or part of the metal may be a low melting point alloy having a low melting point, and only the alloy may be melted.
Claims
[1] アナライトと金属粒子と金属コロイドの 3者が近接混在する部位にレーザ光を照射し て得られる表面増強ラマン散乱光で微量アナライトを弁別検知する方法であって、盲 部に金属塊が配設された盲管、または盲部内面に金属膜が配設された盲管に、アナ ライトとあらかじめ用意された金属微粒子コロイドとを混合する工程と、アナライトと金 属微粒子コロイドの混合物を前記の盲管に注入する工程と、注入された盲管の前記 混合物が前記の盲部金属塊と接する固液界面近傍にレーザ光を照射してラマン散 乱光を観測する工程を有する表面増強ラマン散乱による微量物質の検知方法。 [1] A method for discriminating and detecting trace amounts of analytes using surface-enhanced Raman scattering light obtained by irradiating laser light to a site where analytes, metal particles, and metal colloids are close to each other. A process of mixing the analyte with a metal particulate colloid prepared in advance in a blind tube in which a lump is disposed or a metal film disposed on the inner surface of the blind portion, Injecting the mixture into the blind tube and observing Raman scattered light by irradiating a laser beam in the vicinity of the solid-liquid interface where the mixture of the injected blind tube is in contact with the blind metal mass A method for detecting trace substances by surface-enhanced Raman scattering.
[2] 請求項 1記載の検知方法において、アナライトと金属微粒子コロイドの混合物を盲管 に注入する工程の後に、盲管に振動を与えてアナライトと金属微粒子コロイドの混合 物を盲部に誘導する工程をさらに有する表面増強ラマン散乱による微量物質の検知 方法。 [2] In the detection method according to claim 1, after the step of injecting the mixture of the analyte and the metal fine particle colloid into the blind tube, the mixture of the analyte and the metal fine particle colloid is blinded by applying vibration to the blind tube. A method for detecting a trace substance by surface-enhanced Raman scattering, further comprising a guiding step.
[3] 請求項 1記載の検知方法において、アナライトとあらかじめ用意された金属微粒子コ ロイドとを混合する工程の前に、金属塊の盲部における位置、または金属膜の盲部 内面における位置を計測し、かつ、該計測位置に基づく盲管の位置にマーカーを配 設して盲管の観測で前記計測位置情報を読み取れるようにする工程をさらに有する 表面増強ラマン散乱による微量物質の検知方法。 [3] In the detection method according to claim 1, before the step of mixing the analyte and the metal fine particle colloid prepared in advance, the position of the metal block in the blind part or the position of the metal film in the blind part inner surface is determined. A method of detecting a trace substance by surface-enhanced Raman scattering, further comprising a step of measuring and arranging a marker at a position of the blind tube based on the measurement position so that the measurement position information can be read by observation of the blind tube.
[4] 請求項 1記載の検知方法において、アナライトとあらかじめ用意された金属微粒子コ ロイドとを混合する工程の前に、金属塊の盲部における位置、または金属膜の盲部 内面における位置を計測し、かつ、該計測位置情報を記憶した記憶媒体を盲管に配 設して盲管の観測で前記計測位置情報を読み取れるようにする工程をさらに有する 表面増強ラマン散乱による微量物質の検知方法。 [4] In the detection method according to claim 1, before the step of mixing the analyte and the metal fine particle colloid prepared in advance, the position of the metal block in the blind part or the position of the metal film in the blind part inner surface is determined. A method of detecting a trace substance by surface-enhanced Raman scattering, further comprising a step of measuring and arranging a storage medium storing the measurement position information in a blind tube so that the measurement position information can be read by observation of the blind tube .
[5] 請求項 1記載の方法で微量アナライトを弁別検知する装置であって、盲部に金属塊 が配設された盲管、または盲部内面に金属膜が配設された盲管と、前記盲管にレー ザ光を照射してラマン散乱光を観測する手段と、アナライトと金属微粒子コロイドの混 合物が注入された前記盲管にて、該混合物と金属塊または金属膜とが接する固液界 面近傍にレーザ光の焦点合わせをする手段を有する微量物質の検知装置。 [5] A device for discriminating and detecting a small amount of analyte by the method according to claim 1, wherein the blind tube has a metal lump disposed in the blind part, or a blind tube in which a metal film is disposed on the inner surface of the blind part. The means for observing Raman scattered light by irradiating the blind tube with laser light, and the blind tube injected with a mixture of the analyte and the metal fine particle colloid, An apparatus for detecting a trace substance having means for focusing a laser beam in the vicinity of a solid-liquid interface in contact with.
[6] 請求項 5記載の検知装置において、盲管に振動を与えてアナライトと金属微粒子コロ
イドの混合物を盲部に誘導する手段を兼備した微量物質の検知装置。 [6] The detection device according to claim 5, wherein the analyte and the metal fine particle roller are vibrated by applying vibration to the blind tube. A device for detecting trace substances that also has a means for guiding a mixture of ids to the blind.
[7] 請求項 5記載の検知装置の盲管が、アナライトとあらかじめ用意された金属微粒子コ ロイドとを混合する工程の前に、金属塊の盲部における位置、または金属膜の盲部 内面における位置があらかじめ計測されており、該計測位置に基づく盲管の位置に マーカーが配設された盲管であって、 [7] Before the step of mixing the analyte and the metal fine particle colloid prepared in advance, the blind tube of the detection device according to claim 5 is positioned in the blind portion of the metal lump or the inner surface of the blind portion of the metal film. Is a blind tube in which a marker is arranged at the position of the blind tube based on the measured position,
請求項 5記載の検知装置が、前記マーカー位置の読み取り手段を兼備するとともに 、固液界面近傍にレーザ光の焦点合わせをする手段が、前記読み取り手段で読み 取ったマーカー位置に基づいて固液界面を判別し焦点合わせをするものである微量 物質の検知装置。 6. The detection apparatus according to claim 5, wherein the means for reading the marker position is combined, and the means for focusing the laser beam in the vicinity of the solid-liquid interface is based on the marker position read by the reading means. Detecting device for trace substances that discriminate and focus.
[8] 請求項 7記載のマーカーの位置が、盲管の管軸に直交する面で、かつ、盲部の金属 塊または盲部内面の金属膜を含む面群にて、最も盲管開放端に近い面に含まれる 位置、および Zまたは最も盲管盲端に近い面の位置に対応した位置である検知装 置。 [8] The position of the marker according to claim 7 is a plane that is perpendicular to the tube axis of the bleed tube, and is the most open end of the bleed tube in the group of surfaces including the metal mass of the blind part or the metal film of the inner surface of the blind part. Detecting device that corresponds to the position included in the surface close to and the position of the surface closest to Z or the blind end of the blind canal.
[9] 請求項 5記載の検知装置の盲管において、アナライトとあらかじめ用意された金属微 粒子コロイドとを混合する工程の前に、金属塊の盲部における位置、または金属膜の 盲部内面における位置があら力じめ計測されており、 [9] In the blind tube of the detection device according to claim 5, before the step of mixing the analyte and the metal fine particle colloid prepared in advance, the position in the blind portion of the metal lump or the inner surface of the blind portion of the metal film The position at is intensively measured,
請求項 5記載の検知装置が、前記の計測位置情報を記憶する記憶手段と、前記記 憶手段の情報の読み取り手段を兼備するとともに、固液界面近傍にレーザ光の焦点 合わせをする手段が、前記読み取り手段で読み取った金属塊の盲部における位置 情報、または金属膜の盲部内面における位置情報に基いて固液界面を判別し焦点 合わせをするものである微量物質の検知装置。 The detection device according to claim 5, wherein the storage unit that stores the measurement position information and the information reading unit of the storage unit are combined, and the unit that focuses the laser beam in the vicinity of the solid-liquid interface, An apparatus for detecting a trace substance that distinguishes and focuses a solid-liquid interface based on position information in a blind portion of a metal lump read by the reading means or position information on an inner surface of a blind portion of a metal film.
[10] 請求項 9記載の検知装置の盲管に、計測位置情報を記憶する記憶手段である記憶 媒体が配設され、記憶手段の情報の読み取り手段が、盲管に配設された前記記憶 媒体の情報読み取り手段である微量物質の検知装置。 10. The storage device according to claim 9, wherein a storage medium that is a storage unit that stores measurement position information is disposed in the blind tube of the detection device, and the information reading unit of the storage unit is disposed in the blind tube. A trace substance detection device that is a medium information reading means.
[11] 請求項 1記載の方法で複数のサンプリング液に潜在する微量アナライトを弁別検知 する複数物質検知デバイスであって、盲部に金属塊が配設された複数本の盲管およ び/または盲部内面に金属膜が配設された複数本の盲管を次の並列条件で並列配 歹 IJしたデバイス。
並列条件は; [11] A multi-substance detection device for discriminatingly detecting trace analytes latent in a plurality of sampling solutions by the method according to claim 1, comprising a plurality of blind pipes having a metal lump disposed in a blind portion and A device in which multiple blind tubes with metal films on the inner surface of the blind part are placed in parallel under the following parallel conditions. The parallel condition is:
1つの盲管管軸に直交する面で、かつ、盲部の金属塊または盲部内面の金属膜を 含む面群にて、最も盲管開放端に近い面または最も盲管盲端に近い面が、他の盲 管管軸に直交する面で、かつ、盲部の金属塊または盲部内面の金属膜を含む面群 に含まれること。 The plane that is perpendicular to the axis of the single blind tube and that is the surface closest to the open end of the blind tube or the surface closest to the blind end of the blind tube in the group of surfaces including the blind metal mass or the metal film on the inner surface of the blind Is included in the plane group that is perpendicular to the other tube axis and includes the blind metal mass or the metal film on the inner surface of the blind.
[12] 請求項 11記載の複数本の盲管並列条件を実現するために、以下の構成からなる複 数物質検知デバイス。 [12] A multiple substance detection device having the following configuration in order to realize the parallel condition of a plurality of blind tubes according to claim 11.
1)並列配列前の盲管の端部に研削しろがあること。 1) There must be a margin for grinding at the end of the blind tubes before parallel arrangement.
2)複数物質検知デバイスが、レーザ光照射焦点に対応した基準面を有すること。 2) The multiple substance detection device has a reference surface corresponding to the laser beam irradiation focus.
3)盲管端部の研削しろが盲部の金属塊または盲部内面の金属膜の位置に応じて研 肖 IJされること。 3) Grinding margin at the end of the blind tube should be improved according to the position of the metal block of the blind portion or the metal film on the inner surface of the blind portion.
4)複数の盲管が前記基準面に研削された面をあわせて並列配列されること。 4) A plurality of blind tubes are arranged in parallel with the ground surface ground to the reference surface.
[13] 請求項 11記載の複数本の盲管並列条件を実現するために、以下の構成からなる複 数物質検知デバイス。 [13] A multiple substance detection device having the following configuration in order to realize the parallel condition of a plurality of blind tubes according to claim 11.
1)並列配列前の盲管端部に円錐ォス型状の基準形状物があること。 1) There should be a cone-shaped reference shape at the end of the blind tube before the parallel arrangement.
2)複数物質検知デバイスが、レーザ光照射焦点に対応した基準面を有するとともに 該基準面に前記の円錐ォス型と嵌合する円錐メス型が開口されること。 2) The multi-substance detection device has a reference plane corresponding to the focal point of the laser beam irradiation, and a conical knife type that fits with the conical male type is opened on the reference plane.
3)前記円錐メス型の深さは盲部の金属塊または盲部内面の金属膜の位置に応じて 決定されること。 3) The depth of the conical knife type is determined according to the position of the blind metal block or the metal film on the inner surface of the blind part.
4)複数の盲管が前記円錐メス型開口に盲管端部の円錐ォス型状基準形状物を嵌 合して並列配列されること。 4) A plurality of blind tubes are arranged in parallel by fitting the cone-shaped reference shape at the end of the blind tube into the conical female opening.
[14] 盲部に金属が配設された盲管であって、盲管に金属材を投入する工程の後に、該盲 管盲部の金属を溶融温度以上に加熱する工程によって、該盲管盲部内面に前記投 入金属材が溶融固着して配設された表面増強ラマン散乱による微量物質検知用盲 管。 [14] A blind tube in which a metal is disposed in the blind portion, and the step of heating the metal in the blind tube blind portion to a melting temperature or higher after the step of introducing a metal material into the blind tube is performed. A blind tube for detecting trace substances by surface-enhanced Raman scattering in which the injected metal material is melted and fixed on the inner surface of the blind part.
[15] 盲部に金属が配設された盲管であって、盲管に金属材を投入する工程の後に、該盲 管盲部の金属を溶融温度以上に加熱する工程によって、該盲管盲部内面に前記投 入金属材が溶融延展した薄膜が配設された表面増強ラマン散乱による微量物質検
知用盲管。 [15] A blind tube in which a metal is disposed in the blind part, and the step of heating the metal in the blind part to a temperature equal to or higher than the melting temperature after the step of introducing a metal material into the blind pipe, Trace material inspection by surface-enhanced Raman scattering in which a thin film in which the injected metal material is melt-extended is disposed on the inner surface of the blind part Intellectual blind tube.
盲部に金属が配設された盲管であって、金属材料を盲管に配設する工程の後に、該 盲管金属配設部の開放端側を盲管外部から加圧狭窄する工程によって、該盲管金 属配設部の盲管内径よりも小さな内径である部位が金属配設部の開放端側に形成 された表面増強ラマン散乱による微量物質検知用盲管。
A blind tube in which metal is disposed in the blind portion, and after the step of disposing the metal material in the blind tube, the step of pressurizing and constricting the open end side of the blind tube metal disposing portion from the outside of the blind tube A blind tube for detecting trace substances by surface-enhanced Raman scattering, wherein a portion having an inner diameter smaller than the inner diameter of the blind tube of the blind tube metal arrangement portion is formed on the open end side of the metal arrangement portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008506250A JPWO2007108360A1 (en) | 2006-03-17 | 2007-03-13 | Substance detection method and substance detection apparatus by surface-enhanced Raman scattering using small diameter blind tube, multiple substance detection device, blind tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-073816 | 2006-03-17 | ||
JP2006073816 | 2006-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007108360A1 true WO2007108360A1 (en) | 2007-09-27 |
Family
ID=38522392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/054897 WO2007108360A1 (en) | 2006-03-17 | 2007-03-13 | Method for detecting substance by surface-enhanced raman scattering using small-diameter blind pipe, substance detecting device, device for detecting plurality of substances, and blind pipe |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007108360A1 (en) |
WO (1) | WO2007108360A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011500818A (en) * | 2007-10-23 | 2011-01-06 | アラーガン インコーポレイテッド | Substituted lactams for treatment |
JP2012181022A (en) * | 2011-02-28 | 2012-09-20 | Canon Inc | Method for aligning intensity distribution information of raman vibration with mass distribution information |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003511666A (en) * | 1999-10-06 | 2003-03-25 | サーロメッド・インコーポレーテッド | Novel surface-enhanced Raman scattering (SERS) -active substrate and method of connecting Raman spectroscopy to capillary electrophoresis (CE) |
JP2004530867A (en) * | 2001-03-01 | 2004-10-07 | ニューメキシコ ステート ユニバーシティ テクノロジー トランスファー コーポレーション | Optical devices and methods using nanoparticles, microcavities, and semi-continuous metal films |
WO2007049487A1 (en) * | 2005-10-25 | 2007-05-03 | Kyushu University, National University Corporation | Substrate for analysis for use in raman spectroscopic analysis and substrate assembly for analysis |
-
2007
- 2007-03-13 WO PCT/JP2007/054897 patent/WO2007108360A1/en active Application Filing
- 2007-03-13 JP JP2008506250A patent/JPWO2007108360A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003511666A (en) * | 1999-10-06 | 2003-03-25 | サーロメッド・インコーポレーテッド | Novel surface-enhanced Raman scattering (SERS) -active substrate and method of connecting Raman spectroscopy to capillary electrophoresis (CE) |
JP2004530867A (en) * | 2001-03-01 | 2004-10-07 | ニューメキシコ ステート ユニバーシティ テクノロジー トランスファー コーポレーション | Optical devices and methods using nanoparticles, microcavities, and semi-continuous metal films |
WO2007049487A1 (en) * | 2005-10-25 | 2007-05-03 | Kyushu University, National University Corporation | Substrate for analysis for use in raman spectroscopic analysis and substrate assembly for analysis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011500818A (en) * | 2007-10-23 | 2011-01-06 | アラーガン インコーポレイテッド | Substituted lactams for treatment |
JP2012181022A (en) * | 2011-02-28 | 2012-09-20 | Canon Inc | Method for aligning intensity distribution information of raman vibration with mass distribution information |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007108360A1 (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Preparation and application of microfluidic SERS substrate: Challenges and future perspectives | |
CN1957245B (en) | Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS | |
JP7071519B2 (en) | Formation of droplets enclosing a single particle with a microfluidic chip and methods for deriving each | |
Tong et al. | Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis | |
Hu et al. | Four aspects about solid‐state nanopores for protein sensing: fabrication, sensitivity, selectivity, and durability | |
CN104568907B (en) | Micro-fluidic SERS chip for nondestructive testing of blood and biological sample | |
Rahong et al. | Recent developments in nanowires for bio-applications from molecular to cellular levels | |
CN102762746B (en) | Methods for detecting biologically relevant molecules and the properties of their interactions | |
Phan et al. | Impacts of pH and intermolecular interactions on surface-enhanced Raman scattering chemical enhancements | |
Lu et al. | Electro‐Optical Detection of Single Molecules Based on Solid‐State Nanopores | |
CN105300955B (en) | The micro-fluidic SERS chip-detecting apparatus of integrated liquid core light guide and nano metal | |
Lee et al. | Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis | |
CN110790220A (en) | Surface-enhanced Raman scattering substrate, preparation method thereof and in-situ rapid detection method | |
MacKenzie et al. | Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy | |
Kugel et al. | Nanopillars for sensing | |
Kenworthy et al. | Using the near field optical trapping effect of a dielectric metasurface to improve SERS enhancement for virus detection | |
Falamas et al. | Toward microfluidic SERS and EC-SERS applications via tunable gold films over nanospheres | |
Vo-Dinh et al. | Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis | |
WO2007108360A1 (en) | Method for detecting substance by surface-enhanced raman scattering using small-diameter blind pipe, substance detecting device, device for detecting plurality of substances, and blind pipe | |
US9403678B2 (en) | Filtration and use of metal nanoparticles as non-optical tags in chemical-, bio-chemical sensors and micro-electromechanical devices | |
WO2007060988A1 (en) | Method and device for detecting trace substance by surface enhanced raman scattering | |
JP5016958B2 (en) | Optical element manufacturing method | |
Henley et al. | Silver-nanoparticle-decorated carbon nanoscaffolds: Application as a sensing platform | |
KR101105309B1 (en) | Bio detection chip and manufacturing method thereof | |
CN103674923A (en) | Surface enhanced Raman spectroscopy detection method and device for powder porous material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07738369 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2008506250 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07738369 Country of ref document: EP Kind code of ref document: A1 |