[go: up one dir, main page]

WO2008066165A1 - Jeu d'amorces pour l'amplification du gène sult1a1, réactif pour l'amplification du gène sult1a1 comprenant ledit jeu d'amorces et utilisation du réactif - Google Patents

Jeu d'amorces pour l'amplification du gène sult1a1, réactif pour l'amplification du gène sult1a1 comprenant ledit jeu d'amorces et utilisation du réactif Download PDF

Info

Publication number
WO2008066165A1
WO2008066165A1 PCT/JP2007/073208 JP2007073208W WO2008066165A1 WO 2008066165 A1 WO2008066165 A1 WO 2008066165A1 JP 2007073208 W JP2007073208 W JP 2007073208W WO 2008066165 A1 WO2008066165 A1 WO 2008066165A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
probe
sult1a1
amplification
oligonucleotide
Prior art date
Application number
PCT/JP2007/073208
Other languages
English (en)
French (fr)
Inventor
Toshiya Hosomi
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to JP2008517259A priority Critical patent/JP5367365B2/ja
Priority to US12/302,111 priority patent/US8404438B2/en
Priority to KR1020087020757A priority patent/KR101107831B1/ko
Priority to EP07832873A priority patent/EP2055774A4/en
Publication of WO2008066165A1 publication Critical patent/WO2008066165A1/ja
Priority to US13/086,979 priority patent/US8455192B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a primer set for amplifying a SULT1A1 gene, a reagent for amplifying SU LT1A1 gene containing the primer set, and use thereof.
  • sulfotransferase sulfotransferase
  • SULT Human tissue sulfotransferase
  • SULT is a group of enzymes classified into the superfamily, and gene families such as SULT1 and SULT2 exist. It has been reported that an enzyme that catalyzes the sulfate conjugation reaction of a phenolic substrate belonging to the SULT1 family (PSULT) is based on a gene polymorphism!
  • This PSULT molecular species has the ability to catalyze the metabolic activation of carcinogenic arrylamine, and the analysis of genetic polymorphism is very important from the viewpoint of disease susceptibility.
  • the molecular species (ST1A3) that uses P-nitrotropenol as a representative substrate in tissues such as human liver and platelets is active based on the polymorphism of the SULT1 A1 gene that encodes it. It is known that the activity traits are related to colon cancer and migraine susceptibility.
  • SULT1A1 * 2 and SULT1A1 * 3 are remarkably related to the above disease susceptibility, so the polymorphisms SULT1A1 * 2 and SULT 1A1 * 3 Examining is extremely important in predicting the disease susceptibility of a patient and preventing it.
  • SULT1A1 * 2 is a mutation changed to arginine (Arg) force S-histidine (His) at amino acid position 213, and SULT1A1 * 3 is a methionine (Met) force at amino acid position 223. It is an altered mutation.
  • Tm melting temperature
  • the hybrid is subjected to a heat treatment, and the dissociation (melting) of the hybrid accompanying an increase in temperature is detected by a change in signal such as absorbance. And it is a method of judging the presence or absence of point mutation by determining ⁇ ⁇ ⁇ straight based on this detection result.
  • a Tm value evaluation reference value
  • a match i.e. It can be judged that there is a mutation, and if the measured value is lower than the evaluation standard value, it can be judged that there is no mismatch, that is, there is no point mutation in the target DNA.
  • gene analysis can be automated.
  • the detection method using such Tm analysis also has a problem that it is necessary to specifically and efficiently amplify a region including a target site in PCR.
  • many isozymes exist in SULT and the sequences encoding them are very similar, there is a possibility that even the coding genes of isozymes other than SULT1A1 may be amplified in PCR.
  • Non-Patent Document 1 Non-Patent Document 2
  • the reliability of the analysis results may be reduced.
  • Non-Patent Document 1 PMID: 9854023 Biochem J. 1999 Jan 1; 337 (Pt 1): 45-9.
  • Non-Patent Document 2 PMID: 9566748 Chem Biol Interact. 1998 Feb 20; 109 (1-3): 237-48.
  • an object of the present invention is to provide a primer set that can specifically and efficiently amplify a target region of the SULT1A1 gene by a gene amplification method.
  • the primer set of the present invention is prepared by the gene amplification method.
  • Primer set for amplifying the LT1A1 gene the following primer set (1
  • a pair of primer sets including a forward primer composed of the oligonucleotide (F1) below and a reverse primer composed of the oligonucleotide (R1) below
  • the 3418th cytosine base (C) in the base sequence of SEQ ID NO: 1 is used as the first base, and at least one oligo sequence having the same sequence as the region from base 24 to base 33 in the 5 'direction Oligonucleotide (R1) having 3 to the cytosine base (C) as a terminal and a 3607-th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base, A guanine base (G) complementary to the 3607th cytosine base (C) and at least one oligonucleotide complementary to the region from the 20th to the 29th base;
  • the 3576th adenine base (A) in the nucleotide sequence of SEQ ID NO: 1 is at least one oligonucleotide that is complementary to the region from the 24th to the 33rd base in the 3 'direction with the first base as the first base, 3 'at least one oligonucleotide with a thymine base (T) complementary to the second adenine base (A)
  • the gene amplification reagent of the present invention is a reagent for amplifying the SULT1A1 gene by a gene amplification method, and is characterized by including the SULT1A1 gene amplification primer set of the present invention.
  • the method for producing an amplification product of the present invention is a method for producing an amplification product of the SULT1A1 gene by a gene amplification method, which comprises the following step (I).
  • the polymorphism analysis method of the present invention is a method for analyzing a polymorphism of a site to be detected in the SULT1A1 gene, comprising the following steps (i) to (iv): .
  • a step of determining a polymorphism of the detection target site from a change in the signal value accompanying a temperature change [0012]
  • a region containing both sites where polymorphisms for detection in the SULT1A1 gene (SULT1A1 * 2 and SULT1A1 * 3) are generated is specific and highly efficient. Can be amplified. For this reason, unlike the conventional method as described above, it is possible to reduce labor and cost.
  • a probe complementary to the detection target sequence including at least one of the detection target sites is further provided.
  • a single reaction solution can amplify a target region including two detection target sites and type polymorphisms, so that the operation can be automated.
  • pretreatment can be omitted even for samples containing contaminants (for example, whole blood, oral mucosa, etc.), so that amplification reaction can be performed more quickly and easily. It can be carried out.
  • an amplification reaction can be performed with an amplification efficiency superior to that of the prior art, so that the amplification reaction can be shortened.
  • the primer set of the present invention the reagent containing the primer set, and the amplification product production method and polymorphism analysis method using these, the two polymorphisms of the SULT1A 1 gene can be analyzed quickly and easily. This is extremely effective in the medical field.
  • FIG. 1 is a graph showing the results of Tm analysis in Example 1 of the present invention.
  • FIG. 2 is a graph showing the results of Tm analysis in Example 1 of the present invention.
  • FIG. 3 is a graph showing the results of Tm analysis in Example 1 of the present invention.
  • FIG. 4 is a graph showing the results of Tm analysis in Example 2 of the present invention.
  • the primer set for amplifying the SULT1A1 gene of the present invention includes the primer set (1) as described above. According to this primer set (1), as described above, in one reaction solution, both the detection target site where polymorphism SULT1A1 * 2 occurs and the detection target site where polymorphism SULT1A1 * 3 occurs are included. Amplify region specifically Is possible. Therefore, if the target region is amplified using the primer set of the present invention, polymorphisms of the SULT1A1 gene can be analyzed more efficiently than before.
  • the forward primer is sometimes referred to as F primer and the reverse primer as R primer.
  • the primer set (1) is a pair of primer sets including a forward primer composed of the following oligonucleotide (F1) and a reverse primer composed of the following oligonucleotide (R1).
  • (F1) It is at least one oligonucleotide having the same sequence as the region from the 24th to the 33rd base toward the 5 ′ direction starting from the 3418th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base.
  • the oligonucleotide having the cytosine base (C) as the end and the oligonucleotide (R1) having the 3607th cytosine base (C) as the first base in the base sequence of SEQ ID NO: 1 At least one oligonucleotide complementary to the region up to the base, which is complementary to the 3607th cytosine base (C), guanine base (G), and
  • the 3576th adenine base (A) in the nucleotide sequence of SEQ ID NO: 1 is at least one oligonucleotide that is complementary to the region from the 24th to the 33rd base in the 3 'direction with the first base as the first base, 3 'at least one oligonucleotide with a thymine base (T) complementary to the second adenine base (A)
  • SEQ ID NO: 1 The nucleotide sequence shown in SEQ ID NO: 1 is a full-length DNA sequence of human sulfotransferase 1 (phenol-prephenol phenol sulfotransferasel: STP1). For example, NCBI accession: No. U71086 It is registered. SEQ ID NO: 1 shows a polymorphic sequence in which the 35th 14th base is A and the 3543rd base is G.
  • the primer set (1) is a primer set for amplifying a DNA strand containing the region 3419 to 3606 or the region 3419 to 3575 in SEQ ID NO: 1 and its complementary strand .
  • the 3514th base in this region (the 3514th base in SEQ ID NO: 1) and the 3543th base (the 3543th base in SEQ ID NO: 1) Bases) are known to have point mutations (3514G, 3514A, and 3543G, 3543A) that affect the function of SULT1A1.
  • the polymorphism at this site can be represented by 3514G / G and 3514A / A in the case of a homozygote and 3514 G / A in the case of a heterozygote.
  • the polymorphism at this site can be represented by 3543G / G, 3543 A / A in the case of a homozygote, and 3543G / A in the case of a heterozygote.
  • this primer set (1) is also referred to as “SULT1A1 primer set”.
  • the F1 primer and the R1 primer of the primer set (1) only need to satisfy the above-described conditions for the 3 ′ terminal base that plays a role in determining the starting point of amplification by DNA polymerase. .
  • the primer set (1) can bind to, for example, other similar isozyme genes (eg, SULT1A2, SULT1A3, SULT1A4 genes, etc.). Use force S to prevent this sufficiently.
  • the length of each primer is not particularly limited, and is suitable for a general length. You can power to adjust.
  • An example of the primer length is, for example, in the range of 13 to 50 mer, preferably 14 to 45 mer, and more preferably 15 to 40 mer.
  • the F1 primer is directed toward the 5 ′ direction with the 3418th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base, ie, the 24th to 33rd bases (preferably 25-32
  • the base sequence more preferably at least one oligonucleotide having the same sequence as the region from base 26 to base 31) is preferred.
  • the R1 primer has a force in the 3 ′ direction with the 3607th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base. At least one oligonucleotide complementary to the region from the 20th to the 29th base (preferably, 2;!
  • the 26th base more preferably the 22th to 25th base), or the 3576th position in the base sequence of SEQ ID NO: 1.
  • At least complementary to the region from the 24th to the 33rd base (preferably the 25th to the 30th base, more preferably the 26th to the 28th base) toward the 3 ′ direction with the adenine base (A) as the first base A single oligonucleotide is preferred. Since the F1 primer and the 3 'end of the R1 primer are fixed, the region extending from the primer is, for example, the 3419th to 3606th region or the 3419th to 3575th region in SEQ ID NO: 1, as described above. The total length of the amplification product obtained varies depending on the length of the primer used.
  • the R1 primer may not be an oligonucleotide that is completely complementary to the base sequence shown in SEQ ID NO: 1 and the F1 primer is not completely complementary to the complementary strand of the base sequence. That is, in a part other than the base at the 3 ′ end in each primer, the completely complementary oligonucleotide and 1 to 5 bases may be different.
  • F1 primer and R1 primer are not limited at all, but among these, F1 ′ primer composed of the oligonucleotide of SEQ ID NO: 7 and R1 ′ primer composed of the oligonucleotide of SEQ ID NO: 18 or SEQ ID NO: 39
  • F1 ′ primer composed of the oligonucleotide of SEQ ID NO: 7
  • R1 ′ primer composed of the oligonucleotide of SEQ ID NO: 18 or SEQ ID NO: 39
  • a primer set (1 ′) comprising “Tm (° C)” in the table below is the Tm (° C) when the sequence in the table below and a completely complementary sequence are hybridized
  • MELTCALC software http: //www.meltcalc com /
  • the Tm value can be calculated by, for example, conventionally known MELTCALC software (http://www.meltcalc.com/) or the like, and can also
  • Each primer of the primer set (1) described above may be, for example, one having a conventionally known arbitrary sequence added to the 5 'end in order to increase the reaction temperature of the amplification reaction.
  • the SULT1A1 gene amplification primer set of the present invention including such a primer set (1) is preferably used, for example, when a SULT1A1 gene in a biological sample such as a whole blood sample is amplified.
  • a SULT1A1 gene in a biological sample such as a whole blood sample is amplified.
  • the primer set for SULT1A1 gene amplification of the present invention is used together with a polymorphism detection probe as described later, the addition ratio of the whole blood sample in the reaction solution for gene amplification is 0. 5% by volume is preferred. This point will be described later.
  • the reagent for amplifying the SULT1A1 gene of the present invention is a reagent for amplifying the SULT1A1 gene by the gene amplification method, and includes the primer set for amplifying the SULT1A1 gene of the present invention.
  • SULT1A1 gene amplification reagent of the present invention Is characterized by including the primer set of the present invention, and the composition other than this is not limited at all.
  • the SULT1A1 gene amplification reagent of the present invention can be further hybridized to a detection target site of the SULT1A1 gene, for example, in order to detect an amplification product obtained by a gene amplification method using the primer set of the present invention.
  • V which may include a probe.
  • a target region containing both SULT1A1 * 2 and SULT1A1 * 3 detection target sites can be amplified by gene amplification.
  • the SULT1A1 gene amplification reagent of the present invention is preferably used, for example, when amplifying the SULT1A1 gene in a biological sample such as whole blood.
  • the addition ratio of the whole blood sample in the reaction solution for gene amplification is set to 0.;! To 0.5% by volume. It is preferable.
  • the “detection target sequence” means a sequence including a site where a polymorphism occurs (detection target site).
  • the form of the reagent for SULT1A1 gene amplification of the present invention is not particularly limited, and may be, for example, a liquid reagent containing the primer set for SULT1A1 gene amplification of the present invention, or a dry reagent suspended in a solvent before use. It may be.
  • the content of the primer set for SULT1A1 gene amplification is not particularly limited.
  • the method for producing an amplification product of the present invention is a method for producing an amplification product of the SULT1A1 gene by gene amplification, and includes the following step (I).
  • the polymorphisms SULT1A1 * 2 and SULT1A1 * 3 in the SULT1A1 gene are generated by performing the amplification reaction using the primer set of the present invention as described above.
  • the target region including both the detection target sites to be amplified can be specifically and efficiently amplified.
  • the method for producing an amplification product of the present invention is characterized by using the primer set of the present invention, and the type and conditions of the gene amplification method are not limited at all.
  • the gene amplification method is not particularly limited as described above.
  • PCR Polym erase Chain Reaction
  • NASBA Nucleic acid sequence based amplification
  • TMA Transcription-mediated amplification
  • a force PCR method such as the SDA (Str and Displacement Amplification) method
  • SDA String and Displacement Amplification
  • the sample to which the present invention is applied is not particularly limited as long as it contains, for example, a cocoon-shaped nucleic acid, but for example, it is preferably applied to a sample containing impurities.
  • Samples containing the contaminants include, for example, whole blood, oral cells (eg, oral mucosa), somatic cells such as nails and hair, germ cells, sputum, amniotic fluid, paraffin-embedded tissue, urine, gastric fluid (eg, Gastric lavage fluid) and suspensions thereof.
  • gastric fluid eg, Gastric lavage fluid
  • the amplification product can be prepared more rapidly than the conventional method from the viewpoint of the pretreatment of the sample.
  • the addition ratio of the sample in the reaction solution is not particularly limited.
  • the lower limit of the addition ratio in the reaction solution is preferably 1S, for example, 0.01% by volume or more, more preferably 0.05 volume. % Or more, more preferably 0.1% by volume or more.
  • the upper limit of the addition ratio is not particularly limited, but is preferably 2% by volume or less, more preferably 1% by volume or less, and still more preferably 0.5% by volume or less.
  • the addition ratio of a biological sample such as a whole blood sample is, for example, 0. 1 It is preferable to set it to ⁇ 0.5% by volume.
  • heat treatment is usually applied for DNA denaturation (dissociation into single-stranded DNA). This heat treatment denatures sugars and proteins contained in the sample, resulting in insoluble precipitates and turbidity. May occur. For this reason, when the presence or absence of amplification products and the genotype (polymorphism) of the site to be detected are confirmed by optical methods, the occurrence of such precipitates and turbidity may affect the measurement accuracy.
  • the addition ratio of the whole blood sample in the reaction solution is set within the above-mentioned range, the mechanism is unknown, but for example, it is possible to sufficiently prevent the influence of the generation of precipitates due to denaturation. Therefore, measurement accuracy by an optical method can be improved. In addition, since PCR inhibition due to contaminants in the whole blood sample is sufficiently suppressed, the amplification efficiency can be further improved. Therefore, in addition to the use of the primer set of the present invention, the necessity of further pretreatment of the sample can be eliminated by setting the addition ratio of the sample such as the whole blood sample in the above range.
  • the ratio of the whole blood sample in the reaction solution, the volume fraction as described above (e.g., 0;.! ⁇ 0.5 volume 0/0), the nag hemoglobin (hereinafter, referred to as "Hb") can also be expressed as a weight ratio.
  • the ratio of the whole blood sample in the reaction solution is preferably in the range of, for example, 0.565 to 113 g / L, more preferably (converted to 2.825-55.5 g / L) in terms of Hb amount. More preferably, it is in the range of 5.65-28.25 g / L
  • the addition rate of the whole blood sample in the reaction may satisfy both the volume ratio and the Hb weight ratio, for example. However, either one may be satisfied.
  • the whole blood may be, for example, hemolyzed whole blood, unhemolyzed whole blood, anticoagulated whole blood, whole blood containing a coagulated fraction, or the like!
  • the target nucleic acid contained in the sample is, for example, DNA.
  • the DNA may be, for example, DNA originally contained in a sample such as a biological sample, or may be amplification product DNA amplified by a gene amplification method. In the latter case, cDNA generated by reverse transcription reaction (for example, RT-PCR (Reverse Transcription PCR)) from RNA (total RNA, mRNA, etc.) originally contained in the sample can be mentioned.
  • RT-PCR Reverse Transcription PCR
  • albumin in the method for producing an amplification product of the present invention, it is preferable to add albumin to the reaction solution prior to the start of the gene amplification reaction. Add albumin like this Thus, for example, it is possible to further reduce the influence due to the occurrence of precipitates and turbidity as described above, and to further improve the amplification efficiency. Specifically, it is preferable to add albumin before the amplification reaction in the step (I) or the dissociation step into single-stranded DNA.
  • the addition ratio of albumin in the reaction solution is, for example, in the range of 0.0;! To 2% by weight, preferably 0 .;! To 1% by weight, and more preferably 0.2 to 0%. 8% by weight.
  • the albumin is not particularly limited, and examples thereof include ushi serum albumin (BSA), human serum albumin, rat serum albumin, horse serum albumin, and the like. You can use two or more types together.
  • the target region of the SULT1A1 gene is obtained by PCR using the primer set for amplification of the SULT1A1 gene of the present invention, using DNA as the target nucleic acid for the whole blood sample.
  • An example of producing the amplification product will be described.
  • the present invention is characterized by the use of the primer set of the present invention, and other configurations and conditions are not limited at all.
  • the addition ratio of the primer set of the present invention is not particularly limited, but it is more preferable that the F primer of the primer set (1) is added so as to be 0 ⁇ 1 to 2 ⁇ 11101 /. 25-1. 5 11101 /, and particularly preferably 0.5 to 1 11101 /. Further, it is preferable to add the R primer of the primer set (1) so as to be 0.1 to 21110 1 / L, more preferably 0.25-1 S mol / L, and particularly preferable. Is between 0 ⁇ 5 and 1 ⁇ 11101 /.
  • the addition ratio (F: R, molar ratio) of the F primer and R primer in the primer set is not particularly limited, but is preferably, for example, 1: 0.25 to 1: 4, more preferably 1: 0. 5 ⁇ ; 1: 2.
  • the ratio of the whole blood sample in the reaction solution is not particularly limited, but the above-mentioned range is preferable.
  • the whole blood sample may be added to the reaction solution as it is, or it may be diluted with a solvent such as water or buffer in advance and then added to the reaction solution.
  • the dilution rate is not particularly limited.
  • the power can be set so that the final whole blood addition ratio in the reaction solution falls within the above range. It is 2000 times, preferably (it is 200 to 000 times).
  • composition components in the reaction liquid are not particularly limited, and examples include conventionally known components.
  • the ratio is not particularly limited.
  • examples of the composition component include DNA polymerase, nucleotide (nucleoside triphosphate (dNTP)), and solvent.
  • the reaction solution preferably further contains albumin. Note that the order of addition of each composition component is not limited at all to the reaction solution! /.
  • the DNA polymerase is not particularly limited, and for example, a conventionally known polymerase derived from a thermostable bacterium can be used. Specific examples include DNA polymerase from Thermus aauaticus (US Pat. Nos.
  • thermostable DNA polymerase from Thermus aauaticus Is preferred! / ⁇
  • the addition rate of the DNA polymerase in the reaction solution is not particularly limited, but is, for example, 1 to 100 U / mL, preferably 5 to 50 U / mL, more preferably 20 to 30 U / mL. It is.
  • the DNA polymerase activity unit (U) is generally an acid-insoluble precipitate of activated salmon sperm DNA as a saddle primer and lOnmol of all nucleotides in a reaction solution for activity measurement at 74 ° C for 30 minutes.
  • S1U which is the active power to be taken into
  • 25 mM TAPS buffer pH 9.3, 25.C
  • 50 mM KC1 2 mM MgCl
  • ImM menorecaptoethanolate 200 ⁇ M dATP, 200 ⁇ M dGTP.
  • nucleoside triphosphate examples include dNTP (dATP, dCTP, dTTP).
  • the addition rate of dNTP in the reaction solution is not particularly limited, but is, for example, 0.01 to 1 mmol / L, preferably 0.05 to 0.5 mmol / L, and more preferably 0 to! Measure with ⁇ 0.3mmolZL.
  • the solvent examples include buffers such as Tris-HCl, Tricine, MES, MOPS, HEPES, and CAPS. Commercially available buffers for PCR, buffers for commercially available PCR kits, and the like can be used. .
  • the PCR reaction solution further contains heparin, betaine, KC1, MgCl, MgSO, glycerin.
  • the ratio of addition of cerol and the like may be set within a range not inhibiting the PCR reaction, for example.
  • the total volume of the reaction solution is not particularly limited, and is, for example, a force that can be appropriately determined according to the equipment used (thermal cycler) and the like. Usually, it is 1 to 500, and preferably 10 to 100. is there.
  • PCR cycle conditions are not particularly limited.
  • (1) dissociation of double-stranded DNA from whole blood into single-stranded DNA, (2) primer annealing, and (3) primer extension (polymerase reaction) are as follows.
  • the number of cycles is not particularly limited, but the following three steps (1) to (3) are considered as one cycle, and for example, 30 cycles or more are preferable.
  • the upper limit is not particularly limited.
  • the total is 100 cycles or less, preferably 70 cycles or less, and more preferably 50 cycles or less.
  • the temperature change at each step may be automatically controlled using, for example, a thermal cycler.
  • the primer set of the present invention is used, the amplification efficiency is excellent as described above. Therefore, according to the conventional method, about 3 hours were required for 50 cycles, whereas according to the present invention, about 1 It is possible to complete 50 cycles in about an hour (preferably within 1 hour).
  • the method for producing an amplification product of the present invention may further include a step of detecting the amplification product of the target region obtained by the amplification reaction described above.
  • the presence or absence of an amplification product and the genotype of the SULT1A1 gene can also be detected.
  • the presence or absence of the amplification product can be confirmed by a conventionally known method.
  • a probe capable of hybridizing to one detection target site of the SULT1A1 gene (for example, a fluorescent labeling probe) is further added to the reaction solution, Furthermore, as the step (ii), the reaction solution can be confirmed by measuring the fluorescence intensity of the fluorescent label in the probe.
  • two types of probes for example, fluorescently labeled probes
  • the reaction solution in each probe is added. This can be confirmed by measuring the fluorescence intensity of each fluorescent label. The detection of polymorphisms SULT1A1 * 2 and SULT1A1 * 3 in the SULT 1A1 gene will be described below as an embodiment of the present invention.
  • the polymorphism analysis method of the present invention is a method for analyzing polymorphisms of two detection target sites in the SULT1A1 gene, and includes the following steps (i) to (iv).
  • the probe in the step (ii) is not particularly limited.
  • a probe that hybridizes to the site where polymorphism SULT1A1 * 2 is generated hereinafter also referred to as "probe for SULT1A1 * 2" and polymorphism SULT1A1.
  • Probes that hybridize to the site of occurrence are preferably probes that are complementary to the detection target sequence including the detection target sequence. Any one of these probes may be used, or all of them may be used. When two types of probes are used, for example, polymorphisms of all the two detection target sites can be analyzed using the same reaction solution.
  • the probe for detecting the polymorphism is not particularly limited, and can be set by a conventionally known method.
  • the detection target sequence including the polymorphic detection target site may be designed based on the sense strand sequence of the SULT1A1 gene, or may be designed based on the antisense strand sequence.
  • the base of the polymorphism detection target site can be appropriately determined according to the type of each polymorphism. That is, in the case of SULT1A1 * 2, the polymorphism of “G” and “A” is known to the 3514th base in IJ number 1!
  • the 3514th is G
  • Chain detection probe since the polymorphisms of “G” and “A” are known at the 3543th base in SEQ ID NO: 1, for example, the detection target self-train where the 3543rd is G, and A probe complementary to one of the detection target sequences whose A is 3543 (probe for detecting the sense strand) or a probe complementary to the sequence of the antisense strand (probe for detecting the antisense strand) Can be given.
  • Each of the probes can be added to the amplification reaction solution after the step (i), that is, after performing the amplification reaction on the target region of the SULT1A1 gene, but can be easily and quickly analyzed. Therefore, prior to the amplification reaction in step (i), It is preferable to keep it.
  • the addition ratio of the probe in the reaction solution is not particularly limited! /, For example, it is preferable to add each probe in a range of 10 to 400 nmol, more preferably 20 to 400 nmol. It is.
  • this unlabeled probe may be used together with an unlabeled probe having the same sequence as the labeled probe.
  • phosphoric acid may be added to the 3 ′ end.
  • the molar ratio of the labeled probe to the unlabeled probe is preferably, for example, 1: 10-10: 1.
  • the length of the probe is not particularly limited, and is, for example, 5 to 50 mer, preferably 10 to 30 mer.
  • the Tm value will be described. As the solution containing double-stranded DNA is heated, the absorbance at 260 nm increases. This is because hydrogen bonds between both strands in double-stranded DNA are unwound by heating and dissociated into single-stranded DNA (DNA melting). When all double-stranded DNA is dissociated into single-stranded DNA, the absorbance is about 1.5 times the absorbance at the start of heating (absorbance of double-stranded DNA alone). Therefore, it can be judged that melting has been completed. Based on this phenomenon, the melting temperature Tm is generally defined as the temperature at which the absorbance reaches 50% of the total increase in absorbance.
  • the measurement of the signal indicating the fusion state of the hybrid product of the amplification product and the probe may be performed by measuring the absorbance at 260 nm as described above. It may be a signal measurement.
  • a labeled probe labeled with a labeling substance as the probe and measure the signal of the labeling substance.
  • the labeled probe include a labeled probe that shows a signal alone and does not show a signal by hybrid formation, or a labeled probe that does not show a signal alone and shows a signal by hybridization. If the probe is like the former, it forms a hybrid (double-stranded DNA) with the sequence to be detected!
  • the amplified target region includes a detection target site that shows both polymorphisms of SULT1A1 * 2 and SULT1A1 * 3. Therefore, for example, both polymorphisms can be analyzed by using two types of probes that can hybridize to each detection target site. In this case, it is preferable that the two types of probes are labeled with different labels detected under different conditions! /, Respectively. By using different labels in this way, each amplification product can be analyzed separately by changing the detection conditions even in the same reaction solution.
  • the labeling substance in the labeled probe include a fluorescent dye (fluorophore).
  • a probe that is labeled with a fluorescent dye exhibits fluorescence alone, and fluorescence decreases (for example, quenches) by hybridization is preferable.
  • a probe that uses such a quenching phenomenon is generally called a fluorescence quenching probe.
  • the probe it is preferable that the 3 ′ end or 5 ′ end of the oligonucleotide is preferably labeled with a fluorescent dye, and the base at the end to be labeled is preferably C.
  • the base pairing with the terminal base C of the labeled probe or the base pairing from the paired base is preferable to design the base sequence of the labeled probe.
  • a probe is generally called a guanine quenching probe and is known as a so-called QProbe (registered trademark).
  • QProbe registered trademark
  • the terminal C labeled with the fluorescent dye approaches G in the DNA to be detected, whereby the emission of the fluorescent dye becomes weak (fluorescence intensity decreases). Phenomenon).
  • the fluorescent dye is not particularly limited, and examples thereof include fluorescein, phosphor, rhodamine, polymethine dye derivatives and the like, and commercially available fluorescent dyes include, for example, BODIPY FL (trademark, Molecular 'Probe Co., Ltd.). ), FluorePrime (trade name, Amashi Chamfa Almacia), Fluoredite (trade name, manufactured by Millipore), FAM (ABI), Cy3 and Cy5 (Amersham Almacia), TAMRA (Molecular Probes), and the like.
  • Pacific Blue detection wavelength 450 to 480 nm
  • TAMRA detection wavelength 585 to 700 nm
  • BODIPY FL detection wavelength 515 to 555 nm
  • probe sequences for detecting polymorphisms SULT1A1 * 2 and SULT1A1 * 3 are shown below, but the present invention is not limited thereto.
  • the following probe (1) is an example of a probe for SULT1A1 * 2, and is a probe for detecting an antisense strand.
  • the probe (2) below is an example of a probe for SULT1A1 * 3, and is a probe for detecting an antisense strand.
  • At least one oligonucleotide having the same sequence as the region from the 15th to the 19th base in the 5 'direction starting from the 3518th cytosine base (C) in SEQ ID NO: 1 and comprising the cytosine base
  • At least one oligonucleotide having the same sequence as the region from the 15th to the 20th base in the 5 ′ direction starting from the 3556th cytosine base (C) in SEQ ID NO: 1 and comprising the cytosine base 3. Oligonucleotide at the end
  • the base corresponding to the 3514th position of SEQ ID NO: 1 is represented by r, the r is A or G, and corresponds to the 3543rd position of SEQ ID NO: 1 in the probe (2).
  • the base is represented by r, and r is A or G.
  • Tm (° C) the Tm (.C) when the sequence shown in the table below and a completely complementary sequence are hybridized.
  • MELTCALC software http: //www.meltcalc.c) om / is a value calculated by setting the parameters as oligonucleotide concentration 0 ⁇ , sodium equivalent (Na e q.) 50 mM.
  • the probe represented by SEQ ID NO: 22 has the same IJ force, the same as the region having the 3514th force G in SEQ ID NO: 1, IJ No. 23
  • the probes represented by ⁇ 26 and 43-48 have the same sequence as the region where the 3514th position in SEQ ID NO: 1 is A, and the upper case base is complementary to the 3514th base of SEQ ID NO: 1.
  • the base is shown.
  • the capital letter base can be represented by r, and r may be either G or A.
  • Probe (2) in the above table consists of the same sequence as the region where G at position 3543 in SEQ ID NO: 1 is G, and the capital letter base indicates the base at position 3543 in SEQ ID NO: 1.
  • the capital letter base can be represented by r, and r can be either G or A.
  • r can be either G or A.
  • the probe in the present invention for example, as described above, it may be a complementary strand of the oligonucleotide shown in the above table.
  • the probe is an example, and the present invention is not limited thereto.
  • the probe for SULT1A1 * 2 includes ( ⁇ ') the nucleotide sequence of SEQ ID NO: 23
  • the SULT1A1 * 3 probe is preferably ( ⁇ ⁇ 2 ′) from the nucleotide sequence of SEQ ID NO: 30, or the oligonucleotide consisting of the nucleotide sequence of SEQ ID NO: 46 is preferred.
  • the SULT1A1 * 2 probe (P1 probe) and the SULT1A1 * 3 probe (32 probe) have cytosine at the 3 ′ end as a fluorescent dye (for example, , BODIPY FL, TAMRA, etc.)
  • a fluorescent dye for example, BODIPY FL, TAMRA, etc.
  • a phosphate group may be further added to the 3 ′ end in order to prevent the probe itself from extending.
  • PCR is performed as described above using a reaction solution to which the two types of labeled probes are added, and the region of the SULT1A1 gene is amplified in the reaction solution.
  • the reaction solution contains, for example, the SULT1A1 gene amplification primer set of the present invention, a DNA polymerase, dNTP, a sample containing a nucleic acid to be a cage, and the two types of probes.
  • various additives that can be used for nucleic acid amplification may be included.
  • the obtained amplification product is dissociated, and the single-stranded DNA obtained by the dissociation and the labeled probe are hybridized. This can be done, for example, by changing the temperature of the reaction solution.
  • the heating temperature in the dissociation step is not particularly limited as long as the amplification product can be dissociated, and is, for example, 85 to 95 ° C.
  • the heating time is not particularly limited, but is usually 1 second to 10 minutes, preferably 1 second to 5 minutes.
  • Hybridization between the dissociated single-stranded DNA and the labeled probe can be performed, for example, by lowering the heating temperature in the dissociation step after the dissociation step.
  • temperature conditions it is 40-50 degreeC, for example.
  • the temperature of the reaction solution is changed, and a signal value indicating the melting state of the hybrid former between the amplification product and the labeled probe is measured.
  • the reaction solution hybridized product of the single-stranded DNA and the labeled probe
  • the fluctuation of the signal value accompanying the temperature rise is measured.
  • a probe labeled with a C-terminal at the end (guanine quenching probe) is used, fluorescence is reduced or quenched in the hybridized state with single-stranded DNA. Then, it emits fluorescence.
  • a hybrid that has decreased or quenched fluorescence may be gradually heated to measure the increase in fluorescence intensity with increasing temperature.
  • the temperature range for measuring the fluctuation of the fluorescence intensity is not particularly limited.
  • the start temperature is room temperature to 85 ° C, preferably 25 to 70 ° C
  • the end temperature is, for example, 40-105 ° C.
  • the rate of temperature rise is not particularly limited, but is, for example, 0.;! To 20 ° C./second, and preferably 0.3 to 5 ° C./second.
  • the variation in the signal is analyzed and determined as a Tm value. Specifically, the amount of change in fluorescence intensity per unit time at each temperature (1d increase in fluorescence intensity / dt) is calculated from the obtained fluorescence intensity, and the Tm value can be determined for the temperature showing the lowest value. In addition, the point where the amount of increase in fluorescence intensity per unit time (fluorescence intensity increase / 1) is the highest can also be determined as straight. If a probe that does not show a signal alone and that shows a signal by hybridization is used as a labeled probe, on the contrary, measure the decrease in fluorescence intensity.
  • the respective Tm values are determined under conditions corresponding to the respective labels of the two types of probes.
  • BODIPY FL of the probe for S ULT1A1 * 2 is, for example, detection wavelength 515-555nm
  • S The TAMRA probe for ULT1A1 * 3 can detect at a detection wavelength of 585 to 700 nm.
  • detection can be performed at a detection wavelength of 450 to 480 nm.
  • the genotype in each detection target sequence is determined.
  • a hybrid (match) that is completely complementary has a higher Tm value indicating dissociation than a hybrid (mismatch) that differs in one base. Therefore, in advance, the genotype at each detection target site can be determined by determining the Tm value of a hybrid that is completely complementary to the probe and the Tm value of a hybrid that differs by one base. it can.
  • the base of the detection target site is a mutant type (for example, the 3514th base in SEQ ID NO: 1 is A) and a probe complementary to the detection target sequence containing it is used
  • the Tm of the hybrid formed Value As long as the Tm value of a completely complementary hybrid is the same, the polymorphism of the amplification product can be judged as a mutant type.
  • the polymorphism of the amplification product is the wild type (for example, For example, it can be determined that the 3514th base in SEQ ID NO: 1 is G).
  • the polymorphisms SULT1A1 * 2 and SULT1A1 * 3 genotypes can be determined from the two Tm values for each labeling probe.
  • the method of measuring the signal fluctuation accompanying the temperature increase by increasing the temperature of the reaction solution containing the probe (heating the hybrid forming body).
  • signal fluctuations during hybridization may be measured.
  • the hybrid is formed by lowering the temperature of the reaction solution containing the probe, the signal fluctuation accompanying the temperature drop may be measured.
  • the single-stranded DNA and the probe are dissociated.
  • a hybrid is formed by a decrease in temperature S and a decrease in temperature
  • the fluorescence is reduced or quenched. Therefore, for example, the temperature of the reaction solution may be gradually lowered to measure the decrease in fluorescence intensity as the temperature drops.
  • the single-stranded DNA and the probe dissociate!
  • fluorescence is emitted. Therefore, for example, the temperature of the reaction solution may be gradually lowered and the increase in fluorescence intensity accompanying the temperature drop may be measured.
  • Blood was collected from 8 subjects using a heparin lithium blood collection tube (samples 1 to 8).
  • the obtained blood 10 HL and distilled water 90 HL were mixed, and this mixed solution 10 L and distilled water 90 ⁇ L were further mixed.
  • 10 L of these mixed solutions were added to 40 ⁇ L of a PCR reaction solution having the following composition, and PCR was performed using a thermal cycler.
  • the PCR was performed at 95 ° C for 60 seconds, followed by 50 cycles of 95 ° C for 1 second and 66 ° C for 10 seconds, followed by further treatment at 95 ° C for 1 second and 40 ° C for 60 seconds. Subsequently, the PCR reaction solution was heated from 40 ° C. to 95 ° C.
  • Measurement wavelengths were 515 to 555 nm (detection of fluorescent dye BODIPY FL) and 585 to 700 nm (detection of fluorescent dye TAMRA).
  • the time required for 50 cycles of PCR was about 1 hour.
  • the Tm value of the hybrid that matches the probe for SULT1A1 * 2 is 67 ⁇ 0 ° C
  • the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ of the mismatched hybrid is 60 ⁇ 0 ° C
  • the Tm value of the hybrid that matches the probe for SULT1A1 * 3 is The Tm value of the mismatch hybrid is 58.0 ° C.
  • FIGS. These graphs are graphs of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • the differential value on the vertical axis shows “1d increase in fluorescence intensity / dt”, and the horizontal axis shows temperature (below) The same).
  • the signal was peaked as shown in the figure.
  • the RFLP method was applied to 8 subjects. Therefore, as a result of confirming the SULTIAI * 2 and SULTIAI * 3 polymorphisms, the same results as in the Examples were obtained.
  • the PCR reaction solution was heated from 40 ° C. to 75 ° C. at a temperature increase rate of C / 3 seconds, and the change in fluorescence intensity over time was measured.
  • the measurement wavelength was 515 to 555 nm (detection of fluorescent dye BODIPY FL).
  • the Tm value of the hybrid that matches the probe for SULTIAI * 2 is 59 ° C, and the Tm value of the mismatched hybrid is 51 ° C.
  • FIG. 1 The results of Samples 1 and 2 are shown in FIG.
  • This figure is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • the differential value on the vertical axis shows “1d increase in fluorescence intensity / dt”, and the horizontal axis shows temperature.
  • the genotype of SULTIAI * 2 in samples 1 and 2 was determined from the signal peak.
  • the SULTIAI * 2 polymorphism was confirmed by RFLP method for two subjects, and the same result as the example was obtained.
  • a region containing both SULTIAI * 2 detection target sites in the SULTIAI gene can be efficiently amplified using a whole blood sample that has not been pretreated, And said same Two polymorphisms could be analyzed using one reaction solution.
  • the primer set of the present invention it is possible to specifically and efficiently amplify a region including both detection sites of polymorphisms SULT1A1 * 2 and SULT1A1 * 3 in the SULT1A1 gene. For this reason, it is possible to reduce labor and cost unlike the conventional method as described above.
  • the region including both of the two polymorphic detection target sites is specifically amplified in this manner, for example, two types of probes complementary to the detection target sequence including each detection target site are used.
  • Tm analysis using the reaction solution V and to type each of the two polymorphs.
  • amplification and typing can be performed with a single reaction solution, the operation can be automated.
  • the primer set of the present invention when used, pretreatment can be omitted even for samples containing contaminants (for example, whole blood, oral mucosa, etc.), so that the amplification reaction can be performed more quickly and easily. It can be carried out.
  • an amplification reaction can be performed with an amplification efficiency superior to that of the prior art, so that the amplification reaction can be shortened. Therefore, according to the primer set of the present invention, a reagent containing the primer set, and a method for producing an amplification product using these, the polymorphism of the SULT1A1 gene can be analyzed quickly and easily, which is extremely effective in the medical field. Eh.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明 細 書
SULT1A1遺伝子増幅用プライマーセット、それを含む SULT1A1遺伝 子増幅用試薬およびその用途
技術分野
[0001] 本発明は、 SULT1A1遺伝子を増幅するためのプライマーセット、それを含む SU LT1A1遺伝子増幅用試薬およびその用途に関する。
背景技術
[0002] ヒト組織硫酸転移酵素(スルフォトランスフェラーゼ; SULT)は、肝チトクロム P450 等によって水素基が導入された脂溶性基質の代謝物を、さらに 0-硫酸エステル化 することによって、水溶性を向上させて排泄するという機能を担っている。 SULTは、 スーパーファミリーに分類される酵素群であって、 SULT1や SULT2等の遺伝子フ アミリーが存在する。 SULT1ファミリーに属するフエノール性基質の硫酸抱合反応を 触媒する酵素(PSULT)は、遺伝子多型に基づ!/、て活性に違!/、が生じることが報告 されている。そして、この PSULT分子種は、がん原性ァリルァミンの代謝活性化反応 を触媒すること力、らも、遺伝子多型の解析は、疾病感受性の点から非常に重要視さ れている。具体的に、 PSULTの中でも、ヒトの肝臓や血小板等の組織において P-二 トロフエノールを代表的な基質とする分子種(ST1A3)は、それをコードする SULT1 A1遺伝子の多型に基づいて活性に違いが生じており、活性の形質が、結腸癌や偏 頭痛易罹患性等と関連することが知られている。この SULT1A1遺伝子多型の中で も、 SULT1A1 * 2および SULT1A1 * 3は、以上のような疾病感受性との関連性が 顕著であることから、 SULT1A1遺伝子について多型 SULT1A1 * 2および SULT 1A1 * 3を調べることは、患者の疾病感受性を予測し、それを予防'治療する上で極 めて重要である。なお、 SULT1A1 * 2は、アミノ酸 213位のアルギニン (Arg)力 Sヒス チジン(His)に変化した変異であり、 SULT1A1 * 3は、アミノ酸 223位におけるメチ ォニン (Met)力 Sバリン (Val)に変化した変異である。
[0003] 他方、あらゆる疾患の原因や、個体間の疾患易罹患性 (疾患のかかり易さ)、個体 間における薬効の違い等を遺伝子レベルで解析する方法として、点突然変異、いわ ゆる一塩基多型(SNP)の検出が広く行われて!/、る。点突然変異の一般的な検出方 法としては、(1)試料の標的 DNAについて、検出対象配列に相当する領域を PCR ( Polymerase chain reaction)により増幅させ、その全遺伝子配列を解析する Dir ect Sequencing法、(2)試料の標的 DNAについて、検出対象配列に相当する領 域を PCRにより増幅させ、前記検出対象配列における目的の変異の有無により切断 作用が異なる制限酵素によってその増幅産物を切断し、電気泳動することでタイピン グを行う RFLP解析、(3) 3'末端領域に目的の変異が位置するプライマーを用いて PCRを行い、増幅の有無によって変異を判断する ASP— PCR法等があげられる。
[0004] しかしなら、これらの方法は、例えば、試料から抽出した DNAの精製、電気泳動、 制限酵素処理等が必須であるため、手間やコストがかかってしまう。また、 PCRを行 つた後、反応容器を一旦開封する必要があるため、前記増幅産物が次の反応系に 混入し、解析精度が低下するおそれがある。さらに、 自動化が困難であるため、大量 のサンプルを解析することができない。また、前記(3)の ASP— PCR法については、 特異性が低!/、とレ、う問題もある。
[0005] このような問題から、近年、点突然変異の検出方法として、標的核酸とプローブとか ら形成される二本鎖核酸の融解温度(Tm: melting temperature)を解析する方 法が実用化されている。このような方法は、例えば、 Tm解析、または、前記二本鎖の 融解曲線の解析により行われることから、融解曲線解析と呼ばれている。これは、以 下のような方法である。すなわち、まず、検出目的の点突然変異を含む検出対象配 列に相補的なプローブを用いて、検出試料の標的一本鎖 DNAと前記プローブとの ハイブリッド(二本鎖 DNA)を形成させる。続いて、このハイブリッド形成体に加熱処 理を施し、温度上昇に伴うハイブリッドの解離 (融解)を、吸光度等のシグナルの変動 によって検出する。そして、この検出結果に基づいて Τιι^直を決定することにより、点 突然変異の有無を判断する方法である。 Tm値は、ハイブリッド形成体の相同性が高 い程高ぐ相同性が低い程低くなる。このため、点突然変異を含む検出対象配列とそ れに相補的なプローブとのハイブリッド形成体について予め Tm値 (評価基準値)を 求めておき、検出試料の標的一本鎖 DNAと前記プローブとの Tm値 (測定値)を測 定する。前記測定値が評価基準値と同じであれば、マッチ、すなわち標的 DNAに点 突然変異が存在すると判断でき、測定値が評価基準値より低ければ、ミスマッチ、す なわち標的 DNAに点突然変異が存在しないと判断できる。そして、この方法によれ ば、遺伝子解析の自動化も可能である。
[0006] しかしながら、このような Tm解析を利用した検出方法についても、 PCRにおいて、 検出目的部位を含む領域を特異的且つ効率的に増幅できなければならないという 問題がある。特に、 SULTには多くのアイソザィムが存在し、それらをコードする配列 も極めて類似しているため、 PCRにおいて、 SULT1A1以外のアイソザィムのコード 遺伝子までもが増幅されるおそれがある。また、このように他のアイソザィムのコード 遺伝子までも増幅された場合、例えば、 SULT1A1遺伝子の特定の多型(SULT1 A1 * 2または SULT1A1 * 3)の解析(非特許文献 1、非特許文献 2)において、解 析結果の信頼性を低下させる原因にもなる。そして、このように、 1つのサンプルを解 析するにも多大な労力を伴うため、大量のサンプルを解析することは実用的ではない という問題もある。
非特許文献 1 : PMID : 9854023 Biochem J. 1999 Jan 1 ; 337 (Pt 1) : 45 - 9.
非特許文献 2 : PMID : 9566748 Chem Biol Interact. 1998 Feb 20 ; 109 (1 - 3) : 237-48.
発明の開示
[0007] そこで、本発明は、遺伝子増幅法により SULT1A1遺伝子の目的領域を特異的に 効率良く増幅することができるプライマーセットの提供を目的とする。
[0008] 前記目的を達成するために、本発明のプライマーセットは、遺伝子増幅法により SU
LT1A1遺伝子を増幅するためのプライマーセットであって、下記プライマーセット(1
)を含むことを特徴とする。
プライマーセット(1)
下記(F1)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1)配列番号 1の塩基配列における 3418番目のシトシン塩基(C)を 1塩基目として 5'方向に向かって 24〜33塩基目までの領域と同じ配列である少なくとも 1つのオリ ゴヌクレオチドであって、前記シトシン塩基(C)を 3,末端とするオリゴヌクレオチド (R1)配列番号 1の塩基配列における 3607番目のシトシン塩基(C)を 1塩基目として 3'方向に向力、つて 20〜29塩基目までの領域に相補的な少なくとも 1つのオリゴヌク レオチドであって、前記 3607番目のシトシン塩基(C)に相補的なグァニン塩基(G) および、
配列番号 1の塩基配列における 3576番目のアデニン塩基 (A)を 1塩基目として 3' 方向に向力 て 24〜33塩基目までの領域に相補的な少なくとも 1つのオリゴヌタレ ォチドであって、前記 3576番目のアデニン塩基 (A)に相補的なチミン塩基 (T)を 3' の少なくとも一方のオリゴヌクレオチド
[0009] また、本発明の遺伝子増幅用試薬は、遺伝子増幅法により SULT1A1遺伝子を増 幅するための試薬であって、前記本発明の SULT1A1遺伝子増幅用プライマーセッ トを含むことを特徴とする。
[0010] 本発明の増幅産物の製造方法は、遺伝子増幅法により SULT1A1遺伝子の増幅 産物を製造する方法であって、下記 (I)工程を含むことを特徴とする。
(I)試料中の核酸を铸型として、本発明の SULT1A1遺伝子増幅用プライマーセット を用いて、反応液中で、前記 SULT1A1遺伝子の増幅を行う工程
[0011] 本発明の多型解析方法は、 SULT1A1遺伝子における検出対象部位の多型を解 析する方法であって、下記 (i)〜(iv)工程を含むことを特徴とする多型解析方法。
(i)本発明の増幅産物の製造方法により、 SULT1A1遺伝子における検出対象部位 を含む領域を反応液中で増幅させる工程
(ii)前記 (i)工程における増幅産物と、前記検出対象部位にハイブリダィズ可能なプ ローブとを含む反応液を準備する工程
(iii)前記反応液の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形 成体の融解状態を示すシグナル値を測定する工程
(iv)温度変化に伴う前記シグナル値の変動から、前記検出対象部位の多型を決定 する工程 [0012] 本発明のプライマーセットによれば、 SULT1A1遺伝子における検出目的の多型( SULT1A1 * 2および SULT1A1 * 3)が発生する部位を両方含んでいる領域を、 反応液中で特異的且つ高効率で増幅することができる。このため、前述のような従来 法とは異なり、手間やコストを低減することが可能となる。また、このように SULT1A1 * 2および SULT1A1 * 3の検出対象部位を両方含んでいる領域を増幅できること から、例えば、さらに、少なくとも一方の前記検出対象部位を含む検出対象配列に相 補的なプローブを使用することで、前記反応液を用いてそのまま Tm解析を行い、前 記多型をそれぞれタイピングすることが可能となる。また、 1つの反応液で、 2つの検 出対象部位を含む目的領域の増幅ならびに多型のタイピングが可能であることから、 操作の自動化も可能になる。さらに、本発明のプライマーセットを用いれば、例えば、 夾雑物が含まれる試料 (例えば、全血や口腔粘膜等)であっても、前処理を省略でき るため、より迅速且つ簡便に増幅反応を行うことができる。また、本発明のプライマー セットを用いれば、従来よりも優れた増幅効率で増幅反応が行えるため、増幅反応も 短縮化が可能である。したがって、本発明のプライマーセットやこれを含む試薬、なら びにこれらを用いた増幅産物の製造方法および多型解析方法によれば、 SULT1A 1遺伝子の 2つの多型を迅速かつ簡便に解析できることから、医療分野においてきわ めて有効といえる。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の実施例 1における Tm解析の結果を示すグラフである。
[図 2]図 2は、本発明の前記実施例 1における Tm解析の結果を示すグラフである。
[図 3]図 3は、本発明の前記実施例 1における Tm解析の結果を示すグラフである。
[図 4]図 4は、本発明の実施例 2における Tm解析の結果を示すグラフである。
発明を実施するための最良の形態
[0014] < SULT1A1遺伝子増幅用プライマーセット〉
本発明の SULT1A1遺伝子増幅用プライマーセットは、前述のように、前記プライ マーセット(1)を含むことを特徴とする。このプライマーセット(1)によれば、前述のよう に、 1つの反応液において、多型 SULT1A1 * 2が発生する検出対象部位と多型 S ULT1A1 * 3が発生する検出対象部位の両方を含む目的領域を特異的に増幅す ることが可能である。このため、本発明のプライマーセットを用いてこの目的領域を増 幅すれば、従来よりも効率良ぐ SULT1A1遺伝子の多型の解析を行うことができる 。なお、以下、フォワードプライマーを Fプライマー、リバースプライマーを Rプライマー ということがある。
[0015] 前記プライマーセット(1)は、前述のように、下記(F1)のオリゴヌクレオチドからなる フォワードプライマーおよび下記(R1)のオリゴヌクレオチドからなるリバースプライマ 一を含む一対のプライマーセットである。
(F1)配列番号 1の塩基配列における 3418番目のシトシン塩基(C)を 1塩基目として 5'方向に向かって 24〜33塩基目までの領域と同じ配列である少なくとも 1つのオリ ゴヌクレオチドであって、前記シトシン塩基(C)を 3,末端とするオリゴヌクレオチド (R1)配列番号 1の塩基配列における 3607番目のシトシン塩基(C)を 1塩基目として 3'方向に向力、つて 20〜29塩基目までの領域に相補的な少なくとも 1つのオリゴヌク レオチドであって、前記 3607番目のシトシン塩基(C)に相補的なグァニン塩基(G) および、
配列番号 1の塩基配列における 3576番目のアデニン塩基 (A)を 1塩基目として 3' 方向に向力 て 24〜33塩基目までの領域に相補的な少なくとも 1つのオリゴヌタレ ォチドであって、前記 3576番目のアデニン塩基 (A)に相補的なチミン塩基 (T)を 3' の少なくとも一方のオリゴヌクレオチド
[0016] 配列番号 1に示す塩基配列は、ヒトのスルフォトランスフェラーゼ 1 (phenol— prefe rring phenol sulfotransferasel: STP1)の完全長 DNAの配列であって、例え ば、 NCBIァクセッション: No. U71086に登録されている。なお、配列番号 1は、 35 14番目の塩基が Aであり、 3543番目の塩基が Gとなった多型の配列を示す。
[0017] 前記プライマーセット(1)は、配列番号 1における 3419番目〜 3606番目の領域ま たは 3419番目〜3575番目の領域を含む DNA鎖ならびにその相補鎖を増幅させ るためのプライマーセットである。この領域内の 3514番目の塩基(配列番号 1におけ る 3514番目の塩基)、および、 3543番目の塩基(配列番号 1における 3543番目の 塩基)には、 SULT1A1の機能に影響を与える点突然変異(3514G、 3514A、およ び、 3543G、 3543A)の存在が知られている。前者の多型が、前述の SULT1A1 * 2であり、 3514番目の塩基が Gであれば、 SULT1A1遺伝子がタンパク質に翻訳さ れた際、アミノ酸 213位はアルギニン (Arg)となり、 3514番目の塩基が Aであれば、 アミノ酸 213位はヒスチジン(His)となる多型を示す。本発明において、この部位の多 型は、ホモ接合体の場合、 3514G/G、 3514A/A、ヘテロ接合体の場合、 3514 G/Aで表すことができる。また、後者の多型が、前述の SULT1A1 * 3であり、 354 3番目の塩基が Aであれば、 SULT1A1遺伝子がタンパク質に翻訳された際、ァミノ 酸 223位はメチォニン(Met)となり、 3543番目の塩基が Gであれば、アミノ酸 223位 はパリン (Val)となる多型を示す。本発明において、この部位の多型は、ホモ接合体 の場合、 3543G/G、 3543 A/A,ヘテロ接合体の場合、 3543G/Aで表すことが できる。なお、以下、このプライマーセット(1)を、「SULT1A1用プライマーセット」と もいう。
[0018] 本発明において、プライマーセット(1)の F1プライマーおよび R1プライマーは、 DN Aポリメラーゼによる増幅の開始点を決定する役割を果たす 3'末端の塩基が、前述 の条件を満たしていればよい。このように各プライマーの 3'末端の塩基を固定するこ とによって、プライマーセット(1)が、例えば、類似する他のアイソザィムの遺伝子(例 えば、 SULT1A2、 SULT1A3、 SULT1A4遺伝子等)に結合することを十分に防 止すること力 Sでさる。
[0019] このように、 F1プライマーおよび R1プライマーは、その 3'末端の塩基が固定されて いればよいことから、各プライマーの長さ自体は特に制限されず、一般的な長さに適 宜調整すること力できる。プライマーの長さの一例としては、例えば、 13〜50merの 範囲であり、好ましくは 14〜45merであり、より好ましくは 15〜40merである。具体 例として、前記 F1プライマーは、配列番号 1の塩基配列における 3418番目のシトシ ン塩基(C)を 1塩基目として 5'方向に向力、つて 24〜33塩基目(好ましくは、 25-32 塩基目、より好ましくは 26〜31塩基目 )までの領域と同じ配列である少なくとも 1つの オリゴヌクレオチドであることが好ましい。また、前記 R1プライマーは、配列番号 1の 塩基配列における 3607番目のシトシン塩基 (C)を 1塩基目として 3'方向に向力、つて 20〜29塩基目(好ましくは、 2;!〜 26塩基目、より好ましくは 22〜25塩基目)までの 領域に相補的な少なくとも 1つのオリゴヌクレオチド、または、配列番号 1の塩基配列 における 3576番目のアデニン塩基(A)を 1塩基目として 3 '方向に向かって 24〜33 塩基目(好ましくは、 25〜30塩基目、より好ましくは、 26〜28塩基目)までの領域に 相補的な少なくとも 1つのオリゴヌクレオチドであることが好ましい。なお、 F1プライマ 一と R1プライマーの 3 '末端が固定されていることから、プライマーから伸長する領域 は、例えば、前述のように配列番号 1における 3419番目〜 3606番目の領域または 3419番目〜3575番目の領域である力 得られる増幅産物の全体の長さは使用す るプライマーの長さに応じて変化する。
[0020] また、 R1プライマーは、配列番号 1に示す塩基配列に対して、 F1プライマーは、前 記塩基配列の相補鎖に対して、それぞれ完全に相補なオリゴヌクレオチドでなくとも よい。すなわち、各プライマーにおける 3 '末端の塩基を除く部分において、完全に相 補なオリゴヌクレオチドと 1個〜 5個の塩基が異なっていてもよい。
[0021] 以下に、 F1プライマーと R1プライマーの具体例を示す力 本発明は、これには限 定されない。また、これらの F1プライマーと R1プライマーとの組み合わせは何ら制限 されないが、これらの中でも、配列番号 7のオリゴヌクレオチドからなる F1 'プライマー と、配列番号 18または配列番号 39のオリゴヌクレオチドからなる R1 'プライマーとを 含むプライマーセット(1 ' )が、特に好ましい。なお、下記表における「Tm (°C)」は、 下記表の配列と完全に相補的な配列とがハイブリッドした場合の Tm (°C)であり、 M ELTCALCソフトウェア(http : //www. meltcalc. com/)により、パラメーター をオリゴヌクレオチド濃度 0· 、ナトリウム当量(Na eq. ) 50mMとして算出した 値である。前記 Tm値は、例えば、従来公知の MELTCALCソフトウェア(http : / /www. meltcalc. com/)等により算出でき、また、隣接法(Nearest Neighbor Method)によって決定することもできる(以下、同様)。
[0022] [表 1] プライマ一 配列 Tm (°C) 配列番号
5 -gcctctgaggttagagaaggggaccccttttac-3' 65 2
5 -cctctgaggttagagaaggggaccccttttac-3' 63.4 3
5 -ctctgaggttagagaaggggaccccttttac-3' 62.1 4
5 -tctgaggttagagaaggggaccccttttac-3' 61.7 5
Fプライマ一 5 -ctgaggttagagaaggggaccccttttac-3 60.9 6
5'-tgaggttagagaaggggaccccttttac-3' 60.5 7
5 '— ga ggtta gagaagggga c c ccttttac-31 59.4 8
5'-agg tagagaaggggaccccttttac-3' 58.8 9
5'-ggttagagaaggggaccccttttac-3' 57.8 10
5' - gttagagaaggggaccccttttac - 3' 55.9 1 1
5'-ggagatgctgtggtccatgaactcctggg-3' 65 12
5'-gagatgctgtgg ccatgaactcctggg-3' 63.7 13
5'-agatgctgtggtccatgaactcctggg-3' 63.3 14
5'-gatgctgtggtccatgaactcctggg-3' 62.5 15
5 '-atgctgtggtccatgaactcctggg- 3 ' 62 , 16
5'-tgctgtggtccatgaactcctggg-3' 62.1 17
5'-gctgtggtccatgaactcctggg-3' 60.9 18
5'-ctg ggtccatgaactcctggg-3' 58.4 19
5'-tgtggtccatgaactcctggg-3' 57.6 20
Rプライマー 5 '-gtggtccatga actcctggg-3' 56.1 21
5'-ggggacggtggtgtagttggtcatagggttctt-3' 66.5 33
5'-gggacggtggtgtagttggtcatagggttctt-3' 65.3 34
5'-ggacggtggtgtagttggtcatagggttctt-3' 64 35
5'-gacggtggtg agttggtcatagggttctt-3' 62.7 36
5'-acgg ggtgtagttggtcatagggttctt-3' 62.3 37
5'-cggtggtgtagttggtcatagggttctt-3' 61.4 38
5'-ggtggtgtagttggtcatagggttctt-3' 59.6 39
5'-gtggtgtagttggtcatagggttctt-3' 57.9 40
5'-tggtgtagttggtcatagggttctt-3' 56.9 41
5'-ggtgtagttgKtcatagggttctt-3' 55.6 42
[0023] また、前述したプライマーセット(1)の各プライマーは、例えば、増幅反応の反応温 度を上げるために、従来公知の任意の配列を 5'末端に付加したものでもよい。
[0024] このようなプライマーセット(1)を含む本発明の SULT1A1遺伝子増幅用プライマ 一セットは、例えば、全血試料等の生体試料における SULT1A1遺伝子を増幅させ る際に使用することが好ましい。特に、本発明の SULT1A1遺伝子増幅用プライマ 一セットを、後述するような多型の検出用プローブとともに使用する際には、遺伝子 増幅用反応液における全血試料の添加割合を 0. ;!〜 0. 5体積%とすることが好まし い。この点については、後述する。
[0025] < SULT1A1遺伝子増幅用試薬 >
本発明の SULT1A1遺伝子増幅用試薬は、前述のように、遺伝子増幅法により S ULT1A1遺伝子を増幅するための試薬であって、本発明の SULT1A1遺伝子増幅 用プライマーセットを含むことを特徴とする。本発明の SULT1A1遺伝子増幅用試薬 は、本発明のプライマーセットを含むことが特徴であり、これ以外の組成等について は何ら制限されない。
[0026] 本発明の SULT1A1遺伝子増幅用試薬は、例えば、本発明のプライマーセットを 用いた遺伝子増幅法により得られる増幅産物を検出するために、さらに、 SULT1A 1遺伝子の検出対象部位にハイブリダィズ可能なプローブを含んでもよ V、。前述のよ うに本発明のプライマーセットによれば、遺伝子増幅法によって、 SULT1A1 * 2お よび SULT1A1 * 3の検出対象部位を両方含んでいる目的領域を増幅することがで きる。このため、前記目的領域における検出対象部位を含む検出対象配列に相補的 なプローブを共存させることによって、例えば、増幅の有無や対象部位の遺伝子型( 多型)等を、後述する方法によって検出することが可能である。このようなプローブや その利用方法に関しては、後の多型の解析方法において説明する。また、本発明の SULT1A1遺伝子増幅用試薬は、例えば、全血等の生体試料における SULT1A1 遺伝子を増幅させる際に使用することが好ましい。特に、本発明の SULT1A1遺伝 子増幅用試薬を、前述のようなプローブとともに使用する際には、遺伝子増幅用反応 液における全血試料の添加割合を 0. ;!〜 0. 5体積%とすることが好ましい。なお、本 発明において、「検出対象配列」とは、多型が発生する部位 (検出対象部位)を含む 配列を意味する。
[0027] 本発明の SULT1A1遺伝子増幅用試薬の形態は、特に制限されず、例えば、本 発明の SULT1A1遺伝子増幅用プライマーセットを含有する液体試薬でもよいし、 使用前に溶媒で懸濁する乾燥試薬であってもよい。また、 SULT1A1遺伝子増幅用 プライマーセットの含有量も、特に制限されない。
[0028] <増幅産物の製造方法〉
本発明の増幅産物の製造方法は、前述のように、遺伝子増幅法により SULT1A1 遺伝子の増幅産物を製造する方法であって、下記 (I)工程を含むことを特徴とする。
(I)試料中の核酸を铸型として、本発明の SULT1A1遺伝子増幅用プライマーセット を用いて、反応液中で、前記 SULT1A1遺伝子の増幅を行う工程
[0029] このように本発明のプライマーセットを用いて増幅反応を行うことによって、前述のよ うに SULT1A1遺伝子における多型 SULT1A1 * 2および SULT1A1 * 3が発生 する検出対象部位を両方含む目的領域を特異的に高効率で増幅させることができる 。なお、本発明の増幅産物の製造方法においては、本発明のプライマーセットを使 用することが特徴であって、遺伝子増幅法の種類や条件等は何ら制限されない。
[0030] 前記遺伝子増幅法としては、前述のように特に制限されず、例えば、 PCR (Polym erase Chain Reaction)法、 NASBA (Nucleic acid sequence based amp lification)法、 TMA (Transcription— mediated amplification)法、 SDA (Str and Displacement Amplification)法等があげられる力 PCR法が好ましい。な お、以下、 PCR法を例にあげて、本発明を説明するが、これには制限されない。
[0031] 本発明を適用する試料としては、例えば、铸型となる核酸を含んでいればよぐ特 に制限されないが、例えば、夾雑物が含まれる試料に適用することが好ましい。前記 夾雑物が含まれる試料としては、例えば、全血、口腔内細胞(例えば、口腔粘膜)、 爪や毛髪等の体細胞、生殖細胞、喀痰、羊水、パラフィン包埋組織、尿、胃液 (例え ば、胃洗浄液)等や、それらの懸濁液等があげられる。本発明のプライマーセットを用 いた増幅産物の製造方法によれば、例えば、全血のように様々な夾雑物が含まれる 試料 (特に、全血や口腔内細胞等の生体試料)であっても、その影響を受け難ぐ S ULT1A1遺伝子の前記領域を特異的に増幅することができる。このため、本発明に よれば、従来法では困難であった全血等の夾雑物の多い試料であっても、例えば、 精製等の前処理を行うことなぐそのまま使用することが可能である。したがって、試 料の前処理の観点からも、従来法よりさらに迅速に増幅産物を調製することが可能と いえる。
[0032] 前記反応液における試料の添加割合は、特に制限されな V、。具体例として、前記 試料が生体試料 (例えば、全血試料)の場合、前記反応液における添加割合の下限 1S 例えば、 0. 01体積%以上であることが好ましぐより好ましくは 0. 05体積%以上 、さらに好ましくは 0. 1体積%以上である。また、前記添加割合の上限も、特に制限 されないが、例えば、 2体積%以下が好ましぐより好ましくは 1体積%以下、さらに好 ましくは 0. 5体積%以下である。
[0033] また、後述するような光学的検出を目的とする場合、特に、標識化プローブを用い た光学的検出を行う場合、全血試料のような生体試料の添加割合は、例えば、 0. 1 〜0. 5体積%に設定することが好ましい。 PCR反応においては、通常、 DNA変性( 一本鎖 DNAへの解離)のために熱処理が施される力 この熱処理によって試料に含 まれる糖やタンパク質等が変性し、不溶化の沈殿物や濁り等が発生するおそれがあ る。このため、増幅産物の有無や検出対象部位の遺伝子型(多型)を光学的手法に より確認する場合、このような沈殿物や濁りの発生が、測定精度に影響を及ぼす可能 性がある。し力、しながら、反応液における全血試料の添加割合を前述の範囲に設定 すれば、メカニズムは不明であるが、例えば、変性による沈殿物等の発生による影響 を十分に防止することができるため、光学的手法による測定精度を向上できる。また 、全血試料中の夾雑物による PCRの阻害も十分に抑制されるため、増幅効率をより 一層向上することができる。したがって、本発明のプライマーセットの使用に加えて、 さらに、全血試料等の試料の添加割合を前述の範囲に設定することによって、より一 層、試料の前処理の必要性を排除できる。
[0034] また、前記反応液中の全血試料の割合は、前述のような体積割合 (例えば、 0.;!〜 0. 5体積0 /0)ではなぐヘモグロビン(以下、「Hb」という)の重量割合で表すこともで きる。この場合、前記反応液における全血試料の割合は、 Hb量に換算して、例えば 、 0. 565〜; 113g/Lの範囲カ好ましく、より好ましく (ま 2. 825-56. 5g/Lの範囲、 さらに好ましくは 5. 65-28. 25 g/Lの範囲である。なお、前記反応中における 全血試料の添加割合は、例えば、前記体積割合と Hb重量割合の両方を満たしても よいし、いずれか一方を満たしてもよい。
[0035] 全血としては、例えば、溶血した全血、未溶血の全血、抗凝固全血、凝固画分を含 む全血等の!/、ずれであってもよ!/、。
[0036] 本発明にお!/、て、試料に含まれる標的核酸は、例えば、 DNAである。前記 DNA は、例えば、生体試料等の試料に元来含まれる DNAでもよいし、遺伝子増幅法によ り増幅させた増幅産物 DNAであってもよい。後者の場合、前記試料に元来含まれて いる RNA (トータル RNA、 mRNA等)から逆転写反応(例えば、 RT— PCR(Revers e Transcription PCR) )により生成させた cDNAがあげられる。
[0037] 本発明の増幅産物の製造方法において、遺伝子増幅反応の開始に先立ち、前記 反応液にさらにアルブミンを添加することが好ましい。このように、アルブミンを添加す れば、例えば、前述のような沈殿物や濁りの発生による影響をより一層低減すること ができ、且つ、増幅効率もさらに向上することができる。具体的には、前記 (I)工程の 増幅反応や、一本鎖 DNAへの解離工程前に、アルブミンを添加することが好ましい
[0038] 前記反応液におけるアルブミンの添加割合は、例えば、 0. 0;!〜 2重量%の範囲で あり、好ましくは 0. ;!〜 1重量%であり、より好ましくは 0. 2〜0. 8重量%である。前記 アルブミンとしては、特に制限されず、例えば、ゥシ血清アルブミン(BSA)、ヒト血清 アルブミン、ラット血清アルブミン、ゥマ血清アルブミン等があげられ、これらはいずれ 力、 1種類でもよ!/、し 2種類以上を併用してもよレ、。
[0039] つぎに、本発明の増幅産物の製造方法について、全血試料について、 DNAを標 的核酸とし、本発明の SULT1A1遺伝子増幅用プライマーセットを用いた PCRによ り SULT1A1遺伝子の前記目的領域の増幅産物を製造する例をあげて説明する。 なお、本発明は、本発明のプライマーセットを使用することが特徴であり、他の構成な らびに条件は何ら制限されない。
[0040] まず、 PCR反応液を調製する。本発明のプライマーセットの添加割合は、特に制限 されないが、プライマーセット(1)の Fプライマーを、 0· 1〜2〃11101/しとなるように添 加することが好ましぐより好ましくは 0. 25-1. 5 11101/しでぁり、特に好ましくは0 . 5〜1 11101/しである。また、プライマーセット(1)の Rプライマーを、 0. 1〜2 1110 1/Lとなるように添加することが好ましぐより好ましくは 0· 25-1. S mol/Lであり 、特に好ましくは 0· 5〜1 ^ 11101/しである。プライマーセットにおける Fプライマーと R プライマーとの添加割合 (F : R、モル比)は、特に制限されないが、例えば、 1 : 0. 25 〜; 1 : 4が好ましぐより好ましくは 1 : 0. 5〜; 1 : 2である。
[0041] 反応液における全血試料の割合は、特に制限されないが、前述の範囲が好ましい 。全血試料は、そのまま反応液に添加してもよいし、予め、水や緩衝液等の溶媒で希 釈してから反応液に添加してもよい。全血試料を予め希釈する場合、その希釈率は 特に制限されず、例えば、反応液での最終的な全血添加割合が前記範囲となるよう に設定できる力 ί列え (ま、、 100〜2000倍で り、好ましく (ま 200〜 000倍である。
[0042] 前記反応液における他の組成成分は、特に制限されず、従来公知の成分があげら れ、その割合も特に制限されない。前記組成成分としては、例えば、 DNAポリメラー ゼ、ヌクレオチド (ヌクレオシド三リン酸 (dNTP) )および溶媒があげられる。また、前 述のように前記反応液はさらにアルブミンを含有することが好ましい。なお、前記反応 液にぉレ、て、各組成成分の添加順序は何ら制限されな!/、。
[0043] 前記 DNAポリメラーゼとしては、特に制限されず、例えば、従来公知の耐熱性細菌 由来のポリメラーゼが使用できる。具体例としては、テルムス ·アクアティカス(Therm us aauaticus)由来 DNAポリメラーゼ(米国特許第 4, 889, 818号および同第 5, 079, 352号)(商品名 Taaポリメラーゼ)、テルムス ·テルモフィラス(Thermus ther mophilus)由来 DNAポリメラーゼ(WO 91/09950) (rTth DNA polymerase )、ピロコッカス ·フリオサス(Pyrococcus fiiitaiS)由来 DNAポリメラーゼ(WO 9 2/9688) (Pfu DNA polymerase: Stratagenes社製)、テルモコッカス'リトラリ ス (Thermococcus litoralis)由来 DNAポリメラーゼ(EP— A 455 430) (商標 V ent : Biolab New England社製)等が商業的に入手可能であり、中でも、テルムス •アクアティカス (Thermus aauaticus)由来の耐熱性 DNAポリメラーゼが好まし!/ヽ
[0044] 前記反応液中の DNAポリメラーゼの添加割合は、特に制限されないが、例えば、 1 〜; 100U/mLであり、好ましくは 5〜50U/mLであり、より好ましくは 20〜30U/m Lである。なお、 DNAポリメラーゼの活性単位(U)は、一般に、活性化サケ精子 DN Aを铸型プライマーとして、活性測定用反応液中、 74°Cで、 30分間に lOnmolの全 ヌクレオチドを酸不溶性沈殿物に取り込む活性力 S1Uである。前記活性測定用反応 液の糸且成は、例えば、 25mM TAPS buffer (pH9. 3、 25。C)、 50mM KC1、 2 mM MgCl 、 ImMメノレカプトエタノーノレ、 200 μ M dATP、 200 μ M dGTP、 2
2
00 Μ dTTP、 100 M「 α— 32P」dCTP、 0. 25mg/mL活性化サケ精子 DNA である。
[0045] 前記ヌクレオシド三リン酸としては、通常、 dNTP (dATP、 dCTP、 dTTP)があげら れる。前記反応液中の dNTPの添加割合は、特に制限されないが、例えば、 0. 01 〜; lmmol/Lであり、好ましくは 0· 05—0. 5mmol/Lであり、より好ましくは 0· ;!〜 0. 3mmolZLでめる。 [0046] 前記溶媒としては、例えば、 Tris-HCl, Tricine, MES、 MOPS, HEPES、 CA PS等の緩衝液があげられ、市販の PCR用緩衝液や市販の PCRキットの緩衝液等が 使用できる。
[0047] また、前記 PCR反応液は、さらに、へパリン、ベタイン、 KC1、 MgCl、 MgSO、グリ
2 4 セロール等を含んでもよぐこれらの添加割合は、例えば、 PCR反応を阻害しない範 囲で設定すればよい。
[0048] 反応液の全体積は、特に制限されず、例えば、使用する機器 (サーマルサイクラ一 )等に応じて適宜決定できる力 通常、 1〜500 しであり、好ましくは 10〜; 100 し である。
[0049] つぎに、 PCRを行う。 PCRのサイクル条件は特に制限されないが、例えば、(1)全 血由来二本鎖 DNAの 1本鎖 DNAへの解離、(2)プライマーのアニーリング、(3)プ ライマーの伸長(ポリメラーゼ反応)は、それぞれ以下の通りである。また、サイクル数 も特に制限されないが、下記(1)〜(3)の 3ステップを 1サイクルとして、例えば、 30サ イタル以上が好ましい。上限は特に制限されないが、例えば、合計 100サイクル以下 、好ましくは 70サイクル以下、さらに好ましくは 50サイクル以下である。各ステップの 温度変化は、例えば、サーマルサイクラ一等を用いて自動的に制御すればよい。本 発明のプライマーセットを使用した場合、前述のように増幅効率に優れるため、従来 の方法によれば 50サイクルに 3時間程度を要していたのに対して、本発明によれば、 約 1時間程度(好ましくは 1時間以内)で 50サイクルを完了することも可能である。
[0050] [表 2]
Figure imgf000017_0001
以上のようにして、 SULT1A1遺伝子における SULT1A1 * 2および SULT1A1
* 3の検出対象部位を両方含む領域に相補的な増幅産物を製造することができる。 [0052] 本発明の増幅産物の製造方法は、さらに、前述の増幅反応によって得られた目的 領域の増幅産物を検出する工程を含んでもよい。これによつて、増幅産物の有無や 、 SULT1A1遺伝子の遺伝子型(多型 SULT1A1 * 2または SULT1A1 * 3)を検 出することもできる。増幅産物の有無は、従来公知の方法により確認できる。具体的 には、例えば、前記(I)工程において、前記反応液に、さらに、 SULT1A1遺伝子の 一方の検出対象部位にハイブリダィズ可能なプローブ (例えば、蛍光標識化プロ一 ブ)を添加しておき、さらに、(Π)工程として、前記反応液について、前記プローブに おける蛍光標識の蛍光強度を測定することによって確認できる。また、前記 2つの検 出対象部位にそれぞれハイブリダィズ可能な 2種類のプローブ (例えば、蛍光標識化 プローブ)を添加しておき、さらに、(II)工程として、前記反応液について、各プロ一 ブにおける各蛍光標識の蛍光強度を測定することによって確認できる。なお、 SULT 1A1遺伝子における多型 SULT1A1 * 2および SULT1A1 * 3の検出については 、本発明の一形態として、以下に説明する。
[0053] < SULT1A1遺伝子の多型解析方法〉
本発明の多型解析方法は、 SULT1A1遺伝子における 2つの検出対象部位の多 型を解析する方法であって、下記 (i)〜(iv)工程を含むことを特徴とする。
(i)本発明の増幅産物の製造方法により、 SULT1A1遺伝子における検出対象部位 を含む領域を反応液中で増幅させる工程
(ii)前記 (i)工程における増幅産物と、前記検出対象部位にハイブリダィズ可能なプ ローブとを含む反応液を準備する工程
(iii)前記反応液の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形 成体の融解状態を示すシグナル値を測定する工程
(iv)温度変化に伴う前記シグナル値の変動から、前記検出対象部位の多型を決定 する工程
[0054] このように本発明のプライマーセットを用いて増幅産物を製造することによって、前 述のように SULT1A1遺伝子における多型 SULT1A1 * 2および SULT1A1 * 3の 検出対象塩基を両方含んでいる領域を増幅し、前記目的領域における前記各多型 を角早析すること力できる。 [0055] 前記(ii)工程におけるプローブは、特に制限されず、例えば、多型 SULT1A1 * 2 の発生部位にハイブリダィズするプローブ(以下、「SULT1A1 * 2用プローブ」とも いう)、および、多型 SULT1A1 * 3の発生部位にハイブリダィズするプローブ(以下 、「SULT1A1 * 3用プローブ」ともいう)があげられる。これらのプローブは、前記検 出対象配列を含む検出対象配列に相補的なプローブであることが好ましい。これら のプローブは、いずれ力、 1種類でもよいし、 2種類全てであってもよい。 2種類のプロ ーブを用いた場合、例えば、同一反応液を用いて、前記 2つ全ての検出対象部位の 多型を解析することができる。
[0056] 前記多型を検出するためのプローブは、特に制限されず、従来公知の方法によつ て設定できる。例えば、多型の検出対象部位を含む検出対象配列として、 SULT1A 1遺伝子のセンス鎖の配列に基づいて設計してもよいし、アンチセンス鎖の配列に基 づいて設計してもよい。また、多型の検出対象部位の塩基は、各多型の種類に応じ て適宜決定できる。すなわち、 SULT1A1 * 2の場合、酉己歹 IJ番号 1における 3514番 目の塩基に「G」および「A」の多型が知られて!/、ること力、ら、例えば、 3514番目が G である検出対象配列、および、 3514番目が Aである検出対象配列のいずれかに相 補的なプローブ(センス鎖の検出用プローブ)や、そのアンチセンス鎖の配列に相補 的なプローブ(アンチセンス鎖の検出用プローブ)があげられる。また、 SULT1A1 * 3の場合、配列番号 1における 3543番目の塩基に「G」および「A」の多型が知られて いることから、例えば、 3543番目が Gである検出対象酉己列、および、 3543番目が A である検出対象配列のいずれかに相補的なプローブ(センス鎖の検出用プローブ) や、そのアンチセンス鎖の配列に相補的なプローブ(アンチセンス鎖の検出用プロ一 ブ)があげられる。このように、多型が生じる検出対象部位の塩基を前述のようないず れかの塩基に設定してプローブを設計しても、後述するような方法により、 SULT1A 1遺伝子の各検出対象部位においてどのような多型を示すかを判断することが可能 である。
[0057] 前記各プローブは、前記(i)工程の後、すなわち、 SULT1A1遺伝子の目的領域 について増幅反応を行った後、増幅反応液に添加することもできるが、容易且つ迅 速に解析を行えることから、前記 (i)工程の増幅反応に先立って、予め反応液に添加 しておくことが好ましい。
[0058] 前記反応液におけるプローブの添加割合は、特に制限されな!/、が、例えば、各プ ローブを 10〜400nmolの範囲となるように添加することが好ましぐより好ましくは 20 〜400nmolである。また、プローブの標識として蛍光色素を用いている場合、例えば 、検出する蛍光強度を調整するために、標識化プローブと同じ配列である未標識プ ローブを併用してもよぐこの未標識プローブは、その 3'末端にリン酸が付加されても よい。この場合、標識化プローブと非標識プローブのモル比は、例えば、 1: 10-10 : 1が好ましい。前記プローブの長さは、特に制限されず、例えば、 5〜50merであり 、好ましくは 10〜30merである。
[0059] Tm値について説明する。二本鎖 DNAを含む溶液を加熱していくと、 260nmにお ける吸光度が上昇する。これは、二本鎖 DNAにおける両鎖間の水素結合が加熱に よってほどけ、一本鎖 DNAに解離 (DNAの融解)することが原因である。そして、全 ての二本鎖 DNAが解離して一本鎖 DNAになると、その吸光度は加熱開始時の吸 光度(二本鎖 DNAのみの吸光度)の約 1. 5倍程度を示し、これによつて融解が完了 したと判断できる。この現象に基づき、融解温度 Tmとは、一般に、吸光度が、吸光度 全上昇分の 50%に達した時の温度と定義される。
[0060] 前記(iii)工程にお V、て、前記増幅産物と前記プローブとのハイブリッド形成体の融 解状態を示すシグナルの測定は、前述した、 260nmの吸光度測定でもよいが、標識 物質のシグナル測定であってもよい。具体的には、前記プローブとして、標識物質で 標識化された標識化プローブを使用し、前記標識物質のシグナル測定を行うことが 好ましい。前記標識化プローブとしては、例えば、単独でシグナルを示し且つハイブ リツド形成によりシグナルを示さない標識化プローブ、または、単独でシグナルを示さ ず且つハイブリッド形成によりシグナルを示す標識化プローブがあげられる。前者の ようなプローブであれば、検出対象配列とハイブリッド(二本鎖 DNA)を形成して!/、る 際にはシグナルを示さず、加熱によりプローブが遊離するとシグナルを示す。また、 後者のプローブであれば、検出対象配列とハイブリッド(二本鎖 DNA)を形成するこ とによってシグナルを示し、加熱によりプローブが遊離するとシグナルが減少(消失) する。したがって、この標識によるシグナルをシグナル特有の条件(吸収波長等)で検 出することによって、前記 260nmの吸光度測定と同様に、融解の進行ならびに Tm 値の決定を行うことができる。
[0061] 本発明においては、前述のように、増幅させた目的領域に、 SULT1A1 * 2および SULT1A1 * 3の両方の多型を示す検出対象部位が含まれる。したがって、例えば 、各検出対象部位にそれぞれハイブリダィズ可能な 2種類のプローブを使用すること で、両方の多型を解析することができる。この場合、前記 2種類のプローブは、それぞ れ異なる条件で検出される異なる標識によって標識化されて!/、ることが好まし!/、。こ のように異なる標識を使用することによって、同一反応液であっても、検出条件を変 えることによって、各増幅産物を別個に解析することが可能となる。
[0062] 前記標識化プローブにおける標識物質の具体例としては、例えば、蛍光色素(蛍 光団)があげられる。前記標識化プローブの具体例としては、例えば、蛍光色素で標 識され、単独で蛍光を示し且つハイブリッド形成により蛍光が減少(例えば、消光)す るプローブが好ましい。このような蛍光消光現象(Quenching phenomenon)を禾 lj 用したプローブは、一般に、蛍光消光プローブと呼ばれる。中でも、前記プローブとし ては、オリゴヌクレオチドの 3'末端もしくは 5'末端が蛍光色素で標識化されているこ とが好ましぐ標識化される前記末端の塩基は、 Cであることが好ましい。この場合、 前記標識化プローブがハイブリダィズする検出対象配列において、前記標識化プロ ーブの末端塩基 Cと対をなす塩基もしくは前記対をなす塩基から;!〜 3塩基離れた塩 基が Gとなるように、前記標識化プローブの塩基配列を設計することが好ましい。この ようなプローブは、一般的にグァニン消光プローブと呼ばれ、いわゆる QProbe (登録 商標)として知られている。このようなグァニン消光プローブが検出対象配列にハイブ リダィズすると、蛍光色素で標識化された末端の Cが、前記検出対象 DNAにおける Gに近づくことによって、前記蛍光色素の発光が弱くなる(蛍光強度が減少する)とい う現象を示す。このようなプローブを使用すれば、シグナルの変動により、ハイブリダ ィズと解離とを容易に確認すること力 Sできる。
[0063] 前記蛍光色素としては、特に制限されないが、例えば、フルォレセイン、リン光体、 ローダミン、ポリメチン色素誘導体等があげられ、市販の蛍光色素としては、例えば、 BODIPY FL (商標、モレキュラー 'プローブ社製)、 FluorePrime (商品名、アマシ ャムフアルマシア社製)、 Fluoredite (商品名、ミリポア社製)、 FAM (ABI社製)、 Cy 3および Cy5 (アマシャムフアルマシア社製)、 TAMRA (モレキュラープローブ社製) 等があげられる。 2種類のプローブに使用する蛍光色素の組み合わせは、例えば、 異なる条件で検出できればよぐ特に制限されないが、例えば、 Pacific Blue (検出 波長 450〜480nm)、 TAMRA (検出波長 585〜700nm)および BODIPY FL ( 検出波長 515〜555nm)の組み合わせ等があげられる。
[0064] 以下に、多型 SULT1A1 * 2および SULT1A1 * 3を検出するためのプローブの 配列の具体例を示すが、本発明は、これには制限されない。下記プローブ(1)は、 S ULT1A1 * 2用プローブの一例であり、アンチセンス鎖を検出するためのプローブ である。また、下記プローブ(2)は、 SULT1A1 * 3用プローブの一例であり、アンチ センス鎖を検出するためのプローブである。
[0065] プローブ(1)
配列番号 1における 3518番目のシトシン塩基(C)を 1塩基目として 5'方向に向かつ て 15〜 19塩基目までの領域と同じ配列である少なくとも 1つのオリゴヌクレオチドで あって、前記シトシン塩基を 3'末端とするオリゴヌクレオチド、
および、
配列番号 1における 3517番目のシトシン塩基(C)を 1塩基目として 5'方向に向かつ て 14〜; 19塩基目までの領域と同じ配列である少なくとも 1つのオリゴヌクレオチドで あって、前記シトシン塩基を 3'末端とするオリゴヌクレオチド、
の少なくとも一方のオリゴヌクレオチド
プローブ(2)
配列番号 1における 3556番目のシトシン塩基(C)を 1塩基目として 5'方向に向かつ て 15〜20塩基目までの領域と同じ配列である少なくとも 1つのオリゴヌクレオチドで あって、前記シトシン塩基を 3,末端とするオリゴヌクレオチド
[0066] 前記プローブ(1)において、配列番号 1の 3514番目にあたる塩基は、 rで表され、 前記 rは、 Aまたは Gであり、前記プローブ(2)において、配列番号 1の 3543番目に あたる塩基は、 rで表され、前記 rは、 Aまたは Gである。
[0067] さらに、前記プローブ(1)およびプローブ(2)の具体例を下記表に示す。なお、下 記表における「Tm (°C)」は、下記表の配列と完全に相補的な配列とがハイブリッドし た場合の Tm (。C)であり、 MELTCALCソフトウェア(http : //www. meltcalc. c om/)により、パラメーターをオリゴヌクレオチド濃度 0· 、ナトリウム当量(Na e q. ) 50mMとして算出した値である。
[0068] [表 3]
Figure imgf000023_0001
[0069] 前記表のプローブ(1)において、配列番号 22で表されるプローブは、配列番号 1 における 3514番目力 Gである領域と同じ酉己歹 IJ力、らなり、酉己歹 IJ番号 23〜26、 43-48 で表されるプローブは、配列番号 1における 3514番目が Aである領域と同じ配列か らなり、いずれも、大文字の塩基が、配列番号 1の 3514番目の塩基に相補的な塩基 を示す。なお、前記プローブ(1)において、前記大文字の塩基は、 rで表すことができ 、前記 rは、 Gおよび Aのいずれでもよい。前記表のプローブ(2)は、配列番号 1にお ける 3543番目が Gである領域と同じ配列からなり、大文字の塩基が、配列番号 1に おける 3543番目の塩基を示す。なお、前記プローブ(2)において、前記大文字の塩 基は、 rで表すことができ、前記 rは、 Gおよび Aいずれでもよい。なお、本発明におけ るプローブの具体例としては、例えば、前述のように、前記表に示すオリゴヌクレオチ ドの相補鎖であってもよレ、。
[0070] 前記プローブは一例であって、本発明はこれには限定されないが、これらのプロ一 ブの中でも、 SULT1A1 * 2用プローブとしては、(ΡΙ ' )配列番号 23の塩基配列か らなるオリゴヌクレオチド、または、配列番号 46の塩基配列からなるオリゴヌクレオチド が好ましぐ SULT1A1 * 3用プローブとしては、(Ρ2' )配列番号 30の塩基配列から
Figure imgf000024_0001
[0071] そして、これらのプローブは、前述のように 2種類以上を使用する際には、それぞれ 異なる蛍光色素(異なる波長で検出される蛍光色素)で標識化することが好ましレ、。 例えば、前記表に示すプローブをグァニン消光プローブとする場合、 SULT1A1 * 2用プローブ(P1プローブ)および SULT1A1 * 3用プローブ(Ρ2プローブ)は、 3' 末端のシトシンを前述のような蛍光色素(例えば、 BODIPY FL、 TAMRA等)で標 識化すること力 S好ましい。また、 5'末端に蛍光色素を標識化したプローブは、例えば 、プローブ自体が伸長することを予防するために、その 3'末端に、さらにリン酸基が 付加されてもよい。
[0072] 次に、本発明の検出方法について、一例として、下記プローブを用いて、 SULT1 A1遺伝子における 2つの多型 SULT1A1 * 2および SULT1A1 * 3を検出する方 法を説明する。なお、本発明はこれには制限されない。
[0073] (プローブ)
SULT1A1 * 2用プローブ
5' - gagtttgtggggcActcc - (BODIPY FL)— 3' (配列番号 23)、または、 5' - agtttgtggggcActc - (BODIPY FL)-3' (配列番号 46)
SULT1A1 * 3用プローブ
5' -ttcGtggttcagcacac-(TAMRA)-3' (配列番号 30)
[0074] まず、前記 2種類の標識化プローブを添加した反応液を用いて、前述のように PCR を行い、反応液中で、 SULT1A1遺伝子の前記領域を増幅させる。前記反応液は、 例えば、本発明の SULT1A1遺伝子増幅用プライマーセット、 DNAポリメラーゼ、 d NTP、铸型となる核酸を含む試料、および、前記 2種類のプローブを含む。この他に 、核酸増幅に使用できる種々の添加剤を含んでもよい。
[0075] 次に、得られた増幅産物の解離、および、解離により得られた一本鎖 DNAと前記 標識化プローブとのハイブリダィズを行う。これは、例えば、前記反応液の温度変化 によって fiうことができる。 [0076] 前記解離工程における加熱温度は、前記増幅産物が解離できる温度であれば特 に制限されないが、例えば、 85〜95°Cである。加熱時間も特に制限されないが、通 常、 1秒〜 10分であり、好ましくは 1秒〜 5分である。
[0077] 解離した一本鎖 DNAと前記標識化プローブとのハイブリダィズは、例えば、前記解 離工程の後、前記解離工程における加熱温度を降下させることによって行うことがで きる。温度条件としては、例えば、 40〜50°Cである。
[0078] そして、前記反応液の温度を変化させ、前記増幅産物と前記標識化プローブとの ハイプリッド形成体の融解状態を示すシグナル値を測定する。具体的には、例えば、 前記反応液(前記一本鎖 DNAと前記標識化プローブとのハイブリッド形成体)を加 熱し、温度上昇に伴うシグナル値の変動を測定する。前述のように、末端の C塩基が 標識化されたプローブ(グァニン消光プローブ)を使用した場合、一本鎖 DNAとのハ イブリダィズした状態では、蛍光が減少ほたは消光)し、解離した状態では、蛍光を 発する。したがって、例えば、蛍光が減少ほたは消光)しているハイブリッド形成体を 徐々に加熱し、温度上昇に伴う蛍光強度の増加を測定すればよい。
[0079] 蛍光強度の変動を測定する際の温度範囲は、特に制限されないが、例えば、開始 温度が室温〜 85°Cであり、好ましくは 25〜70°Cであり、終了温度は、例えば、 40〜 105°Cである。また、温度の上昇速度は、特に制限されないが、例えば、 0.;!〜 20 °C /秒であり、好ましくは 0. 3〜5°C/秒である。
[0080] 次に、前記シグナルの変動を解析して Tm値として決定する。具体的には、得られ た蛍光強度から各温度における単位時間当たりの蛍光強度変化量(一 d蛍光強度増 加量/ dt)を算出し、最も低い値を示す温度を Tm値を決定できる。また、単位時間 当たりの蛍光強度増加量 (蛍光強度増加量/ 1)が最も高い点を Τι^直として決定す ることもできる。なお、標識化プローブとして、消光プローブではなぐ単独でシグナル を示さず且つハイブリッド形成によりシグナルを示すプローブを使用した場合には、 反対に、蛍光強度の減少量を測定すればょレ、。
[0081] 本発明においては、 2つの多型 SULT1A1 * 2および SULT1A1 * 3を検出する ため、 2種類のプローブの各標識に応じた条件で、それぞれの Tm値を決定する。 S ULT1A1 * 2用プローブの BODIPY FLは、例えば、検出波長 515〜555nm、 S ULT1A1 * 3用プローブの TAMRAは、例えば、検出波長 585〜700nmで検出す ること力 Sできる。また、標識が Pacific Blueの場合は、例えば、検出波長 450〜480 nmで検出することができる。
[0082] そして、これらの Tm値から、各検出対象配列における遺伝子型を決定する。 Tm解 析において、完全に相補であるハイブリッド(マッチ)は、一塩基が異なるハイブリッド( ミスマッチ)よりも、解離を示す Tm値が高くなるという結果が得られる。したがって、予 め、前記プローブについて、完全に相補であるハイブリッドの Tm値と、一塩基が異な るハイブリッドの Tm値とを決定しておくことにより、各検出対象部位における遺伝子 型を決定することができる。例えば、検出対象部位の塩基を変異型 (例えば、配列番 号 1における 3514番目の塩基が A)と仮定し、それを含む検出対象配列に相補的な プローブを使用した場合、形成したハイブリッドの Tm値力 完全に相補なハイブリツ ドの Tm値と同じであれば、前記増幅産物の多型は、変異型と判断できる。また、形 成したハイブリッドの Tm値力 S、一塩基異なるハイブリッドの Tm値と同じ(完全に相補 なハイブリッドの Tm値より低い値)であれば、前記増幅産物の多型は、野生型(例え ば、配列番号 1における 3514番目の塩基が G)と判断できる。さらに、両方の Tm値 が検出された場合には、ヘテロ接合体と決定できる。このようにして、各標識化プロ一 ブに対する 2つの Tm値から、多型 SULT1A1 * 2および SULT1A1 * 3の遺伝子 型を判断することができる。
[0083] また、本発明においては、前述のように、前記プローブを含む反応液の温度を上昇 させて (ノ、イブリツド形成体を加熱して)、温度上昇に伴うシグナル変動を測定する方 法に代えて、例えば、ハイブリッド形成時におけるシグナル変動の測定を行ってもよ い。すなわち、前記プローブを含む反応液の温度を降下させてハイブリッド形成体を 形成する際に、前記温度降下に伴うシグナル変動を測定してもよい。
[0084] 具体例として、単独でシグナルを示し且つハイブリッド形成によりシグナルを示さな い標識化プローブ (例えば、グァニン消光プローブ)を使用した場合、一本鎖 DNAと プローブとが解離している状態では蛍光を発している力 S、温度の降下によりハイブリツ ドを形成すると、前記蛍光が減少ほたは消光)する。したがって、例えば、前記反応 液の温度を徐々に降下して、温度下降に伴う蛍光強度の減少を測定すればよい。他 方、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プロ ーブを使用した場合、一本鎖 DNAとプローブとが解離して!/、る状態では蛍光を発し ていないが、温度の降下によりハイブリッドを形成すると、蛍光を発するようになる。し たがって、例えば、前記反応液の温度を徐々に降下して、温度下降に伴う蛍光強度 の増加を測定すればよい。
[0085] なお、 SULT1A1遺伝子の 2種類の多型(SULT1A1 * 2および SULT1A1 * 3) のうち一方の多型を解析する場合には、例えば、 目的の検出対象部位にハイブリダ ィズする!/、ずれ力、 1種類のプローブを使用すればよ!/、。
[0086] つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により 制限されない。
実施例 1
[0087] 被検者 8人からへパリンリチウム採血管を用いて採血を行った(サンプル 1〜8)。得 られた血液 10 H Lと蒸留水 90 H Lを混合し、さらに、この混合液 10 Lと蒸留水 90 μ Lとを混合した。これら混合液 10 Lを、下記組成の PCR反応液 40 μ Lに添加し、 サーマルサイクラ一を用いて PCRを行った。 PCRの条件は、 95°Cで 60秒処理した 後、 95°C1秒および 66°C10秒を 1サイクルとして 50サイクル繰り返し、さらに 95°Cで 1秒、 40°Cで 60秒処理した。そして、続けて、温度の上昇速度を C/3秒として、前 記 PCR反応液を 40°Cから 95°Cに加熱していき、経時的な蛍光強度の変化を測定し た。測定波長は、 515〜555nm (蛍光色素 BODIPY FLの検出)、および、 585〜 700nm (蛍光色素 TAMRAの検出)とした。なお、 50サイクルの PCRに要した時間 は、約 1時間であった。
[0088] [表 4] (PCR反応液:単位〃 I )
蒸留水 23. 225
5 % N a N 3 0. 4
20 % B S A 1
40%グリセ口一ル 3. 1 25
I 0 X G e n e T a q b u f f e r^ 5
2. 5mM d N T P s 4
1 0 OmM M g C I 2 0. 75
5μΜ S U L T 1 A 1 * 2用プローブ 0. 75
5μΜ SU LT 1 A 1 * 3用プローブ 0. 75
1 00 juM SU LT 1 A 1 F 1プライマ一 0. 25
1 0 OjUM S U LT 1 A 1 R 1プライマー 0. 5
5 \ ~ I G e n e Ta g F 0. 25
T o t a l 40 jU L
* 商品名 Ge n e T a q FP 二ツボンジ一ン社製
[0089] (プローブ)
SULT1A1 * 2用プローブ
5' - gagtttgtggggcactcc - (BODIPY FL)— 3, (配列番号 23)
SULT1A1 * 3用プローブ
5' ttcgtggttcagcacac (TAMRA) 3' (配列番号 30)
[0090] (プライマーセット)
SULT1A1 F1プライマー
5― tgaggttagagaaggggaccccttttac― ό ' (目己列番^"
SULT1A1 R1プライマー
5― gctgtggtccatgaactcctggg― 3 ' (酉列 ¾·号 18)
[0091] SULT1A1 * 2用プローブとマッチするハイブリッドの Tm値は 67· 0°C、ミスマッチ のハイブリッドの Τπ^直は 60· 0°C、 SULT1A1 *3用プローブとマッチするハイブリツ ドの Tm値は 64· 0°C、ミスマッチのハイブリッドの Tm値は 58· 0°Cである。
[0092] サンプル 1〜8の結果を図 1〜3にそれぞれ示す。これらの図は、温度上昇に伴う蛍 光強度の変化を示す Tm解析のグラフであり、縦軸の微分値は「一 d蛍光強度増加量 /dt」を示し、横軸は温度を示す(以下、同様)。同図に示すように、シグナルのピー 定した。これらの実施例の結果を裏付けるために、被検者 8人について、 RFLP法に よって、 SULTIAI * 2および SULTIAI * 3の多型を確認した結果、実施例と同じ 結果が得られた。このように、本発明のプライマーセットを使用することにより、前処理 を施していない全血試料を使用して、 SULTIAI遺伝子における SULTIAI * 2お よび SULTIAI * 3の検出対象部位を両方含む領域を、効率良く増幅し、且つ、前 記同一反応液を用いて 2種類の多型を解析することができた。
実施例 2
[0093] 被検者 2人から EDTA採血管を用いて採血を行った(サンプル;!〜 2)。得られた血 液 10 11 Lと下記希釈液 A 7011 Lとを混合し、さらに、この混合液 10 Lと下記希釈 液 Β 70 μ Lとを混合した。得られた混合液 10 Lを 95°Cで 5分間加熱処理した後、 下記組成の PCR反応液 46 μ Lに添加し、サーマルサイクラ一を用いて PCRを行つ た。 PCRの条件は、 95°Cで 60秒処理した後、 95°C1秒および 62°C15秒を 1サイク ルとして 50サイクル繰り返し、さらに 95°Cで 1秒、 40°Cで 60秒処理した。そして、続 けて、温度の上昇速度を C/3秒として、前記 PCR反応液を 40°Cから 75°Cに加熱 していき、経時的な蛍光強度の変化を測定した。測定波長は、 515〜555nm (蛍光 色素 BODIPY FLの検出)とした。
[0094] (希釈液 A)
10mM Tris— HCl (pH8)、 0. ImM EDTA, 0. 05% NaN、 0. 3% SDS
3
(希釈液 B)
lOmM Tris— HCl (pH8)、 0· ImM EDTA, 0. 05% NaN
3
[0095] [表 5]
(PCR反応液:単位 I )
蒸留水 22. 5
5% N a N3 O. 5
20% BS A 0. 5
40%グリセロール 10
10 X Ge n e T a q b u f f e r ' 5
2. 5mM d N T P s 4
10 OmM M g C I 2 0. 5
5 jt SULT 1 A 1 * 2用プローブ 2
1 OO^M SULT 1 A 1 F 1プライマ一 0. 25
1 OOjUM SULT 1 A 1 R1プライマー 0. 5
Figure imgf000030_0001
To t a l 46 iし
* 商品名 G e n e T a q FP ニッポンジ一ン社製
[0096] (プローブ)
SULTIAI * 2用プローブ
5' - agtttgtggggcActc - (BODIPY FL)— 3' (配列番号 46)
[0097] (プライマーセット)
SULTIAI F1プライマー
5― tgaggttagagaaggggaccccttttac― ό ' (目己列番^"
SULTIAI R1プライマー
5' - ggtggtgtagttggtcatagggttctt - 3' (配列番号 39)
[0098] SULTIAI * 2用プローブとマッチするハイブリッドの Tm値は 59°C、ミスマッチの ハイブリッドの Tm値は 51°Cである。
[0099] サンプル 1および 2の結果を図 4に示す。この図は、温度上昇に伴う蛍光強度の変 化を示す Tm解析のグラフであり、縦軸の微分値は「一 d蛍光強度増加量 /dt」を示 し、横軸は温度を示す。同図に示すように、シグナルのピークから、サンプル 1および 2における SULTIAI * 2の遺伝子型を決定した。この実施例の結果を裏付けるた めに、被検者 2人について、 RFLP法によって、 SULTIAI * 2の多型を確認した結 果、実施例と同じ結果が得られた。このように、本発明のプライマーセットを使用する ことにより、前処理を施していない全血試料を使用して、 SULTIAI遺伝子における SULTIAI * 2の検出対象部位を両方含む領域を、効率良く増幅し、且つ、前記同 一反応液を用いて 2種類の多型を解析することができた。
産業上の利用可能性
以上のように、本発明のプライマーセットによれば、 SULT1A1遺伝子における多 型 SULT1A1 * 2および SULT1A1 * 3の検出対象部位を両方含む領域を、特異 的に高効率で増幅することができる。このため、前述のような従来法とは異なり手間 やコストを低減することが可能となる。また、このように 2つの多型の検出対象部位を 両方含む領域を特異的に増幅されることから、例えば、各検出対象部位をそれぞれ 含む検出対象配列に相補的な 2種類のプローブを使用することで、前記反応液を用 V、てそのまま Tm解析を行い、前記 2種類の多型をそれぞれタイピングすることが可 能となる。また、 1つの反応液で増幅やタイピングが可能であることから、操作の自動 化も可能になる。さらに、本発明のプライマーセットを用いれば、例えば、夾雑物が含 まれる試料 (例えば、全血や口腔粘膜等)であっても、前処理を省略できるため、より 迅速且つ簡便に増幅反応を行うことができる。また、本発明のプライマーセットを用い れば、従来よりも優れた増幅効率で増幅反応が行えるため、増幅反応も短縮化が可 能である。したがって、本発明のプライマーセットやこれを含む試薬、ならびにこれら を用いた増幅産物の製造方法によれば、 SULT1A1遺伝子の多型を迅速かつ簡便 に解析できることから、医療分野にぉレ、てきわめて有効とレ、える。

Claims

請求の範囲 [1] 遺伝子増幅法により SULT1A1遺伝子を増幅するためのプライマーセットであって 、下記プライマーセット(1)を含むことを特徴とする SULT1A1遺伝子増幅用プライ マーセット。 プライマーセット(1) 下記(F1)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1)配列番号 1の塩基配列における 3418番目のシトシン塩基(C)を 1塩基目として 5'方向に向かって 24〜33塩基目までの領域と同じ配列である少なくとも 1つのオリ ゴヌクレオチドであって、前記シトシン塩基(C)を 3,末端とするオリゴヌクレオチド (R1)配列番号 1の塩基配列における 3607番目のシトシン塩基(C)を 1塩基目として 3'方向に向力、つて 20〜29塩基目までの領域に相補的な少なくとも 1つのオリゴヌク レオチドであって、前記 3607番目のシトシン塩基(C)に相補的なグァニン塩基(G) および、
配列番号 1の塩基配列における 3576番目のアデニン塩基 (A)を 1塩基目として 3' 方向に向力 て 24〜33塩基目までの領域に相補的な少なくとも 1つのオリゴヌタレ ォチドであって、前記 3576番目のアデニン塩基 (A)に相補的なチミン塩基 (T)を 3'
の少なくとも一方のオリゴヌクレオチド
[2] 前記(1)のプライマーセットが、下記(1 ' )のプライマーセットである、請求の範囲 1 記載の SULT1A1遺伝子増幅用プライマーセット。
プライマーセット ') 下記(F1 ' )のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1 ' )の オリゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1 ' )配列番号 7の塩基配列からなるオリゴヌクレオチド
(R1 ' )配列番号 18の塩基配列からなるオリゴヌクレオチド、および、配列番号 39の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
[3] SULT1A1遺伝子増幅用プライマーセットが、生体試料中の SULT1A1遺伝子を 増幅するためのプライマーセットである、請求の範囲 1記載の SULT1A1遺伝子増 幅用プライマーセット。
[4] 前記生体試料が、全血である、請求の範囲 3記載の SULT1A1遺伝子増幅用ブラ イマ一セット。
[5] 遺伝子増幅法により SULT1A1遺伝子を増幅するための試薬であって、請求の範 囲 1記載の SULT1A1遺伝子増幅用プライマーセットを含むことを特徴とする SULT 1A1遺伝子増幅用試薬。
[6] さらに、 SULT1A1遺伝子の検出対象部位にハイブリダィズ可能なプローブを含 む、請求の範囲 5記載の SULT1A1遺伝子増幅用試薬。
[7] 前記プローブが、下記(ΡΙ ' )および(Ρ2' )に示すオリゴヌクレオチドの少なくとも一 方からなるプローブである、請求の範囲 6記載の SULT1A1遺伝子増幅用試薬。
(ΡΙ ' )配列番号 23の塩基配列からなるオリゴヌクレオチド、および、配列番号 46の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
(Ρ2' )配列番号 30の塩基配列からなるオリゴヌクレオチド
[8] 前記プローブが、蛍光標識化プローブである、請求の範囲 6記載の SULT1A1遺 伝子増幅用試薬。
[9] 遺伝子増幅法により SULT1A1遺伝子の増幅産物を製造する方法であって、 下記 (I)工程を含むことを特徴とする増幅産物の製造方法。
(I)試料中の核酸を铸型として、請求の範囲 1記載の SULT1A1遺伝子増幅用ブラ イマ一セットを用いて、反応液中で、前記 SULT1A1遺伝子の増幅を行う工程
[10] 前記 (I)工程において、前記反応液に、さらに、 SULT1A1遺伝子の検出対象部 位にハイブリダィズ可能なプローブを添加する、請求の範囲 9記載の増幅産物の製 造方法。
[11] 前記プローブが、下記(ΡΙ ' )および(Ρ2' )に示すオリゴヌクレオチドの少なくとも一 方からなるプローブである、請求の範囲 10記載の増幅産物の製造方法。
(ΡΙ ' )配列番号 23の塩基配列からなるオリゴヌクレオチド、および、配列番号 46の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド (Ρ2' )配列番号 30の塩基配列からなるオリゴヌクレオチド
[12] 前記プローブが、蛍光標識化プローブである、請求の範囲 10記載の増幅産物の 製造方法。
[13] さらに、下記 (II)工程を含む、請求の範囲 12記載の増幅産物の製造方法。
(II)前記反応液について、前記蛍光標識化プローブにおける蛍光標識の蛍光強度 を測定する工程
[14] 前記試料が、生体試料である、請求の範囲 9記載の増幅産物の製造方法。
[15] 前記生体試料が、全血である、請求の範囲 14記載の増幅産物の製造方法。
[16] 前記反応液における全血試料の添加割合力 0. ;!〜 0. 5体積%である、請求の範 囲 15記載の増幅産物の製造方法。
[17] SULT1A1遺伝子における検出対象部位の多型を解析する方法であって、 下記 ω〜(iV)工程を含むことを特徴とする多型解析方法。
(i)請求の範囲 9記載の増幅産物の製造方法により、 SULT1A1遺伝子における検 出対象部位を含む領域を反応液中で増幅させる工程
(ϋ)前記 ω工程における増幅産物と、前記検出対象部位にハイブリダィズ可能なプ ローブとを含む反応液を準備する工程
(iii)前記反応液の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形 成体の融解状態を示すシグナル値を測定する工程
(iv)温度変化に伴う前記シグナル値の変動から、前記検出対象部位の多型を決定 する工程
[is] 前記 ω工程において、増幅反応に先立って、前記反応液に、前記検出対象部位 にハイブリダィズ可能なプローブを添加する、請求の範囲 17記載の多型解析方法。
PCT/JP2007/073208 2006-11-30 2007-11-30 Jeu d'amorces pour l'amplification du gène sult1a1, réactif pour l'amplification du gène sult1a1 comprenant ledit jeu d'amorces et utilisation du réactif WO2008066165A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008517259A JP5367365B2 (ja) 2006-11-30 2007-11-30 Sult1a1遺伝子増幅用プライマーセット、それを含むsult1a1遺伝子増幅用試薬およびその用途
US12/302,111 US8404438B2 (en) 2006-11-30 2007-11-30 Probes for detection of SULT1A1 gene, reagent containing the same, and the uses thereof
KR1020087020757A KR101107831B1 (ko) 2006-11-30 2007-11-30 Sult1a1 유전자 증폭용 프라이머 세트, 그것을 포함하는 sult1a1 유전자 증폭용 시약 및 그 용도
EP07832873A EP2055774A4 (en) 2006-11-30 2007-11-30 PRIMER SET FOR THE REINFORCEMENT OF THE SULT1A1 GENE, REAGENT FOR THE REINFORCEMENT OF THE SULT1A1 GENIUS THEREFOR AND APPLICATIONS THEREOF
US13/086,979 US8455192B2 (en) 2006-11-30 2011-04-14 Probes for detection of SULT1A1 gene, reagent containing the same, and the uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-322958 2006-11-30
JP2006322958 2006-11-30
JP2007-232615 2007-09-07
JP2007232615 2007-09-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/302,111 A-371-Of-International US8404438B2 (en) 2006-11-30 2007-11-30 Probes for detection of SULT1A1 gene, reagent containing the same, and the uses thereof
US13/086,979 Division US8455192B2 (en) 2006-11-30 2011-04-14 Probes for detection of SULT1A1 gene, reagent containing the same, and the uses thereof

Publications (1)

Publication Number Publication Date
WO2008066165A1 true WO2008066165A1 (fr) 2008-06-05

Family

ID=39467951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073208 WO2008066165A1 (fr) 2006-11-30 2007-11-30 Jeu d'amorces pour l'amplification du gène sult1a1, réactif pour l'amplification du gène sult1a1 comprenant ledit jeu d'amorces et utilisation du réactif

Country Status (6)

Country Link
US (2) US8404438B2 (ja)
EP (2) EP2055774A4 (ja)
JP (1) JP5367365B2 (ja)
KR (1) KR101107831B1 (ja)
CN (1) CN102199662B (ja)
WO (1) WO2008066165A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001969A1 (ja) * 2008-07-02 2010-01-07 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
US9284603B2 (en) 2010-01-21 2016-03-15 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917248B2 (ja) * 2011-05-09 2016-05-11 アークレイ株式会社 HGF遺伝子のpolyArepeat数変異多型検出用プローブおよびその用途
JP2013074888A (ja) * 2011-09-15 2013-04-25 Arkray Inc IL28B(rs8099917)とITPA(rs1127354)の変異を検出する方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1992009688A1 (en) 1990-11-21 1992-06-11 Massachusetts Institute Of Technology MICE HAVING β2 MICROGLOBULIN GENE DISRUPTION
JP2005058107A (ja) * 2003-08-13 2005-03-10 Arkray Inc 融解曲線解析法
JP2005261354A (ja) * 2004-03-19 2005-09-29 Arkray Inc 核酸の蛍光検出法
JP2006521092A (ja) * 2003-04-04 2006-09-21 エフ.ホフマン−ラ ロシュ アーゲー マルチカラーリアルタイムpcr用の改良されたシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
CN100374579C (zh) * 2003-04-04 2008-03-12 霍夫曼-拉罗奇有限公司 改良的多色实时pcr系统
GB0613840D0 (en) * 2006-07-12 2006-08-23 Progenika Biopharma Sa Methods and products for in vitro genotyping

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
WO1992009688A1 (en) 1990-11-21 1992-06-11 Massachusetts Institute Of Technology MICE HAVING β2 MICROGLOBULIN GENE DISRUPTION
JP2006521092A (ja) * 2003-04-04 2006-09-21 エフ.ホフマン−ラ ロシュ アーゲー マルチカラーリアルタイムpcr用の改良されたシステム
JP2005058107A (ja) * 2003-08-13 2005-03-10 Arkray Inc 融解曲線解析法
JP2005261354A (ja) * 2004-03-19 2005-09-29 Arkray Inc 核酸の蛍光検出法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIOCHEM J., vol. 337, no. 1, 1 January 1999 (1999-01-01), pages 45 - 9
CHEM BIOL, vol. 109, no. 1-3, 20 February 1998 (1998-02-20), pages 237 - 48
RAFTOGIANIS R.B. ET AL.: "Human phenol sulfotransferase SULT1A2 and SULT1A1", BIOCHEM. PHARMACOL., vol. 58, 1999, pages 605 - 616, XP002923993 *
RAFTOGIANIS R.B. ET AL.: "Phenol sulfotransferase phamacogenetics in humans: Association of common SULT1A1 alleles with TS PST phenotype", BIOPHYS. RES. COMMUN., vol. 239, no. 1, 1997, pages 298 - 304, XP002923992 *
See also references of EP2055774A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001969A1 (ja) * 2008-07-02 2010-01-07 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5637850B2 (ja) * 2008-07-02 2014-12-10 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
US9115391B2 (en) 2008-07-02 2015-08-25 Arkray, Inc. Method of detecting a polymorphism at a polymorphism site
US9284603B2 (en) 2010-01-21 2016-03-15 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods

Also Published As

Publication number Publication date
EP2584036A1 (en) 2013-04-24
US8404438B2 (en) 2013-03-26
CN102199662A (zh) 2011-09-28
CN102199662B (zh) 2013-10-23
US8455192B2 (en) 2013-06-04
US20090104616A1 (en) 2009-04-23
US20110294120A1 (en) 2011-12-01
EP2055774A1 (en) 2009-05-06
KR20080107393A (ko) 2008-12-10
JP5367365B2 (ja) 2013-12-11
EP2055774A4 (en) 2012-07-18
JPWO2008066165A1 (ja) 2010-03-11
EP2584036B1 (en) 2014-02-12
KR101107831B1 (ko) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5307538B2 (ja) Ugt1a1遺伝子増幅用プライマーセット、それを含むugt1a1遺伝子増幅用試薬およびその用途
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5224526B2 (ja) 遺伝子増幅用プライマーセット、それを含む遺伝子増幅用試薬およびその用途
WO2008066162A1 (fr) Jeu d&#39;amorces pour l&#39;amplification du gène cyp2c19, réactif pour l&#39;amplification du gène cyp2c19 comprenant ledit jeu d&#39;amorces et utilisation du réactif
EP3064596B1 (en) Method for analysing cyp2c19 gene polymorphism, kit and use thereof for analysing the cyp2c19 gene polymorphisms and to evaluate drug efficacy.
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
JP5279492B2 (ja) 肥満遺伝子増幅用プライマーセット、それを含む肥満遺伝子増幅用試薬およびその用途
WO2008066163A1 (fr) Ensemble d&#39;amorces utilisé dans l&#39;amplification du gène cyp2c9, réactif utilisé dans l&#39;amplification du gène cyp2c9, et son utilisation
CN101501223A (zh) Cyp2c19基因扩增用引物对、含有其的cyp2c19基因扩增用试剂及其用途
WO2008066165A1 (fr) Jeu d&#39;amorces pour l&#39;amplification du gène sult1a1, réactif pour l&#39;amplification du gène sult1a1 comprenant ledit jeu d&#39;amorces et utilisation du réactif
WO2011052755A1 (ja) Mpl遺伝子多型検出用プローブおよびその用途
WO2011090154A1 (ja) 標的配列の増幅方法、多型検出方法およびそれに用いる試薬
KR101110425B1 (ko) Nat2 유전자 증폭용 프라이머 셋트, 그것을 포함하는 nat2 유전자 증폭용 시약 및 그 용도
KR20120078746A (ko) c-kit 유전자의 다형 검출용 프로브 및 그 용도
CN102597271B (zh) Egfr基因多态性检测用探针及其用途
CN101490255A (zh) Nat2基因扩增用引物对、含有其的nat2基因扩增用试剂及其用途
CN101448936A (zh) Sult1a1基因扩增用引物对,含有其的sult1a1基因扩增用试剂及其用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018213.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008517259

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020087020757

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12302111

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007832873

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE