[go: up one dir, main page]

WO2007119365A1 - 太陽電池、太陽電池ストリングおよび太陽電池モジュール - Google Patents

太陽電池、太陽電池ストリングおよび太陽電池モジュール Download PDF

Info

Publication number
WO2007119365A1
WO2007119365A1 PCT/JP2007/055171 JP2007055171W WO2007119365A1 WO 2007119365 A1 WO2007119365 A1 WO 2007119365A1 JP 2007055171 W JP2007055171 W JP 2007055171W WO 2007119365 A1 WO2007119365 A1 WO 2007119365A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
interconnector
connecting portion
connection
electrode
Prior art date
Application number
PCT/JP2007/055171
Other languages
English (en)
French (fr)
Inventor
Takahisa Kurahashi
Hirotaka Sato
Akira Miyazawa
Kyotaro Nakamura
Toshio Kimura
Masaomi Hioki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006112232A external-priority patent/JP4040659B2/ja
Priority claimed from JP2006192542A external-priority patent/JP4040662B1/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP07738621A priority Critical patent/EP2012362A1/en
Priority to US12/296,748 priority patent/US8440907B2/en
Publication of WO2007119365A1 publication Critical patent/WO2007119365A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/215Geometries of grid contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • H10F19/904Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells characterised by the shapes of the structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, a solar cell string, and a solar cell module.
  • the present invention relates to a solar cell, a solar cell string, and a solar cell module that can reduce the occurrence of cracks in the solar cell when the solar cell is warped in the cooling step after the interconnector is connected.
  • FIG. 26 shows a schematic cross-sectional view of an example of a conventional solar cell.
  • the n + layer 11 is formed on the light receiving surface of the p-type silicon substrate 10, thereby forming a pn junction between the p-type silicon substrate 10 and the n + layer 11.
  • an antireflection film 12 and a silver electrode 13 are formed on the light receiving surface of the silicon substrate 10.
  • a p + layer 15 is formed on the back surface opposite to the light receiving surface of the p-type silicon substrate 10.
  • An aluminum electrode 14 and a silver electrode 16 are formed on the back surface of the p-type silicon substrate 10, respectively.
  • the pn junction is a photoelectric conversion unit.
  • FIGS. 27A to 27I show an example of a conventional solar cell manufacturing method.
  • a silicon ingot 17 obtained by recrystallizing a p-type silicon crystal raw material after melting it in a crucible is cut into silicon blocks 18.
  • the p-type silicon substrate 10 is obtained by cutting the silicon block 18 with a wire saw.
  • the damaged layer 19 at the time of slicing the p-type silicon substrate 10 shown in FIG. 27 (c) is removed by etching the surface of the p-type silicon substrate 10 with alkali or acid.
  • minute irregularities are formed on the surface of the p-type silicon substrate 10. (Not shown) can be formed. Due to the unevenness, reflection of sunlight incident on the surface of the p-type silicon substrate 10 is reduced, and the conversion efficiency of the solar cell can be increased.
  • a dopant liquid containing a compound containing phosphorus on one main surface (hereinafter referred to as "first main surface") of the p-type silicon substrate 10 20 Apply.
  • the p-type silicon substrate 10 after the application of the dopant solution 20 is heat-treated at a temperature of 800 ° C. to 950 ° C. for 5 to 30 minutes to thereby form an n-type dopant on the first main surface of the p-type silicon substrate 10.
  • Some phosphorus diffuses to form an n + layer 11 on the first main surface of the p-type silicon substrate 10 as shown in FIG. 27 (e).
  • the second layer of the p-type silicon substrate 10 is removed as shown in FIG. 1An antireflection film 12 is formed on the main surface.
  • a method of forming the antireflection film 12 a method of forming a titanium oxide film using an atmospheric pressure CVD method or a method of forming a silicon nitride film using a plasma CVD method is known.
  • the n + layer 11 and the antireflection film 12 can be obtained by using a dopant liquid that contains the material of the antireflection film 12 in addition to phosphorus. Can be formed simultaneously.
  • the antireflection film 12 may be formed after the silver electrode is formed.
  • an aluminum electrode 14 is formed on the other main surface (hereinafter referred to as "second main surface") of the p-type silicon substrate 10, and the p-type silicon substrate 10 A P + layer 15 is formed on the second main surface of the substrate.
  • the aluminum electrode 14 and the p + layer 15 are formed by, for example, printing aluminum powder made of aluminum powder, glass frit, resin and organic solvent by screen printing, etc., and then heat-treating the p-type silicon substrate 10 to form aluminum- A P + layer 15 is formed under the aluminum-silicon alloy layer formed by melting and alloying with silicon, and an aluminum electrode 14 is formed on the second main surface of the p-type silicon substrate 10.
  • the difference in dopant concentration between the p-type silicon substrate 10 and the p + layer 15 causes a potential difference (acts as a potential barrier) at the interface between the p-type silicon substrate 10 and the p + layer 15, and photogenerated carriers are generated in the p-type silicon substrate 10.
  • the short circuit current (Isc) and open circuit voltage (Voc) of the solar cell : open circuit voltage) Force S is improved.
  • a silver electrode 16 is formed on the second main surface of the p-type silicon substrate 10.
  • the silver electrode 16 can be obtained, for example, by heat-treating the p-type silicon substrate 10 after printing silver powder, glass frit, resin, and silver paste having organic solvent power by screen printing or the like.
  • a silver electrode 13 is formed on the first main surface of the p-type silicon substrate 10.
  • the silver electrode 13 suppresses the series resistance including the contact resistance with the p-type silicon substrate 10 and reduces the formation area of the silver electrode 13 so as not to reduce the amount of incident sunlight. Pattern design such as line width, pitch and thickness is important.
  • a method for forming the silver electrode 13 for example, a silver paste made of silver powder, glass frit, resin and organic solvent is printed on the surface of the antireflection film 12 by screen printing or the like, and then the p-type silicon substrate 10 is formed.
  • a fire-through method in which silver paste penetrates the antireflection film 12 and makes good electrical contact with the first main surface of the p-type silicon substrate 10 by heat treatment is used in a mass production line.
  • the solar cell having the configuration shown in FIG. 26 can be manufactured.
  • the surface of the silver electrode 13 and the silver electrode 16 can be coated with solder by immersing the p-type silicon substrate 10 after the formation of the silver electrode 13 and the silver electrode 16 in a molten solder bath. This solder coating may be omitted depending on the process.
  • the solar cell manufactured as described above can be irradiated with simulated sunlight using a solar simulator, and the current-voltage (IV) characteristic of the solar cell can be measured to inspect the IV characteristic.
  • a plurality of solar cells are connected in series to form a solar cell string, and then the solar cell string is sealed with a sealing material and sold and used as a solar cell module.
  • FIGS. 28A to 28E show an example of a conventional method for manufacturing a solar cell module.
  • an interconnector 31 that is a conductive member is connected to the silver electrode on the first main surface of the solar cell 30.
  • the solar cells 30 to which the interconnectors 31 are connected are arranged in a line, and the interconnectors are connected to the silver electrodes on the first main surface of the solar cells 30. Of 31 The other end is connected to the silver electrode on the second main surface of another solar cell 30 to produce a solar cell string 34.
  • the solar cell strings are arranged side by side, and the both end forces of the solar cell strings protrude from the interconnector 31 and the other end points of the other solar cell strings also protrude!
  • the solar cell strings are connected to each other by connecting the interconnector 31 and the interconnector 31 in series using the wiring member 33 which is a conductive member.
  • the connected solar cell string 34 is sandwiched between EVA (ethylene butyl acetate) films 36 as a sealing material, and then the glass plate 35 and the back film. Place between 37. Then, when the bubbles that have entered between the EVA films 36 are decompressed and heated, the EVA film 36 is cured and the solar cell string is sealed in the EVA. Thereby, a solar cell module is produced.
  • EVA ethylene butyl acetate
  • the solar cell module is disposed in the aluminum frame 40, and the terminal box 38 including the cable 39 is attached to the solar cell module. Then, the solar cell module manufactured as described above is irradiated with simulated sunlight using a solar simulator, and the current-voltage (IV) characteristics of the solar cell are measured to inspect the IV characteristics.
  • a schematic plan view of FIG. 29 shows the shape of the silver electrode 13 formed on the first main surface of the p-type silicon substrate 10 that becomes the light receiving surface of the solar cell shown in FIG.
  • the silver electrode 13 is composed of one linear bus bar electrode 13a having a relatively large width and a plurality of relatively small linear finger electrodes 13b extending from the bus bar electrode 13a.
  • a schematic plan view of FIG. 30 shows the shapes of the aluminum electrode 14 and the silver electrode 16 formed on the second main surface of the p-type silicon substrate 10 which is the back surface of the solar cell shown in FIG.
  • the aluminum electrode 14 is formed on almost the entire second main surface of the p-type silicon substrate 10, and the silver electrode 16 is formed only on a part of the second main surface of the p-type silicon substrate 10. Yes. This is because it is difficult to coat the aluminum electrode 14 with solder, and thus a silver electrode 16 that can be coated with solder may be required.
  • FIG. 31 shows a schematic cross-sectional view of a solar cell string in which the solar cells having the configuration shown in FIG. 26 are connected in series.
  • the bus bar electrode 13a on the light receiving surface of the solar cell is soldered or the like.
  • the interconnector 31 thus fixed is fixed to the silver electrode 16 on the back surface of another adjacent solar cell by soldering or the like.
  • the description of the n + layer, the p + layer, and the antireflection film is omitted.
  • Patent Document 1 JP-A-2005-142282
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-142282 discloses a method of providing a small cross-sectional area portion with a locally reduced cross-sectional area in an interconnector that connects adjacent solar cells. ing. As described above, when the interconnector and solar cell that have been heated by the above heating process are cooled to room temperature, a concave warp occurs in the solar cell. At that time, the solar cell generates a force (restoring force) to return to the original shape, and this restoring force applies tensile stress to the interconnector. According to the method disclosed in Patent Document 1, when a tensile stress is applied to the interconnector, a small cross-sectional area that is relatively weak compared to other parts is stretched to reduce the warpage of the solar cell. However, further improvements were desired.
  • FIG. 35 shows a schematic cross-sectional view of an example of the solar cell string
  • FIG. 36 shows a schematic enlarged plan view of the solar cell string shown in FIG. 35 viewed from the light receiving surface side.
  • the silver electrode 13 formed on the light-receiving surface serving as the first main surface of the p-type silicon substrate 10 of the solar cell has one relatively large width.
  • a linear bus bar electrode 13a, a plurality of linear finger electrodes 13b extending from the bus bar electrode 13a and having a relatively small width, and a force are also configured.
  • the bus bar electrode 13a includes a linear first connecting portion 51 for fixing and connecting to the interconnector and a first non-connecting portion 42 not connected to the interconnector. 1 Disconnected portions 42 are alternately arranged along the longitudinal direction of the bus bar electrodes 13a. Further, the second non-connecting portion 42 electrically connects the first connecting portions 51 adjacent to both sides thereof.
  • the surface shape of the first connecting portion 51 is rectangular, and the inner region 43 that is a gap portion adjacent to the end surface of the first connecting portion 51 and the side surface of the first non-connecting portion 42 is provided.
  • the surface shape is also rectangular.
  • the aluminum electrode 14 is formed on almost the entire second main surface of the p-type silicon substrate 10, and the silver electrode 16 is formed on the second main surface of the p-type silicon substrate 10. It is only partly formed.
  • the silver electrode 16 serves as a second connection portion for fixing and connecting to the interconnector
  • the aluminum electrode 14 positioned between the silver electrodes 16 serves as a second non-connecting portion 14a not connected to the interconnector.
  • the second main surface of the p-type silicon substrate 10 as the semiconductor substrate is a main surface opposite to the first main surface of the p-type silicon substrate 10 as the semiconductor substrate.
  • the solar cell string using the interconnector described in Patent Document 1 it is fixedly connected to the first connection portion 51 of the light receiving surface of the solar cell by soldering or the like.
  • the interconnector 31 is fixedly connected to the silver electrode 16 on the back surface of another adjacent solar cell with solder or the like.
  • the description of the n + layer, the p + layer, and the antireflection film is omitted.
  • the small cross-sectional area 41 of the interconnector 31 is disposed in the inner region 43 and the second non-connecting portion 14a of the solar cell, respectively.
  • the small cross section 41 of the connector 31 is not fixed with solder or the like. Therefore, when tensile stress is applied to the interconnector 31, the small cross-sectional area 41 having a relatively low strength compared to other parts can be freely stretched, thereby reducing the warpage of the solar cell. be able to.
  • an object of the present invention is to provide a solar cell that can reduce the occurrence of cracking of the solar cell when the solar cell is warped in the cooling step after the interconnector is connected. It is in providing a solar cell string and a solar cell module.
  • the present invention is a semiconductor substrate having a photoelectric conversion portion, a first electrode formed on the first main surface of the semiconductor substrate, and connected to the first electrode on the first main surface.
  • the first electrode includes a plurality of first connection parts for connecting to the interconnector, and a first non-connection part not connected to the interconnector, the first non-connection Are arranged between the first connection parts and electrically connect the first connection parts, and the first connection part and the first non-connection part are larger than 90 ° and smaller than 180 °. It is a solar cell joined at an angle
  • the end surface force of the first connection portion may be increased in the first non-connection portion.
  • the first non-connection portion may extend from the side surface of the first connection portion.
  • the first non-connecting portion may have a combination force of the straight portion.
  • the first non-connecting portion may include an arc-shaped portion.
  • the cross-sectional area of the first non-connecting portion is 1Z2 or less of the cross-sectional area of the first connecting portion.
  • the second connection portion for connecting to the interconnector is connected to the interconnector on the second main surface opposite to the first main surface of the semiconductor substrate.
  • the second non-connection part is formed alternately!
  • the first connection portion and the second connection portion include a portion positioned symmetrically with respect to the semiconductor substrate.
  • the present invention provides a solar cell string in which a plurality of the solar cells described above are connected, wherein the first connection portion of the first solar cell and the second solar cell are adjacent to each other.
  • This is a solar cell string in which the second connection part of the battery is electrically connected by an interconnector.
  • the interconnector may be bent between the first solar cell and the second solar cell.
  • the location corresponding to the inner region adjacent to each of the side surface of the first non-connection portion and the end surface of the first connection portion and the location corresponding to the second non-connection portion is arranged at least in one place.
  • the present invention is a solar cell module in which the solar cell string is sealed with a sealing material.
  • At least one of the first connection portions adjacent to the end portion of the first main surface may be installed with the end portion force of the first main surface separated.
  • the surface shape of the inner region adjacent to each of the side surface of the first non-connecting portion and the end surface of the first connecting portion is arc-shaped at the tip portion on the first connecting portion side. It is preferable that the shape is
  • the surface shape of the inner region is preferably circular, elliptical or track-like.
  • the second connecting portion for connecting to the interconnector is connected to the interconnector on the second principal surface opposite to the first principal surface of the semiconductor substrate. It is preferred that the second non-connecting part is formed alternately !, U ,.
  • the length of the inner region in the second region may be shorter than the length in the arrangement direction of the second connection portion and the second non-connection portion of the second non-connection portion facing each other with the semiconductor substrate interposed therebetween.
  • the solar cell of the present invention may include a portion where the second non-connecting portion is formed at a symmetrical position with respect to the semiconductor substrate at the position where the inner region is formed. ! /
  • the present invention provides a solar cell string in which a plurality of the solar cells described above are connected, wherein the first connection portion and the second solar cell of the first solar cell are adjacent to each other.
  • This is a solar cell string in which the second connection part of the battery is electrically connected by an interconnector.
  • the cross-sectional area of the interconnector is locally reduced in at least one of the location corresponding to the inner region and the location corresponding to the second non-connection portion. It is preferable that a small cross-sectional area is disposed.
  • the present invention is a solar cell module in which the above solar cell string is sealed with a sealing material.
  • a solar cell a solar cell string, and a solar cell module that can reduce the occurrence of cracking of the solar cell when the solar cell is warped in the cooling step after the interconnector is connected. Can be provided.
  • FIG. 1 is a schematic plan view of an example of the shape of an electrode formed on a first main surface of a p-type silicon substrate that serves as a light receiving surface of a solar cell of the present invention.
  • FIG. 2 is a schematic enlarged plan view of the vicinity of the first non-connection portion shown in FIG.
  • FIG. 3 is a schematic plan view of an example of the shape of an electrode formed on a second main surface serving as the back surface of the solar cell of the present invention.
  • FIG. 4 is a schematic cross-section of an example of the solar cell string of the present invention formed by connecting in series a solar cell having the light receiving surface electrode shown in FIG. 1 and the back electrode shown in FIG. FIG.
  • FIG. 5 is a schematic enlarged plan view of the solar cell string shown in FIG. 4 when the light receiving surface side force is viewed.
  • FIG. 6 is a schematic enlarged plan view of another example in the vicinity of the first unconnected portion of the nosbar electrode formed on the first main surface of the solar cell of the present invention.
  • FIG. 7 A schematic enlarged plan view of another example in the vicinity of the first non-connection portion of the nosbar electrode formed on the first main surface of the solar cell of the present invention.
  • FIG. 8 A schematic enlarged plan view of another example in the vicinity of the first non-connection portion of the nosbar electrode formed on the first main surface of the solar cell of the present invention.
  • FIG. 9 is a schematic enlarged plan view of another example in the vicinity of the first unconnected portion of the nosbar electrode formed on the first main surface of the solar cell of the present invention.
  • FIG. 10 is a schematic enlarged plan view of another example in the vicinity of the first unconnected portion of the bus bar electrode formed on the first main surface of the solar cell of the present invention.
  • FIG. 11 is a schematic enlarged plan view of an example of a state in which an interconnector having a shape different from the interconnector shown in FIG. 5 is electrically connected to the electrode on the light receiving surface shown in FIG. .
  • FIG. 12 Using the interconnector shown in Fig. 11, a plurality of solar cells having the light receiving surface electrode shown in Fig. 1 and the back electrode shown in Fig. 3 are electrically connected in series. It is typical sectional drawing of an example of the solar cell string comprised by this.
  • FIG. 13 A schematic plan view of a light receiving surface as a first main surface of an example of the solar cell of the present invention.
  • FIG. 14 is a schematic plan view of the back surface as the second main surface of the solar cell shown in FIG.
  • FIG. 15 is a schematic cross-sectional view along XV—XV in FIGS. 13 and 14.
  • FIG. 16 is a schematic plan view of a light receiving surface as a first main surface of another example of the solar cell of the present invention.
  • FIG. 17 is a schematic plan view of the back surface as the second main surface of the solar cell shown in FIG. 16.
  • FIG. 18 is a schematic cross-sectional view along XVIII-XVIII in FIGS. 16 and 17.
  • FIG. 19 is a schematic plan view of an example of an interconnector used in the solar cell string of the present invention.
  • FIG. 20 is a schematic plan view of another example of an interconnector used in the present invention.
  • FIG. 21 is a schematic plan view of another example of an interconnector used in the present invention.
  • FIG. 22 is a schematic plan view of another example of an interconnector used in the present invention.
  • FIG. 23 is a schematic cross-sectional view of an example of the solar cell string of the present invention in which solar cells having the light receiving surface shown in FIG. 13 and the back surface shown in FIG. 14 are connected in series.
  • FIG. 24 is a schematic enlarged plan view when the solar cell string shown in FIG. 23 is viewed from the light receiving surface side.
  • FIG. 25 is a schematic plan view of another example of an interconnector used in the present invention.
  • FIG. 26 is a schematic cross-sectional view of an example of a conventional solar cell.
  • FIG. 27 is a diagram for illustrating an example of a conventional solar cell manufacturing method.
  • FIG. 28 is a diagram for illustrating an example of a conventional method for manufacturing a solar cell module.
  • FIG. 29 is a schematic plan view showing the shape of the silver electrode formed on the first main surface of the p-type silicon substrate that is the light-receiving surface of the solar cell shown in FIG. 26.
  • FIG. 30 is a schematic plan view showing the shapes of an aluminum electrode and a silver electrode formed on the second main surface of the p-type silicon substrate that is the back surface of the solar cell shown in FIG. 26.
  • FIG. 31 is a schematic cross-sectional view of a solar cell string in which solar cells having the configuration shown in FIG. 26 are connected in series.
  • FIG. 32 is a schematic plan view of an example of the shape of the electrode on the light receiving surface of the solar cell.
  • FIG. 33 is a schematic enlarged plan view of the vicinity of the first unconnected portion of the electrode on the light receiving surface shown in FIG. 32.
  • FIG. 34 is a schematic plan view of an example of the shape of the electrode on the back surface of the solar cell.
  • FIG. 35 shows an example of a solar cell string in which a solar cell having the light receiving surface electrode shown in FIGS. 32 and 33 and the back electrode shown in FIG. 34 is connected using the interconnector described in Patent Document 1.
  • FIG. 35 shows an example of a solar cell string in which a solar cell having the light receiving surface electrode shown in FIGS. 32 and 33 and the back electrode shown in FIG. 34 is connected using the interconnector described in Patent Document 1.
  • FIG. 36 is a schematic enlarged plan view of a light receiving surface of the solar cell string shown in FIG. 35. Explanation of symbols
  • FIG. 1 shows a schematic plan view of an example of the shape of an electrode formed on the first main surface of the p-type silicon substrate 10 that becomes the light receiving surface of the solar cell of the present invention.
  • the electrodes formed on the first main surface include a bus bar electrode 13a as a relatively wide first electrode extending in the left-right direction of the paper surface, and a plurality of bus bar electrodes 13a extending in the vertical direction of the paper surface from the bus bar electrode 13a.
  • a linear finger electrode 13b as a second electrode having a relatively narrow width.
  • the bus bar electrode 13a and the finger electrode 13b are orthogonal to each other, and their positional relationship can be appropriately changed.
  • the bus bar electrode 13a includes a linear first connection portion 51 fixed to and electrically connected to the interconnector, and a first non-connection portion 42 not connected to the interconnector.
  • the first connection parts 51 and the first non-connection parts 42 are alternately arranged along the longitudinal direction of the bus bar electrodes 13a.
  • at least one of the first connection portions 51 adjacent to the end portion of the first main surface of the p-type silicon substrate 10 is set apart from the end portion of the first main surface. It is configured to
  • FIG. 2 shows a schematic enlarged plan view of the vicinity of the first non-connecting portion 42 shown in FIG.
  • the first non-connecting portion 42 electrically connects the adjacent first connecting portions 51 to each other.
  • an inner region 43 that is a gap portion adjacent to the end surface of the first connection portion 51 and the side surface of the first non-connection portion 42 is also formed.
  • the side force of the first connection part 51 is also extended in the first non-connection part 42, and the angle ⁇ formed by the first non-connection part 42 and the first connection part 51 is about 150 °, which is larger than 90 °. More than 180 ° / J.
  • the interconnector connection is achieved by setting the angle ⁇ between the first non-connecting portion 42 and the first connecting portion 51 to be larger than 90 ° and smaller than 180 °.
  • the solar cell is warped in the subsequent cooling step, the solar It is possible to reduce the occurrence of cracks in the solar cell at the interface portion between the first connection portion 51 and the inner region 43 on the light receiving surface of the solar cell constituting the battery string.
  • first non-connecting portion 42 and the first connecting portion 51 are joined at an angle larger than 90 ° and smaller than 180 °. It is presumed that the stress applied to the interface portion between the first connection portion 51 and the inner region 43 of the solar cell is dispersed when the solar cell is warped.
  • the length of the inner region 43 of the solar cell of the present invention having the above-described configuration (the length in the arrangement direction of the first connecting portion 51 and the first non-connecting portion 42), and FIGS. 32 and 33 Assuming that the length of the inner region 43 of the electrode of the light receiving surface having the shape shown in FIG. 1 (the length in the arrangement direction of the first connection portion 51 and the first non-connection portion 42) is the same,
  • the shortest distance of the total length of the first non-connection portion 42 of the battery is shorter than the shortest distance of the total length of the first non-connection portion 42 in the electrode of the light receiving surface having the shape shown in FIGS.
  • the total length of the first non-connection portion 42 of the solar cell of the present invention is the same as that of the electrode on the light receiving surface having the shape shown in FIGS. 32 and 33. 1 Since the length of the non-connected portion 42 is shorter than the total length of the non-connected portion 42, the electrical resistance value at the first non-connected portion 42 of the solar cell of the present invention is as follows. It becomes smaller than the electric resistance value at the connection part 42.
  • the characteristics of the solar cell of the present invention having the above-described configuration are better than those of the solar cell having the light receiving surface electrode having the shape shown in Figs.
  • the region of the light receiving surface where the first non-connecting portion 42 is installed is a shadow loss region. Therefore, when the width of the first non-connection portion 42 of the solar cell of the present invention is the same as the width of the first non-connection portion 42 of the solar cell having the light receiving surface electrode having the shape shown in FIGS. 32 and 33. In the solar cell of the present invention, the shadow loss region is reduced by the short width of the first non-connecting portion 42 as compared with the solar cell having the light receiving surface electrode having the shape shown in FIGS. 32 and 33. Will be able to.
  • the solar cell of the present invention is more in comparison with the solar cell having the light receiving surface electrode having the shape shown in FIGS. 32 and 33. 1 Since the total length of the non-connecting portion 42 can be shortened, the occurrence of fading of the first non-connecting portion 42 at the time of printing can be reduced. Therefore, the electrical resistance value from the finger electrode 13b connected to the first non-connection portion 42 to the first connection portion 51 can be further reduced. As a result, in the present invention, the production of solar cells with low characteristics can be suppressed, and the yield of solar cells is also improved.
  • the width of the first non-connection portion 42 is 0.3 mm, the width of the first connection portion 51 is 2.5 mm, and the width of the finger electrode 13b is 0.16 mm. Needless to say, the present invention is not limited to this.
  • the first non-connecting portion 42 is configured by combining three linear portions, but is not limited to this.
  • FIG. 3 shows a schematic plan view of an example of the shape of the electrode formed on the second main surface serving as the back surface of the solar cell of the present invention.
  • the aluminum electrode 14 is formed on almost the entire second main surface of the solar cell of the present invention, and the second connection portion connected to the interconnector at a portion other than the location where the aluminum electrode 14 is formed.
  • the linear silver electrode 16 is formed so as to extend in the horizontal direction of the paper. Further, the aluminum electrode 14 located between the adjacent silver electrodes 16 becomes the second non-connecting portion 14a that is not connected to the interconnector.
  • the silver electrodes 16 as the second connection portions and the second non-connection portions 14a are alternately arranged.
  • FIG. 4 shows an example of the solar cell string of the present invention formed by connecting in series a solar cell having the light receiving surface electrode having the shape shown in FIG. 1 and the back surface electrode having the shape shown in FIG. A schematic cross-sectional view is shown.
  • FIG. 5 shows a schematic enlarged plan view of the solar cell string shown in FIG. In FIG. 4, the description of the n + layer, the p + layer, and the antireflection film formed on the p-type silicon substrate 10 is omitted for convenience of explanation.
  • the silver as the second connection portion of the first solar cell 80 and the second connection portion of the second solar cell 81 is used.
  • the electrode 16 is fixed and electrically connected to the interconnector 31 with solder or the like.
  • the interconnector may be a conductive member.
  • the shape and material are not particularly limited.
  • the first connection portion 51 and the silver electrode 16 as the second connection portion are positioned symmetrically with respect to the p-type silicon substrate 10 as the semiconductor substrate. is doing
  • the interconnector 31 is fixed in the inner region 43 on the light receiving surface of the solar cell and the second unconnected portion 14a on the back surface. Absent.
  • the internal stress generated in the solar cell due to the difference in thermal expansion coefficient between the interconnector 31 and the solar cell. Can be mitigated at the interconnector portion, which is fixed to the inner region 43 and the second non-connecting portion 14a, so that the warpage of the solar cell constituting the solar cell string can be reduced.
  • the first connection part 51 to which the interconnector 31 is fixed and the silver electrode 16 as the second connection part are symmetrical with respect to the p-type silicon substrate 10 as the semiconductor substrate. Therefore, the internal stress generated in the solar cell due to the difference in thermal expansion coefficient between the solar cell and the interconnector 31 can be made substantially equal between the light receiving surface and the back surface of the solar cell. Therefore, the warpage of the solar cell constituting the solar cell string can be further reduced.
  • the solar cell string of the present invention is constituted by the solar cell having the light receiving surface electrode having the shape shown in FIG. 1 and the back surface electrode having the shape shown in FIG. 3, as described above, It is possible to reduce the occurrence of cracks in the solar cell at the interface portion between the first connection portion 51 and the inner region 43 on the light receiving surface of these solar cells.
  • FIG. 6 shows a schematic enlarged plan view of another example in the vicinity of the first unconnected portion 42 of the bus bar electrode 13a formed on the first main surface of the solar cell of the present invention.
  • the angle ⁇ formed by the first non-connection portion 42 and the first connection portion 51 is about 135 °, which is smaller than the case shown in FIG. 2 (about 150 °).
  • the first non-connecting portion 42 is characterized in that the side force of the first connecting portion 51 is also extended.
  • FIG. 6 shows a schematic enlarged plan view of another example in the vicinity of the first unconnected portion 42 of the bus bar electrode 13a formed on the first main surface of the solar cell of the present invention.
  • FIG. 7 shows a schematic enlarged plan view of another example in the vicinity of the first unconnected portion 42 of the bus bar electrode 13a formed on the first main surface of the solar cell of the present invention.
  • the angle ⁇ formed by the first non-connecting portion 42 and the first connecting portion 51 is about 150 °
  • the first non-connecting portion 42 is the end face of the first connecting portion 51. It is characterized by increasing strength.
  • the width of the interconnector 31 when the width of the interconnector 31 is made smaller than the width of the first connecting part 51, the first non-connecting part 42 and the interconnector 31 tend not to be fixed. Since the connection area between the bus bar electrode 13a and the interconnector 31 can be reduced, the warpage of the solar cell constituting the solar cell string tends to be further reduced.
  • FIG. 8 shows a schematic enlarged plan view of another example in the vicinity of the first unconnected portion 42 of the bus bar electrode 13a formed on the first main surface of the solar cell of the present invention.
  • the configuration shown in FIG. 8 is characterized in that the first non-connecting portion 42 includes an arcuate portion, and the side force of the first connecting portion 51 is also extended.
  • the first non-connecting portion 42 and the interconnector 31 are not fixed, and the bus bar of the solar cell. Since the connection region between the electrode 13a and the interconnector 31 can be reduced, the warpage of the solar cell constituting the solar cell string tends to be further reduced.
  • the angle formed by the first non-connecting portion 42 and the first connecting portion 51 is larger than 90 ° and smaller than 180 °.
  • FIG. 9 shows a schematic enlarged plan view of another example in the vicinity of the first unconnected portion 42 of the bus bar electrode 13a formed on the first main surface of the solar cell of the present invention.
  • the configuration shown in FIG. 9 is characterized in that the first non-connecting portion 42 includes an arcuate portion, and the end face force of the first connecting portion 51 is also extended.
  • the width of the interconnector 31 is made smaller than the width of the first connection part 51, the first non-connection part 42 and the interconnector 31 tend not to be fixed. Busbar electrode 13a and interconnect Therefore, the warp of the solar cell constituting the solar cell string tends to be further reduced.
  • the angle ⁇ formed by the first non-connecting portion 42 and the first connecting portion 51 is larger than 90 ° and smaller than 180 °.
  • FIG. 10 shows a schematic enlarged plan view of another example in the vicinity of the first unconnected portion 42 of the bus bar electrode 13a formed on the first main surface of the solar cell of the present invention.
  • the configuration shown in FIG. 10 is characterized in that the width of the first non-connection portion 42 is 0.6 mm, which is twice that of the configuration shown in FIG. 2 (0.3 mm). .
  • the width of the first non-connection portion 42 is thick, the electric resistance value in the first non-connection portion 42 tends to be reduced.
  • the cross-sectional area of the first non-connecting portion 42 (the cross-sectional area of the cross section perpendicular to the longitudinal direction of the first non-connecting portion 42) is equal to the cross-sectional area of the first connecting portion 51 (of the first connecting portion 51 (Cross-sectional area of the cross section in the direction perpendicular to the longitudinal direction) is larger than 1Z2, compared to the case where the bus bar electrode 13a is configured only by the first connection part 51 without providing the first non-connection part 42.
  • the cross-sectional area of the first non-connecting portion 42 (the cross-sectional area of the cross section perpendicular to the longitudinal direction of the first non-connecting portion 42) is It is preferable that the area (the cross-sectional area of the cross section in the direction perpendicular to the longitudinal direction of the first connecting portion 51) is 1Z2 or less.
  • the angle ⁇ formed by the first non-connection portion 42 and the first connection portion 51 is about 150. It is.
  • FIG. 11 is a schematic enlarged plan view of an example of a state in which an interconnector having a shape different from the interconnector shown in FIG. 5 is electrically connected to the electrode on the light receiving surface having the shape shown in FIG. Indicates.
  • the interconnector 31 shown in FIG. 11 is provided with a small notch, thereby forming a small cross-sectional area 41.
  • the small cross-sectional area 41 of the interconnector 31 is arranged at a location corresponding to the inner region 43.
  • the “small cross-sectional area portion” means a portion of the interconnector where the area of the cross section perpendicular to the longitudinal direction of the interconnector is locally reduced.
  • the interconnector 31 shown in FIG. FIG. 4 is a schematic cross-sectional view of an example of a solar cell string configured by electrically connecting a plurality of solar cells having electrodes and electrodes on the back surface having the shape shown in FIG. 3 in series.
  • the interconnector 31 includes the first connection part 51 of the first solar cell 80 and the silver electrode 16 as the second connection part of the second solar cell 81 adjacent to each other. Therefore, it is configured to be electrically connected.
  • the interconnector 31 is bent between the first solar cell 80 and the second solar cell 81.
  • the small area 41 of the interconnector 31 is arranged at all the locations corresponding to the inner region 43 and at all the locations corresponding to the second non-connecting portion 14a.
  • the small cross-sectional area 41 of the interconnector 31 is disposed in at least one place, preferably all places corresponding to the inner region 43 and corresponding to the second non-connecting portion 14a.
  • the small cross-sectional area 41 that is relatively weak compared to the other parts of the interconnector 31 extends to further reduce the stress.
  • the effect will be added. That is, when the small cross-sectional area portion 41 of the interconnector 31 is disposed in the inner region 43 and the second non-connecting portion 14a, the small cross-sectional area portion 41 is in a free state that is not fixed. It can be freely deformed and can sufficiently exert the stress relaxation effect by stretching. Therefore, in this case, cracking of the solar cell at the interface portion between the first connection portion 51 and the inner region 43 of the light receiving surface of the solar cell due to warpage occurring in the solar cell in the cooling process after the interconnector is connected. It can be greatly reduced.
  • FIG. 13 shows a schematic plan view of the light receiving surface as the first main surface of an example of the solar cell of the present invention.
  • p-type single crystal silicon is used as the material of the p-type silicon substrate 10
  • the first main surface of the p-type silicon substrate 10 that serves as the light-receiving surface of the solar cell is arranged in the vertical direction of the page. It includes a relatively wide linear bus bar electrode 13a that extends, and a plurality of narrow linear finger electrodes 13b that extend from the bus bar electrode 13a in the left-right direction on the paper surface.
  • bus bar electrode 13a includes a first connection portion 51 that is fixed and electrically connected to the interconnector, and a first non-connection portion 42 that is not connected to the interconnector.
  • the first connecting portion 51 and the first non-connecting portion 42 are along the longitudinal direction of the bus bar electrode 13a. They are arranged alternately.
  • the electrode on the light receiving surface shown in FIG. 13 is installed such that at least one of the first connecting portions 51 adjacent to the end of the first main surface of the p-type silicon substrate 10 is separated from the end force of the first main surface. It is configured to
  • the first non-connecting portion 42 extends from the side surface of the first connecting portion 51, and the angle ⁇ formed by the first non-connecting portion 42 and the first connecting portion 51 is greater than 90 ° and greater than 180 °. Is getting smaller. Furthermore, an inner region 43 that is a gap portion adjacent to the end face of the first connecting portion 51 and the side face of the first non-connecting portion 42 is also formed on the first main surface.
  • FIG. 14 is a schematic plan view of the back surface as the second main surface of the solar cell shown in FIG.
  • the silver electrode 16 as the second connection portion for connecting to the interconnector and the second non-connector not connected to the interconnector.
  • the connecting portions 14a are alternately formed.
  • the second non-connecting portion 14a is composed of the aluminum electrode 14 between the silver electrodes 16 adjacent in the longitudinal direction of the silver electrode 16 as the second connecting portion.
  • this solar cell has a track shape in which the front end of the inner region 43 on the side of the first connecting portion 51 is arc-shaped (having arc-shaped portions at both ends). , The arcuate part is connected by two straight lines).
  • the interface portion between the first connection portion 51 and the inner region 43 is formed into an arc shape, thereby cooling the interconnect step after connecting the interconnector during the production of the solar cell string. It is possible to reduce the occurrence of cracking of the solar cell at the interface portion between the first connection portion 51 and the inner region 43 of the light receiving surface of the solar cell due to the warpage of the solar cell when This is due to the finding. The reason for this is not clear, but when the tip of the surface shape of the inner region 43 is arcuate, the first connection portion of the solar cell is warped when the solar cell is warped during the cooling process after the connection of the interconnector. It is presumed that the stress received at the interface between 51 and the inner region 43 is dispersed.
  • FIG. 15 shows a schematic cross section along XV—XV in FIGS. 13 and 14.
  • the length L1 of the inner region 43 in the arrangement direction of the first connecting portion 51 and the first non-connecting portion 42 (the vertical direction of the paper surface in FIG. 1).
  • the second non-connecting portion 14a facing the region 43 is shorter than the length L2 in the arrangement direction of the second connecting portion and the second non-connecting portion 14a (vertical direction in the drawing of FIG. 2).
  • the length L2 of the second non-connecting portion 14a facing the length L1 of the inner region 43 with the p-type silicon substrate 10 sandwiched between the inner region 43 and the length L2 It has been found that the occurrence of cracks at the interface between the first connection part 51 of the light receiving surface of the solar cell constituting the solar cell string and the inner region 43 can be further reduced by making the length shorter. It depends. This is because the aluminum constituting the second non-connecting portion 14a that is longer than the inner region 43 has a reinforcing effect, so that the light receiving surface of the solar cell when the solar cell is warped in the cooling process after the interconnector is connected is used. 1 It is considered that the occurrence of cracks in the solar cell at the interface between the connecting portion 51 and the inner region 43 can be further reduced.
  • At least one combined force of the inner region 43 and the second non-connecting portion 14a is aligned with each other with the 3 ⁇ 4-type silicon substrate 10 interposed therebetween. Therefore, in at least one set of the inner region 43 and the second non-connecting portion 14a, the length L1 of the inner region 43 only needs to be shorter than the length L2 of the second non-connecting portion 14a.
  • the second non-connecting portion 14a is formed at a position symmetric with respect to the p-type silicon substrate 10 at the position where the inner region 43 is formed. ! Insane! Including parts! /
  • FIG. 16 shows a schematic plan view of the light receiving surface as the first main surface of another example of the solar cell of the present invention
  • FIG. 17 shows the back surface as the second main surface of the solar cell shown in FIG.
  • a schematic plan view of is shown.
  • Fig. 18 shows a schematic cross section along XVIII-XVIII in Fig. 16 and Fig. 17.
  • This solar cell is characterized in that p-type polycrystalline silicon is used as the material of the p-type silicon substrate 10. Other explanations are the same as above.
  • FIG. 19 shows a schematic plan view of an example of an interconnector used in the solar cell string of the present invention.
  • the interconnector 31 has a plurality of small cross-sectional area portions 41 in which the cross-sectional area of the cross section perpendicular to the longitudinal direction of the interconnector 31 is locally reduced.
  • FIGS. 20 to 22 show schematic plan views of other examples of interconnectors used in the present invention.
  • Each of these interconnectors 31 is also The connector 31 has a small cross-sectional area 41 in which the cross-sectional area is locally reduced.
  • FIG. 23 shows a schematic cross-sectional view of an example of the solar cell string of the present invention in which solar cells having the light receiving surface shown in FIG. 13 and the back surface shown in FIG. 14 are connected in series
  • FIG. Fig. 23 shows a schematic enlarged plan view of the solar cell string shown in Fig. 23 when the light receiving surface side force is viewed.
  • one end of the interconnector 31 also serving as one conductive member is fixedly connected to the first connection part 51 of the first solar cell 80, and the other end of the interconnector 31 is connected
  • the second solar cell 81 is fixedly connected to the silver electrode 16 as the second connection portion.
  • the small cross-sectional area 41 of the interconnector 31 is disposed in the inner region 43 of the light receiving surface of the first solar cell 80 and the second non-connecting portion 14a on the back surface of the second solar cell 81.
  • the inner region 43 of the solar cell and the second non-connecting portion 14a are not fixed to the interconnector 31 and are not connected.
  • the interconnector 31 is bent between the first solar cell 80 and the second solar cell 81. In FIG. 23, the description of the antireflection film is omitted.
  • the tip of the surface shape of the inner region 43 of the solar cell on the first connecting portion 51 side is arcuate, the inner region shown in Figs. 32 and 33 Compared to the first connection part 51 of the surface shape of 43, the tip part on the 51 side is not arcuate, the first light receiving surface of the solar cell when the solar cell is warped in the cooling process after connecting the connector 1 It is possible to reduce the occurrence of cracks in the solar cell at the interface between the connecting portion 51 and the inner region 43.
  • the first non-connection portion 42, the inner region 43, and the second non-connection portion 14a of the solar cell are not connected to the interconnector 31.
  • the connection length between the interconnector 31 and the first connection part 51 and the silver electrode 16 as the second connection part of the solar cell can be reduced. In this way, when the connection length between the interconnector 31 and the first connection part 51 of the solar cell and the silver electrode 16 as the second connection part is reduced, the p-type silicon constituting the interconnector 31 and the solar battery is reduced.
  • the stress generated by the difference in thermal expansion coefficient with the substrate 10 can be reduced, the first contact of the light-receiving surface of the solar cell due to the warp that occurs in the solar cell during the cooling process after connecting the interconnector. It is possible to further reduce the occurrence of cracks in the solar cell at the interface between the connecting portion 51 and the inner region 43.
  • the small cross-sectional area 41 of the interconnector 31 is arranged at least at one place corresponding to the inner region 43 and at least one place corresponding to the second non-connecting portion 14a, preferably at all places.
  • the small cross-sectional area 41 which is relatively weak compared to the other parts of the interconnector 31, is extended to further reduce the stress. It will be. That is, when the small cross-sectional area 41 of the interconnector 31 is arranged in the inner region 43 and the second non-connecting part 14a, the small cross-sectional area 41 is in an unfixed and free state. Therefore, it can be freely deformed, and the stress relaxation effect by stretching can be sufficiently exhibited. Therefore, in this case, cracking of the solar cell occurs at the interface portion between the first connection portion 51 and the inner region 43 of the light receiving surface of the solar cell due to warpage generated in the solar cell in the cooling process after the interconnector is connected. Can be greatly reduced.
  • the solar cell string is formed using the interconnector shown in Fig. 19, but the schematic cross-sectional view of Fig. 25 in which the small cross-sectional areas 41 are formed at equal intervals.
  • a solar cell string can also be formed using an interconnector 31 as shown in FIG.
  • the formation of the small cross-sectional area portion 41 becomes easier. The manufacturing cost of the battery can be reduced, and the productivity of the solar cell string can be improved.
  • the solar cell module of the present invention can be produced by sealing the solar cell string of the present invention as described above with a sealing material such as EVA by a known method. it can.
  • the description other than the above is the same as the description in the background art section above, but is not limited to the description.
  • the p-type and n-type conductivity types described in the background section above may be used instead of a semiconductor substrate other than a single crystal or polycrystalline P-type silicon substrate.
  • the first connection portion, the first non-connection portion, and the second connection portion are not necessarily silver electrodes.
  • this departure In the light the second unconnected portion does not necessarily need to be an aluminum electrode, and the inner region does not necessarily need to be a gap.
  • the surface shape of the inner region 43 is a track shape.
  • the first connection portion 51 on the light receiving surface of the solar cell constituting the solar cell string and the inner region 43 From the viewpoint of further reducing the occurrence of cracks in the solar cell at the interface portion, the surface shape of the inner region 43 is a circular shape, an elliptical shape, or a track shape in which the tip on the side in contact with the first connecting portion 51 is an arc shape It is preferable that
  • a solar cell capable of reducing the occurrence of cracking of the solar cell when the solar cell is warped in the cooling step after the interconnector is connected.
  • a solar cell string capable of reducing the occurrence of cracking of the solar cell when the solar cell is warped in the cooling step after the interconnector is connected.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

 光電変換部を有する半導体基板と、半導体基板の第1主面上に形成された第1の電極(13a)と、第1主面上において第1の電極(13a)に接続されている第2の電極(13b)と、を備え、第1の電極(13a)は、インターコネクタ(31)に接続するための複数の第1接続部(51)と、インターコネクタ(31)に接続されない第1非接続部(42)と、を含み、第1非接続部(42)は、第1接続部(51)の間に配置されて、第1接続部(51)同士を電気的に接続しており、第1接続部(51)と第1非接続部(42)とが90°よりも大きく180°よりも小さい角度を為して接合している太陽電池、その太陽電池を用いた太陽電池ストリングおよび太陽電池モジュールである。

Description

明 細 書
太陽電池、太陽電池ストリングおよび太陽電池モジュール
技術分野
[0001] 本発明は、太陽電池、太陽電池ストリングおよび太陽電池モジュールに関し、特に
、インターコネクタ接続後の冷却工程において太陽電池に反りが生じた際の太陽電 池の割れの発生を低減することができる太陽電池、太陽電池ストリングおよび太陽電 池モジュールに関する。
背景技術
[0002] 太陽光エネルギを直接電気工ネルギに変換する太陽電池は、近年、特に地球環 境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。太陽 電池としては、化合物半導体または有機材料を用いたものなど様々な種類があるが 、現在、主流となっているのは、シリコン結晶を用いたものである。
[0003] 図 26に、従来の太陽電池の一例の模式的な断面図を示す。ここで、太陽電池にお いては、 p型シリコン基板 10の受光面に n+層 11が形成されることによって、 p型シリコ ン基板 10と n+層 11とにより pn接合が形成されており、 p型シリコン基板 10の受光面 上には反射防止膜 12および銀電極 13がそれぞれ形成されている。また、 p型シリコ ン基板 10の受光面と反対側の裏面には p+層 15が形成されている。そして、 p型シリ コン基板 10の裏面上にはアルミニウム電極 14および銀電極 16がそれぞれ形成され ている。なお、 p型シリコン基板 10においては、上記の pn接合が光電変換部となって いる。
[0004] 図 27 (a)〜 (i)に、従来の太陽電池の製造方法の一例を示す。まず、図 27 (a)に示 すように、 p型シリコン結晶の原料を坩堝で溶解した後に再結晶化して得られたシリコ ンインゴッド 17をシリコンブロック 18に切断する。次に、図 27 (b)に示すように、シリコ ンブロック 18をワイヤソ一で切断することにより、 p型シリコン基板 10が得られる。
[0005] 次いで、アルカリまたは酸によって p型シリコン基板 10の表面をエッチングすること によって、図 27 (c)に示す p型シリコン基板 10のスライス時のダメージ層 19を除去す る。このとき、エッチング条件を調整すると、 p型シリコン基板 10の表面に微小な凹凸 (図示せず)を形成することができる。この凹凸により、 p型シリコン基板 10の表面に入 射する太陽光の反射が低減されて、太陽電池の変換効率を高めることができる。
[0006] 続、て、図 27 (d)に示すように、 p型シリコン基板 10の一方の主面(以下、「第 1主 面」という)上にリンを含む化合物を含有したドーパント液 20を塗布する。そして、ドー パント液 20の塗布後の p型シリコン基板 10を 800°C〜950°Cの温度で 5〜30分間熱 処理することにより p型シリコン基板 10の第 1主面に n型ドーパントであるリンが拡散し て、図 27 (e)に示すように、 p型シリコン基板 10の第 1主面に n+層 11が形成される。 なお、 n+層 11の形成方法としては、ドーパント液を塗布する方法以外にも、 P Oや P
2 5
OC1を用いた気相拡散による方法がある。
3
[0007] 次いで、リンの拡散時に p型シリコン基板 10の第 1主面に形成されるガラス層を酸 処理により除去した後、図 27 (f)に示すように、 p型シリコン基板 10の第 1主面上に反 射防止膜 12を形成する。反射防止膜 12の形成方法としては、常圧 CVD法を用いて 酸ィ匕チタン膜を形成する方法やプラズマ CVD法を用いて窒化シリコン膜を形成する 方法などが知られている。また、ドーパント液を塗布する方法によりリンを拡散する場 合には、リンに加えて反射防止膜 12の材料も含ませたドーパント液を用いることによ つて、 n+層 11と反射防止膜 12とを同時に形成することもできる。また、反射防止膜 1 2の形成は、銀電極の形成後に行なう場合もある。
[0008] そして、図 27 (g)に示すように、 p型シリコン基板 10の他方の主面(以下、「第 2主面 」という)上にアルミニウム電極 14を形成するとともに p型シリコン基板 10の第 2主面に P+層 15を形成する。アルミニウム電極 14および p+層 15は、たとえば、アルミニウム粉 末、ガラスフリット、榭脂および有機溶剤力 なるアルミニウムペーストをスクリーン印 刷などにより印刷した後に、 p型シリコン基板 10を熱処理することによって、アルミ-ゥ ムが溶融してシリコンと合金化することにより形成されたアルミニウム一シリコン合金層 下に P+層 15が形成されるとともに、 p型シリコン基板 10の第 2主面上にアルミニウム 電極 14が形成される。また、 p型シリコン基板 10と p+層 15のドーパント濃度差が、 p 型シリコン基板 10と p+層 15の界面に電位差 (電位障壁として働く)をもたらし、光生 成されたキャリアが p型シリコン基板 10の第 2主面付近で再結合するのを防いでいる 。これにより、太陽電池の短絡電流(Isc : short circuit current)および開放電圧(Voc : open circuit voltage)力 S共に向上する。
[0009] その後、図 27 (h)に示すように、 p型シリコン基板 10の第 2主面上に銀電極 16を形 成する。銀電極 16は、たとえば、銀粉末、ガラスフリット、榭脂および有機溶剤力もな る銀ペーストをスクリーン印刷などにより印刷した後に、 p型シリコン基板 10を熱処理 すること〖こよって得ることができる。
[0010] そして、図 27 (i)に示すように、 p型シリコン基板 10の第 1主面上に銀電極 13を形 成する。銀電極 13は、 p型シリコン基板 10との接触抵抗を含む直列抵抗を低く抑え るとともに銀電極 13の形成面積を少なくして太陽光の入射量を減少させないようにす るため、銀電極 13の線幅、ピッチおよび厚さなどのパターン設計が重要である。銀電 極 13の形成方法としては、たとえば、反射防止膜 12の表面上に銀粉末、ガラスフリツ ト、榭脂および有機溶剤からなる銀ペーストをスクリーン印刷などにより印刷した後に 、 p型シリコン基板 10を熱処理することによって、銀ペーストが反射防止膜 12を貫通 して p型シリコン基板 10の第 1主面と良好な電気的接触が可能なファイアスルー方式 が量産ラインで用いられて 、る。
[0011] 以上のようにして、図 26に示す構成の太陽電池を製造することができる。なお、銀 電極 13および銀電極 16の形成後の p型シリコン基板 10を溶融半田槽に浸漬するこ とによって銀電極 13および銀電極 16の表面に半田をコーティングすることもできる。 この半田のコーティングは、プロセスによっては省略される場合もある。また、上記の ようにして製造された太陽電池にソーラシミュレータを用いて擬似太陽光を照射し、 太陽電池の電流—電圧 (IV)特性を測定して IV特性を検査することもできる。
[0012] 太陽電池は、その複数が直列に接続されて太陽電池ストリングとされた後、太陽電 池ストリングを封止材によって封止して太陽電池モジュールとして販売および使用さ れることが多い。
[0013] 図 28 (a)〜(e)に、従来の太陽電池モジュールの製造方法の一例を示す。まず、 図 28 (a)に示すように、太陽電池 30の第 1主面の銀電極上に導電性部材であるイン ターコネクタ 31を接続する。
[0014] 次に、図 28 (b)に示すように、インターコネクタ 31が接続された太陽電池 30を一列 に配列し、太陽電池 30の第 1主面の銀電極に接続されているインターコネクタ 31の 他端を他の太陽電池 30の第 2主面の銀電極に接続して、太陽電池ストリング 34を作 製する。
[0015] 次 、で、図 28 (c)に示すように、太陽電池ストリングを並べて、太陽電池ストリングの 両端力 突出しているインターコネクタ 31と、他の太陽電池ストリングの両端力も突出 して!/、るインターコネクタ 31とを導電性部材である配線材 33を用 、て直列に接続す ることによって、太陽電池ストリング同士を互いに接続する。
[0016] 続、て、図 28 (d)に示すように、接続された太陽電池ストリング 34を封止材としての EVA (エチレンビュルアセテート)フィルム 36で挟み込み、その後、ガラス板 35とバッ クフィルム 37との間に挟む。そして、 EVAフィルム 36間に入った気泡を減圧して抜き 、加熱すると、 EVAフィルム 36が硬化して、太陽電池ストリングが EVA中に封止され る。これにより、太陽電池モジュールが作製される。
[0017] その後、図 28 (e)に示すように、太陽電池モジュールは、アルミニウム枠 40内に配 置され、ケーブル 39を備えた端子ボックス 38が太陽電池モジュールに取り付けられ る。そして、上記のようにして製造された太陽電池モジュールにソーラシミュレータを 用いて擬似太陽光を照射し、太陽電池の電流 電圧 (IV)特性を測定して IV特性が 検査される。
[0018] 図 29の模式的平面図に、図 26に示す太陽電池の受光面となる p型シリコン基板 1 0の第 1主面上に形成された銀電極 13の形状を示す。ここで、銀電極 13は、比較的 幅の大きい 1本の線状のバスバー電極 13aと、バスバー電極 13aから伸びる複数の 比較的幅の小さ 、線状のフィンガー電極 13bと、力 構成されて 、る。
[0019] 図 30の模式的平面図に、図 26に示す太陽電池の裏面となる p型シリコン基板 10の 第 2主面上に形成されたアルミニウム電極 14と銀電極 16の形状を示す。ここで、アル ミニゥム電極 14は p型シリコン基板 10の第 2主面のほぼ全面に形成されており、銀電 極 16は p型シリコン基板 10の第 2主面の一部のみに形成されている。これは、アルミ -ゥム電極 14に半田をコ一ティングすることは困難であるため、半田をコーティング することが可能な銀電極 16が必要となることがあるためである。
[0020] 図 31に、図 26に示す構成の太陽電池を直列に接続した太陽電池ストリングの模式 的な断面図を示す。ここで、太陽電池の受光面のバスバー電極 13aに半田などによ つて固定されたインターコネクタ 31は、隣接する他の太陽電池の裏面の銀電極 16に 半田などによって固定されている。なお、図 31においては、 n+層、 p+層および反射 防止膜の記載は省略されて 、る。
特許文献 1 :特開 2005— 142282号公報
発明の開示
発明が解決しょうとする課題
[0021] 太陽光発電システムが急速に普及するにつれ、太陽電池の製造コストの低減は必 要不可欠となっている。太陽電池の製造コストの低減において、半導体基板であるシ リコン基板の大型化および薄型化は非常に有効な手段である。しかしながら、シリコ ン基板の大型化および薄型化に伴い、太陽電池ストリングを形成する際、太陽電池 の受光面のバスバー電極と銅力 なるインターコネクタとを半田などによって固定して 接続する加熱工程後の冷却工程において、太陽電池のシリコン基板とインターコネク タとの熱膨張係数差 (シリコンの熱膨張係数 3. 5 X 10— 6ZKに対し、銅は 17. 6 X 10 —6ΖΚであり 5倍程度の差がある)により、インターコネクタが太陽電池よりも大きく収縮 するため、太陽電池に反りが生じ、さらには、太陽電池のバスバー電極に接触してい る太陽電池の受光面に割れが発生することがあった。
[0022] そこで、特許文献 1 (特開 2005— 142282号公報)には、隣接する太陽電池を接 続するインターコネクタに断面積が局部的に縮小された小断面積部を設ける方法が 開示されている。上述したように、上記の加熱工程により加熱状態にあったインターコ ネクタおよび太陽電池は室温まで冷却する際に太陽電池に凹状の反りが発生する。 その際、太陽電池には元の形状に戻ろうとする力(復元力)が発生し、この復元力は インターコネクタに対して引張り応力を加える。特許文献 1に開示された方法によれ ば、インターコネクタに引張り応力が加えられたときに他の部分と比べて比較的強度 の弱い小断面積部が延伸して、太陽電池の反りを低減することができるが、さらなる 改善が望まれていた。
[0023] そこで、特許文献 1に記載のインターコネクタを用いて図 32および図 33に示す形 状の受光面の電極および図 34に示す形状の裏面の電極を有する太陽電池を接続 して太陽電池ストリングを形成することによって、太陽電池の反りを低減することが考 えられている。その太陽電池ストリングの一例の模式的な断面図を図 35に示し、図 3 5に示した太陽電池ストリングを受光面側から見たときの模式的な拡大平面図を図 36 に示す。
[0024] ここで、図 32および図 33に示すように、太陽電池の p型シリコン基板 10の第 1主面 となる受光面上に形成された銀電極 13は、比較的幅の大きい 1本の線状のバスバー 電極 13aとバスバー電極 13aから伸びる比較的幅の小さい複数の線状のフィンガー 電極 13bと、力も構成されている。また、バスバー電極 13aはインターコネクタに固定 して接続するための線状の第 1接続部 51と、インターコネクタに接続されない第 1非 接続部 42とからなっており、第 1接続部 51と第 1非接続部 42とがバスバー電極 13a の長手方向に沿って交互に配列されている。また、第 2非接続部 42はその両側に隣 接する第 1接続部 51を電気的に接続している。
[0025] ここで、第 1接続部 51の表面形状は矩形状となっており、第 1接続部 51の端面と第 1非接続部 42の側面にそれぞれ隣接する空隙部である内側領域 43の表面形状も 矩形状となっている。
[0026] また、図 34に示すように、アルミニウム電極 14は p型シリコン基板 10の第 2主面の ほぼ全面に形成されており、銀電極 16は p型シリコン基板 10の第 2主面の一部のみ に形成されている。ここで、銀電極 16はインターコネクタに固定して接続するための 第 2接続部となり、銀電極 16の間に位置するアルミニウム電極 14はインターコネクタ に接続されない第 2非接続部 14aとなる。なお、半導体基板としての p型シリコン基板 10の第 2主面は、半導体基板としての p型シリコン基板 10の第 1主面の反対側の主 面となる。
[0027] また、図 35に示すように、特許文献 1に記載のインターコネクタを用いた太陽電池 ストリングにおいては、太陽電池の受光面の第 1接続部 51に半田などによって固定さ れて接続されたインターコネクタ 31が、隣接する他の太陽電池の裏面の銀電極 16に 半田などによって固定されて接続されている。なお、図 35においては、 n+層、 p+層 および反射防止膜の記載は省略されて 、る。
[0028] また、図 35および図 36に示すように、インターコネクタ 31の小断面積部 41は、太 陽電池の内側領域 43および第 2非接続部 14aにそれぞれ配置されており、インター コネクタ 31の小断面積部 41は半田などによって固定されていない。したがって、イン ターコネクタ 31に引張り応力が加えられたときに他の部分と比べて比較的強度の弱 い小断面積部 41が自由に延伸することができるために、太陽電池の反りを低減する ことができる。
[0029] し力しながら、この太陽電池ストリングにおいては、インターコネクタ接続後の冷却 工程において太陽電池に反りが生じた際に、その反りに起因して、太陽電池ストリン グを構成する太陽電池の受光面の第 1接続部 51と内側領域 43との界面部分におい て太陽電池に割れが生じることがあつたため、その改善が望まれていた。
[0030] 上記の事情に鑑みて、本発明の目的は、インターコネクタ接続後の冷却工程にお いて太陽電池に反りが生じた際の太陽電池の割れの発生を低減することができる太 陽電池、太陽電池ストリングおよび太陽電池モジュールを提供することにある。
課題を解決するための手段
[0031] 本発明は、光電変換部を有する半導体基板と、半導体基板の第 1主面上に形成さ れた第 1の電極と、第 1主面上において第 1の電極に接続されている第 2の電極と、を 備え、第 1の電極は、インターコネクタに接続するための複数の第 1接続部と、インタ 一コネクタに接続されない第 1非接続部と、を含み、第 1非接続部は、第 1接続部の 間に配置されて、第 1接続部同士を電気的に接続しており、第 1接続部と第 1非接続 部とが 90° よりも大きく 180° よりも小さい角度を為して接合している太陽電池である
[0032] ここで、本発明の太陽電池においては、第 1非接続部は第 1接続部の端面力も伸 びていてもよい。
[0033] また、本発明の太陽電池においては、第 1非接続部は第 1接続部の側面から伸び ていてもよい。
[0034] また、本発明の太陽電池においては、第 1非接続部は直線部の組み合わせ力もな つていてもよい。
[0035] また、本発明の太陽電池においては、第 1非接続部は弧状部を含んでいてもよい。
また、本発明の太陽電池においては、第 1非接続部の断面積が第 1接続部の断面 積の 1Z2以下であることが好まし 、。 [0036] また、本発明の太陽電池においては、半導体基板の第 1主面とは反対側の第 2主 面上に、インターコネクタに接続するための第 2接続部と、インターコネクタに接続さ れな 、第 2非接続部と、が交互に形成されて!、てもよ!/、。
[0037] また、本発明の太陽電池においては、第 1接続部と第 2接続部とが半導体基板に 関して対称に位置する部分を含むことが好ま 、。
[0038] また、本発明は、上記の太陽電池が複数接続された太陽電池ストリングであって、 互いに隣接する太陽電池にお 、て、第 1の太陽電池の第 1接続部と第 2の太陽電池 の第 2接続部とがインターコネクタによって電気的に接続されている太陽電池ストリン グである。
[0039] ここで、本発明の太陽電池ストリングにおいて、インターコネクタは、第 1の太陽電池 と第 2の太陽電池との間で屈曲して 、てもよ 、。
[0040] また、本発明の太陽電池ストリングにおいては、第 1非接続部の側面と第 1接続部 の端面のそれぞれに隣接する内側領域に対応する箇所および第 2非接続部に対応 する箇所の少なくとも 1箇所に、インターコネクタの断面積が局部的に縮小された小 断面積部が配置されて 、ることが好ま 、。
[0041] また、本発明は、上記の太陽電池ストリングが封止材によって封止されてなる、太陽 電池モジュールである。
[0042] また、本発明の太陽電池においては、第 1主面の端部に隣接する第 1接続部の少 なくとも 1つが第 1主面の端部力も離れて設置されていてもよい。
[0043] また、本発明の太陽電池においては、第 1非接続部の側面と第 1接続部の端面の それぞれに隣接する内側領域の表面形状が、第 1接続部側の先端部が弧状となる 形状であることが好ましい。
[0044] また、本発明の太陽電池においては、内側領域の表面形状が、円状、楕円状また はトラック状であることが好まし 、。
[0045] また、本発明の太陽電池においては、半導体基板の第 1主面とは反対側の第 2主 面上に、インターコネクタに接続するための第 2接続部と、インターコネクタに接続さ れな 、第 2非接続部と、が交互に形成されて!、ることが好ま U、。
[0046] また、本発明の太陽電池においては、第 1接続部と第 1非接続部との配列方向に おける内側領域の長さが、内側領域に半導体基板を挟んで向かい合う第 2非接続部 の第 2接続部と第 2非接続部との配列方向における長さよりも短くてもよい。
[0047] また、本発明の太陽電池は、内側領域が形成されている位置の半導体基板に関し て対称となる位置に第 2非接続部が形成されて 、な 、部分を含んで 、てもよ!/、。
[0048] また、本発明は、上記の太陽電池が複数接続された太陽電池ストリングであって、 互いに隣接する太陽電池にお 、て、第 1の太陽電池の第 1接続部と第 2の太陽電池 の第 2接続部とがインターコネクタによって電気的に接続されている太陽電池ストリン グである。
[0049] ここで、本発明の太陽電池ストリングにおいては、内側領域に対応する箇所および 第 2非接続部に対応する箇所の少なくとも 1箇所に、インターコネクタの断面積が局 部的に縮小された小断面積部が配置されていることが好ましい。
[0050] さらに、本発明は、上記の太陽電池ストリングが封止材によって封止されてなる、太 陽電池モジュールである。
発明の効果
[0051] 本発明によれば、インターコネクタ接続後の冷却工程において太陽電池に反りが 生じた際の太陽電池の割れの発生を低減することができる太陽電池、太陽電池ストリ ングおよび太陽電池モジュールを提供することができる。
図面の簡単な説明
[0052] [図 1]本発明の太陽電池の受光面となる p型シリコン基板の第 1主面上に形成される 電極の形状の一例の模式的な平面図である。
[図 2]図 1に示す第 1非接続部の近傍の模式的な拡大平面図である。
[図 3]本発明の太陽電池の裏面となる第 2主面上に形成される電極の形状の一例の 模式的な平面図である。
[図 4]図 1に示す形状の受光面の電極および図 3に示す形状の裏面の電極を有する 太陽電池を直列に接続して形成された本発明の太陽電池ストリングの一例の模式的 な断面図である。
[図 5]図 4に示す太陽電池ストリングを受光面側力 見たときの模式的な拡大平面図 である。 圆 6]本発明の太陽電池の第 1主面上に形成されるノ スバー電極の第 1非接続部の 近傍の他の一例の模式的な拡大平面図である。
圆 7]本発明の太陽電池の第 1主面上に形成されるノ スバー電極の第 1非接続部の 近傍の他の一例の模式的な拡大平面図である。
圆 8]本発明の太陽電池の第 1主面上に形成されるノ スバー電極の第 1非接続部の 近傍の他の一例の模式的な拡大平面図である。
圆 9]本発明の太陽電池の第 1主面上に形成されるノ スバー電極の第 1非接続部の 近傍の他の一例の模式的な拡大平面図である。
圆 10]本発明の太陽電池の第 1主面上に形成されるバスバー電極の第 1非接続部の 近傍の他の一例の模式的な拡大平面図である。
[図 11]図 1に示す形状の受光面の電極に、図 5に示されたインターコネクタとは異な る形状のインターコネクタを電気的に接続した状態の一例の模式的な拡大平面図で ある。
[図 12]図 11に示すインターコネクタを用いて、図 1に示す形状の受光面の電極およ び図 3に示す形状の裏面の電極を有する複数の太陽電池を直列に電気的に接続し て構成された太陽電池ストリングの一例の模式的な断面図である。
圆 13]本発明の太陽電池の一例の第 1主面としての受光面の模式的な平面図である
[図 14]図 13に示す太陽電池の第 2主面としての裏面の模式的な平面図である。
[図 15]図 13および図 14の XV— XVに沿った模式的な断面図である。
圆 16]本発明の太陽電池の他の一例の第 1主面としての受光面の模式的な平面図 である。
[図 17]図 16に示す太陽電池の第 2主面としての裏面の模式的な平面図である。
[図 18]図 16および図 17の XVIII— XVIIIに沿った模式的な断面図である。
[図 19]本発明の太陽電池ストリングに用いられるインターコネクタの一例の模式的な 平面図である。
[図 20]本発明に用いられるインターコネクタの他の一例の模式的な平面図である。
[図 21]本発明に用いられるインターコネクタの他の一例の模式的な平面図である。 [図 22]本発明に用いられるインターコネクタの他の一例の模式的な平面図である。
[図 23]図 13に示す受光面および図 14に示す裏面を有する太陽電池を直列に接続 した本発明の太陽電池ストリングの一例の模式的な断面図である。
[図 24]図 23に示す太陽電池ストリングを受光面側から見たときの模式的な拡大平面 図である。
[図 25]本発明に用いられるインターコネクタの他の一例の模式的な平面図である。
[図 26]従来の太陽電池の一例の模式的な断面図である。
[図 27]従来の太陽電池の製造方法の一例を図解するための図である。
[図 28]従来の太陽電池モジュールの製造方法の一例を図解するための図である。
[図 29]図 26に示す太陽電池の受光面となる p型シリコン基板の第 1主面上に形成さ れた銀電極の形状を示す模式的な平面図である。
[図 30]図 26に示す太陽電池の裏面となる p型シリコン基板の第 2主面上に形成され たアルミニウム電極と銀電極の形状を示す模式的な平面図である。
[図 31]図 26に示す構成の太陽電池を直列に接続した太陽電池ストリングの模式的な 断面図である。
[図 32]太陽電池の受光面の電極の形状の一例の模式的な平面図である。
[図 33]図 32に示す受光面の電極の第 1非接続部の近傍の模式的な拡大平面図で ある。
[図 34]太陽電池の裏面の電極の形状の一例の模式的な平面図である。
[図 35]特許文献 1に記載のインターコネクタを用いて図 32および図 33に示す形状の 受光面の電極および図 34に示す形状の裏面の電極を有する太陽電池を接続した 太陽電池ストリングの一例の模式的な断面図である。
[図 36]図 35に示す太陽電池ストリングの受光面の模式的な拡大平面図である。 符号の説明
10 p型シリコン基板、 11 n+層、 12 反射防止膜、 13 銀電極、 13a バスバー 電極、 13b フィンガー電極、 14 アルミニウム電極、 14a 第 2非接続部、 15 p+層 、 16 銀電極、 17 シリコンインゴッド、 18 シリコンブロック、 19 ダメージ層、 20 ド 一パント液、 30 太陽電池、 31 インターコネクタ、 33 配線材、 34 太陽電池ストリ ング、 35 ガラス板、 36 EVAフィルム、 37 バックフィルム、 38 端子ボックス、 39 ケーブル、 40 アルミニウム枠、 41 小断面積部、 42 第 1非接続部、 43 内側領域 、 51 第 1接続部、 80 第 1の太陽電池、 81 第 2の太陽電池。
発明を実施するための最良の形態
[0054] 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同 一の参照符号は、同一部分または相当部分を表わすものとする。
[0055] 図 1に、本発明の太陽電池の受光面となる p型シリコン基板 10の第 1主面上に形成 される電極の形状の一例の模式的な平面図を示す。ここで、第 1主面上に形成され る電極は、紙面の左右方向に伸びる比較的幅の広い第 1の電極としてのバスバー電 極 13aと、バスバー電極 13aから紙面の上下方向に伸びる複数の比較的幅の狭い第 2の電極としての線状のフィンガー電極 13bとを含んでいる。なお、図 1においては、 バスバー電極 13aとフィンガー電極 13bとは直交している力 それらの位置関係は適 宜変更することができる。
[0056] また、バスバー電極 13aは、インターコネクタに固定されかつ電気的に接続される 線状の第 1接続部 51と、インターコネクタに接続されない第 1非接続部 42とを含んで いる。そして、第 1接続部 51と第 1非接続部 42とはバスバー電極 13aの長手方向に 沿って交互に配列されている。また、図 1に示す受光面の電極は、 p型シリコン基板 1 0の第 1主面の端部に隣接する第 1接続部 51の少なくとも 1つが第 1主面の端部から 離れて設置されるように構成されて ヽる。
[0057] 図 2に、図 1に示す第 1非接続部 42の近傍の模式的な拡大平面図を示す。図 2に 示すように、第 1非接続部 42は、隣接する第 1接続部 51同士を電気的に接続してい る。また、第 1主面上には、第 1接続部 51の端面と第 1非接続部 42の側面にそれぞ れ隣接する空隙部である内側領域 43も形成されている。また、第 1非接続部 42は第 1接続部 51の側面力も伸びており、第 1非接続部 42と第 1接続部 51とが為す角度 α は約 150° であり、 90° よりも大きく 180° よりも/ J、さくなつている。
[0058] 本発明の太陽電池においては、第 1非接続部 42と第 1接続部 51との為す角度 α を 90° よりも大きく 180° よりも小さくする構成とすることによって、インターコネクタ接 続後の冷却工程において太陽電池に反りが生じた際に、その反りに起因して、太陽 電池ストリングを構成する太陽電池の受光面の第 1接続部 51と内側領域 43との界面 部分において太陽電池に割れが発生するのを低減することができる。
[0059] その理由は定かではないが、第 1非接続部 42と第 1接続部 51とが 90° よりも大きく 180° よりも小さい角度で接合することによって、インターコネクタ接続後の冷却工程 において太陽電池に反りが生じた際に、太陽電池の第 1接続部 51と内側領域 43と の界面部分が受ける応力が分散されることによるものと推測される。
[0060] また、上記の構成を有する本発明の太陽電池の内側領域 43の長さ (第 1接続部 51 と第 1非接続部 42との配列方向の長さ)と、図 32および図 33に示す形状の受光面の 電極の内側領域 43の長さ (第 1接続部 51と第 1非接続部 42との配列方向の長さ)と が同一であると仮定した場合、本発明の太陽電池の第 1非接続部 42の全長の最短 距離は、図 32および図 33に示す形状の受光面の電極における第 1非接続部 42の 全長の最短距離よりも短くなる。
[0061] したがって、内側領域 43の長さが同一である場合には、本発明の太陽電池の第 1 非接続部 42の全長が、図 32および図 33に示す形状の受光面の電極における第 1 非接続部 42の全長よりも短くなるため、本発明の太陽電池の第 1非接続部 42におけ る電気抵抗値は、図 32および図 33に示す形状の受光面の電極の第 1非接続部 42 における電気抵抗値よりも小さくなる。
[0062] これにより、上記の構成を有する本発明の太陽電池の特性は、図 32および図 33に 示す形状の受光面の電極を有する太陽電池の特性よりも良好となる。
[0063] また、第 1非接続部 42は、インターコネクタに重ならない部分であるため、第 1非接 続部 42が設置された受光面の領域はシャドーロス領域となる。そのため、本発明の 太陽電池の第 1非接続部 42の幅と図 32および図 33に示す形状の受光面の電極を 有する太陽電池の第 1非接続部 42の幅とが同一である場合には、第 1非接続部 42 の幅が短い分だけ、本発明の太陽電池においては、図 32および図 33に示す形状の 受光面の電極を有する太陽電池と比べて、シャドーロス領域を低減することができる ようになる。
[0064] さらに、第 1非接続部 42を印刷により形成する場合には、本発明の太陽電池にお いては図 32および図 33に示す形状の受光面の電極を有する太陽電池と比べて第 1 非接続部 42の全長を短くすることができるため、その印刷時における第 1非接続部 4 2のかすれの発生を低減することができる。したがって、第 1非接続部 42に接続され ているフィンガー電極 13bから第 1接続部 51までの電気抵抗値をさらに低減すること ができる。その結果、本発明においては、特性の低い太陽電池の製造を抑えることが できるため、太陽電池の歩留まりも向上する。
[0065] なお、図 2に示す構成においては、第 1非接続部 42の幅を 0. 3mmとし、第 1接続 部 51の幅を 2. 5mmとし、フィンガー電極 13bの幅を 0. 16mmとしているが、本発明 はこれに限定されないことは言うまでもない。また、図 2に示す構成においては、第 1 非接続部 42は 3つの直線部を組み合わせて構成されているがこれに限定されるもの でもない。
[0066] 図 3に、本発明の太陽電池の裏面となる第 2主面上に形成される電極の形状の一 例の模式的な平面図を示す。
[0067] ここで、本発明の太陽電池の第 2主面のほぼ全面にアルミニウム電極 14が形成さ れており、アルミニウム電極 14の形成箇所以外の部分にインターコネクタに接続され る第 2接続部としての直線状の銀電極 16が紙面の左右方向に伸びるように形成され ている。また、隣接する銀電極 16の間に位置するアルミニウム電極 14がインターコネ クタに接続されない第 2非接続部 14aとなる。そして、第 2接続部としての銀電極 16と 第 2非接続部 14aとは交互に配列されている。
[0068] 図 4に、図 1に示す形状の受光面の電極および図 3に示す形状の裏面の電極を有 する太陽電池を直列に接続して形成された本発明の太陽電池ストリングの一例の模 式的な断面図を示す。また、図 5に、図 4に示す太陽電池ストリングを受光面側力 見 たときの模式的な拡大平面図を示す。なお、図 4においては、 p型シリコン基板 10に 形成される n+層、 p+層および反射防止膜の記載は、説明の便宜のために、省略され ている。
[0069] ここで、本発明の太陽電池ストリングにおいては、互いに隣接する太陽電池におい て、第 1の太陽電池 80の第 1接続部 51と第 2の太陽電池 81の第 2接続部としての銀 電極 16とが、半田などによって、インターコネクタ 31に固定され、かつ電気的に接続 されている。なお、本発明において、インターコネクタは、導電性を有する部材であれ ば、その形状および材質は特に限定されない。
[0070] また、図 4に示すように、本発明の太陽電池は、第 1接続部 51と第 2接続部としての 銀電極 16とは、半導体基板としての p型シリコン基板 10に関して対称に位置している
[0071] 以上のような構成を有する本発明の太陽電池ストリングにおいては、太陽電池の受 光面の内側領域 43および裏面の第 2非接続部 14aの部分において、インターコネク タ 31は固定されていない。
[0072] したがって、本発明の太陽電池ストリングを製造する過程におけるインターコネクタ 31の接続後の冷却工程において、インターコネクタ 31と太陽電池との熱膨張係数差 に起因して太陽電池に発生する内部応力を内側領域 43および第 2非接続部 14aに ぉ 、て固定されて ヽな 、インターコネクタの部分で緩和することができるため、太陽 電池ストリングを構成する太陽電池の反りを低減することができる。
[0073] また、本発明の太陽電池ストリングにおいては、インターコネクタ 31が固定されてい る第 1接続部 51と第 2接続部としての銀電極 16とが半導体基板としての p型シリコン 基板 10に関して対称に配置されているため、太陽電池とインターコネクタ 31との熱 膨張係数差に起因して太陽電池に発生する内部応力を太陽電池の受光面と裏面と でほぼ等しくすることができる。したがって、太陽電池ストリングを構成する太陽電池 の反りをさらに低減することができる。
[0074] そして、本発明の太陽電池ストリングは、図 1に示す形状の受光面の電極および図 3に示す形状の裏面の電極を有する太陽電池によって構成されているため、上述し たように、これらの太陽電池の受光面の第 1接続部 51と内側領域 43との界面部分に おいて太陽電池に割れが発生するのを低減することができる。
[0075] 図 6に、本発明の太陽電池の第 1主面上に形成されるバスバー電極 13aの第 1非 接続部 42の近傍の他の一例の模式的な拡大平面図を示す。ここで、図 6に示す構 成においては、第 1非接続部 42と第 1接続部 51とが為す角度 αは約 135° であり、 図 2に示す場合 (約 150° )よりも小さくなつており、第 1非接続部 42は第 1接続部 51 の側面力も伸びていることに特徴がある。図 6に示す構成においては、第 1接続部 51 の幅とインターコネクタ 31との幅を同一とした場合でも、第 1非接続部 42とインターコ ネクタ 31とが固定されず、太陽電池のバスバー電極 13aとインターコネクタ 31との接 続領域を小さくすることができるため、太陽電池ストリングを構成する太陽電池の反り をより低減することができる傾向にある。
[0076] 図 7に、本発明の太陽電池の第 1主面上に形成されるバスバー電極 13aの第 1非 接続部 42の近傍の他の一例の模式的な拡大平面図を示す。ここで、図 7に示す構 成においては、第 1非接続部 42と第 1接続部 51とが為す角度 αは約 150° であり、 第 1非接続部 42は第 1接続部 51の端面力も伸びていることに特徴がある。図 7に示 す構成においては、第 1接続部 51の幅よりもインターコネクタ 31の幅を小さくした場 合に、第 1非接続部 42とインターコネクタ 31とが固定されない傾向にあり、太陽電池 のバスバー電極 13aとインターコネクタ 31との接続領域を小さくすることができるため 、太陽電池ストリングを構成する太陽電池の反りをより低減することができる傾向にあ る。
[0077] 図 8に、本発明の太陽電池の第 1主面上に形成されるバスバー電極 13aの第 1非 接続部 42の近傍の他の一例の模式的な拡大平面図を示す。ここで、図 8に示す構 成においては、第 1非接続部 42は弧状部を含んで構成されており、第 1接続部 51の 側面力も伸びていることに特徴がある。図 8に示す構成においては、第 1接続部 51の 幅とインターコネクタ 31との幅を同一とした場合でも、第 1非接続部 42とインターコネ クタ 31とが固定されず、太陽電池のバスバー電極 13aとインターコネクタ 31との接続 領域を小さくすることができるため、太陽電池ストリングを構成する太陽電池の反りを より低減することができる傾向にある。なお、図 8に示す構成においても、第 1非接続 部 42と第 1接続部 51とが為す角度ひは 90° よりも大きく 180° よりも小さくなつてい ることは明らかである。
[0078] 図 9に、本発明の太陽電池の第 1主面上に形成されるバスバー電極 13aの第 1非 接続部 42の近傍の他の一例の模式的な拡大平面図を示す。ここで、図 9に示す構 成においては、第 1非接続部 42は弧状部を含んで構成されており、第 1接続部 51の 端面力も伸びていることに特徴がある。図 9に示す構成においては、第 1接続部 51の 幅よりもインターコネクタ 31の幅を小さくした場合に、第 1非接続部 42とインターコネ クタ 31とが固定されない傾向にあり、太陽電池のバスバー電極 13aとインターコネク タ 31との接続領域を小さくすることができるため、太陽電池ストリングを構成する太陽 電池の反りをより低減することができる傾向にある。なお、図 9に示す構成においても 、第 1非接続部 42と第 1接続部 51とが為す角度 αは 90° よりも大きく 180° よりも小 さくなつていることは明らかである。
[0079] 図 10に、本発明の太陽電池の第 1主面上に形成されるバスバー電極 13aの第 1非 接続部 42の近傍の他の一例の模式的な拡大平面図を示す。ここで、図 10に示す構 成においては、第 1非接続部 42の幅は、図 2に示す構成の場合 (0. 3mm)の 2倍の 0. 6mmとなっていることに特徴がある。図 10に示す構成においては、第 1非接続部 42の幅が太くなつていることから第 1非接続部 42における電気抵抗値の低減を図る ことができる傾向にある。
[0080] ただし、第 1非接続部 42の断面積 (第 1非接続部 42の長手方向に直交する方向の 断面の断面積)が第 1接続部 51の断面積 (第 1接続部 51の長手方向に直交する方 向の断面の断面積)の 1Z2よりも大きくなる場合には、第 1非接続部 42を設けずに 第 1接続部 51のみでバスバー電極 13aを構成した場合と比べて電極材料使用量の 低減を図ることができないため、第 1非接続部 42の断面積 (第 1非接続部 42の長手 方向に直交する方向の断面の断面積)は第 1接続部 51の断面積 (第 1接続部 51の 長手方向に直交する方向の断面の断面積)の 1Z2以下であることが好ま 、。
[0081] なお、図 10に示す構成においても、第 1非接続部 42と第 1接続部 51とが為す角度 αは約 150。 である。
[0082] 図 11に、図 1に示す形状の受光面の電極に、図 5に示されたインターコネクタとは 異なる形状のインターコネクタを電気的に接続した状態の一例の模式的な拡大平面 図を示す。ここで、図 11に示されたインターコネクタ 31には、小さな切れ込みが設け られており、これにより小断面積部 41が構成されている。そして、図 11においては、 インターコネクタ 31の小断面積部 41が内側領域 43に対応する箇所に配置されて ヽ る。なお、本発明において、「小断面積部」とは、インターコネクタにおいて、インター コネクタの長手方向に直交する断面の面積が局部的に小さくなつている部分のことを いう。
[0083] 図 12に、図 11に示すインターコネクタ 31を用いて、図 1に示す形状の受光面の電 極および図 3に示す形状の裏面の電極を有する複数の太陽電池を直列に電気的に 接続して構成された太陽電池ストリングの一例の模式的な断面図を示す。
[0084] 図 12に示す太陽電池ストリングは、互いに隣接する第 1の太陽電池 80の第 1接続 部 51と第 2の太陽電池 81の第 2接続部としての銀電極 16とがインターコネクタ 31に よって電気的に接続されて構成されている。ここで、インターコネクタ 31は第 1の太陽 電池 80と第 2の太陽電池 81との間で屈曲している。また、インターコネクタ 31の小断 面積部 41は、内側領域 43に対応するすべての箇所および第 2非接続部 14aに対応 するすべての箇所に配置されて!、る。
[0085] このように、インターコネクタ 31の小断面積部 41が内側領域 43に対応する箇所お よび第 2非接続部 14aに対応する箇所の少なくとも 1箇所、好ましくはすべての箇所 に配置されるようにインターコネクタ 31を接続することによって、上述した応力の低減 効果に加えて、インターコネクタ 31の他の部分と比べて比較的強度が弱い小断面積 部 41が延伸してさらに応力が緩和する効果が加わることになる。すなわち、インター コネクタ 31の小断面積部 41が内側領域 43および第 2非接続部 14aにそれぞれ配置 された場合には、小断面積部 41は固定されていないフリーな状態となっているため、 自由に変形することができ、延伸による応力緩和効果を十分に発揮することができる 。したがって、この場合には、インターコネクタ接続後の冷却工程において太陽電池 に生じる反りに起因する太陽電池の受光面の第 1接続部 51と内側領域 43との界面 部分における太陽電池の割れの発生を大幅に低減することができる。
[0086] 図 13に、本発明の太陽電池の一例の第 1主面としての受光面の模式的な平面図 を示す。この太陽電池は p型シリコン基板 10の材質として p型の単結晶シリコンが用 いられており、太陽電池の受光面となる p型シリコン基板 10の第 1主面においては、 紙面の上下方向に伸びる比較的幅の広い線状のバスバー電極 13aと、バスバー電 極 13aから紙面の左右方向に伸びる複数の幅の狭い線状のフィンガー電極 13bとを 含んでいる。
[0087] また、バスバー電極 13aは、インターコネクタに固定されかつ電気的に接続される 第 1接続部 51と、インターコネクタに接続されない第 1非接続部 42とを含んでいる。 そして、第 1接続部 51と第 1非接続部 42とはバスバー電極 13aの長手方向に沿って 交互に配列されている。また、図 13に示す受光面の電極は、 p型シリコン基板 10の 第 1主面の端部に隣接する第 1接続部 51の少なくとも 1つが第 1主面の端部力 離 れて設置されるように構成されて 、る。
[0088] また、第 1非接続部 42は第 1接続部 51の側面から伸びており、第 1非接続部 42と 第 1接続部 51とが為す角度 αは 90° よりも大きく 180° よりも小さくなつている。さら に、第 1主面上には、第 1接続部 51の端面と第 1非接続部 42の側面にそれぞれ隣接 する空隙部である内側領域 43も形成されて ヽる。
[0089] 図 14に、図 13に示す太陽電池の第 2主面としての裏面の模式的な平面図を示す 。本発明の太陽電池の裏面となる ρ型シリコン基板 10の第 2主面においては、インタ 一コネクタに接続するための第 2接続部としての銀電極 16と、インターコネクタに接 続されない第 2非接続部 14aとが交互に形成されている。ここで、第 2非接続部 14a は、第 2接続部としての銀電極 16の長手方向に隣接する銀電極 16の間のアルミ-ゥ ム電極 14からなつている。
[0090] ここで、この太陽電池は、図 13に示すように、内側領域 43の表面形状力 第 1接続 部 51側の先端部が弧状になっているトラック状 (両端に弧状部を有し、その弧状部が 2本の直線で結ばれて ヽる形状)になって!/ヽることに特徴がある。
[0091] これは、本発明者が鋭意検討した結果、第 1接続部 51と内側領域 43との界面部分 を弧状にすることによって、太陽電池ストリングの製造時におけるインターコネクタ接 続後の冷却工程において太陽電池に反りが生じた際に、その反りに起因して、太陽 電池の受光面の第 1接続部 51と内側領域 43との界面部分における太陽電池の割れ が発生するのを低減できることを見いだしたことによるものである。その理由は定かで はないが、内側領域 43の表面形状の先端部を弧状とすることによって、インターコネ クタ接続後の冷却工程において太陽電池に反りが生じた際に太陽電池の第 1接続 部 51と内側領域 43との界面部分が受ける応力が分散されることによるものと推測さ れる。
[0092] また、図 15に、図 13および図 14の XV— XVに沿った模式的な断面を示す。たとえ ば図 13〜図 15に示すように、本発明においては、第 1接続部 51と第 1非接続部 42 との配列方向(図 1の紙面の上下方向)における内側領域 43の長さ L1が、その内側 領域 43に向かい合う第 2非接続部 14aの、第 2接続部と第 2非接続部 14aとの配列 方向(図 2の紙面の上下方向)における長さ L2よりも短いことが好ましい。
[0093] これは、本発明者が鋭意検討した結果、内側領域 43の長さ L1をその内側領域 43 に p型シリコン基板 10を挟んで向かい合つている第 2非接続部 14aの長さ L2よりも短 くすることによって、太陽電池ストリングを構成する太陽電池の受光面の第 1接続部 5 1と内側領域 43との界面の割れの発生をさらに低減することができることを見いだし たこと〖こよるものである。これは、内側領域 43よりも長い第 2非接続部 14aを構成する アルミニウムが補強効果を有するため、インターコネクタ接続後の冷却工程において 太陽電池に反りが生じた際の太陽電池の受光面の第 1接続部 51と内側領域 43との 界面部分における太陽電池の割れの発生をさらに低減できるものと考えられる。
[0094] なお、上記の効果を得るためには、内側領域 43と第 2非接続部 14aの少なくとも 1 組力 ¾型シリコン基板 10を挟んで互いに向力 、合っており、その向か 、合って 、る内 側領域 43と第 2非接続部 14aの組のうち少なくとも 1組において、内側領域 43の長さ L1が第 2非接続部 14aの長さ L2よりも短くなつていればよい。
[0095] また、本発明においては、図 15の右端に示すように、内側領域 43が形成されてい る位置の p型シリコン基板 10に関して対称となる位置に第 2非接続部 14aが形成され て!ヽな!、部分を含んで!/、てもよ!/、。
[0096] 図 16に本発明の太陽電池の他の一例の第 1主面としての受光面の模式的な平面 図を示し、図 17に図 16に示す太陽電池の第 2主面としての裏面の模式的な平面図 を示す。また、図 18に図 16および図 17の XVIII— XVIIIに沿った模式的な断面を示 す。この太陽電池は、 p型シリコン基板 10の材質として p型の多結晶シリコンが用いら れていることに特徴がある。その他の説明は上記と同様である。
[0097] 図 19に、本発明の太陽電池ストリングに用いられるインターコネクタの一例の模式 的な平面図を示す。ここで、インターコネクタ 31は、インターコネクタ 31の長手方向に 垂直な断面の断面積が局所的に小さくなつている複数の小断面積部 41を有してい る。
[0098] また、図 20〜図 22のぞれぞれに、本発明に用いられるインターコネクタの他の一 例の模式的な平面図を示す。これらのインターコネクタ 31についてもそれぞれ、イン ターコネクタ 31の断面積が局部的に縮小された小断面積部 41を有している。
[0099] 図 23に、図 13に示す受光面および図 14に示す裏面を有する太陽電池を直列に 接続した本発明の太陽電池ストリングの一例の模式的な断面図を示し、図 24に、図 23に示す太陽電池ストリングを受光面側力 見たときの模式的な拡大平面図を示す
[0100] ここで、 1本の導電性部材カもなるインターコネクタ 31の一端が第 1の太陽電池 80 の第 1接続部 51と固定されて接続されており、そのインターコネクタ 31の他端が第 2 の太陽電池 81の第 2接続部としての銀電極 16と固定されて接続されている。また、ィ ンターコネクタ 31は、インターコネクタ 31の小断面積部 41が第 1の太陽電池 80の受 光面の内側領域 43および第 2の太陽電池 81の裏面の第 2非接続部 14aに配置され ており、太陽電池の内側領域 43および第 2非接続部 14aはそれぞれインターコネク タ 31に固定されておらず、接続されていない。なお、インターコネクタ 31は、第 1の太 陽電池 80と第 2の太陽電池 81との間において屈曲している。また、図 23においては 、反射防止膜の記載は省略されている。
[0101] 本発明の太陽電池ストリングにおいては、太陽電池の内側領域 43の表面形状の第 1接続部 51側の先端部が弧状となっていることから、図 32および図 33に示す内側領 域 43の表面形状の第 1接続部 51側の先端部が弧状となっていないものと比べて、ィ ンターコネクタ接続後の冷却工程において太陽電池に反りが生じた際の太陽電池の 受光面の第 1接続部 51と内側領域 43との界面部分における太陽電池の割れの発生 を低減することができる。
[0102] このような構成の本発明の太陽電池ストリングにおいては、太陽電池の第 1非接続 部 42、内側領域 43および第 2非接続部 14aはそれぞれインターコネクタ 31に接続さ れていないことから、インターコネクタ 31と太陽電池の第 1接続部 51および第 2接続 部である銀電極 16との接続長さを低減することができる。このようにインターコネクタ 3 1と太陽電池の第 1接続部 51および第 2接続部である銀電極 16との接続長さを低減 した場合には、インターコネクタ 31と太陽電池を構成する p型シリコン基板 10との熱 膨張係数差により発生する応力を低減することができるため、インターコネクタ接続後 の冷却工程にぉ 、て太陽電池に生じる反りに起因する太陽電池の受光面の第 1接 続部 51と内側領域 43との界面部分における太陽電池の割れの発生をさらに低減す ることがでさる。
[0103] また、インターコネクタ 31の小断面積部 41が内側領域 43に対応する箇所および第 2非接続部 14aに対応する箇所の少なくとも 1箇所、好ましくはすべての箇所に配置 されるようにインターコネクタ 31を接続することによって、上述した応力の低減効果に 加えて、インターコネクタ 31の他の部分と比べて比較的強度が弱い小断面積部 41 が延伸してさらに応力が緩和する効果が加わることになる。すなわち、インターコネク タ 31の小断面積部 41が内側領域 43および第 2非接続部 14aにそれぞれ配置され た場合には、小断面積部 41は固定されていないフリーな状態となっているため、自 由に変形することができ、延伸による応力緩和効果を十分に発揮することができる。 したがって、この場合には、インターコネクタ接続後の冷却工程において太陽電池に 生じる反りに起因する太陽電池の受光面の第 1接続部 51と内側領域 43との界面部 分における太陽電池の割れの発生を大幅に低減することができる。
[0104] 上記においては、図 19に示すインターコネクタを用いて太陽電池ストリングを形成 したが、小断面積部 41が互いの間隔を等間隔にして形成されている図 25の模式的 な平面図に示すようなインターコネクタ 31を用いて太陽電池ストリングを形成すること もできる。このような互いに隣接する小断面積部 41の間隔を等間隔としたインターコ ネクタを用いて太陽電池ストリングを形成した場合には小断面積部 41の形成がより容 易となるため、太陽電池ストリングの製造コストが低下し、太陽電池ストリングの生産性 を向上することができる。
[0105] また、上記で説明したような本発明の太陽電池ストリングを従来力も公知の方法によ り EVAなどの封止材に封止することによって、本発明の太陽電池モジュールを作製 することができる。
[0106] なお、上記の以外の説明は、上記の背景技術の欄における説明と同様であるが、 その説明に限定されるものではない。たとえば、本発明においては、単結晶または多 結晶の P型シリコン基板以外の半導体基板を用いてもよぐ上記の背景技術の欄の 説明の p型と n型の導電型を入れ替えてもよい。また、本発明においては、第 1接続 部、第 1非接続部および第 2接続部は必ずしも銀電極である必要はない。また、本発 明においては、第 2非接続部は必ずしもアルミニウム電極である必要がなぐ内側領 域は必ずしも空隙部である必要がな 、。
[0107] また、上記においては、内側領域 43の表面形状がトラック状である場合について説 明したが、太陽電池ストリングを構成する太陽電池の受光面の第 1接続部 51と内側 領域 43との界面部分における太陽電池の割れの発生をより低減する観点からは、内 側領域 43の表面形状は、第 1接続部 51と接する側の先端部が弧状となる円状、楕 円状またはトラック状であることが好ましい。
[0108] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。
産業上の利用可能性
[0109] 本発明によれば、インターコネクタ接続後の冷却工程において太陽電池に反りが 生じた際の太陽電池の割れの発生を低減することができる太陽電池、太陽電池ストリ ングおよび太陽電池モジュールを提供することができる。

Claims

請求の範囲
[1] 光電変換部を有する半導体基板 (10)と、
前記半導体基板(10)の第 1主面上に形成された第 1の電極(13a)と、 前記第 1主面上において前記第 1の電極(13a)に接続されている第 2の電極(13b )と、を備え、
前記第 1の電極(13a)は、インターコネクタ(31)に接続するための複数の第 1接続 部(51)と、インターコネクタ(31)に接続されな!、第 1非接続部 (42)と、を含み、 前記第 1非接続部 (42)は、前記第 1接続部 (51)の間に配置されて、前記第 1接続 部(51)同士を電気的に接続しており、
前記第 1接続部(51)と前記第 1非接続部 (42)とが 90° よりも大きく 180° よりも小 さい角度を為して接合していることを特徴とする、太陽電池。
[2] 前記第 1非接続部 (42)は前記第 1接続部(51)の端面力 伸びて 、ることを特徴と する、請求の範囲 1に記載の太陽電池。
[3] 前記第 1非接続部 (42)は前記第 1接続部(51)の側面力 伸びて 、ることを特徴と する、請求の範囲 1に記載の太陽電池。
[4] 前記第 1非接続部 (42)は直線部の組み合わせ力もなることを特徴とする、請求の 範囲 1に記載の太陽電池。
[5] 前記第 1非接続部 (42)は弧状部を含むことを特徴とする、請求の範囲 1に記載の 太陽電池。
[6] 前記第 1非接続部 (42)の断面積が前記第 1接続部(51)の断面積の 1Z2以下で あることを特徴とする、請求の範囲 1に記載の太陽電池。
[7] 前記第 1主面の端部に隣接する前記第 1接続部(51)の少なくとも 1つが前記第 1 主面の端部力 離れて設置されていることを特徴とする、請求の範囲 1に記載の太陽 電池。
[8] 前記半導体基板(10)の前記第 1主面とは反対側の第 2主面上に、インターコネク タ(31)に接続するための第 2接続部(16)と、インターコネクタ(31)に接続されない 第 2非接続部(14a)と、が交互に形成されていることを特徴とする、請求の範囲 1に 記載の太陽電池。
[9] 前記第 1接続部 (51)と前記第 2接続部(16)とが前記半導体基板 (10)に関して対 称に位置する部分を含むことを特徴とする、請求の範囲 8に記載の太陽電池。
[10] 請求の範囲 8に記載の太陽電池が複数接続された太陽電池ストリングであって、互 いに隣接する前記太陽電池において、第 1の太陽電池 (80)の前記第 1接続部(51) と第 2の太陽電池(81)の前記第 2接続部(16)とがインターコネクタ(31)によって電 気的に接続されていることを特徴とする、太陽電池ストリング。
[11] 前記インターコネクタ(31)は、前記第 1の太陽電池(80)と前記第 2の太陽電池(8 1)との間で屈曲していることを特徴とする、請求の範囲 10に記載の太陽電池ストリン グ。
[12] 前記第 1非接続部 (42)の側面と前記第 1接続部(51)の端面のそれぞれに隣接す る内側領域 (43)に対応する箇所および前記第 2非接続部(14a)に対応する箇所の 少なくとも 1箇所に、前記インターコネクタ(31)の断面積が局部的に縮小された小断 面積部 (41)が配置されていることを特徴とする、請求の範囲 10に記載の太陽電池ス トリング。
[13] 請求の範囲 10に記載の太陽電池ストリングが封止材によって封止されてなる、太陽 電池モジュール。
[14] 前記第 1非接続部 (42)の側面と前記第 1接続部(51)の端面のそれぞれに隣接す る内側領域 (43)の表面形状の第 1接続部(51)側の先端部が弧状となる形状である ことを特徴とする、請求の範囲 1に記載の太陽電池。
[15] 前記内側領域 (43)の表面形状が、円状、楕円状またはトラック状であることを特徴 とする、請求の範囲 14に記載の太陽電池。
[16] 前記半導体基板(10)の前記第 1主面とは反対側の第 2主面上に、インターコネク タ(31)に接続するための第 2接続部(16)と、インターコネクタ(31)に接続されない 第 2非接続部(14a)と、が交互に形成されていることを特徴とする、請求の範囲 14〖こ 記載の太陽電池。
[17] 前記第 1接続部(51)と前記第 1非接続部 (42)との配列方向における前記内側領 域 (43)の長さが、前記内側領域 (43)に前記半導体基板(10)を挟んで向かい合う 前記第 2非接続部(14a)の前記第 2接続部(16)と前記第 2非接続部(14a)との配列 方向における長さよりも短いことを特徴とする、請求の範囲 16に記載の太陽電池。
[18] 前記内側領域 (43)が形成されている位置の前記半導体基板(10)に関して対称と なる位置に前記第 2非接続部(14a)が形成されて!ヽな ヽ部分を含むことを特徴とす る、請求の範囲 16に記載の太陽電池。
[19] 請求の範囲 16に記載の太陽電池が複数接続された太陽電池ストリングであって、 互いに隣接する前記太陽電池において、第 1の太陽電池(80)の前記第 1接続部(5 1)と第 2の太陽電池 (81)の前記第 2接続部(16)とがインターコネクタ(31)によって 電気的に接続されていることを特徴とする、太陽電池ストリング。
[20] 前記内側領域 (43)に対応する箇所および前記第 2非接続部(14a)に対応する箇 所の少なくとも 1箇所に、前記インターコネクタ(31)の断面積が局部的に縮小された 小断面積部 (41)が配置されていることを特徴とする、請求の範囲 19に記載の太陽 電池ストリング。
[21] 請求の範囲 19に記載の太陽電池ストリングが封止材によって封止されてなる、太陽 電池モジュール。
PCT/JP2007/055171 2006-04-14 2007-03-15 太陽電池、太陽電池ストリングおよび太陽電池モジュール WO2007119365A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07738621A EP2012362A1 (en) 2006-04-14 2007-03-15 Solar cell, solar cell string and solar cell module
US12/296,748 US8440907B2 (en) 2006-04-14 2007-03-15 Solar cell, solar cell string and solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-112232 2006-04-14
JP2006112232A JP4040659B2 (ja) 2006-04-14 2006-04-14 太陽電池、太陽電池ストリング、および太陽電池モジュール
JP2006-192542 2006-07-13
JP2006192542A JP4040662B1 (ja) 2006-07-13 2006-07-13 太陽電池、太陽電池ストリングおよび太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2007119365A1 true WO2007119365A1 (ja) 2007-10-25

Family

ID=38609161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055171 WO2007119365A1 (ja) 2006-04-14 2007-03-15 太陽電池、太陽電池ストリングおよび太陽電池モジュール

Country Status (4)

Country Link
US (1) US8440907B2 (ja)
EP (1) EP2012362A1 (ja)
TW (1) TW200810137A (ja)
WO (1) WO2007119365A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011440A1 (en) * 2008-03-31 2011-01-20 Masaomi Hioki Solar cell, solar cell string and solar cell module
US20120318351A1 (en) * 2010-03-02 2012-12-20 Q-Cells Se Solar cell having a special busbar shape, solar cell arrangement containing said solar cell, and method for producing the solar cell
CN104319297A (zh) * 2014-11-07 2015-01-28 浙江晶科能源有限公司 一种太阳能电池片
EP2267794A4 (en) * 2008-02-08 2015-10-14 Sanyo Electric Co SOLAR CELL MODULE AND SOLAR CELL
US20170018665A1 (en) * 2009-03-03 2017-01-19 Lg Electronics Inc. Solar cell and method for manufacturing the same, and solar cell module

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936699A1 (en) * 2005-10-14 2008-06-25 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
ES2745079T3 (es) * 2005-10-14 2020-02-27 Sharp Kk Interconector, serie de baterías solares que usan dicho interconector
JP4986462B2 (ja) * 2006-01-27 2012-07-25 シャープ株式会社 太陽電池ストリングおよびその製造方法、ならびに、その太陽電池ストリングを用いる太陽電池モジュール
JP2009135303A (ja) * 2007-11-30 2009-06-18 Sharp Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
DE102009005168A1 (de) * 2009-01-14 2010-07-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle und Verfahren zur Herstellung einer Solarzelle aus einem Siliziumsubstrat
JP5361995B2 (ja) 2009-04-30 2013-12-04 三菱電機株式会社 太陽電池セル
ES2512016T5 (es) * 2009-06-08 2018-12-28 Auto-Kabel Management Gmbh Conector de elementos de batería
EP2299502B1 (en) * 2009-09-16 2018-07-11 Meyer Burger (Switzerland) AG Apparatus for manufacturing solar cell matrices and method for operating such apparatus
DE102010001780A1 (de) * 2010-02-10 2011-08-11 Koenen GmbH, 85521 Solarzelle, Verfahren zur Herstellung einer Solarzelle und Druckschablone zum Aufbringen einer Kontaktierung einer Solarzelle
TWI463683B (zh) * 2010-07-09 2014-12-01 Sakamoto Jun A panel, a panel manufacturing method, a solar cell module, a printing apparatus, and a printing method
KR101624989B1 (ko) * 2010-09-10 2016-05-27 주식회사 원익아이피에스 태양전지기판의 표면처리방법 및 태양전지 제조방법
KR20120062431A (ko) * 2010-12-06 2012-06-14 엘지전자 주식회사 태양전지
TWI427812B (zh) * 2010-12-31 2014-02-21 Au Optronics Corp 太陽能電池
ES2547680T5 (es) 2011-01-31 2019-06-26 Shinetsu Chemical Co Placa serigráfica para panel solar y método para imprimir un electrodo de panel solar
US20120192932A1 (en) * 2011-03-25 2012-08-02 Neo Solar Power Corp. Solar cell and its electrode structure
JP5289625B1 (ja) 2011-09-13 2013-09-11 京セラ株式会社 太陽電池モジュール
CN103178130A (zh) * 2011-12-23 2013-06-26 浚鑫科技股份有限公司 晶体硅太阳能电池的电极
EP2839502B1 (en) * 2012-04-17 2017-01-04 Global Solar Energy, Inc. Integrated thin film solar cell interconnection
CN102769059B (zh) * 2012-05-24 2015-08-05 友达光电股份有限公司 桥接太阳能电池及太阳能发电系统
JP6065009B2 (ja) * 2012-06-29 2017-01-25 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN103943695A (zh) * 2013-01-21 2014-07-23 联景光电股份有限公司 太阳能电池的电极结构
KR102053138B1 (ko) * 2013-09-27 2019-12-06 엘지전자 주식회사 태양 전지
TWI528572B (zh) * 2014-03-28 2016-04-01 茂迪股份有限公司 太陽能電池結構及其製造方法與太陽能電池模組
EP3826075B1 (en) * 2014-09-30 2022-11-02 Lg Electronics Inc. Solar cell module
KR20160038694A (ko) * 2014-09-30 2016-04-07 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
WO2016068237A1 (ja) * 2014-10-29 2016-05-06 京セラ株式会社 太陽電池モジュール
CN106057941B (zh) * 2016-08-16 2018-07-06 青岛汇智盈创知识产权运营有限公司 抗缓冲性防水型太阳能电池组件
JP6909062B2 (ja) * 2017-06-14 2021-07-28 株式会社Kelk 熱電モジュール
US10529881B2 (en) * 2018-03-01 2020-01-07 Solaero Technologies Corp. Interconnect member
US12238942B2 (en) 2019-02-18 2025-02-25 Longi Green Energy Technology Co., Ltd. Method for reducing thermomechanical stress in solar cells
US12349503B2 (en) * 2019-06-14 2025-07-01 Longi Solar Technology (Taizhou) Co., Ltd. Solar cell sheet and solar cell panel
CN210110790U (zh) * 2019-06-14 2020-02-21 泰州隆基乐叶光伏科技有限公司 一种太阳能电池片、太阳能电池板及网版

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595376A (en) * 1979-01-11 1980-07-19 Toshiba Corp Solar cell interconnector
JPS60239067A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 太陽電池素子
JPS60261161A (ja) * 1984-06-08 1985-12-24 Hitachi Ltd 半導体装置
JPS61138256U (ja) * 1985-02-15 1986-08-27
JPS6216579A (ja) * 1985-07-15 1987-01-24 Sharp Corp 太陽電池インタ−コネクタ
JPS62112381A (ja) * 1985-11-11 1987-05-23 Sharp Corp 太陽電池モジユ−ル製造方法
JPS63187657A (ja) * 1987-01-30 1988-08-03 Toshiba Corp 半導体装置の製造方法
JPH01125563U (ja) * 1988-02-22 1989-08-28
JPH02271561A (ja) * 1989-04-12 1990-11-06 Nec Corp 樹脂封止型半導体装置
JPH03262314A (ja) * 1990-03-13 1991-11-22 Toshiba Corp 弾性表面波装置
JPH0444166U (ja) * 1990-08-20 1992-04-15
JPH04342172A (ja) * 1991-05-17 1992-11-27 Mitsubishi Electric Corp 半導体装置
JPH06204510A (ja) * 1990-02-09 1994-07-22 Biophotonics Inc 光エネルギを電気エネルギに変換する光電池および光 電バッテリ
JPH06275858A (ja) * 1993-03-19 1994-09-30 Taiyo Yuden Co Ltd 光起電力モジュールとその製造方法
JPH10144943A (ja) * 1996-11-12 1998-05-29 Sharp Corp 太陽電池セルおよびその製造方法
JPH11312820A (ja) * 1998-04-28 1999-11-09 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2000114556A (ja) * 1998-09-30 2000-04-21 Sharp Corp 太陽電池およびその製造方法
JP2001135846A (ja) * 1999-11-05 2001-05-18 Honda Motor Co Ltd 太陽電池
JP2002141496A (ja) * 2000-11-02 2002-05-17 Sharp Corp 半導体基板の電極
JP2002319691A (ja) * 2001-04-23 2002-10-31 Sharp Corp 太陽電池モジュール及びその製造方法
JP2002343475A (ja) * 2001-05-21 2002-11-29 Nagano Fujitsu Component Kk Stmコネクタ及びその製造方法
JP2002359388A (ja) * 2002-05-28 2002-12-13 Kyocera Corp 太陽電池装置
JP2004134654A (ja) * 2002-10-11 2004-04-30 Sharp Corp 太陽電池モジュールの製造方法
JP2004193444A (ja) * 2002-12-13 2004-07-08 Powered Kk 半導体素子及び太陽電池
JP2005142282A (ja) 2003-11-05 2005-06-02 Sharp Corp インターコネクタ、並びに、それを用いる太陽電池ストリングおよびその製造方法、並びに、その太陽電池ストリングを用いる太陽電池モジュール
JP2005252062A (ja) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd 太陽電池装置

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966499A (en) * 1972-10-11 1976-06-29 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Solar cell grid patterns
JPS5595377A (en) 1979-01-11 1980-07-19 Toshiba Corp Solar cell interconnector
US4228315A (en) * 1979-05-04 1980-10-14 Rca Corporation Solar cell grid patterns
US4301322A (en) * 1980-04-03 1981-11-17 Exxon Research & Engineering Co. Solar cell with corrugated bus
DE3303926A1 (de) * 1983-02-05 1984-08-16 Telefunken electronic GmbH, 6000 Frankfurt Scheibenfoermige solarzelle
US4487989A (en) * 1983-07-25 1984-12-11 Atlantic Richfield Company Contact for solar cell
JPS6042854A (ja) 1983-08-18 1985-03-07 Du Pont Mitsui Polychem Co Ltd 太陽電池パネルの製造方法
JPS6115378A (ja) 1984-06-30 1986-01-23 Toshiba Corp 太陽電池の製造方法
US4590327A (en) * 1984-09-24 1986-05-20 Energy Conversion Devices, Inc. Photovoltaic device and method
JPS61107775A (ja) 1984-10-31 1986-05-26 Matsushita Electric Ind Co Ltd 太陽電池
JPS61136561A (ja) 1984-12-06 1986-06-24 Sumitomo Electric Ind Ltd 熱溶融型接着剤
JPH01198082A (ja) 1988-02-03 1989-08-09 Mitsubishi Electric Corp 太陽電池
US5034068A (en) * 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
JP2912496B2 (ja) * 1991-09-30 1999-06-28 シャープ株式会社 太陽電池モジュール
EP0630524A1 (de) * 1992-03-19 1994-12-28 SIEMENS SOLAR GmbH Klimastabiles dünnschichtsolarmodul
JP2971299B2 (ja) 1992-09-08 1999-11-02 シャープ株式会社 インターコネクタおよびインターコネクタ付電子デバイス素子
US5430616A (en) * 1992-09-08 1995-07-04 Sharp Kabushiki Kaisha Interconnector and electronic device element with the interconnector
JP2792640B2 (ja) 1992-10-30 1998-09-03 京セラ株式会社 太陽電池素子
US5733382A (en) * 1995-12-18 1998-03-31 Hanoka; Jack I. Solar cell modules and method of making same
JP3188178B2 (ja) 1996-02-07 2001-07-16 シャープ株式会社 太陽電池セルおよびその製造方法
JP3262314B2 (ja) 1996-03-22 2002-03-04 日本工機株式会社 テルミット反応熱による溶接方法及びその装置
JPH09283781A (ja) 1996-04-09 1997-10-31 Sanyo Electric Co Ltd 光起電力装置
JPH11177117A (ja) 1997-12-12 1999-07-02 Showa Shell Sekiyu Kk 太陽電池モジュール
US5972732A (en) * 1997-12-19 1999-10-26 Sandia Corporation Method of monolithic module assembly
JP3683700B2 (ja) 1998-02-27 2005-08-17 京セラ株式会社 太陽電池装置
US6156967A (en) * 1998-06-04 2000-12-05 Tecstar Power Systems, Inc. Modular glass covered solar cell array
JP2000323208A (ja) 1999-03-10 2000-11-24 Sharp Corp インターコネクタ、その形成方法およびその接合装置
JP2001044459A (ja) 1999-07-29 2001-02-16 Kyocera Corp 太陽電池
US6313396B1 (en) * 2000-05-22 2001-11-06 The Boeing Company Lightweight solar module and method of fabrication
JP2002026345A (ja) 2000-07-10 2002-01-25 Hitachi Ltd 太陽電池
JP2002353475A (ja) 2001-05-29 2002-12-06 Kyocera Corp 太陽電池素子
JP2003069055A (ja) 2001-06-13 2003-03-07 Sharp Corp 太陽電池セルとその製造方法
US6822331B2 (en) * 2001-06-14 2004-11-23 Delphi Technologies, Inc. Method of mounting a circuit component and joint structure therefor
AU2002257180A1 (en) * 2002-01-04 2003-07-30 G.T. Equipment Technologies Inc. Solar cell stringing machine
JP4342172B2 (ja) 2002-01-15 2009-10-14 大阪瓦斯株式会社 エネルギー併給システム
JP2003298095A (ja) 2002-04-02 2003-10-17 Sharp Corp 太陽電池モジュールの製造方法
US20040200522A1 (en) * 2003-03-17 2004-10-14 Kyocera Corporation Solar cell element and solar cell module
JP4050176B2 (ja) * 2003-04-04 2008-02-20 シャープ株式会社 電子写真感光体およびそれを備える画像形成装置
US7649141B2 (en) * 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
JP2005072115A (ja) 2003-08-21 2005-03-17 Sekisui Jushi Co Ltd 太陽電池モジュール
JP2005123445A (ja) 2003-10-17 2005-05-12 Canon Inc 光起電力素子および光起電力素子の製造方法
JP4224394B2 (ja) 2003-12-26 2009-02-12 シャープ株式会社 太陽電池モジュールの製造方法と太陽電池モジュールの製造装置
JP4578123B2 (ja) 2004-03-05 2010-11-10 京セラ株式会社 太陽電池モジュール
JP2005302902A (ja) 2004-04-08 2005-10-27 Sharp Corp 太陽電池及び太陽電池モジュール
JP2006089815A (ja) * 2004-09-24 2006-04-06 Tanaka Kikinzoku Kogyo Kk 太陽電池のインターコネクタ用材料
EP1936699A1 (en) * 2005-10-14 2008-06-25 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
JP4138795B2 (ja) 2005-10-14 2008-08-27 シャープ株式会社 インターコネクタ付き太陽電池セル、および、それを用いる太陽電池ストリング、ならびに、その太陽電池ストリングを用いる太陽電池モジュール
ES2745079T3 (es) * 2005-10-14 2020-02-27 Sharp Kk Interconector, serie de baterías solares que usan dicho interconector
JP4986462B2 (ja) * 2006-01-27 2012-07-25 シャープ株式会社 太陽電池ストリングおよびその製造方法、ならびに、その太陽電池ストリングを用いる太陽電池モジュール

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595376A (en) * 1979-01-11 1980-07-19 Toshiba Corp Solar cell interconnector
JPS60239067A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 太陽電池素子
JPS60261161A (ja) * 1984-06-08 1985-12-24 Hitachi Ltd 半導体装置
JPS61138256U (ja) * 1985-02-15 1986-08-27
JPS6216579A (ja) * 1985-07-15 1987-01-24 Sharp Corp 太陽電池インタ−コネクタ
JPS62112381A (ja) * 1985-11-11 1987-05-23 Sharp Corp 太陽電池モジユ−ル製造方法
JPS63187657A (ja) * 1987-01-30 1988-08-03 Toshiba Corp 半導体装置の製造方法
JPH01125563U (ja) * 1988-02-22 1989-08-28
JPH02271561A (ja) * 1989-04-12 1990-11-06 Nec Corp 樹脂封止型半導体装置
JPH06204510A (ja) * 1990-02-09 1994-07-22 Biophotonics Inc 光エネルギを電気エネルギに変換する光電池および光 電バッテリ
JPH03262314A (ja) * 1990-03-13 1991-11-22 Toshiba Corp 弾性表面波装置
JPH0444166U (ja) * 1990-08-20 1992-04-15
JPH04342172A (ja) * 1991-05-17 1992-11-27 Mitsubishi Electric Corp 半導体装置
JPH06275858A (ja) * 1993-03-19 1994-09-30 Taiyo Yuden Co Ltd 光起電力モジュールとその製造方法
JPH10144943A (ja) * 1996-11-12 1998-05-29 Sharp Corp 太陽電池セルおよびその製造方法
JPH11312820A (ja) * 1998-04-28 1999-11-09 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2000114556A (ja) * 1998-09-30 2000-04-21 Sharp Corp 太陽電池およびその製造方法
JP2001135846A (ja) * 1999-11-05 2001-05-18 Honda Motor Co Ltd 太陽電池
JP2002141496A (ja) * 2000-11-02 2002-05-17 Sharp Corp 半導体基板の電極
JP2002319691A (ja) * 2001-04-23 2002-10-31 Sharp Corp 太陽電池モジュール及びその製造方法
JP2002343475A (ja) * 2001-05-21 2002-11-29 Nagano Fujitsu Component Kk Stmコネクタ及びその製造方法
JP2002359388A (ja) * 2002-05-28 2002-12-13 Kyocera Corp 太陽電池装置
JP2004134654A (ja) * 2002-10-11 2004-04-30 Sharp Corp 太陽電池モジュールの製造方法
JP2004193444A (ja) * 2002-12-13 2004-07-08 Powered Kk 半導体素子及び太陽電池
JP2005142282A (ja) 2003-11-05 2005-06-02 Sharp Corp インターコネクタ、並びに、それを用いる太陽電池ストリングおよびその製造方法、並びに、その太陽電池ストリングを用いる太陽電池モジュール
JP2005252062A (ja) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd 太陽電池装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267794A4 (en) * 2008-02-08 2015-10-14 Sanyo Electric Co SOLAR CELL MODULE AND SOLAR CELL
US20110011440A1 (en) * 2008-03-31 2011-01-20 Masaomi Hioki Solar cell, solar cell string and solar cell module
EP2264779A4 (en) * 2008-03-31 2017-05-17 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
US20170018665A1 (en) * 2009-03-03 2017-01-19 Lg Electronics Inc. Solar cell and method for manufacturing the same, and solar cell module
US9947811B2 (en) * 2009-03-03 2018-04-17 Lg Electronics Inc. Solar cell and method for manufacturing the same, and solar cell module
US20120318351A1 (en) * 2010-03-02 2012-12-20 Q-Cells Se Solar cell having a special busbar shape, solar cell arrangement containing said solar cell, and method for producing the solar cell
CN104319297A (zh) * 2014-11-07 2015-01-28 浙江晶科能源有限公司 一种太阳能电池片

Also Published As

Publication number Publication date
TW200810137A (en) 2008-02-16
TWI345314B (ja) 2011-07-11
US20100018562A1 (en) 2010-01-28
EP2012362A1 (en) 2009-01-07
US8440907B2 (en) 2013-05-14

Similar Documents

Publication Publication Date Title
WO2007119365A1 (ja) 太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP4174545B1 (ja) 太陽電池、太陽電池の製造方法、太陽電池ストリングおよび太陽電池モジュール
JP4040659B2 (ja) 太陽電池、太陽電池ストリング、および太陽電池モジュール
WO2007043428A1 (ja) 太陽電池、インターコネクタ付き太陽電池、太陽電池ストリングおよび太陽電池モジュール
US9691925B2 (en) Light receiving element module and manufacturing method therefor
CN101288182B (zh) 太阳能电池、装备有内连线的太阳能电池、太阳能电池串列及太阳能电池模块
JP5093821B2 (ja) 配線基板付き裏面接合型太陽電池、太陽電池ストリングおよび太陽電池モジュール
JPWO2008090718A1 (ja) 太陽電池セル、太陽電池アレイおよび太陽電池モジュール
CN101981704A (zh) 太阳能电池、太阳能电池串及太阳能电池组件
JP2009043842A (ja) 太陽電池モジュール
JP5126878B2 (ja) 太陽電池の製造方法および太陽電池
JP4519080B2 (ja) 太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP4040662B1 (ja) 太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP4299772B2 (ja) 太陽電池モジュール
CN102668113B (zh) 太阳能电池模块
JP4519089B2 (ja) 太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP2007288113A (ja) 太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP4931445B2 (ja) インターコネクタ付き太陽電池、太陽電池ストリングおよび太陽電池モジュール
WO2013094556A1 (ja) 配線シート付き太陽電池セル、太陽電池モジュールおよび太陽電池セルの製造方法
JP2013093610A (ja) 太陽電池構造体および太陽電池モジュール
JP5019777B2 (ja) インターコネクタ付き太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP5447303B2 (ja) 太陽電池モジュール
JP2007165785A (ja) インターコネクタ付き太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP5196418B2 (ja) インターコネクタ付き太陽電池および太陽電池モジュール
US20130104976A1 (en) Solar cell with interconnection sheet, solar cell module, and method for manufacturing solar cell with interconnection sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007738621

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12296748

Country of ref document: US