WO2008066119A1 - Dielectric ceramic and capacitor - Google Patents
Dielectric ceramic and capacitor Download PDFInfo
- Publication number
- WO2008066119A1 WO2008066119A1 PCT/JP2007/073060 JP2007073060W WO2008066119A1 WO 2008066119 A1 WO2008066119 A1 WO 2008066119A1 JP 2007073060 W JP2007073060 W JP 2007073060W WO 2008066119 A1 WO2008066119 A1 WO 2008066119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- mass
- terms
- barium titanate
- mol
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 112
- 239000003990 capacitor Substances 0.000 title claims abstract description 51
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 134
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims abstract description 134
- 239000013078 crystal Substances 0.000 claims abstract description 104
- 239000002245 particle Substances 0.000 claims abstract description 84
- 239000011777 magnesium Substances 0.000 claims abstract description 59
- 239000010955 niobium Substances 0.000 claims abstract description 52
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 50
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 49
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 42
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052788 barium Inorganic materials 0.000 claims abstract description 39
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 39
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000011572 manganese Substances 0.000 claims abstract description 34
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims description 37
- 239000010703 silicon Substances 0.000 claims description 37
- 239000010936 titanium Substances 0.000 claims description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 19
- 229910052796 boron Inorganic materials 0.000 claims description 19
- 229910052719 titanium Inorganic materials 0.000 claims description 19
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 18
- 229910052744 lithium Inorganic materials 0.000 claims description 18
- 239000004020 conductor Substances 0.000 claims description 14
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 5
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 abstract 2
- 239000000843 powder Substances 0.000 description 92
- 230000010287 polarization Effects 0.000 description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 239000010410 layer Substances 0.000 description 30
- 238000010304 firing Methods 0.000 description 25
- 239000000203 mixture Substances 0.000 description 23
- 230000005684 electric field Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 13
- 239000011812 mixed powder Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- 239000007791 liquid phase Substances 0.000 description 11
- 229910052573 porcelain Inorganic materials 0.000 description 11
- 238000005245 sintering Methods 0.000 description 11
- 239000008188 pellet Substances 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 9
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 9
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 8
- 230000005621 ferroelectricity Effects 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000003985 ceramic capacitor Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 241000287463 Phalacrocorax Species 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- GPGMRSSBVJNWRA-UHFFFAOYSA-N hydrochloride hydrofluoride Chemical compound F.Cl GPGMRSSBVJNWRA-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/6262—Milling of calcined, sintered clinker or ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/12—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Definitions
- the present invention relates to a dielectric ceramic formed of crystal particles mainly composed of barium titanate and a capacitor using the dielectric ceramic for a dielectric layer.
- Digital terrestrial broadcasting is about to be deployed in the near future when the spread of digital electronic devices such as mobile computers and mobile phones is remarkable.
- Digital electronic devices that are receivers for terrestrial digital broadcasting include liquid crystal displays and plasma displays. Many digital LSIs are used in these digital electronic devices.
- the capacitor used here is a multilayer ceramic capacitor having a high dielectric constant (for example, see Patent Document 1) when a high capacitance is required.
- Patent Document 2 when importance is attached to temperature characteristics even at a low capacity, a temperature-compensated multilayer ceramic capacitor (see, for example, Patent Document 2) having a small capacitance change rate is employed.
- the dielectric layer is composed of crystal grains of dielectric ceramics having ferroelectricity, so that the temperature change of the relative dielectric constant changes. There was a problem that the rate was large and the hysteresis in the electric field dielectric polarization characteristics was large.
- Patent Document 1 JP 2001-89231 A
- Patent Document 2 JP 2001-294481 A
- the problem to be solved by the present invention is to provide a dielectric ceramic exhibiting a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, and a capacitor using the dielectric ceramic.
- the dielectric ceramic of the present invention is composed of crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains, and the dielectric porcelain constituting the barium titanate.
- 1 mol of magnesium 0.01 to 0.06 mol of magnesium in terms of MgO, 0007 to 0.03 monolayers in terms of YO, and 0.00002 to 0.03 monoles of manganese in terms of MnO
- niobium is contained in an amount of 4.2-33.3 parts by Nb 2 O, and the average grain size of the crystal grains is 0.05-0.25 m is the special feature.
- the magnesium is converted to MgO in an amount of 0.017 to 0.06 mol, and the yttrium is converted to an YO in the range of 0.005 to 0.00.
- MgO in an amount of 0.017 to 0.06 mol
- yttrium is converted to an YO in the range of 0.005 to 0.00.
- the molar ratio of titanium to 1 mole of barium contained in 6 parts by mass and constituting the barium titanate is 0.97-0.98.
- the dielectric ceramic according to the present invention with respect to 100 parts by mass of the barium titanate, 0.73-6.3 parts by mass of silicon in terms of SiO and 0.31-2. It is desirable to include part by mass.
- the magnesium is converted to MgO in terms of 0.017 to 0.06 mol, and the yttrium is converted to YO.
- the magnesium contains 0.01.01-.01 monole
- the above manganese contains 0.01-0.0.03 monole in terms of MnO, and the niobium in terms of NbO in terms of 100 parts by mass of barium titanate.
- the dielectric ceramic according to the present invention with respect to 100 parts by mass of the barium titanate, 0.73 to 6.3 parts by mass of silicon in terms of SiO and 0.31 to 2. It is desirable to contain 1 part by mass.
- the magnesium is converted into MgO in terms of 0.017 to 0.06 mol, and the yttrium is converted to Y 2 O.
- the capacitor of the present invention is composed of a laminate of a dielectric layer made of a dielectric ceramic and a conductor layer, and the dielectric ceramic has crystal grains mainly composed of barium titanate, and It consists of a grain boundary phase formed between crystal grains, and with respect to 1 mol of barium that constitutes the barium titanate, magnesium is 0.01 to 0.06 mol in terms of MgO and yttrium is 0.0 in terms of YO. 0007—0.03 Monole, Manganese containing 0.00002—0.03 Monole in terms of MnO
- niobium is converted to NbO with respect to 100 parts by mass of the barium titanate.
- the dielectric layer has a magnesium content of 0.017 to 0.06 mol in terms of MgO and the yttrium in terms of YO in terms of 1 mol of barium constituting the barium titanate.
- ⁇ 0 ⁇ 01 monole manganese is converted to MnO 0 ⁇ 0 ⁇ 0 ⁇ 03
- the niobium is contained in the amount of 6.3-15.6 parts by mass in terms of Nb 2 0, and the titanium is contained in 1 mol of barium constituting the barium titanate. It is desirable that the molar ratio is 0 ⁇ 97-0.98.
- the dielectric porcelain may further include 0.73 to 6.3 parts by mass of silicon in terms of SiO and 0.3 to 0.3 in terms of boron with respect to 100 parts by mass of the barium titanate;! To 2.1. It is desirable to contain part by mass.
- the dielectric layer has a magnesium content of 0.017 to 0.06 mol in terms of MgO and yttrium in terms of YO with respect to 1 mol of barium constituting the barium titanate.
- ⁇ 0 ⁇ 01 monole containing manganese in 0 ⁇ 0 to 0 ⁇ 03 mol in terms of ⁇ , and niobium in terms of NbO with respect to 100 parts by mass of barium titanate 6.3-15.6 mass
- 0.73 to 3.13 parts by weight of silicon in terms of SiO and 0.31 to 1.04 parts by weight of boron in terms of BO and It is desirable that the molar ratio of titanium to 1 mol of barium constituting barium titanate is 0.97-0.98.
- the dielectric ceramic with respect to 100 parts by mass of the barium titanate, 0.73-6.3 parts by mass of silicon in terms of SiO and 0.31-2.1 parts by mass of lithium in terms of Li 2 O It is desirable to contain a part.
- the dielectric layer has a magnesium content of 0.017 to 0.06 mol in terms of MgO and yttrium in terms of YO with respect to 1 mol of barium constituting the barium titanate.
- ⁇ 0 ⁇ 01 monole containing manganese in 0 ⁇ 0 to 0 ⁇ 03 mol in terms of ⁇ , and niobium in terms of NbO with respect to 100 parts by mass of barium titanate 6.3-15.6 mass
- To 1.04 parts by mass It is desirable that the molar ratio of titanium to 1 mol of barium constituting the barium titanate is 0 ⁇ 97 ⁇ 0.98.
- the temperature change rate of the relative permittivity is smaller than that of a conventional dielectric ceramic having a ferroelectric property, and compared to a conventional dielectric ceramic having a paraelectric property.
- High It is a dielectric constant, has a temperature characteristic of a stable relative dielectric constant, and can reduce spontaneous polarization.
- liquid phase sintering can be performed, and firing at a low temperature (1100 to 1250 °) becomes possible.
- liquid phase sintering can be performed, and firing at a low temperature (1100 to 1250 ° C.) becomes possible.
- the dielectric layer is composed of a dielectric ceramic having a high dielectric constant and a stable relative dielectric constant and having a low spontaneous polarization.
- a capacitor having a high capacity and stable capacitance-temperature characteristics can be formed.
- FIG. 1 is a schematic cross-sectional view showing a capacitor according to first to third embodiments of the present invention.
- FIG. 2 is a graph showing the X-ray diffraction results of Sample No. I-4 in Example I.
- FIG. 3 is a drawing showing the rate of change in relative permittivity of Sample Nos. I-4, 33 and 34 in Example I.
- FIG. 4 is a graph showing the dielectric polarization (V—Q) characteristics of Sample No. I-4 in Example I.
- FIG. 5 is a graph showing the X-ray diffraction results of Sample No. II-4 in Example II.
- FIG. 6 is a graph showing the X-ray diffraction results of Sample No. Ill-4 in Example III.
- FIG. 1 is a schematic cross-sectional view showing the capacitor of this embodiment.
- the dielectric ceramic of the present embodiment is mainly composed of barium titanate, and contains magnesium, yttrium, manganese and niobium.
- the content of magnesium is MgO equivalent to 1 mol of barium. Containing 0.01 to 0.06 mole of yttrium in the range of 0007 to 0.03 monole in terms of YO and manganese in the range of 0.002 to 0.03 monole in terms of MnO and 100 parts by mass of the barium titanate.
- Niobium converted to Nb O In 4.2 to 33.3 parts by mass.
- the dielectric ceramic according to the present embodiment includes crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains.
- the grain boundary phase is an amorphous or other crystalline phase caused by the subcomponents such as magnesium, yttrium, manganese and niobium, and is formed by liquid phase sintering of barium titanate and these subcomponents. Is.
- the average particle size of the crystal particles is 0.05 to 0.25 m.
- the relative dielectric constant at room temperature (25 ° C) described later is 250 or more
- the relative dielectric constant at 125 ° C is 230 or more
- 25 ° C The temperature coefficient of relative dielectric constant between ⁇ 125 ° C (( ⁇ - ⁇ ) / ⁇ (125 ⁇ 25)) in absolute value 100
- 0 can be a chi 10- 6 / ° c or less, an electric field - to be able to form small dielectric ceramic hysteresis in the dielectric polarization characteristics / it is advantageous cormorants.
- the dielectric ceramic according to the present embodiment is obtained by dissolving magnesium, yttrium, manganese, and niobium in barium titanate.
- magnesium, yttrium, manganese, and niobium are solid-dissolved in barium titanate, which has a tetragonal crystal structure and strong conductivity, and crystal grains mainly composed of barium titanate in which these components are dissolved.
- the average particle size of the particles in the range of 0.05 to 0. 25 m, the crystal structure of the crystal particles can be mainly composed of a cubic system.
- the ferroelectricity due to the tetragonal crystal structure is reduced, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
- niobium has a function of suppressing the coarsening of crystal grains mainly composed of barium titanate, and niobium is converted into Nb 2 O in terms of Nb 2 O with respect to 100 parts by mass of barium titanate. . Contains 3 parts by mass.
- the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative dielectric constant is large. It will be a thing.
- the niobium content relative to 100 parts by weight of barium titanate is more than 33.3 parts by weight in terms of NbO, the relative dielectric constant at 25 ° C will be lower than 250.
- the relative dielectric constant at 125 ° C. is less than 230.
- magnesium, yttrium, and manganese are as follows. Magnesium is converted to Mg ⁇ O ⁇ 01—0.06 mol, and yttrium is converted to Y 2 O in terms of 1 ⁇ mol.
- the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity becomes large.
- the temperature coefficient of the dielectric constant of the dielectric ceramic is large.
- the dielectric ceramic according to the present embodiment has an average particle size force of crystal particles mainly composed of barium titanate.
- the crystal particles mainly composed of barium titanate have a cubic system. It has a crystalline structure as the main component, and has a small hysteresis in the electric field dielectric polarization characteristics and can exhibit characteristics close to paraelectricity.
- the average particle size of the crystal particles mainly composed of barium titanate is smaller than 0.05 in, the contribution of orientation polarization is lost, so that the dielectric The relative dielectric constant of the ceramic body is reduced.
- the crystal structure mainly composed of cubic system means that the intensity of diffraction peak of (110) plane which is the strongest peak of cubic system barium titanate is larger than the intensity of diffraction peak of different phase. State.
- the average charge of crystal grains is more preferably 0.14-0.18 111 in that the polarization charge at 0V can be 20 nC / cm 2 or less. I want it.
- niobium, magnesium, yttrium and manganese contents are as follows. Magnesium in terms of MgO is 0 ⁇ 17-17.06 monole, and yttrium is in the YO equivalent of 0.005–0.01. Mono and Manganese in MnO conversion 0 ⁇ 01 ⁇ 0.03 Mono
- the molar ratio of titanium to 1 mol of barium is 0 ⁇ 97-0.98.
- Dielectric porcelain in this range has a relative permittivity at 25 ° C of 400 or more, a relative permittivity at 125 ° C of 380 or more, and a relative permittivity temperature coefficient of 400 X 10-6 / ° C or less in absolute value. It becomes possible to do.
- the average particle diameter of the crystal particles mainly composed of barium titanate is determined by polishing a fracture surface of a sample having a dielectric ceramic force after firing, as described later, and then using a scanning electron microscope. This is a value obtained by taking a picture of the internal structure using the image, processing the contours of the crystal grains shown in the picture, treating each particle as a circle, determining its diameter, and averaging. More specifically, the magnification of the photograph is approximately 30000 times, the number of observation points is 3 for each sample, and the average value is obtained.
- the relative dielectric constant at 25 ° C. and 125 ° C. is determined by using a dielectric ceramic force sample formed into a predetermined pellet shape and having a conductor film formed on the surface, as described later.
- a meter 4284A manufactured by HP
- Temperature coefficient of relative permittivity between 25 ° C and 125 ° C The numbers are calculated by applying the relative permittivity at 25 ° C and 125 ° C to the following formula (1).
- BaCO powder, TiO powder, MgO powder, Y 2 O powder, and manganese carbonate (MnCO 3) powder each having a purity of 99% or more are used as the raw material powder.
- These raw material powders are based on 1 mole of barium constituting barium titanate, MgO is 0.001-0.06 mono, Y0 is 0.007-0.03 monole, and MnCO is 0.00. 0002—0.03 Harm of monole 'J combination.
- the mixture of the raw material powders described above is wet-mixed and dried, and then calcined at a temperature of 900 to 11100 ° C to prepare a calcined powder, and the calcined powder is pulverized.
- the dielectric structure with a high dielectric constant that maintains the temperature characteristics of the relative dielectric constant close to normal dielectricity is obtained by growing the grains so that the crystal structure of the calcined powder is mainly cubic. It becomes possible to obtain porcelain.
- the average particle size of the calcined powder is preferably 0.04-0 .; 1 m. Thereby, the expression of ferroelectricity can be suppressed in the calcined powder.
- the average particle diameter of the calcined powder is determined by dispersing the calcined powder on a sample stage for an electron microscope, taking a picture with a scanning electron microscope, and The contour is image-processed, each powder is regarded as a circle, its diameter is obtained, and averaged.
- Nb 2 O powder is mixed at a ratio of 4.0 to 32 parts by mass with respect to 100 parts by mass of the calcined powder. Thereafter, the mixed powder is formed into a pellet and fired in the air at a temperature range of 1150 ° C. to 1250 ° C., whereby the dielectric ceramic according to the present embodiment can be obtained.
- the firing temperature is lower than 1150 ° C., the growth of the crystal grains and densification are suppressed, so that the density of the dielectric ceramic becomes low.
- the firing temperature is higher than 1250 ° C In such a case, the crystal grains of the dielectric ceramic may grow too much.
- the following capacitors can be formed.
- the capacitor of this embodiment is one in which external electrodes 12 are provided at both ends of a capacitor body 10 as shown in FIG.
- the capacitor body 10 is composed of a multilayer body 1 in which a plurality of dielectric layers 13 and a plurality of conductor layers 14 that are internal electrode layers are alternately laminated.
- the dielectric layer 13 is formed by the dielectric ceramic of the present embodiment described above. That is, the dielectric layer 13 exhibits a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, and by applying the dielectric ceramic having a small spontaneous polarization, the capacitance is higher than that of a conventional capacitor and the capacitance temperature characteristic is more stable. It becomes a simple capacitor. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise caused by electrically induced distortion.
- the thickness of the dielectric layer 13 is preferably 1 to 30 m. In particular, if the thickness of the dielectric layer 13 is not more than m, there is an advantage that the capacitance of the capacitor can be increased by making the dielectric layer 13 thinner.
- Base layer 14 such as Ni or Cu is desirable because conductor layer 14 can suppress manufacturing costs even when the number of layers is increased, and Ni is more advantageous in terms of simultaneous firing with dielectric layer 13. desirable.
- the conductor layer 14 preferably has an average thickness of 1 m or less.
- the above-mentioned mixed powder is formed into a green sheet.
- a conductor paste to be the conductor layer 14 is prepared, printed on the surface of the green sheet, laminated and fired to form the laminate 1.
- a conductor paste is further printed on both end faces of the laminate 1 and fired to form the external electrode 12, whereby the capacitor of this embodiment can be obtained.
- the dielectric ceramic according to the present embodiment is mainly composed of barium titanate and contains magnesium, yttrium, manganese, niobium, silicon, and boron. Nesym is converted to MgO as 0 ⁇ 01—0.06 mol, Yttrium is converted to YO as 0 ⁇ 0007—0. 03 mol and manganese in an amount of 0 ⁇ 0002–0.03 mol in terms of MnO, and 4.2 to 33.3 parts by mass of niobium in terms of Nb 2 O with respect to 100 parts by mass of the barium titanate.
- the dielectric ceramic according to the present embodiment includes crystal particles mainly composed of barium titanate and a grain boundary phase formed between the crystal particles, and the average particle size of the crystal particles is 0. 05 to 0.25 ⁇ m.
- the relative dielectric constant at 25 ° C is 250 or more
- the relative dielectric constant at 125 ° C is 230 or more
- the temperature coefficient of relative permittivity between 125 ° C (( ⁇ - ⁇ ) / ⁇ (125 ⁇ 25))
- Absolute value can below 1000 X 10- 6 / ° c, the field - dielectric polarization characteristics in the hysteresis small les, if capable of forming a dielectric ceramic Les is advantageous cormorants.
- Such a dielectric ceramic according to the present embodiment includes magnesium, yttrium, manganese and niobium in solid solution in barium titanate, and silicon and boron are contained in the grain boundary phase.
- magnesium, yttrium, manganese, and niobium are solid-dissolved in barium titanate having a tetragonal crystal structure and ferroelectricity, and the average particle size of crystal grains mainly composed of barium titanate is determined.
- the crystal structure of the crystal grains can be mainly composed of cubic system.
- the ferroelectricity due to the tetragonal crystal structure is lowered, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
- the rate of change of the relative dielectric constant is the same as in the first embodiment.
- the curve showing the curve becomes flat in the temperature range of -55 ° C to 125 ° C, and the hysteresis in the electric field-dielectric polarization characteristics is reduced. Therefore, it is possible to obtain a dielectric ceramic having a low relative dielectric constant temperature coefficient even though the relative dielectric constant is 250 or more.
- the temperature coefficient of relative permittivity is The dielectric ceramic has a positive dielectric characteristic.
- the temperature of the relative dielectric constant is increased. The coefficient can be reduced and the temperature characteristics can be flattened. In this case, the curve indicating the rate of change of the relative dielectric constant has two peaks centered at 25 ° C in the temperature range of -55 ° C to 125 ° C.
- liquid phase sintering can be performed, and baking at a low temperature (1100 to 1250 ° C) becomes possible.
- each of the oxides of niobium, silicon, and boron has a function of suppressing the coarsening of the crystal grains mainly composed of barium titanate, and two nibbs with respect to 100 parts by mass of barium titanate.
- silicon is 0.73-6.3 parts by mass in terms of SiO
- boron is 0.3 in terms of BO;! -2.1 parts by mass.
- the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity is large. It will be a thing.
- the niobium content relative to 100 parts by weight of barium titanate is more than 33.3 parts by weight in terms of NbO, the relative dielectric constant at 25 ° C will be lower than 250.
- the relative dielectric constant at 125 ° C. is less than 230.
- the silicon content relative to 100 parts by mass of barium titanate is less than 0.73 parts by mass in terms of SiO, or the boron content is less than 0.31 parts by mass in terms of B 2 O.
- magnesium, yttrium, and manganese are as follows. Magnesium is converted to Mg ⁇ O ⁇ 01—0.06 mol in terms of MgO, and yttrium is converted to Y ⁇ O in terms of O ⁇ 0007—0.
- the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity becomes large.
- the temperature coefficient of the dielectric constant of the dielectric ceramic is large.
- the dielectric ceramic of the present embodiment has an average particle size force of .05-0.25 ⁇ m of crystal particles mainly composed of barium titanate.
- the barium titanate is the main component as in the first embodiment.
- the crystal grains to be made have a crystal structure mainly composed of a cubic system, and have a small hysteresis force in the electric field dielectric polarization characteristics and exhibit characteristics close to paraelectricity.
- the average particle size of the crystal grains containing barium titanate as the main component is smaller than 0.05 in, the contribution of orientational polarization is lost and the dielectric constant of the dielectric ceramic decreases.
- the average particle diameter of the crystal grains is more preferably 0.15-0.2 111 in that the polarization charge at 0V can be 20 nC / cm 2 or less in the electric field dielectric polarization characteristics.
- magnesium with respect to 1 mol of barium is in the form of Mg ⁇ O ⁇ 17 ⁇ -0.06 monole and yttrium force in terms of ⁇ .
- Mg ⁇ O ⁇ 17 ⁇ -0.06 monole and yttrium force in terms of ⁇ .
- 0015 ⁇ 0.01 Monore Manganese power 0.0 ⁇ 01 in terms of ⁇ ⁇
- the dielectric ceramic of this range the definitive relative dielectric constant 25 ° C 400 or more, 380 or more relative dielectric constant at 125 ° C, the temperature coefficient of the dielectric constant in absolute value 400 X 10- 6 / ° C or less It becomes possible to. Next, a method for manufacturing the dielectric ceramic according to the present embodiment will be described.
- BaCO powder with a purity of 99% or more TiO powder
- MgO is 0.01 to 0.06 monole
- YO is 0.00007 to 0.03 monole
- MnCO is 0.00002 to 0 per mol of barium constituting barium titanate. .03
- crystal particles mainly composed of barium titanate can be liquid phase sintered, and firing at a low temperature becomes possible.
- ceramic particles have a force S, which is considered to facilitate grain growth, and the above composition can suppress grain growth during liquid phase sintering.
- the mixed powder is formed into a pellet and fired in the air at a temperature range of 1100 ° C to 1250 ° C to obtain the dielectric ceramic according to the present embodiment.
- the firing temperature varies with the amount of SiO and B 2 O added, but when the firing temperature is lower than 1100 ° C, it cannot be sufficiently densified and the density of the dielectric ceramic becomes low. On the other hand, if the firing temperature is higher than 1250 ° C, the crystal grains may grow too much.
- the capacitor of this embodiment will be described.
- the dielectric layer 13 shown in FIG. 1 exhibits temperature characteristics of a high dielectric constant and a stable relative dielectric constant, has a small spontaneous polarization, and is formed by the dielectric ceramic of this embodiment described above. /! Therefore, the capacitor of the present embodiment is a capacitor having a higher capacity and a more stable capacitance-temperature characteristic than the conventional capacitor, like the capacitor described in the first embodiment. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise due to the electrically induced distortion.
- the dielectric ceramic according to the present embodiment is mainly composed of barium titanate and contains magnesium, yttrium, manganese, niobium, silicon and lithium. The content thereof is magnesium with respect to 1 mol of barium. Is converted to MgO as 0 ⁇ 01—0.06 mol, and yttrium is converted to YO as 0 ⁇ 0007—0
- the dielectric ceramic according to the present embodiment includes crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains, and the average grain size of the crystal grains is 0. 05 to 0.25 ⁇ m.
- the relative dielectric constant at 25 ° C is 250 or more and the relative dielectric constant at 125 ° C, as in the first and second embodiments. Over 230 and 25 ° C ⁇ ; temperature coefficient of relative permittivity between 125 ° C (( ⁇ - ⁇ ) / ⁇ (125 ⁇ 25))
- the absolute value can below 1000 X 10- 6 / ° c, the field - dielectric polarization hysteresis in the characteristic small les, if capable of forming a dielectric ceramic Les is advantageous cormorants.
- magnesium, yttrium, manganese, and niobium are dissolved in barium titanate, and silicon and lithium are included in the grain boundary phase.
- magnesium, yttrium, manganese, and niobium are dissolved in barium titanate having a tetragonal crystal structure and ferroelectricity, and the average particle size of crystal grains mainly composed of barium titanate is determined.
- the crystal structure of the crystal grains can be mainly composed of cubic system.
- the ferroelectricity due to the tetragonal crystal structure is lowered, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
- the relative dielectric constant is obtained. Rate of change The curve showing is flat in the temperature range of ⁇ 55 ° C. to 125 ° C. In both cases, the hysteresis in the electric field-induced polarization characteristics is reduced. Therefore, it is possible to obtain a dielectric ceramic having a low relative dielectric constant temperature coefficient despite having a relative dielectric constant of 250 or more.
- liquid phase sintering can be performed by containing silicon and lithium in a specific ratio, and firing at a low temperature (1100 to 1250 ° C) becomes possible.
- each of the oxides of niobium, silicon, and lithium has a function of suppressing the coarsening of crystal grains mainly composed of barium titanate, and niobium is added to 100 parts by mass of barium titanate.
- niobium is added to 100 parts by mass of barium titanate.
- the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative dielectric constant is large. It will be a thing.
- the niobium content relative to 100 parts by weight of barium titanate is more than 33.3 parts by weight in terms of NbO, the relative dielectric constant at 25 ° C will be lower than 250.
- the relative dielectric constant at 125 ° C. is less than 230.
- the silicon content relative to 100 parts by mass of barium titanate is less than 0.73 parts by mass in terms of SiO, or the lithium content is less than 0.31 parts by mass in terms of Li 2 O.
- V in the case of firing at a low temperature (1100-; 1250 ° C), the dielectric porcelain cannot be densified and the relative dielectric constant may be lowered.
- magnesium, yttrium, and manganese are 0 ⁇ 01—0.06 mol in terms of MgO and 0 ⁇ 0007—0 in terms of Y 2 O with respect to 1 mol of normium.
- the temperature coefficient of the dielectric constant of the dielectric ceramic increases.
- the yttrium content per mole of norium is 0.000 in terms of Y 2 O.
- the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity becomes large.
- the temperature coefficient of the dielectric constant of the dielectric ceramic is large.
- the dielectric ceramic according to the present embodiment has an average particle size force of crystal particles mainly composed of barium titanate.
- the crystal grains mainly composed of cubic have a crystal structure mainly composed of a cubic system, and the hysteresis in the electric field dielectric polarization characteristics is small and the characteristics close to paraelectricity can be obtained.
- the average particle size of the crystal grains mainly composed of barium titanate is smaller than 0.05 m, the contribution of the orientation polarization is lost and the relative permittivity of the dielectric ceramic is lowered.
- the average particle size of the crystal particles is larger than 0.25 m, a tetragonal crystal phase is observed in the measurement by X-ray diffraction, and the temperature coefficient of the dielectric constant of the dielectric ceramic becomes large.
- the average grain size of the crystal grains is that the polarization charge at 0 V can be reduced to 20 nC / cm 2 or less.
- the diameter is more preferably 0.15-0.2 111.
- magnesium per mol of barium is 0.017—0.06 monole in terms of MgO and 0.05 in terms of yttrium force. ⁇ 0.01 Monore, Manganese power 0.0 in terms of ⁇
- niobium is less than 100 parts by weight of barium titanate. 6. 0 5 conversion 3-15. 6 parts by weight, silicon 0.1 in Si_ ⁇ 2 terms 73-3. 13 parts by mass of Lithium is 0. In Li O terms 31-1. In the range of 04 parts by weight In addition, the molar ratio of titanium to 1 mole of barium is 0.997-0.98.
- BaCO powder with a purity of 99% or more TiO powder
- MgO is 0.01 to 0.06 monole
- YO is 0.00007 to 0.03 monole
- MnCO is 0.00002 to 0 per mol of barium constituting barium titanate. Mix in the proportion of 03 moles.
- the dielectric ceramic of this embodiment can be obtained by forming the mixed powder into a pellet and firing it in the air at a temperature range of 1100 ° C to 1250 ° C.
- the firing temperature changes with the amount of SiO or Li 2 O added.
- the firing temperature is lower than 1100 ° C, it cannot be sufficiently densified and the density of the dielectric ceramic becomes low.
- the firing temperature is higher than 1250 ° C, crystal grains may grow too much.
- the capacitor of this embodiment will be described.
- the dielectric layer 13 shown in FIG. 1 exhibits temperature characteristics of a high dielectric constant and a stable relative dielectric constant, has a small spontaneous polarization, and is formed by the dielectric ceramic of this embodiment described above. /! Gatsutsu
- the capacitor according to the present embodiment is a capacitor having a higher capacity and a more stable capacitance-temperature characteristic than the conventional capacitor. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise caused by electrical induced distortion.
- the evaluation sample was produced as follows. First of all, BaC with 99.9% purity
- TiO powder, MgO powder, Y 2 O powder, and MnCO powder were prepared and mixed at the ratio shown in Table 1 to prepare a mixed powder.
- the amounts of magnesium (Mg), yttrium (Y) and manganese (Mn) shown in Table 1 are the amounts corresponding to MgO, Y 2 O and MnO, respectively.
- Titanium (Ti) is a molar ratio with respect to 1 mole of barium (Ba).
- the mixed powder prepared above was calcined at a temperature of 1000 ° C. to prepare a calcined powder, and then the calcined powder obtained was pulverized to have the average particle size shown in Table 1.
- a calcined powder was obtained.
- the average particle size of the calcined powder is determined by dispersing the obtained calcined powder on a sample stage for an electron microscope, observing it with a scanning electron microscope, taking a picture, and taking the photograph of the calcined powder reflected in the photograph.
- the contour was image-processed, each powder was regarded as a circle, its diameter was determined and averaged.
- the magnification of the photo was 30000 times, the number of observation points was 3 for each sample, and the average value was obtained.
- Nb 2 O powder having a purity of 99.9% was mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the calcined powder.
- This mixed powder was granulated and formed into pellets having a diameter of 16.5 mm and a thickness of 1 mm.
- the average particle size of crystal particles mainly composed of barium titanate was determined as follows. First, the fracture surface of the fired sample is roughly polished with # 1200 abrasive paper, then polished with a 3 m diameter diamond paste applied on a hard buff, and then soft buffed. Alumina abrasive grains having a particle size of 0.3 m were applied on the surface, and finish polishing was performed. Next, after etching with an acidic aqueous solution (hydrochloric acid hydrogen fluoride), a photograph of the internal tissue was taken using a scanning electron microscope.
- an acidic aqueous solution hydroochloric acid hydrogen fluoride
- the magnitude of the electrically induced strain was obtained by measuring dielectric polarization (polarization charge).
- the evaluation was made based on the amount of charge (residual polarization) at 0 V when the voltage was changed in the range of ⁇ 1250 V.
- the composition analysis of the sample was performed by ICP (Inductively Coupled Plasma) analysis or atomic absorption analysis.
- ICP Inductively Coupled Plasma
- the obtained sample was mixed with boric acid and sodium carbonate, and the molten material was dissolved in hydrochloric acid.
- qualitative analysis of the elements contained in the sample was performed by atomic absorption spectrometry, and then identified.
- the diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis.
- the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.
- Table 1 shows the prepared composition, the average particle size of the calcined powder, and the firing temperature
- Tables 2 and 3 show the average particle size and characteristics of the fired crystal particles (relative permittivity and temperature coefficient of relative permittivity). Absolute values, specific dielectric constant temperature change curves, and polarization charges) are shown.
- the amount of Nb 2 O added in Table 1 is a ratio with respect to 100 parts by mass of the calcined powder.
- the NbO content in Tables 2 and 3 is the titanium content in the dielectric ceramic (sample). It is a ratio with respect to 100 parts by mass of barium acid.
- the amounts of Mg, Y and Mn shown in Tables 2 and 3 are oxide equivalents.
- “average particle size of crystal particles” means the average particle size of crystal particles mainly composed of barium titanate.
- “Absolute value of temperature coefficient of relative permittivity” in Tables 2 and 3 means the absolute value of the average value of the temperature coefficient of relative permittivity obtained above. In Tables 2 and 3, those with no circles in the curve of the relative dielectric constant temperature change are those for which the two peaks centered at 25 ° C were not observed. If the column is marked with a circle, it indicates that the polarization charge is less than 20nC / cm 2 ! /, And the sample.
- the main component of barium titanate is 100 parts by mass of Nb 2 O.
- the content of NbO is 6.3-15. 6 parts by mass, and titanium per mol of norm Sample Nos. I—3 to 5, 11, 12, 17 to; 19, 24, 25, 27
- Fig. 2 shows the X-ray diffraction pattern of the dielectric ceramic of sample No. I-4 arbitrarily selected from these samples
- Fig. 3 shows the graph showing the change in relative permittivity of the sample.
- Figure 4 shows the electric field dielectric polarization characteristics.
- Sample Nos. 1 33 and 34 which are samples outside the scope of the present invention, are shown for comparison.
- the dielectric ceramic of Sample No. I-4 has a crystal structure mainly composed of a cubic system, and the temperature characteristics of relative permittivity is 25. It had two peaks centered around ° C, the rate of change of relative permittivity was small, and the hysteresis of electric field dielectric polarization characteristics was small. In addition, the other samples had a crystal structure mainly composed of a cubic system, and the rate of change in relative permittivity was small.
- the evaluation sample was produced as follows. First, prepare BaCO powder, TiO powder, MgO powder, YO powder, and MnCO powder with a purity of 99.9%, and the proportions shown in Table 4 And mixed powder was prepared.
- Example Nos. II— in Tables 5 and 6;! -45 The average particle size of the crystal particles mainly composed of barium titanate was determined in the same manner as in Example I.
- Example I For these samples, which were dielectric ceramics, the dielectric constant, the temperature coefficient of the dielectric constant, and the polarization charge were determined in the same manner as in Example I. Further, the composition analysis of the sample was performed in the same manner as in Example I. Further, the oxygen amount was determined in the same manner as in Example I.
- Table 4 shows the preparation composition, the average particle size and calcining temperature of the calcined powder, and Table 5 and Table 6 show the results of the average particle size and characteristics of the crystal particles after firing, respectively.
- average particle size of crystal particles in Tables 5 and 6 means the average particle size of crystal particles mainly composed of barium titanate.
- “Absolute value of temperature coefficient of relative permittivity” in Tables 5 and 6 means the absolute value of the average value of the temperature coefficient of relative permittivity. In Tables 5 and 6, those with no circles in the curve of the relative permittivity temperature change curve are those for which the two peaks centered at 25 ° C were not observed. The ones not marked with ⁇ in the column indicate that the polarization charge is not less than 20 nC / cm 2 ! /, Respectively.
- Figure 5 shows the X-ray diffraction pattern of the dielectric ceramic of Sample No. II-4 arbitrarily selected from these samples. As shown in Fig. 5, the dielectric ceramic of Sample No. II-4 was mainly composed of cubic crystal.
- samples outside the scope of the present invention (Sample Nos. 11-1, 1, 2, 9, 10, 16, 17, 23, 30, 33, 34, 40, 42 to 45) twenty five.
- the force , or less than ⁇ conductivity force 250 at C of hysteresis to dielectric polarization, the temperature coefficient of the relative dielectric constant was in absolute value 1009 X 10- 6 / ° C or more.
- Sample No. II-34 has not been evaluated due to insufficient sintering.
- the evaluation sample was produced as follows. First, BaC O powder, TiO powder, MgO powder, YO powder, and MnCO powder each having a purity of 99.9% were prepared and mixed at the ratios shown in Table 7 to prepare a mixed powder. [0123] Next, after the mixed powder prepared above was calcined at a temperature of 1000 ° C to prepare a calcined powder, the obtained calcined powder was pulverized to have an average particle size shown in Table 7 A calcined powder was obtained. The average particle size of the calcined powder was determined in the same manner as in Example I.
- Nb 2 O powder, SiO powder and Li 2 O powder with a purity of 99.9% were mixed in a proportion shown in Table 7 with respect to 100 parts by mass of the calcined powder.
- This mixed powder was granulated and formed into a pellet shape having a diameter of 16.5 mm and a thickness of 1 mm.
- Example Nos. Ill— 10 pellets of each composition were fired at a temperature shown in Table 7 in the air.
- An indium gallium conductor layer was printed on the surface of the sample after firing to obtain a sample for evaluation of dielectric properties (Sample Nos. Ill— ;! to 45 in Table 8 and Table 9).
- the average particle size of the crystal particles mainly composed of barium titanate was determined in the same manner as in Example I.
- Example I For these samples, which were dielectric ceramics, the dielectric constant, the temperature coefficient of the dielectric constant, and the polarization charge were determined in the same manner as in Example I. Further, the composition analysis of the sample was performed in the same manner as in Example I. Further, the oxygen amount was determined in the same manner as in Example I.
- Table 7 shows the preparation composition, the average particle size of the calcined powder, and the firing temperature, and Tables 8 and 9 show the results of the average particle size and characteristics of the crystal particles after firing.
- the "average particle diameter of crystal grains” in Tables 8 and 9 means the average particle diameter of crystal grains mainly composed of barium titanate.
- “Absolute value of temperature coefficient of relative permittivity” in Tables 8 and 9 means the absolute value of the average value of the temperature coefficient of relative permittivity.
- those with no circle in the curve of the relative permittivity temperature change curve are those for which the two peaks centered at 25 ° C were not observed.
- the ones not marked with ⁇ in the column indicate that the polarization charge is not less than 20 nC / cm 2 ! /, Respectively.
- III-1 1 0.020 0.0007 0.010 0.980 8.5 1.5 0.5 0.1 1200
- III-29 0.020 0.010 0.030 0.980 8.5 1.5 0.5 0.1 1200
- III-36 0.020 0.010 0.010 0.980 8.5 2.5 0.5 0.1 1 170
- sample No. Ill which is the dielectric ceramic of the present invention. -25 for 3-8, 11-15, 18- 22, 24-29, 31, 32, 35-39 and 41.
- Contact Keru dielectric constant of 250 or more and C, and a dielectric constant of 230 or more at 125 ° C, 25 temperature coefficient of the dielectric constant at ⁇ 125 ° C is 1000 X 10- 6 / ° C or less in absolute value there were.
- the relative permittivity at 25 ° C is 400 or more
- the relative permittivity at 125 ° C is 380 or more
- the relative permittivity temperature coefficient is absolute in no more than 400 X 10- 6 / ° C
- relative dielectric constant change rate indicates to curve - has two peaks in a temperature range of 55 ° C ⁇ 125 ° C, and contact to the measurement of dielectric polarization ! / No big hysteresis was seen. No hysteresis was observed! /, And the sample had a polarization charge at 0 V! /, Which was less than 20 nC / cm 2 .
- the dielectric porcelain of Sample No. Ill-4 has a crystal structure mainly composed of a cubic system.
- A is the force ,, or ⁇ conductivity force less than 200 in the C of hysteresis to dielectric polarization, the temperature coefficient of the relative dielectric constant was in absolute value 1043 X 10- 6 / ° C or more. Sample No. Ill-34 has not been evaluated due to insufficient sintering.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Disclosed is a dielectric ceramic comprising crystal grains mainly composed of barium titanate. This dielectric ceramic contains 0.01-0.06 mole of magnesium in terms of MgO, 0.0007-0.03 mole of yttrium in terms of Y2O3 and 0.0002-0.03 mole of manganese in terms of MnO per 1 mole of barium constituting the barium titanate, while containing 4.2-33.3 parts by mass of niobium in terms of Nb2O5 per 100 parts by mass of the barium titanate. The crystal grains have an average particle size of 0.05-0.25 μm. Also disclosed is a capacitor composed of a laminate having a conductive layer and a dielectric layer made of such a dielectric ceramic.
Description
明 細 書 Specification
誘電体磁器およびコンデンサ Dielectric porcelain and capacitor
技術分野 Technical field
[0001] 本発明は、チタン酸バリウムを主成分とする結晶粒子によって形成された誘電体磁 器とそれを誘電体層に用いたコンデンサに関する。 TECHNICAL FIELD [0001] The present invention relates to a dielectric ceramic formed of crystal particles mainly composed of barium titanate and a capacitor using the dielectric ceramic for a dielectric layer.
背景技術 Background art
[0002] 現在、モバイルコンピュータゃ携帯電話をはじめとするデジタル方式の電子機器の 普及が目覚ましぐ近い将来、地上デジタル放送が展開されようとしている。地上デジ タル放送用の受信機であるデジタル方式の電子機器として液晶ディスプレイやブラ ズマディスプレイなどがある力 S、これらデジタル方式の電子機器には多くの LSIが用 いられている。 [0002] At present, digital terrestrial broadcasting is about to be deployed in the near future when the spread of digital electronic devices such as mobile computers and mobile phones is remarkable. Digital electronic devices that are receivers for terrestrial digital broadcasting include liquid crystal displays and plasma displays. Many digital LSIs are used in these digital electronic devices.
[0003] そのため、液晶ディスプレイやプラズマディスプレイなど、これらデジタル方式の電 子機器を構成する電源回路には、バイパス用のコンデンサが数多く実装されている。 ここで用いられているコンデンサは、高い静電容量を必要とする場合には、高誘電率 の積層セラミックコンデンサ(例えば、特許文献 1を参照)が採用される。一方、低容 量でも温度特性を重視する場合には、容量変化率の小さい温度補償型の積層セラミ ックコンデンサ(例えば、特許文献 2を参照)が採用されている。 [0003] For this reason, many bypass capacitors are mounted on power supply circuits constituting these digital electronic devices such as liquid crystal displays and plasma displays. The capacitor used here is a multilayer ceramic capacitor having a high dielectric constant (for example, see Patent Document 1) when a high capacitance is required. On the other hand, when importance is attached to temperature characteristics even at a low capacity, a temperature-compensated multilayer ceramic capacitor (see, for example, Patent Document 2) having a small capacitance change rate is employed.
[0004] しかしながら、特許文献 1に開示された高誘電率の積層セラミックコンデンサは、誘 電体層が強誘電性を有する誘電体磁器の結晶粒子によって構成されているため、比 誘電率の温度変化率が大きぐかつ電界 誘電分極特性におけるヒステリシスが大 きいという不具合があった。 [0004] However, in the high dielectric constant multilayer ceramic capacitor disclosed in Patent Document 1, the dielectric layer is composed of crystal grains of dielectric ceramics having ferroelectricity, so that the temperature change of the relative dielectric constant changes. There was a problem that the rate was large and the hysteresis in the electric field dielectric polarization characteristics was large.
[0005] また、特許文献 1に開示された誘電体層が強誘電性の誘電体磁器を用いて形成さ れたコンデンサでは、電源回路上において電気誘起歪に起因するノイズ音を発生さ せやすいことから、コンデンサに起因するこのようなノイズ音がプラズマディスプレイな どに使用する際の障害となっていた。 [0005] Further, in the capacitor in which the dielectric layer disclosed in Patent Document 1 is formed using a ferroelectric dielectric ceramic, it is easy to generate noise noise due to electrically induced distortion on the power supply circuit. For this reason, such noise caused by capacitors has been an obstacle to the use of plasma displays.
[0006] 一方、温度補償型の積層セラミックコンデンサは、その誘電体層を構成する誘電体 磁器が常誘電性であるため、電界 誘電分極特性におけるヒステリシスが小さい。こ
のため、強誘電性特有の電気誘起歪が起こらないという利点があるものの、誘電体磁 器の比誘電率が低いために蓄電能力が低くバイパスコンデンサとしての性能を満た さないという問題があった。 [0006] On the other hand, in a temperature-compensated monolithic ceramic capacitor, since the dielectric ceramic constituting the dielectric layer is paraelectric, hysteresis in electric field dielectric polarization characteristics is small. This For this reason, although there is an advantage that the electrical induction distortion peculiar to ferroelectricity does not occur, there is a problem that the capacity as a bypass capacitor is not satisfied because the dielectric constant of the dielectric ceramic is low and the storage capacity is low. .
[0007] 特許文献 1:特開 2001— 89231号公報 [0007] Patent Document 1: JP 2001-89231 A
特許文献 2:特開 2001— 294481号公報 Patent Document 2: JP 2001-294481 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] 本発明が解決しょうとする課題は、高誘電率かつ安定な比誘電率の温度特性を示 す誘電体磁器と、それを誘電体層に用いたコンデンサを提供することである。 The problem to be solved by the present invention is to provide a dielectric ceramic exhibiting a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, and a capacitor using the dielectric ceramic.
課題を解決するための手段 Means for solving the problem
[0009] 本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子 間に形成された粒界相とからなるものであって、前記チタン酸バリウムを構成するバリ ゥム 1モルに対して、マグネシウムを MgO換算で 0. 01~0. 06モル、イットリウムを Y O換算で 0. 0007—0. 03モノレ、マンガンを MnO換算で 0. 0002—0. 03モノレ含 有するとともに、さらに前記チタン酸バリウム 100質量部に対して、ニオブを Nb O換 算で 4. 2-33. 3質量部含有し、かつ前記結晶粒子の平均粒径が 0. 05-0. 25 mであることを特 ί毁とする。 [0009] The dielectric ceramic of the present invention is composed of crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains, and the dielectric porcelain constituting the barium titanate. 1 mol of magnesium, 0.01 to 0.06 mol of magnesium in terms of MgO, 0007 to 0.03 monolayers in terms of YO, and 0.00002 to 0.03 monoles of manganese in terms of MnO In addition, with respect to 100 parts by mass of the barium titanate, niobium is contained in an amount of 4.2-33.3 parts by Nb 2 O, and the average grain size of the crystal grains is 0.05-0.25 m is the special feature.
本発明の誘電体磁器では、前記チタン酸バリウムを構成するバリウム 1モルに対し て、前記マグネシウムを MgO換算で 0. 017—0. 06モル、前記イットリウムを Y O換 算で 0· 005—0. 01モノレ、前記マンガンを MnO換算で 0· 01—0. 03モノレ含有する とともに、前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. In the dielectric ceramic according to the present invention, with respect to 1 mol of barium constituting the barium titanate, the magnesium is converted to MgO in an amount of 0.017 to 0.06 mol, and the yttrium is converted to an YO in the range of 0.005 to 0.00. 01 Monole and manganese containing MnO in the form of 0.01--0.03 monole and niobium in NbO equivalent to 100 parts by mass of barium titanate.
3-15. 6質量部含有し、かつ前記チタン酸バリウムを構成するバリウム 1モルに対す るチタンのモル比が 0. 97—0. 98であることが望ましい。 3-15. It is preferable that the molar ratio of titanium to 1 mole of barium contained in 6 parts by mass and constituting the barium titanate is 0.97-0.98.
[0010] 本発明の誘電体磁器は、前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO換算で 0. 73—6. 3質量部およびホウ素を B O換算で 0. 31— 2. 1質量部含 有することが望ましい。 [0010] In the dielectric ceramic according to the present invention, with respect to 100 parts by mass of the barium titanate, 0.73-6.3 parts by mass of silicon in terms of SiO and 0.31-2. It is desirable to include part by mass.
本発明の誘電体磁器では、前記チタン酸バリウムを構成するバリウム 1モルに対し て、前記マグネシウムを MgO換算で 0. 017—0. 06モル、前記イットリウムを Y O換
算で 0. 0015—0. 01モノレ、前記マンガンを MnO換算で 0. 01—0. 03モノレ含有す るとともに、前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6 In the dielectric ceramic according to the present invention, with respect to 1 mol of barium constituting the barium titanate, the magnesium is converted to MgO in terms of 0.017 to 0.06 mol, and the yttrium is converted to YO. In addition, it contains 0.01.01-.01 monole, and the above manganese contains 0.01-0.0.03 monole in terms of MnO, and the niobium in terms of NbO in terms of 100 parts by mass of barium titanate.
2 5 twenty five
. 3-15. 6質量部含有し、さらに前記チタン酸バリウム 100質量部に対して、珪素を SiO換算で 0. 73—3. 13質量部およびホウ素を B O換算で 0. 31— 1. 04質量部 含有し、かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル比 が 0· 97-0. 98であることが望ましい。 3-15. Containing 6 parts by mass, and with respect to 100 parts by mass of barium titanate, silicon is 0.73--3.13 parts by mass in terms of SiO and boron is 0.3-equivalent in terms of BO. It is desirable that the molar ratio of titanium to 1 mole of barium contained in parts by mass and constituting the barium titanate is 0 · 97-0.98.
[0011] 本発明の誘電体磁器は、前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO換算で 0. 73—6. 3質量部およびリチウムを Li O換算で 0. 31— 2. 1質量部含 有することが望ましい。 [0011] In the dielectric ceramic according to the present invention, with respect to 100 parts by mass of the barium titanate, 0.73 to 6.3 parts by mass of silicon in terms of SiO and 0.31 to 2. It is desirable to contain 1 part by mass.
本発明の誘電体磁器では、前記チタン酸バリウムを構成するバリウム 1モルに対し て、前記マグネシウムを MgO換算で 0. 017—0. 06モル、前記イットリウムを Y O換 In the dielectric ceramic according to the present invention, with respect to 1 mol of barium constituting the barium titanate, the magnesium is converted into MgO in terms of 0.017 to 0.06 mol, and the yttrium is converted to Y 2 O.
2 3 算で 0. 0015—0. 01モノレ、前記マンガンを MnO換算で 0. 01—0. 03モノレ含有す るとともに、前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6 2 3 is calculated as 0.0015—0.01 monole, and manganese contains 0.01—0.03 monole in terms of MnO, and niobium in terms of Nb 2 O with respect to 100 parts by mass of the barium titanate. 6
2 5 twenty five
. 3-15. 6質量部含有し、さらに前記チタン酸バリウム 100質量部に対して、珪素を SiO換算で 0. 73—3. 13質量部およびリチウムを Li O換算で 0. 31— 1. 04質量 部含有し、かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル 比が 0· 97-0. 98であることが望ましい。 3-15. Containing 6 parts by mass, and with respect to 100 parts by mass of the barium titanate, 0.73-3.13 parts by mass of silicon in terms of SiO and 0.31-1. It is desirable that the molar ratio of titanium to 1 part of barium contained in 04 parts by mass and constituting the barium titanate is 0 · 97-0.98.
[0012] 本発明のコンデンサは、誘電体磁器からなる誘電体層と導体層との積層体から構 成されており、前記誘電体磁器が、チタン酸バリウムを主成分とする結晶粒子と、該 結晶粒子間に形成された粒界相とからなり、前記チタン酸バリウムを構成するバリウ ム 1モルに対して、マグネシウムを MgO換算で 0. 01~0. 06モル、イットリウムを Y O 換算で 0. 0007—0. 03モノレ、マンガンを MnO換算で 0. 0002—0. 03モノレ含有[0012] The capacitor of the present invention is composed of a laminate of a dielectric layer made of a dielectric ceramic and a conductor layer, and the dielectric ceramic has crystal grains mainly composed of barium titanate, and It consists of a grain boundary phase formed between crystal grains, and with respect to 1 mol of barium that constitutes the barium titanate, magnesium is 0.01 to 0.06 mol in terms of MgO and yttrium is 0.0 in terms of YO. 0007—0.03 Monole, Manganese containing 0.00002—0.03 Monole in terms of MnO
3 Three
するとともに、さらに前記チタン酸バリウム 100質量部に対して、ニオブを Nb O換算 In addition, niobium is converted to NbO with respect to 100 parts by mass of the barium titanate.
2 5 で 4. 2-33. 3質量部含有し、かつ前記結晶粒子の平均粒径が 0. 05-0. 25 ^ 111 であることを特徴とする。 2-5 and 4. 2-33.3 parts by mass, and the average grain size of the crystal grains is 0.05-0.25 ^ 111.
本発明のコンデンサでは、誘電体層は、前記チタン酸バリウムを構成するバリウム 1 モルに対して、前記マグネシウムを MgO換算で 0. 017—0. 06モル、前記イットリウ ムを Y O換算で 0· 005〜0· 01モノレ、前記マンガンを MnO換算で 0· 0 〜 0· 03モ
ル含有するとともに、前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb2〇 換算で 6. 3-15. 6質量部含有し、かつ前記チタン酸バリウムを構成するバリウム 1 モルに対するチタンのモル比が 0· 97-0. 98であることが望ましい。 In the capacitor of the present invention, the dielectric layer has a magnesium content of 0.017 to 0.06 mol in terms of MgO and the yttrium in terms of YO in terms of 1 mol of barium constituting the barium titanate. ~ 0 · 01 monole, manganese is converted to MnO 0 · 0 ∼ 0 · 03 In addition to 100 parts by mass of the barium titanate, the niobium is contained in the amount of 6.3-15.6 parts by mass in terms of Nb 2 0, and the titanium is contained in 1 mol of barium constituting the barium titanate. It is desirable that the molar ratio is 0 · 97-0.98.
[0013] 前記誘電体磁器は、前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO 換算で 0. 73〜6. 3質量部およびホウ素を B O換算で 0. 3;!〜 2. 1質量部含有す ることが望ましい。 [0013] The dielectric porcelain may further include 0.73 to 6.3 parts by mass of silicon in terms of SiO and 0.3 to 0.3 in terms of boron with respect to 100 parts by mass of the barium titanate;! To 2.1. It is desirable to contain part by mass.
本発明のコンデンサでは、誘電体層は、前記チタン酸バリウムを構成するバリウム 1 モルに対して、前記マグネシウムを MgO換算で 0. 017—0. 06モル、前記イットリウ ムを Y O換算で 0· 0015〜0· 01モノレ、前記マンガンを ΜηΟ換算で 0· 0 〜 0· 03 モル含有するとともに、前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3-15. 6質量部含有し、さらに前記チタン酸バリウム 100質量部に対し て、珪素を SiO換算で 0. 73—3. 13質量部およびホウ素を B O換算で 0. 31— 1. 04質量部含有し、かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタ ンのモル比が 0. 97—0. 98であることが望ましい。 In the capacitor of the present invention, the dielectric layer has a magnesium content of 0.017 to 0.06 mol in terms of MgO and yttrium in terms of YO with respect to 1 mol of barium constituting the barium titanate. ~ 0 · 01 monole, containing manganese in 0 · 0 to 0 · 03 mol in terms of ΜηΟ, and niobium in terms of NbO with respect to 100 parts by mass of barium titanate 6.3-15.6 mass In addition to 100 parts by weight of barium titanate, 0.73 to 3.13 parts by weight of silicon in terms of SiO and 0.31 to 1.04 parts by weight of boron in terms of BO, and It is desirable that the molar ratio of titanium to 1 mol of barium constituting barium titanate is 0.97-0.98.
[0014] 前記誘電体磁器は、前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO 換算で 0. 73—6. 3質量部およびリチウムを Li O換算で 0. 31— 2. 1質量部含有す ることが望ましい。 [0014] In the dielectric ceramic, with respect to 100 parts by mass of the barium titanate, 0.73-6.3 parts by mass of silicon in terms of SiO and 0.31-2.1 parts by mass of lithium in terms of Li 2 O It is desirable to contain a part.
本発明のコンデンサでは、誘電体層は、前記チタン酸バリウムを構成するバリウム 1 モルに対して、前記マグネシウムを MgO換算で 0. 017—0. 06モル、前記イットリウ ムを Y O換算で 0· 0015〜0· 01モノレ、前記マンガンを ΜηΟ換算で 0· 0 〜 0· 03 モル含有するとともに、前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3-15. 6質量部含有し、さらに前記チタン酸バリウム 100質量部に対し て、珪素を SiO換算で 0. 73—3. 13質量部およびリチウムを Li O換算で 0. 3;!〜 1 . 04質量部含有し、かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチ タンのモル比が 0· 97—0. 98であることが望ましい。 In the capacitor of the present invention, the dielectric layer has a magnesium content of 0.017 to 0.06 mol in terms of MgO and yttrium in terms of YO with respect to 1 mol of barium constituting the barium titanate. ~ 0 · 01 monole, containing manganese in 0 · 0 to 0 · 03 mol in terms of ΜηΟ, and niobium in terms of NbO with respect to 100 parts by mass of barium titanate 6.3-15.6 mass Further, for 100 parts by mass of the barium titanate, 0.73 to 3.13 parts by mass of silicon in terms of SiO and 0.3 to 0.3 parts of lithium in terms of Li 2 O;! To 1.04 parts by mass It is desirable that the molar ratio of titanium to 1 mol of barium constituting the barium titanate is 0 · 97−0.98.
発明の効果 The invention's effect
[0015] 本発明の誘電体磁器によれば、従来の強誘電性を有する誘電体磁器よりも比誘電 率の温度変化率が小さぐまた、従来の常誘電性を有する誘電体磁器に比較して高
誘電率であり、安定な比誘電率の温度特性を有し、かつ自発分極を小さくすることが できる。 [0015] According to the dielectric ceramic of the present invention, the temperature change rate of the relative permittivity is smaller than that of a conventional dielectric ceramic having a ferroelectric property, and compared to a conventional dielectric ceramic having a paraelectric property. High It is a dielectric constant, has a temperature characteristic of a stable relative dielectric constant, and can reduce spontaneous polarization.
特に、珪素およびホウ素を特定の割合で含むと、液相焼結させることができ、低温( 1100〜1250° での焼成が可能となる。 In particular, when silicon and boron are contained at a specific ratio, liquid phase sintering can be performed, and firing at a low temperature (1100 to 1250 °) becomes possible.
また、珪素およびリチウムを特定の割合で含む場合にも、液相焼結させることができ 、低温(1100〜; 1250°C)での焼成が可能となる。 Further, even when silicon and lithium are contained at a specific ratio, liquid phase sintering can be performed, and firing at a low temperature (1100 to 1250 ° C.) becomes possible.
[0016] 本発明のコンデンサによれば、誘電体層が、高誘電率かつ安定な比誘電率の温度 特性を示し、自発分極の小さい誘電体磁器から構成されているため、従来のコンデ ンサよりも高容量かつ容量温度特性の安定なコンデンサを形成できる。そして、この コンデンサを電源回路に用いた場合には、電気誘起歪に起因するノイズ音の発生を 抑制できる。 [0016] According to the capacitor of the present invention, the dielectric layer is composed of a dielectric ceramic having a high dielectric constant and a stable relative dielectric constant and having a low spontaneous polarization. In addition, a capacitor having a high capacity and stable capacitance-temperature characteristics can be formed. When this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise caused by electrically induced distortion.
図面の簡単な説明 Brief Description of Drawings
[0017] [図 1]本発明の第 1〜第 3の実施形態にかかるコンデンサを示す断面模式図である。 FIG. 1 is a schematic cross-sectional view showing a capacitor according to first to third embodiments of the present invention.
[図 2]実施例 Iにおける試料 No. I— 4の X線回折結果を示すグラフである。 FIG. 2 is a graph showing the X-ray diffraction results of Sample No. I-4 in Example I.
[図 3]実施例 Iにおける試料 No. I— 4、 33および 34の比誘電率の変化率を示すダラ フである。 FIG. 3 is a drawing showing the rate of change in relative permittivity of Sample Nos. I-4, 33 and 34 in Example I.
[図 4]実施例 Iにおける試料 No. I— 4の誘電分極 (V— Q)特性を示すグラフである。 FIG. 4 is a graph showing the dielectric polarization (V—Q) characteristics of Sample No. I-4 in Example I.
[図 5]実施例 IIにおける試料 No. II— 4の X線回折結果を示すグラフである。 FIG. 5 is a graph showing the X-ray diffraction results of Sample No. II-4 in Example II.
[図 6]実施例 IIIにおける試料 No. Ill— 4の X線回折結果を示すグラフである。 FIG. 6 is a graph showing the X-ray diffraction results of Sample No. Ill-4 in Example III.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0018] <第 1の実施形態〉 <First Embodiment>
以下、本発明の第 1の実施形態にかかる誘電体磁器およびコンデンサについて図 面を参照して詳細に説明する。図 1は、本実施形態のコンデンサを示す断面模式図 である。本実施形態の誘電体磁器は、チタン酸バリウムを主成分として、これにマグ ネシゥム、イットリウム、マンガンおよびニオブを含有するものであり、その含有量はバ リウム 1モルに対して、マグネシウムを MgO換算で 0. 01—0. 06モル、イットリウムを Y O換算で 0. 0007〜0. 03モノレ、マンガンを MnO換算で 0. 0002〜0. 03モノレ 含有するとともに、前記チタン酸バリウム 100質量部に対して、ニオブを Nb O換算
で 4. 2〜33. 3質量部含有する。 Hereinafter, a dielectric ceramic and a capacitor according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the capacitor of this embodiment. The dielectric ceramic of the present embodiment is mainly composed of barium titanate, and contains magnesium, yttrium, manganese and niobium. The content of magnesium is MgO equivalent to 1 mol of barium. Containing 0.01 to 0.06 mole of yttrium in the range of 0007 to 0.03 monole in terms of YO and manganese in the range of 0.002 to 0.03 monole in terms of MnO and 100 parts by mass of the barium titanate. Niobium converted to Nb O In 4.2 to 33.3 parts by mass.
[0019] また、本実施形態の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、 該結晶粒子間に形成された粒界相とからなる。粒界相とは、前記マグネシウム、イット リウム、マンガン、ニオブ等の副成分に起因する非晶質、または他の結晶相であり、 チタン酸バリウムとこれら副成分との液相焼結により形成されるものである。そして、本 実施形態では、前記結晶粒子の平均粒径が 0. 05-0. 25 mである。 In addition, the dielectric ceramic according to the present embodiment includes crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains. The grain boundary phase is an amorphous or other crystalline phase caused by the subcomponents such as magnesium, yttrium, manganese and niobium, and is formed by liquid phase sintering of barium titanate and these subcomponents. Is. In this embodiment, the average particle size of the crystal particles is 0.05 to 0.25 m.
[0020] 誘電体磁器が上記組成および粒径の範囲であると、後述する室温(25°C)におけ る比誘電率を 250以上、 125°Cにおける比誘電率を 230以上および 25°C〜125°C 間における比誘電率の温度係数(( ε - ε ) / ε ( 125— 25) )を絶対値で 100 [0020] When the dielectric ceramic is in the above composition and particle size range, the relative dielectric constant at room temperature (25 ° C) described later is 250 or more, the relative dielectric constant at 125 ° C is 230 or more, and 25 ° C. The temperature coefficient of relative dielectric constant between ˜125 ° C (( ε -ε) / ε (125− 25)) in absolute value 100
125 25 25 125 25 25
0 Χ 10— 6/°c以下にでき、電界—誘電分極特性におけるヒステリシスの小さい誘電体 磁器を形成できると!/、う利点がある。 0 can be a chi 10- 6 / ° c or less, an electric field - to be able to form small dielectric ceramic hysteresis in the dielectric polarization characteristics / it is advantageous cormorants.
[0021] このような本実施形態の誘電体磁器は、チタン酸バリウムにマグネシウム、イットリウ ム、マンガンおよびニオブが固溶したものとなる。また、結晶構造が正方晶系で強誘 電性を示すチタン酸バリウムに、マグネシウム、イットリウム、マンガンおよびニオブを 固溶させるとともに、これらの成分が固溶したチタン酸バリウムを主成分とする結晶粒 子の平均粒径を 0. 05-0. 25 mの範囲とすることで、当該結晶粒子の結晶構造 が立方晶系を主体としたものとすることができる。これにより正方晶系の結晶構造に 起因する強誘電性が低下し、常誘電性を高めることができ、常誘電性が高まることで 自発分極を低減できる。 [0021] The dielectric ceramic according to the present embodiment is obtained by dissolving magnesium, yttrium, manganese, and niobium in barium titanate. In addition, magnesium, yttrium, manganese, and niobium are solid-dissolved in barium titanate, which has a tetragonal crystal structure and strong conductivity, and crystal grains mainly composed of barium titanate in which these components are dissolved. By setting the average particle size of the particles in the range of 0.05 to 0. 25 m, the crystal structure of the crystal particles can be mainly composed of a cubic system. As a result, the ferroelectricity due to the tetragonal crystal structure is reduced, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
[0022] また、チタン酸バリウムを主成分とする結晶粒子の結晶構造を、立方晶系を主体と する結晶構造とすることで、比誘電率の変化率を示す曲線が 55°C〜; 125°Cの温 度範囲において平坦となり、いずれも電界 誘電分極特性におけるヒステリシスが小 さくなる。そのため、比誘電率が 250以上でも比誘電率の温度係数の小さい誘電体 磁器を得ること力できる。 [0022] Further, by making the crystal structure of the crystal grains mainly composed of barium titanate into a crystal structure mainly composed of a cubic system, a curve indicating the rate of change of relative permittivity is 55 ° C to 125 ° C; It becomes flat in the temperature range of ° C, and the hysteresis in the electric field dielectric polarization characteristics becomes small. Therefore, even when the relative permittivity is 250 or more, it is possible to obtain a dielectric ceramic having a small relative permittivity temperature coefficient.
[0023] 即ち、上述した範囲でチタン酸バリウムに対して、マグネシウム、イットリウム、マンガ ンを所定量含有させると、 25°C以上のキュリー温度を示し、比誘電率の温度係数が 正の値を示す誘電体磁器となる力 S、このような誘電特性を示す誘電体磁器に対して 、さらにニオブを含有させた場合に、さらに大きな効果が得られ、比誘電率の温度係
数を小さくして温度特性を平坦化できる。この場合、比誘電率の変化率を示す曲線 が一 55°C〜125°Cの温度範囲において 25°Cを中心にして 2つのピークを有するも のとなる。 [0023] That is, when a predetermined amount of magnesium, yttrium, and manganese is contained in barium titanate within the above-described range, a Curie temperature of 25 ° C or higher is exhibited, and the temperature coefficient of relative permittivity is a positive value. When the niobium is further added to the dielectric ceramic exhibiting such a dielectric property S, and the dielectric ceramic exhibiting such dielectric characteristics, a greater effect can be obtained, and the temperature coefficient of the relative dielectric constant can be obtained. The temperature characteristic can be flattened by reducing the number. In this case, the curve indicating the rate of change of the relative dielectric constant has two peaks centered at 25 ° C in the temperature range of 155 ° C to 125 ° C.
[0024] ここで、ニオブはチタン酸バリウムを主成分とする結晶粒子の粗大化を抑制する働 きをもち、チタン酸バリウム 100質量部に対して、ニオブを Nb O換算で 4. 2—33. 3 質量部含有する。 Here, niobium has a function of suppressing the coarsening of crystal grains mainly composed of barium titanate, and niobium is converted into Nb 2 O in terms of Nb 2 O with respect to 100 parts by mass of barium titanate. . Contains 3 parts by mass.
[0025] 即ち、チタン酸バリウム 100質量部に対するニオブの含有量が Nb O換算で 4. 2 質量部よりも少ないと、誘電体磁器の比誘電率が高いものの、比誘電率の温度係数 が大きいものとなる。一方、チタン酸バリウム 100質量部に対するニオブの含有量が Nb O換算で 33. 3質量部よりも多いと、 25°Cにおける比誘電率が 250よりも低くなり That is, when the content of niobium with respect to 100 parts by mass of barium titanate is less than 4.2 parts by mass in terms of Nb 2 O, the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative dielectric constant is large. It will be a thing. On the other hand, if the niobium content relative to 100 parts by weight of barium titanate is more than 33.3 parts by weight in terms of NbO, the relative dielectric constant at 25 ° C will be lower than 250.
、また、 125°Cにおける比誘電率が 230未満となる。 In addition, the relative dielectric constant at 125 ° C. is less than 230.
[0026] また、マグネシウム、イットリウム、マンガンの含有量は、ノ リウム 1モルに対して、マ グネシゥムを MgO換算で 0· 01—0. 06モル、イットリウムを Y O換算で 0· 0007—0[0026] The contents of magnesium, yttrium, and manganese are as follows. Magnesium is converted to Mg · O · 01—0.06 mol, and yttrium is converted to Y 2 O in terms of 1 · mol.
. 03モノレ、マンガンを MnO換算で 0. 0002—0. 03モノレ含有する。 .03 Monole and manganese are contained in MnO as 0.00002—0.03 monole.
[0027] 即ち、ノ リウム 1モルに対するマグネシウムの含有量が MgO換算で 0· 01モノレより 少ないか、または 0. 06モルより多い場合には、誘電体磁器の比誘電率の温度係数 が大きくなる。また、ノ リウム 1モルに対するイットリウムの含有量が Y O換算で 0· 00[0027] That is, when the magnesium content relative to 1 mol of norm is less than 0.01 Mole or more than 0.06 mol in terms of MgO, the temperature coefficient of the relative permittivity of the dielectric ceramic increases. . In addition, the yttrium content per mole of norium is 0.000 in terms of Y 2 O.
07モルよりも少ないか、または 0. 03モルよりも多い場合には、誘電体磁器の比誘電 率は高いものの、比誘電率の温度係数が大きくなる。さらにバリウム 1モルに対するマ ンガンの含有量が MnO換算で 0. 0002モノレよりも少ない力、、または 0. 03モノレよりも 多レ、場合には、誘電体磁器の比誘電率の温度係数が大きくなる。 If it is less than 07 moles or more than 0.03 moles, the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity becomes large. In addition, if the content of mangan per mol of barium is less than 0.002 monole in MnO, or more than 0.03 monole, the temperature coefficient of the dielectric constant of the dielectric ceramic is large. Become.
[0028] さらに、本実施形態の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子の 平均粒径力 . 05—0. 25〃mである。 Furthermore, the dielectric ceramic according to the present embodiment has an average particle size force of crystal particles mainly composed of barium titanate.
[0029] 即ち、チタン酸バリウムを主成分とする結晶粒子の平均粒径を 0. 05-0. 25 μ mと することで、そのチタン酸バリウムを主成分とする結晶粒子が立方晶系を主体とする 結晶構造となり、電界 誘電分極特性におけるヒステリシスが小さく常誘電性に近い 特性を示すものにできる。これに対し、チタン酸バリウムを主成分とする結晶粒子の 平均粒径が 0. 05 inよりも小さい場合には、配向分極の寄与が無くなるため、誘電
体磁器の比誘電率が低下する。一方、結晶粒子の平均粒径が 0. 25 111よりも大き い場合には、 X線回折による測定において、正方晶系の結晶相が見られ、誘電体磁 器の比誘電率の温度係数が大きくなる。 That is, by setting the average particle size of the crystal particles mainly composed of barium titanate to 0.05-0.25 μm, the crystal particles mainly composed of barium titanate have a cubic system. It has a crystalline structure as the main component, and has a small hysteresis in the electric field dielectric polarization characteristics and can exhibit characteristics close to paraelectricity. On the other hand, when the average particle size of the crystal particles mainly composed of barium titanate is smaller than 0.05 in, the contribution of orientation polarization is lost, so that the dielectric The relative dielectric constant of the ceramic body is reduced. On the other hand, when the average grain size of the crystal grains is larger than 0.25 111, a tetragonal crystal phase is observed in the X-ray diffraction measurement, and the temperature coefficient of the dielectric constant of the dielectric ceramic is high. growing.
[0030] なお、立方晶系を主体とする結晶構造とは、立方晶系のチタン酸バリウムの最も強 いピークである(110)面の回折ピークの強度が異相の回折ピークの強度よりも大きい 状態をいう。 [0030] Note that the crystal structure mainly composed of cubic system means that the intensity of diffraction peak of (110) plane which is the strongest peak of cubic system barium titanate is larger than the intensity of diffraction peak of different phase. State.
[0031] また、本実施形態では、電界 誘電分極特性において、 0Vでの分極電荷を 20nC /cm2以下にできるという点で、結晶粒子の平均粒径は 0. 14-0. 18 111がより望 ましい。 [0031] Further, in this embodiment, in the electric field dielectric polarization characteristics, the average charge of crystal grains is more preferably 0.14-0.18 111 in that the polarization charge at 0V can be 20 nC / cm 2 or less. I want it.
[0032] また、好ましいニオブ、マグネシウム、イットリウムおよびマンガンの含有量としては、 ノ リウム 1モルに対するマグネシウムが MgO換算で 0· 017—0. 06モノレ、イットリウム が Y O換算で 0· 005〜0. 01モノレ、マンガンが MnO換算で 0· 01~0. 03モノレで [0032] Further, preferable niobium, magnesium, yttrium and manganese contents are as follows. Magnesium in terms of MgO is 0 · 17-17.06 monole, and yttrium is in the YO equivalent of 0.005–0.01. Mono and Manganese in MnO conversion 0 · 01 ~ 0.03 Mono
2 3 twenty three
あり、かつチタン酸バリウム 100質量部に対してニオブが Nb O換算で 6. 3—15. 6 And niobium in terms of NbO with respect to 100 parts by mass of barium titanate 6.3-15. 6
2 5 twenty five
質量部の範囲であるとともに、バリウム 1モルに対するチタンのモル比が 0· 97-0. 9 8であるものが良い。この範囲の誘電体磁器は、 25°Cにおける比誘電率を 400以上 、 125°Cにおける比誘電率を 380以上、比誘電率の温度係数を絶対値で 400 X 10— 6/°C以下にすることが可能になる。 In addition to the range of parts by mass, the molar ratio of titanium to 1 mol of barium is 0 · 97-0.98. Dielectric porcelain in this range has a relative permittivity at 25 ° C of 400 or more, a relative permittivity at 125 ° C of 380 or more, and a relative permittivity temperature coefficient of 400 X 10-6 / ° C or less in absolute value. It becomes possible to do.
[0033] ここで、チタン酸バリウムを主成分とする前記結晶粒子の平均粒径は、後述するよう に、焼成後の誘電体磁器力 なる試料の破断面を研磨した後、走査型電子顕微鏡 を用いて内部組織の写真を撮り、その写真に映し出されている結晶粒子の輪郭を画 像処理し、各粒子を円と見立ててその直径を求め、平均化して求められる値である。 より具体的には、写真の倍率は約 30000倍とし、観察点数は各試料 3点とし、その平 均値を求める。 [0033] Here, the average particle diameter of the crystal particles mainly composed of barium titanate is determined by polishing a fracture surface of a sample having a dielectric ceramic force after firing, as described later, and then using a scanning electron microscope. This is a value obtained by taking a picture of the internal structure using the image, processing the contours of the crystal grains shown in the picture, treating each particle as a circle, determining its diameter, and averaging. More specifically, the magnification of the photograph is approximately 30000 times, the number of observation points is 3 for each sample, and the average value is obtained.
[0034] また、前記 25°Cおよび 125°Cにおける比誘電率は、後述するように、所定のペレツ ト状に成形され、表面に導体膜が形成された誘電体磁器力 なる試料を、 LCRメー ター 4284A(HP社製)を用いて周波数 1 · 0kHz、入力信号レベル 1. 0V、温度 25 °Cおよび 125°Cにて静電容量を測定し、ペレット状の試料の直径と厚み、および導 体膜の面積から算出される値である。 25°C〜125°C間における比誘電率の温度係
数は、 25°Cおよび 125°Cにおける比誘電率を、それぞれ下記式(1)に当てはめて算 出される値である。 In addition, the relative dielectric constant at 25 ° C. and 125 ° C. is determined by using a dielectric ceramic force sample formed into a predetermined pellet shape and having a conductor film formed on the surface, as described later. Using a meter 4284A (manufactured by HP), measure the capacitance at a frequency of 1.0 kHz, an input signal level of 1.0 V, and temperatures of 25 ° C and 125 ° C. This is a value calculated from the area of the conductor film. Temperature coefficient of relative permittivity between 25 ° C and 125 ° C The numbers are calculated by applying the relative permittivity at 25 ° C and 125 ° C to the following formula (1).
[0035] 國 比誘電率の温度係数 = · · ' ( 1 ) ε 2 5 X ( 1 2 5 - 2 5 ) [0035] Temperature coefficient of relative permittivity = · · '(1) ε 2 5 X (1 2 5-2 5)
£ 2 5 : 2 5 ¾における比誘電率 Relative permittivity at £ 2 5 : 2 5 ¾
ί ! 2 5 : 1 2 5 °Cにおける比誘電率 ί! 2 5 : relative permittivity at 1 25 ° C
[0036] 次に、本実施形態の誘電体磁器の製法について説明する。 Next, a method for manufacturing the dielectric ceramic according to the present embodiment will be described.
先ず、素原料粉末として、純度がいずれも 99%以上の BaCO粉末と TiO粉末、 M gO粉末、 Y O粉末および炭酸マンガン (MnCO )粉末を用いる。これらの素原料粉 末を、チタン酸バリウムを構成するバリウム 1モルに対して、 Mg〇を 0· 01—0. 06モ ノレ、 Y〇を 0. 0007—0. 03モノレ、 MnCOを 0. 0002—0. 03モノレの害 'J合でそれぞ れ配合する。 First, BaCO powder, TiO powder, MgO powder, Y 2 O powder, and manganese carbonate (MnCO 3) powder each having a purity of 99% or more are used as the raw material powder. These raw material powders are based on 1 mole of barium constituting barium titanate, MgO is 0.001-0.06 mono, Y0 is 0.007-0.03 monole, and MnCO is 0.00. 0002—0.03 Harm of monole 'J combination.
[0037] 次に、上記した素原料粉末の混合物を湿式混合し、乾燥させた後、温度 900〜; 11 00°Cで仮焼して仮焼粉末を作製し、この仮焼粉末を粉砕する。このとき、仮焼粉末 の結晶構造が、立方晶系を主体とするものとなるように粒成長させることにより、常誘 電性に近い比誘電率の温度特性を維持した高誘電率の誘電体磁器を得ることが可 能になる。 [0037] Next, the mixture of the raw material powders described above is wet-mixed and dried, and then calcined at a temperature of 900 to 11100 ° C to prepare a calcined powder, and the calcined powder is pulverized. . At this time, the dielectric structure with a high dielectric constant that maintains the temperature characteristics of the relative dielectric constant close to normal dielectricity is obtained by growing the grains so that the crystal structure of the calcined powder is mainly cubic. It becomes possible to obtain porcelain.
仮焼粉末の平均粒径は、 0. 04-0. ; 1 mであるのが好ましい。これにより、仮焼 粉末において、強誘電性の発現を抑制できる。前記仮焼粉末の平均粒径は、後述 するように、仮焼粉末を電子顕微鏡用試料台上に分散させて走査型電子顕微鏡に より写真を撮り、その写真に映し出されている仮焼粉末の輪郭を画像処理し、各粉末 を円と見立てて、その直径を求め、平均化して求めることができる。 The average particle size of the calcined powder is preferably 0.04-0 .; 1 m. Thereby, the expression of ferroelectricity can be suppressed in the calcined powder. As will be described later, the average particle diameter of the calcined powder is determined by dispersing the calcined powder on a sample stage for an electron microscope, taking a picture with a scanning electron microscope, and The contour is image-processed, each powder is regarded as a circle, its diameter is obtained, and averaged.
[0038] 次いで、この仮焼粉末 100質量部に対して Nb O粉末を 4. 0〜32質量部の割合 で混合する。この後、混合粉末をペレット状に成形し、大気中で 1150°C〜; 1250°C の温度範囲で焼成を行うことにより本実施形態の誘電体磁器を得ることができる。ここ で、焼成温度が 1150°Cよりも低い場合には、結晶粒子の粒成長と緻密化が抑えら れるために誘電体磁器の密度が低いものとなる。一方、焼成温度が 1250°Cよりも高
い場合には、誘電体磁器の結晶粒子が粒成長しすぎてしまうおそれがある。 [0038] Next, Nb 2 O powder is mixed at a ratio of 4.0 to 32 parts by mass with respect to 100 parts by mass of the calcined powder. Thereafter, the mixed powder is formed into a pellet and fired in the air at a temperature range of 1150 ° C. to 1250 ° C., whereby the dielectric ceramic according to the present embodiment can be obtained. Here, when the firing temperature is lower than 1150 ° C., the growth of the crystal grains and densification are suppressed, so that the density of the dielectric ceramic becomes low. On the other hand, the firing temperature is higher than 1250 ° C In such a case, the crystal grains of the dielectric ceramic may grow too much.
[0039] 次に、本実施形態のコンデンサについて説明する。前記した誘電体磁器を用いて[0039] Next, the capacitor of this embodiment will be described. Using the dielectric porcelain described above
、以下のようなコンデンサを形成できる。 The following capacitors can be formed.
[0040] 即ち、本実施形態のコンデンサは、図 1に示すように、コンデンサ本体 10の両端部 に外部電極 12が設けられたものである。コンデンサ本体 10は、複数の誘電体層 13と 、内部電極層である複数の導体層 14とが交互に積層された積層体 1から構成されて いる。そして、誘電体層 13は、上述した本実施形態の誘電体磁器によって形成され ている。即ち、誘電体層 13として、高誘電率かつ安定な比誘電率の温度特性を示し 、 自発分極の小さい上記誘電体磁器を適用することにより、従来のコンデンサよりも 高容量かつ容量温度特性の安定なコンデンサになる。そのため、このコンデンサを 電源回路に用いた場合には、電気誘起歪に起因するノイズ音の発生を抑制すること ができる。 That is, the capacitor of this embodiment is one in which external electrodes 12 are provided at both ends of a capacitor body 10 as shown in FIG. The capacitor body 10 is composed of a multilayer body 1 in which a plurality of dielectric layers 13 and a plurality of conductor layers 14 that are internal electrode layers are alternately laminated. The dielectric layer 13 is formed by the dielectric ceramic of the present embodiment described above. That is, the dielectric layer 13 exhibits a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, and by applying the dielectric ceramic having a small spontaneous polarization, the capacitance is higher than that of a conventional capacitor and the capacitance temperature characteristic is more stable. It becomes a simple capacitor. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise caused by electrically induced distortion.
[0041] 誘電体層 13の厚みは 1〜30 mであることが望ましい。特に、誘電体層 13の厚み 力 m以下であると、誘電体層 13の薄層化によりコンデンサの静電容量が高めら れるという利点がある。 [0041] The thickness of the dielectric layer 13 is preferably 1 to 30 m. In particular, if the thickness of the dielectric layer 13 is not more than m, there is an advantage that the capacitance of the capacitor can be increased by making the dielectric layer 13 thinner.
[0042] 導体層 14は、高積層化しても製造コストを抑制できるという点で Niや Cuなどの卑 金属が望ましぐ特に、誘電体層 13との同時焼成を図るという点で Niがより望ましい。 この導体層 14の厚みは、平均で 1 m以下が好ましい。 [0042] Base layer 14 such as Ni or Cu is desirable because conductor layer 14 can suppress manufacturing costs even when the number of layers is increased, and Ni is more advantageous in terms of simultaneous firing with dielectric layer 13. desirable. The conductor layer 14 preferably has an average thickness of 1 m or less.
[0043] このようなコンデンサを作製する場合には、先ず、上述した混合粉末をグリーンシー トに成形する。ついで、導体層 14となる導体ペーストを調製して前記グリーンシートの 表面に印刷した後積層し焼成して積層体 1を形成する。しかる後、積層体 1の両端面 にさらに導体ペーストを印刷して焼成し、外部電極 12を形成することにより本実施形 態のコンデンサを得ることができる。 When producing such a capacitor, first, the above-mentioned mixed powder is formed into a green sheet. Next, a conductor paste to be the conductor layer 14 is prepared, printed on the surface of the green sheet, laminated and fired to form the laminate 1. Thereafter, a conductor paste is further printed on both end faces of the laminate 1 and fired to form the external electrode 12, whereby the capacitor of this embodiment can be obtained.
[0044] <第 2の実施形態〉 <Second Embodiment>
次に、本発明の第 2の実施形態について説明する。本実施形態の誘電体磁器は、 チタン酸バリウムを主成分とし、これにマグネシウム、イットリウム、マンガン、ニオブ、 珪素およびホウ素を含有するものであり、その含有量はノ リウム 1モルに対して、マグ ネシゥムを MgO換算で 0· 01—0. 06モル、イットリウムを Y O換算で 0· 0007—0.
03モル、マンガンを MnO換算で 0· 0002—0. 03モル含有するとともに、前記チタ ン酸バリウム 100質量部に対して、ニオブを Nb O換算で 4. 2—33. 3質量部、珪素 Next, a second embodiment of the present invention will be described. The dielectric ceramic according to the present embodiment is mainly composed of barium titanate and contains magnesium, yttrium, manganese, niobium, silicon, and boron. Nesym is converted to MgO as 0 · 01—0.06 mol, Yttrium is converted to YO as 0 · 0007—0. 03 mol and manganese in an amount of 0 · 0002–0.03 mol in terms of MnO, and 4.2 to 33.3 parts by mass of niobium in terms of Nb 2 O with respect to 100 parts by mass of the barium titanate.
2 5 twenty five
を SiO換算で 0. 73—6. 3質量部およびホウ素を B O換算で 0. 31— 2. 1質量部 含有する。 Is 0.73-6.3 parts by mass in terms of SiO and 0.31-2.1 parts by mass of boron in terms of B 2 O.
[0045] また、本実施形態の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、 該結晶粒子間に形成された粒界相とからなり、前記結晶粒子の平均粒径が 0. 05〜 0. 25 μ mである。 In addition, the dielectric ceramic according to the present embodiment includes crystal particles mainly composed of barium titanate and a grain boundary phase formed between the crystal particles, and the average particle size of the crystal particles is 0. 05 to 0.25 μm.
[0046] 誘電体磁器が上記組成および粒径の範囲であると、前記第 1の実施形態と同様に 、 25°Cにおける比誘電率を 250以上、 125°Cにおける比誘電率を 230以上および 2 5°C〜; 125°C間における比誘電率の温度係数(( ε - ε ) / ε (125— 25) )を [0046] When the dielectric ceramic is in the above composition and particle size range, as in the first embodiment, the relative dielectric constant at 25 ° C is 250 or more, the relative dielectric constant at 125 ° C is 230 or more, and 2 5 ° C ~; the temperature coefficient of relative permittivity between 125 ° C ((ε-ε) / ε (125− 25))
125 25 25 125 25 25
絶対値で 1000 X 10— 6/°c以下にでき、電界—誘電分極特性におけるヒステリシスの 小さレ、誘電体磁器を形成できるとレ、う利点がある。 Absolute value can below 1000 X 10- 6 / ° c, the field - dielectric polarization characteristics in the hysteresis small les, if capable of forming a dielectric ceramic Les is advantageous cormorants.
[0047] このような本実施形態の誘電体磁器は、チタン酸バリウムにマグネシウム、イットリウ ム、マンガンおよびニオブが固溶し、前記粒界相中に珪素およびホウ素を含んだもの となる。 [0047] Such a dielectric ceramic according to the present embodiment includes magnesium, yttrium, manganese and niobium in solid solution in barium titanate, and silicon and boron are contained in the grain boundary phase.
[0048] また、結晶構造が正方晶系で強誘電性を示すチタン酸バリウムに、マグネシウム、 イットリウム、マンガンおよびニオブを固溶させるとともに、チタン酸バリウムを主成分と する結晶粒子の平均粒径を 0. 05-0. 25 mの範囲とすることで、当該結晶粒子 の結晶構造が立方晶系を主体としたものとすることができる。これにより正方晶系の 結晶構造に起因する強誘電性が低下し、常誘電性を高めることができ、常誘電性が 高まることで自発分極を低減できる。 [0048] In addition, magnesium, yttrium, manganese, and niobium are solid-dissolved in barium titanate having a tetragonal crystal structure and ferroelectricity, and the average particle size of crystal grains mainly composed of barium titanate is determined. By setting the range of 0.05 to 0. 25 m, the crystal structure of the crystal grains can be mainly composed of cubic system. As a result, the ferroelectricity due to the tetragonal crystal structure is lowered, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
[0049] また、チタン酸バリウムを主成分とする結晶粒子の結晶構造を、立方晶系を主体と する結晶構造とすることで、前記第 1の実施形態と同様に、比誘電率の変化率を示 す曲線が— 55°C〜; 125°Cの温度範囲において平坦となり、いずれも電界-誘電分 極特性におけるヒステリシスが小さくなる。そのため、比誘電率が 250以上であるにも かかわらず比誘電率の温度係数の小さい誘電体磁器を得ることができる。 [0049] Further, by changing the crystal structure of the crystal grains mainly composed of barium titanate to a crystal structure mainly composed of a cubic system, the rate of change of the relative dielectric constant is the same as in the first embodiment. The curve showing the curve becomes flat in the temperature range of -55 ° C to 125 ° C, and the hysteresis in the electric field-dielectric polarization characteristics is reduced. Therefore, it is possible to obtain a dielectric ceramic having a low relative dielectric constant temperature coefficient even though the relative dielectric constant is 250 or more.
[0050] 即ち、上述した範囲でチタン酸バリウムに対して、マグネシウム、イットリウム、マンガ ンを所定量含有させると、 25°C以上のキュリー温度を示し、比誘電率の温度係数が
正の値を示す誘電特性を有する誘電体磁器となるが、このような誘電特性を示す誘 電体磁器に対して、さらにニオブ、珪素およびホウ素を含有させた場合には、比誘電 率の温度係数を小さくし、温度特性を平坦化できる。この場合、比誘電率の変化率を 示す曲線が— 55°C〜125°Cの温度範囲において 25°Cを中心にして 2つのピークを 有するあのとなる。 [0050] That is, when a predetermined amount of magnesium, yttrium, and manganese is contained in barium titanate within the above-described range, a Curie temperature of 25 ° C or higher is exhibited, and the temperature coefficient of relative permittivity is The dielectric ceramic has a positive dielectric characteristic. However, when the dielectric ceramic having such a dielectric characteristic is further incorporated with niobium, silicon, and boron, the temperature of the relative dielectric constant is increased. The coefficient can be reduced and the temperature characteristics can be flattened. In this case, the curve indicating the rate of change of the relative dielectric constant has two peaks centered at 25 ° C in the temperature range of -55 ° C to 125 ° C.
[0051] 特に本実施形態によれば、珪素およびホウ素を特定の割合で含むことで、液相焼 結させることができ、低温(1100〜; 1250°C)での焼成が可能となる。 [0051] In particular, according to the present embodiment, by containing silicon and boron in a specific ratio, liquid phase sintering can be performed, and baking at a low temperature (1100 to 1250 ° C) becomes possible.
[0052] ここで、ニオブ、珪素およびホウ素の各酸化物は、チタン酸バリウムを主成分とする 結晶粒子の粗大化を抑制する働きをもち、チタン酸バリウム 100質量部に対して、二 ォブを Nb O換算で 4. 2—33. 3質量部、珪素を SiO換算で 0. 73—6. 3質量部お よびホウ素を B O換算で 0. 3;!〜 2. 1質量部含有する。 Here, each of the oxides of niobium, silicon, and boron has a function of suppressing the coarsening of the crystal grains mainly composed of barium titanate, and two nibbs with respect to 100 parts by mass of barium titanate. Is 4.2-33.3 parts by mass in terms of Nb 2 O, silicon is 0.73-6.3 parts by mass in terms of SiO, and boron is 0.3 in terms of BO;! -2.1 parts by mass.
[0053] 即ち、チタン酸バリウム 100質量部に対するニオブの含有量が Nb〇換算で 4. 2 質量部よりも少ないと、誘電体磁器の比誘電率が高いものの、比誘電率の温度係数 が大きいものとなる。一方、チタン酸バリウム 100質量部に対するニオブの含有量が Nb O換算で 33. 3質量部よりも多いと、 25°Cにおける比誘電率が 250よりも低くなり That is, when the content of niobium with respect to 100 parts by mass of barium titanate is less than 4.2 parts by mass in terms of Nb 0, the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity is large. It will be a thing. On the other hand, if the niobium content relative to 100 parts by weight of barium titanate is more than 33.3 parts by weight in terms of NbO, the relative dielectric constant at 25 ° C will be lower than 250.
、また、 125°Cにおける比誘電率が 230未満となる。 In addition, the relative dielectric constant at 125 ° C. is less than 230.
[0054] また、チタン酸バリウム 100質量部に対する珪素の含有量が SiO換算で 0. 73質 量部よりも少ないか、または、ホウ素の含有量が B O換算で 0. 31質量部よりも少な[0054] Further, the silicon content relative to 100 parts by mass of barium titanate is less than 0.73 parts by mass in terms of SiO, or the boron content is less than 0.31 parts by mass in terms of B 2 O.
V、場合には、低温(1100〜; 1250°C)での焼成にお!/、て誘電体磁器の緻密化が図 れなくなり、比誘電率が低くなるおそれがある。 In the case of V, in the case of firing at a low temperature (1100-; 1250 ° C), the dielectric porcelain cannot be densified and the relative dielectric constant may be lowered.
[0055] 一方、チタン酸バリウム 100質量部に対する珪素の含有量が SiO換算で 6. 3質量 部よりも多いか、または、ホウ素が B O換算で 2. 1質量部よりも多い場合には、誘電 体磁器の比誘電率が低下するとともに、比誘電率の温度係数が大きくなるおそれが ある。 [0055] On the other hand, when the silicon content relative to 100 parts by mass of barium titanate is more than 6.3 parts by mass in terms of SiO, or when boron is more than 2.1 parts by mass in terms of BO, dielectric The relative permittivity of the body porcelain may decrease and the temperature coefficient of the relative permittivity may increase.
[0056] また、マグネシウム、イットリウム、マンガンの含有量は、ノ リウム 1モルに対して、マ グネシゥムを MgO換算で 0· 01—0. 06モル、イットリウムを Y O換算で 0· 0007—0 [0056] The contents of magnesium, yttrium, and manganese are as follows. Magnesium is converted to Mg · O · 01—0.06 mol in terms of MgO, and yttrium is converted to Y · O in terms of O · 0007—0.
. 03モノレ、マンガンを MnO換算で 0. 0002—0. 03モノレ含有する。 .03 Monole and manganese are contained in MnO as 0.00002—0.03 monole.
[0057] 即ち、ノ リウム 1モルに対するマグネシウムの含有量が MgO換算で 0· 01モノレより
少ないか、または 0. 06モルより多い場合には、誘電体磁器の比誘電率の温度係数 が大きくなる。また、ノ リウム 1モルに対するイットリウムの含有量が Y O換算で 0· 00 [0057] That is, the magnesium content relative to 1 mol of normo If it is small or more than 0.06 mol, the temperature coefficient of the dielectric constant of the dielectric ceramic becomes large. The yttrium content per mole of norium is
2 3 twenty three
07モルよりも少ないか、または 0. 03モルよりも多い場合には、誘電体磁器の比誘電 率は高いものの、比誘電率の温度係数が大きくなる。さらにバリウム 1モルに対するマ ンガンの含有量が MnO換算で 0. 0002モノレよりも少ない力、、または 0. 03モノレよりも 多レ、場合には、誘電体磁器の比誘電率の温度係数が大きくなる。 If it is less than 07 moles or more than 0.03 moles, the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity becomes large. In addition, if the content of mangan per mol of barium is less than 0.002 monole in MnO, or more than 0.03 monole, the temperature coefficient of the dielectric constant of the dielectric ceramic is large. Become.
[0058] さらに、本実施形態の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子の 平均粒径力 . 05—0. 25〃mである。 [0058] Furthermore, the dielectric ceramic of the present embodiment has an average particle size force of .05-0.25 〃m of crystal particles mainly composed of barium titanate.
[0059] 即ち、チタン酸バリウムを主成分とする結晶粒子の平均粒径を 0. 05-0. 25 μ mと することで、前記第 1の実施形態と同様に、チタン酸バリウムを主成分とする結晶粒子 が立方晶系を主体とする結晶構造となり、電界 誘電分極特性におけるヒステリシス 力小さく常誘電性に近い特性を示すものにできる。これに対し、チタン酸バリウムを主 成分とする結晶粒子の平均粒径が 0. 05 inよりも小さい場合には、配向分極の寄 与が無くなるため誘電体磁器の比誘電率が低下する。一方、その結晶粒子の平均 粒径が 0. 25 mよりも大きい場合には、 X線回折による測定において正方晶系の結 晶相が見られ誘電体磁器の比誘電率の温度係数が大きくなる。 [0059] That is, by setting the average particle size of the crystal particles mainly composed of barium titanate to 0.05 to 0.25 μm, the barium titanate is the main component as in the first embodiment. The crystal grains to be made have a crystal structure mainly composed of a cubic system, and have a small hysteresis force in the electric field dielectric polarization characteristics and exhibit characteristics close to paraelectricity. On the other hand, when the average particle size of the crystal grains containing barium titanate as the main component is smaller than 0.05 in, the contribution of orientational polarization is lost and the dielectric constant of the dielectric ceramic decreases. On the other hand, when the average particle size of the crystal particles is larger than 0.25 m, a tetragonal crystal phase is observed in the measurement by X-ray diffraction, and the temperature coefficient of the dielectric constant of the dielectric ceramic becomes large. .
[0060] また、本発明では、電界 誘電分極特性において、 0Vでの分極電荷を 20nC/c m2以下にできるという点で、結晶粒子の平均粒径は 0. 15-0. 2 111がより望ましい[0060] Further, in the present invention, the average particle diameter of the crystal grains is more preferably 0.15-0.2 111 in that the polarization charge at 0V can be 20 nC / cm 2 or less in the electric field dielectric polarization characteristics.
〇 Yes
[0061] また、好ましいニオブ、マグネシウム、イットリウム、マンガン、珪素およびホウ素の含 有量としては、バリウム 1モルに対するマグネシウムが MgO換算で 0· 017—0. 06モ ノレ、イットリウム力 Ο換算で 0. 0015〜0. 01モノレ、マンガン力 ^ΜηΟ換算で 0. 01 [0061] Further, as preferable contents of niobium, magnesium, yttrium, manganese, silicon, and boron, magnesium with respect to 1 mol of barium is in the form of Mg · O · 17 · -0.06 monole and yttrium force in terms of Ο. 0015〜0.01 Monore, Manganese power 0.0Μ01 in terms of ^ ΜηΟ
2 3 twenty three
〜0. 03モルであり、かつチタン酸バリウム 100質量部に対して、ニオブが Nb O換 ~ 0.03 mol, and niobium is converted to NbO with respect to 100 parts by mass of barium titanate.
2 5 算で 6. 3-15. 6質量部、珪素が SiO換算で 0. 73-3. 13質量部およびホウ素が B O換算で 0. 31-1. 04質量部の範囲であるとともに、ノ リウム 1モルに対するチタ 2 5 in the range of 6.3-15.6 parts by mass, silicon in the range of 0.73-3.13 parts by mass in terms of SiO and boron in the range of 0.31-1.04 parts by mass in terms of BO. Titanium for 1 mole of lithium
2 3 twenty three
ンのモル比が 0. 97-0. 98であるものが良い。この範囲の誘電体磁器は、 25°Cに おける比誘電率を 400以上、 125°Cにおける比誘電率を 380以上、比誘電率の温度 係数を絶対値で 400 X 10— 6/°C以下にすることが可能になる。
[0062] 次に、本実施形態の誘電体磁器の製法について説明する。 Those having a molar ratio of 0.97-0.98 are preferred. The dielectric ceramic of this range, the definitive relative dielectric constant 25 ° C 400 or more, 380 or more relative dielectric constant at 125 ° C, the temperature coefficient of the dielectric constant in absolute value 400 X 10- 6 / ° C or less It becomes possible to. Next, a method for manufacturing the dielectric ceramic according to the present embodiment will be described.
先ず、素原料粉末として、純度がいずれも 99%以上の BaCO粉末と、 TiO粉末、 First, as raw material powders, BaCO powder with a purity of 99% or more, TiO powder,
3 2 3 2
MgO粉末、 Y O粉末および MnCO粉末を用いる。これらの素原料粉末を、前記第 Use MgO powder, Y 2 O powder and MnCO powder. These raw material powders are
2 3 3 2 3 3
1の実施形態と同様に、チタン酸バリウムを構成するバリウム 1モルに対して、 MgOを 0. 01~0. 06モノレ、 Y Oを 0. 0007〜0. 03モノレ、 MnCOを 0. 0002〜0. 03モ As in the first embodiment, MgO is 0.01 to 0.06 monole, YO is 0.00007 to 0.03 monole, and MnCO is 0.00002 to 0 per mol of barium constituting barium titanate. .03
2 3 3 2 3 3
ルの割合でそれぞれ配合する。 Each is blended in the proportion of
[0063] 次に、上記した素原料粉末の混合物を湿式混合し、乾燥させた後、温度 900〜; 11 oo°cの温度範囲で仮焼して仮焼粉末を得、この仮焼粉末を粉砕する。 [0063] Next, the mixture of the raw material powders described above is wet-mixed and dried, and then calcined at a temperature range of 900 to 11 oo ° C to obtain a calcined powder. Smash.
[0064] 次いで、この仮焼粉末 100質量部に対して Nb O粉末を 4〜32質量部、 SiO粉末 を 0. 7〜6. 0質量部および B Oを 0. 3〜2. 0質量部の割合で混合する。ここで、 Si [0064] Next, 4 to 32 parts by mass of Nb 2 O powder, 0.7 to 6.0 parts by mass of SiO powder, and 0.3 to 2.0 parts by mass of BO with respect to 100 parts by mass of the calcined powder. Mix in proportions. Where Si
2 3 twenty three
Oと B Oを上記範囲で添加することで、チタン酸バリウムを主成分とする結晶粒子を 液相焼結させることができ、低温での焼成が可能となる。一般的に、液相焼結の際に は、セラミック粒子は粒成長し易いとされている力 S、上記組成では液相焼結時の粒成 長を抑制することができる。 By adding O and B 2 O in the above ranges, crystal particles mainly composed of barium titanate can be liquid phase sintered, and firing at a low temperature becomes possible. In general, during liquid phase sintering, ceramic particles have a force S, which is considered to facilitate grain growth, and the above composition can suppress grain growth during liquid phase sintering.
[0065] そして、この混合粉末をペレット状に成形し、大気中、 1100°C〜; 1250°Cの温度範 囲で焼成を行うことにより本実施形態の誘電体磁器を得ることができる。ここで、焼成 温度は SiOや B Oの添加量とともに変わるが、焼成温度が 1100°Cよりも低い場合 には、十分に緻密化することができず誘電体磁器の密度が低いものとなる。一方、焼 成温度が 1250°Cよりも高い場合には、結晶粒子が粒成長しすぎてしまうおそれがあ [0065] Then, the mixed powder is formed into a pellet and fired in the air at a temperature range of 1100 ° C to 1250 ° C to obtain the dielectric ceramic according to the present embodiment. Here, the firing temperature varies with the amount of SiO and B 2 O added, but when the firing temperature is lower than 1100 ° C, it cannot be sufficiently densified and the density of the dielectric ceramic becomes low. On the other hand, if the firing temperature is higher than 1250 ° C, the crystal grains may grow too much.
[0066] 次に、本実施形態のコンデンサにつ!/、て説明する。本実施形態のコンデンサは、 図 1に示す誘電体層 13が、高誘電率かつ安定な比誘電率の温度特性を示し、自発 分極の小さレ、上述した本実施形態の誘電体磁器によって形成されて!/、る。したがつ て、本実施形態のコンデンサは、前記第 1の実施形態において説明したコンデンサと 同様に、従来のコンデンサよりも高容量かつ容量温度特性の安定なコンデンサにな る。そのため、このコンデンサを電源回路に用いた場合には、電気誘起歪に起因す るノイズ音の発生を抑制することができる。 Next, the capacitor of this embodiment will be described. In the capacitor of this embodiment, the dielectric layer 13 shown in FIG. 1 exhibits temperature characteristics of a high dielectric constant and a stable relative dielectric constant, has a small spontaneous polarization, and is formed by the dielectric ceramic of this embodiment described above. /! Therefore, the capacitor of the present embodiment is a capacitor having a higher capacity and a more stable capacitance-temperature characteristic than the conventional capacitor, like the capacitor described in the first embodiment. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise due to the electrically induced distortion.
その他の構成は、前記した第 1の実施形態と同様であるので、説明を省略する。
[0067] <第 3の実施形態〉 Other configurations are the same as those of the first embodiment described above, and thus description thereof is omitted. [0067] <Third Embodiment>
次に、本発明の第 3の実施形態について説明する。本実施形態の誘電体磁器は、 チタン酸バリウムを主成分とし、これにマグネシウム、イットリウム、マンガン、ニオブ、 珪素およびリチウムを含有するものであり、その含有量はバリウム 1モルに対して、マ グネシゥムを MgO換算で 0 · 01—0. 06モル、イットリウムを Y O換算で 0 · 0007—0 Next, a third embodiment of the present invention will be described. The dielectric ceramic according to the present embodiment is mainly composed of barium titanate and contains magnesium, yttrium, manganese, niobium, silicon and lithium. The content thereof is magnesium with respect to 1 mol of barium. Is converted to MgO as 0 · 01—0.06 mol, and yttrium is converted to YO as 0 · 0007—0
2 3 twenty three
. 03モノレ、マンガンを MnO換算で 0. 0002—0. 03モノレ含有するとともに、前記チタ ン酸バリウム 100質量部に対して、ニオブを Nb O換算で 4. 2—33. 3質量部、珪素 .03 Monole and manganese contained in MnO equivalent 0.0.0002—0.03 Monore, and for 100 parts by mass of barium titanate, niobium in terms of NbO 4.2-33.3 parts by mass, silicon
2 5 twenty five
を SiO換算で 0. 73—6. 3質量部およびリチウムを Li O換算で 0. 31— 2. 1質量部 含有する。 Is contained in an amount of 0.73-6.3 parts by mass in terms of SiO and 0.31-2.1 parts by mass of lithium in terms of Li 2 O.
[0068] また、本実施形態の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、 該結晶粒子間に形成された粒界相とからなり、前記結晶粒子の平均粒径が 0. 05〜 0. 25 μ mである。 [0068] Further, the dielectric ceramic according to the present embodiment includes crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains, and the average grain size of the crystal grains is 0. 05 to 0.25 μm.
[0069] 誘電体磁器が上記組成および粒径の範囲であると、前記第 1 ,第 2の実施形態と同 様に、 25°Cにおける比誘電率を 250以上、 125°Cにおける比誘電率を 230以上およ び 25°C〜; 125°C間における比誘電率の温度係数(( ε - ε ) / ε ( 125— 25) ) [0069] When the dielectric ceramic is in the above composition and particle size range, the relative dielectric constant at 25 ° C is 250 or more and the relative dielectric constant at 125 ° C, as in the first and second embodiments. Over 230 and 25 ° C ~; temperature coefficient of relative permittivity between 125 ° C ((ε-ε) / ε (125− 25))
125 25 25 125 25 25
を絶対値で 1000 X 10— 6/°c以下にでき、電界—誘電分極特性におけるヒステリシス の小さレ、誘電体磁器を形成できるとレ、う利点がある。 The absolute value can below 1000 X 10- 6 / ° c, the field - dielectric polarization hysteresis in the characteristic small les, if capable of forming a dielectric ceramic Les is advantageous cormorants.
[0070] このような本実施形態の誘電体磁器は、チタン酸バリウムにマグネシウム、イットリウ ム、マンガンおよびニオブが固溶し、前記粒界相中に珪素およびリチウムを含んだも のとなる。 [0070] In such a dielectric ceramic according to the present embodiment, magnesium, yttrium, manganese, and niobium are dissolved in barium titanate, and silicon and lithium are included in the grain boundary phase.
[0071] また、結晶構造が正方晶系で強誘電性を示すチタン酸バリウムに、マグネシウム、 イットリウム、マンガンおよびニオブを固溶させるとともに、チタン酸バリウムを主成分と する結晶粒子の平均粒径を 0. 05-0. 25 mの範囲とすることで、当該結晶粒子 の結晶構造が立方晶系を主体としたものとすることができる。これにより正方晶系の 結晶構造に起因する強誘電性が低下し、常誘電性を高めることができ、常誘電性が 高まることで自発分極を低減できる。 [0071] In addition, magnesium, yttrium, manganese, and niobium are dissolved in barium titanate having a tetragonal crystal structure and ferroelectricity, and the average particle size of crystal grains mainly composed of barium titanate is determined. By setting the range of 0.05 to 0. 25 m, the crystal structure of the crystal grains can be mainly composed of cubic system. As a result, the ferroelectricity due to the tetragonal crystal structure is lowered, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
[0072] また、チタン酸バリウムを主成分とする結晶粒子の結晶構造を、立方晶系を主体と する結晶構造とすることで、前記第 1 ,第 2の実施形態と同様に、比誘電率の変化率
を示す曲線が— 55°C〜; 125°Cの温度範囲において平坦となり、いずれも電界-誘 電分極特性におけるヒステリシスが小さくなる。そのため、比誘電率が 250以上を有 するにもかかわらず比誘電率の温度係数の小さい誘電体磁器を得ることができる。 [0072] Further, by making the crystal structure of the crystal grains mainly composed of barium titanate into a crystal structure mainly composed of a cubic system, as in the first and second embodiments, the relative dielectric constant is obtained. Rate of change The curve showing is flat in the temperature range of −55 ° C. to 125 ° C. In both cases, the hysteresis in the electric field-induced polarization characteristics is reduced. Therefore, it is possible to obtain a dielectric ceramic having a low relative dielectric constant temperature coefficient despite having a relative dielectric constant of 250 or more.
[0073] 即ち、上述した範囲でチタン酸バリウムに対して、マグネシウム、イットリウム、マンガ ンを所定量含有させると、 25°C以上のキュリー温度を示し、比誘電率の温度係数が 正の値を示す誘電特性を有する誘電体磁器となるが、このような誘電特性を示す誘 電体磁器に対して、さらにニオブ、珪素およびリチウムを含有させた場合に、本発明 の効果が大きく現れ、比誘電率の温度係数を小さくし、温度特性を平坦化できる。こ の場合、比誘電率の変化率を示す曲線が— 55°C〜125°Cの温度範囲において 25 °Cを中心にして 2つのピークを有するものとなる。 [0073] That is, when a predetermined amount of magnesium, yttrium, and manganese is contained in barium titanate within the above-described range, a Curie temperature of 25 ° C or higher is exhibited, and the temperature coefficient of relative permittivity is a positive value. The dielectric ceramic having the dielectric characteristics shown in FIG. 1 is obtained. However, when the dielectric ceramic having such dielectric characteristics is further incorporated with niobium, silicon, and lithium, the effect of the present invention appears greatly, and the specific dielectric The temperature coefficient of the rate can be reduced and the temperature characteristics can be flattened. In this case, the curve indicating the rate of change of the relative permittivity has two peaks centered at 25 ° C in the temperature range of -55 ° C to 125 ° C.
[0074] 特に本実施形態によれば、珪素およびリチウムを特定の割合で含むことで液相焼 結させることができ、低温(1100〜; 1250°C)での焼成が可能となる。 [0074] In particular, according to this embodiment, liquid phase sintering can be performed by containing silicon and lithium in a specific ratio, and firing at a low temperature (1100 to 1250 ° C) becomes possible.
[0075] ここで、ニオブ、珪素およびリチウムの各酸化物は、チタン酸バリウムを主成分とす る結晶粒子の粗大化を抑制する働きをもち、チタン酸バリウム 100質量部に対して、 ニオブを Nb O換算で 4. 2—33. 3質量部、珪素を SiO換算で 0. 73—6. 3質量部 およびリチウムを Li O換算で 0. 31-2. 1質量部含有する。 Here, each of the oxides of niobium, silicon, and lithium has a function of suppressing the coarsening of crystal grains mainly composed of barium titanate, and niobium is added to 100 parts by mass of barium titanate. Contains 4.2-33.3 parts by mass in terms of NbO, 0.73-6. 3 parts by mass of silicon in terms of SiO, and 0.31-2.1 parts by mass of lithium in terms of Li 2 O.
[0076] 即ち、チタン酸バリウム 100質量部に対するニオブの含有量が Nb O換算で 4. 2 質量部よりも少ないと、誘電体磁器の比誘電率が高いものの、比誘電率の温度係数 が大きいものとなる。一方、チタン酸バリウム 100質量部に対するニオブの含有量が Nb O換算で 33. 3質量部よりも多いと、 25°Cにおける比誘電率が 250よりも低くなり That is, when the content of niobium with respect to 100 parts by mass of barium titanate is less than 4.2 parts by mass in terms of Nb 2 O, the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative dielectric constant is large. It will be a thing. On the other hand, if the niobium content relative to 100 parts by weight of barium titanate is more than 33.3 parts by weight in terms of NbO, the relative dielectric constant at 25 ° C will be lower than 250.
、また、 125°Cにおける比誘電率が 230未満となる。 In addition, the relative dielectric constant at 125 ° C. is less than 230.
[0077] また、チタン酸バリウム 100質量部に対する珪素の含有量が SiO換算で 0. 73質 量部よりも少ないか、または、リチウムの含有量が Li O換算で 0. 31質量部よりも少な V、場合には、低温(1100〜; 1250°C)での焼成にお!/、て誘電体磁器の緻密化が図 れなくなり、比誘電率が低くなるおそれがある。 [0077] Further, the silicon content relative to 100 parts by mass of barium titanate is less than 0.73 parts by mass in terms of SiO, or the lithium content is less than 0.31 parts by mass in terms of Li 2 O. In the case of V, in the case of firing at a low temperature (1100-; 1250 ° C), the dielectric porcelain cannot be densified and the relative dielectric constant may be lowered.
[0078] 一方、チタン酸バリウム 100質量部に対する珪素の含有量が SiO換算で 6. 3質量 部よりも多いか、または、リチウムが Li O換算で 2. 1質量部よりも多い場合には、誘電 体磁器の比誘電率が低下するとともに、比誘電率の温度係数が大きくなるおそれが
ある。 [0078] On the other hand, when the silicon content relative to 100 parts by mass of barium titanate is more than 6.3 parts by mass in terms of SiO, or when lithium is more than 2.1 parts by mass in terms of Li 2 O, As the dielectric constant of dielectric ceramic decreases, the temperature coefficient of dielectric constant may increase. is there.
[0079] また、マグネシウム、イットリウム、マンガンの含有量は、ノ リウム 1モルに対して、マ グネシゥムを MgO換算で 0· 01—0. 06モル、イットリウムを Y O換算で 0· 0007—0 [0079] Further, the contents of magnesium, yttrium, and manganese are 0 · 01—0.06 mol in terms of MgO and 0 · 0007—0 in terms of Y 2 O with respect to 1 mol of normium.
2 3 twenty three
. 03モノレ、マンガンを MnO換算で 0. 0002—0. 03モノレ含有する。 .03 Monole and manganese are contained in MnO as 0.00002—0.03 monole.
[0080] 即ち、ノ リウム 1モルに対するマグネシウムの含有量が MgO換算で 0· 01モノレより 少ないか、または 0. 06モルより多い場合には、誘電体磁器の比誘電率の温度係数 が大きくなる。また、ノ リウム 1モルに対するイットリウムの含有量が Y O換算で 0· 00 [0080] That is, when the magnesium content relative to 1 mol of normodium is less than 0 · 01 monole or more than 0.06 mol in terms of MgO, the temperature coefficient of the dielectric constant of the dielectric ceramic increases. . In addition, the yttrium content per mole of norium is 0.000 in terms of Y 2 O.
2 3 twenty three
07モルよりも少ないか、または 0. 03モルよりも多い場合には、誘電体磁器の比誘電 率は高いものの、比誘電率の温度係数が大きくなる。さらにバリウム 1モルに対するマ ンガンの含有量が MnO換算で 0. 0002モノレよりも少ない力、、または 0. 03モノレよりも 多レ、場合には、誘電体磁器の比誘電率の温度係数が大きくなる。 If it is less than 07 moles or more than 0.03 moles, the dielectric constant of the dielectric ceramic is high, but the temperature coefficient of the relative permittivity becomes large. In addition, if the content of mangan per mol of barium is less than 0.002 monole in MnO, or more than 0.03 monole, the temperature coefficient of the dielectric constant of the dielectric ceramic is large. Become.
[0081] さらに、本実施形態の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子の 平均粒径力 . 05—0. 25〃mである。 Furthermore, the dielectric ceramic according to the present embodiment has an average particle size force of crystal particles mainly composed of barium titanate.
[0082] 即ち、チタン酸バリウムを主成分とする結晶粒子の平均粒径を 0. 05-0. 25 μ mと することで、前記第 1 ,第 2の実施形態と同様に、チタン酸バリウムを主成分とする結 晶粒子が立方晶系を主体とする結晶構造となり、電界 誘電分極特性におけるヒス テリシスが小さく常誘電性に近い特性を示すものにできる。これに対し、チタン酸バリ ゥムを主成分とする結晶粒子の平均粒径が 0. 05 mよりも小さい場合には、配向分 極の寄与が無くなるため誘電体磁器の比誘電率が低下する。一方、その結晶粒子の 平均粒径が 0. 25 mよりも大きい場合には、 X線回折による測定において正方晶系 の結晶相が見られ誘電体磁器の比誘電率の温度係数が大きくなる。 That is, by setting the average particle size of the crystal particles mainly composed of barium titanate to 0.05 to 0.25 μm, as in the first and second embodiments, barium titanate. Thus, the crystal grains mainly composed of cubic have a crystal structure mainly composed of a cubic system, and the hysteresis in the electric field dielectric polarization characteristics is small and the characteristics close to paraelectricity can be obtained. On the other hand, when the average particle size of the crystal grains mainly composed of barium titanate is smaller than 0.05 m, the contribution of the orientation polarization is lost and the relative permittivity of the dielectric ceramic is lowered. . On the other hand, when the average particle size of the crystal particles is larger than 0.25 m, a tetragonal crystal phase is observed in the measurement by X-ray diffraction, and the temperature coefficient of the dielectric constant of the dielectric ceramic becomes large.
[0083] また、本実施形態にお!/、ても、電界-誘電分極特性にお!/、て、 0Vでの分極電荷を 20nC/cm2以下にできるという点で、結晶粒子の平均粒径は 0. 15-0. 2 111がよ り望ましい。 [0083] Further, in this embodiment, even in the electric field-dielectric polarization characteristics, the average grain size of the crystal grains is that the polarization charge at 0 V can be reduced to 20 nC / cm 2 or less. The diameter is more preferably 0.15-0.2 111.
[0084] また、好ましいニオブ、マグネシウム、イットリウム、マンガン、珪素およびリチウムの 含有量としては、バリウム 1モルに対するマグネシウムが MgO換算で 0. 017—0. 06 モノレ、イットリウム力 Υ Ο換算で 0. 0015〜0. 01モノレ、マンガン力 ΜηΟ換算で 0. 0 [0084] Further, as preferable niobium, magnesium, yttrium, manganese, silicon and lithium contents, magnesium per mol of barium is 0.017—0.06 monole in terms of MgO and 0.05 in terms of yttrium force. 〜0.01 Monore, Manganese power 0.0 in terms of ΜηΟ
2 3 twenty three
;!〜 0. 03モルの割合であり、かつチタン酸バリウム 100質量部に対して、ニオブが Ν
05換算で 6. 3—15. 6質量部、珪素が Si〇2換算で 0. 73—3. 13質量部およびリ チウムが Li O換算で 0. 31-1. 04質量部の範囲であるとともに、バリウム 1モルに対 するチタンのモル比が 0. 97-0. 98であるものが良い。この範囲の誘電体磁器は、 25°Cにおける比誘電率を 400以上、 125°Cにおける比誘電率を 380以上、比誘電 率の温度係数を絶対値で 400 X 10— 6/°C以下にすることが可能になる。 ; ~ 0.03 mole ratio, and niobium is less than 100 parts by weight of barium titanate. 6. 0 5 conversion 3-15. 6 parts by weight, silicon 0.1 in Si_〇 2 terms 73-3. 13 parts by mass of Lithium is 0. In Li O terms 31-1. In the range of 04 parts by weight In addition, the molar ratio of titanium to 1 mole of barium is 0.997-0.98. The dielectric ceramic of this range, the relative dielectric constant at 25 ° C 400 or more, 380 or more relative dielectric constant at 125 ° C, the temperature coefficient of the dielectric constant with an absolute value below 400 X 10- 6 / ° C It becomes possible to do.
[0085] 次に、本実施形態の誘電体磁器の製法について説明する。 Next, a method for manufacturing the dielectric ceramic according to the present embodiment will be described.
先ず、素原料粉末として、純度がいずれも 99%以上の BaCO粉末と、 TiO粉末、 First, as raw material powders, BaCO powder with a purity of 99% or more, TiO powder,
MgO粉末、 Y O粉末および MnCO粉末を用いる。これらの素原料粉末を、前記第Use MgO powder, Y 2 O powder and MnCO powder. These raw material powders are
1の実施形態と同様に、チタン酸バリウムを構成するバリウム 1モルに対して、 MgOを 0. 01~0. 06モノレ、 Y Oを 0. 0007〜0. 03モノレ、 MnCOを 0. 0002〜0. 03モ ルの割合でそれぞれ配合する。 As in the first embodiment, MgO is 0.01 to 0.06 monole, YO is 0.00007 to 0.03 monole, and MnCO is 0.00002 to 0 per mol of barium constituting barium titanate. Mix in the proportion of 03 moles.
[0086] 次に、上記した素原料粉末の混合物を湿式混合し、乾燥させた後、温度 900〜; 11 00°Cの温度範囲で仮焼して仮焼粉末を得、この仮焼粉末を粉砕する。 [0086] Next, the mixture of the raw material powders described above is wet-mixed and dried, and then calcined in the temperature range of 900 to 1100 ° C to obtain a calcined powder. Smash.
[0087] 次いで、この仮焼粉末 100質量部に対して Nb O粉末を 4〜32質量部、 SiO粉末 を 0. 7〜6. 0質量部および Li O粉末を 0. 3〜2. 0質量部の割合で混合する。ここ で、 SiOと Li Oを上記範囲で添加することで、チタン酸バリウムを主成分とする結晶 粒子を液相焼結させることができ、低温での焼成が可能となる。一般的に液相焼結 の際にはセラミック粒子は粒成長し易いとされている力 S、上記組成では液相焼結時の 粒成長を抑制することができる。 [0087] Next, 4 to 32 parts by mass of Nb 2 O powder, 0.7 to 6.0 parts by mass of SiO powder, and 0.3 to 2.0 parts by mass of Li 2 O powder with respect to 100 parts by mass of the calcined powder. Mix in parts. Here, by adding SiO and Li 2 O in the above range, crystal particles mainly composed of barium titanate can be liquid phase sintered, and firing at a low temperature becomes possible. In general, during liquid phase sintering, ceramic particles have a force S, which is considered to facilitate grain growth, and the above composition can suppress grain growth during liquid phase sintering.
[0088] そして、この混合粉末をペレット状に成形し、大気中、 1100°C〜; 1250°Cの温度範 囲で焼成を行うことにより本実施形態の誘電体磁器を得ることができる。ここで、焼成 温度は SiOや Li Oの添加量とともに変わる力 焼成温度が 1100°Cよりも低い場合 には、十分に緻密化することができず誘電体磁器の密度が低いものとなる。一方、焼 成温度が 1250°Cよりも高い場合には結晶粒子が粒成長しすぎてしまうおそれがある[0088] The dielectric ceramic of this embodiment can be obtained by forming the mixed powder into a pellet and firing it in the air at a temperature range of 1100 ° C to 1250 ° C. Here, the firing temperature changes with the amount of SiO or Li 2 O added. When the firing temperature is lower than 1100 ° C, it cannot be sufficiently densified and the density of the dielectric ceramic becomes low. On the other hand, if the firing temperature is higher than 1250 ° C, crystal grains may grow too much.
〇 Yes
[0089] 次に、本実施形態のコンデンサにつ!/、て説明する。本実施形態のコンデンサは、 図 1に示す誘電体層 13が、高誘電率かつ安定な比誘電率の温度特性を示し、自発 分極の小さレ、上述した本実施形態の誘電体磁器によって形成されて!/、る。したがつ
て、本実施形態のコンデンサは、前記第 1 ,第 2の実施形態において説明したコンデ ンサと同様に、従来のコンデンサよりも高容量かつ容量温度特性の安定なコンデン サになる。そのため、このコンデンサを電源回路に用いた場合には、電気誘起歪に 起因するノイズ音の発生を抑制することができる。 [0089] Next, the capacitor of this embodiment will be described. In the capacitor of this embodiment, the dielectric layer 13 shown in FIG. 1 exhibits temperature characteristics of a high dielectric constant and a stable relative dielectric constant, has a small spontaneous polarization, and is formed by the dielectric ceramic of this embodiment described above. /! Gatsutsu Thus, like the capacitors described in the first and second embodiments, the capacitor according to the present embodiment is a capacitor having a higher capacity and a more stable capacitance-temperature characteristic than the conventional capacitor. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise caused by electrical induced distortion.
その他の構成は、前記した第 1 ,第 2の実施形態と同様であるので、説明を省略す Other configurations are the same as those in the first and second embodiments described above, and thus the description thereof is omitted.
[0090] 以下、実施例を挙げて本発明についてさらに詳細に説明する力 本発明は以下の 実施例に限定されるものではない。 [0090] Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
[0091] [実施例 I] [0091] [Example I]
<誘電特性の評価試料の作製 > <Preparation of dielectric properties evaluation sample>
前記評価試料を以下のようにして作製した。先ず、いずれも純度が 99. 9%の BaC The evaluation sample was produced as follows. First of all, BaC with 99.9% purity
O粉末、 TiO粉末、 MgO粉末、 Y O粉末、 MnCO粉末を用意し、表 1に示す割合 で調合し混合粉末を調製した。なお、表 1に示すマグネシウム (Mg)、イットリウム (Y) およびマンガン(Mn)の量は、それぞれ MgO、 Y Oおよび MnOに相当する量であ る。チタン (Ti)はバリウム(Ba) 1モルに対するモル比である。 O powder, TiO powder, MgO powder, Y 2 O powder, and MnCO powder were prepared and mixed at the ratio shown in Table 1 to prepare a mixed powder. The amounts of magnesium (Mg), yttrium (Y) and manganese (Mn) shown in Table 1 are the amounts corresponding to MgO, Y 2 O and MnO, respectively. Titanium (Ti) is a molar ratio with respect to 1 mole of barium (Ba).
[0092] 次に、上記で調製した混合粉末を温度 1000°Cにて仮焼して仮焼粉末を作製した 後、得られた仮焼粉末を粉砕して表 1に示す平均粒径を有する仮焼粉末を得た。仮 焼粉末の平均粒径は、得られた仮焼粉末を電子顕微鏡用試料台上に分散させて走 查型電子顕微鏡により観察し、写真を撮り、その写真に映し出されている仮焼粉末の 輪郭を画像処理し、各粉末を円と見立てて、その直径を求め、平均化して求めた。写 真の倍率は 30000倍とし、観察点数は各試料 3点とし、その平均値を求めた。この後 、仮焼粉末 100質量部に対して、純度 99. 9%の Nb O粉末を表 1に示す割合で混 合した。この混合粉末を造粒し、直径 16. 5mm、厚さ lmmの形状のペレット状に成 形した。 Next, the mixed powder prepared above was calcined at a temperature of 1000 ° C. to prepare a calcined powder, and then the calcined powder obtained was pulverized to have the average particle size shown in Table 1. A calcined powder was obtained. The average particle size of the calcined powder is determined by dispersing the obtained calcined powder on a sample stage for an electron microscope, observing it with a scanning electron microscope, taking a picture, and taking the photograph of the calcined powder reflected in the photograph. The contour was image-processed, each powder was regarded as a circle, its diameter was determined and averaged. The magnification of the photo was 30000 times, the number of observation points was 3 for each sample, and the average value was obtained. Thereafter, Nb 2 O powder having a purity of 99.9% was mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the calcined powder. This mixed powder was granulated and formed into pellets having a diameter of 16.5 mm and a thickness of 1 mm.
[0093] 次に、各組成のペレットを 10個ずつ、大気中にて、表 1に示す温度で焼成した。チ タン酸バリウムを主成分とする結晶粒子の平均粒径は、以下のようにして求めた。先 ず、焼成後の試料の破断面を、 # 1200の研磨紙を用いて粗研磨した後、硬質バフ 上に塗った粒径 3 mのダイヤモンドペーストを用いて研磨を行い、さらに軟質バフ
上に粒径 0. 3 mのアルミナ砥粒を塗り、仕上げ研磨を行った。次いで、酸性水溶 液 (塩酸 フッ化水素)によりエッチングを行った後、走査型電子顕微鏡を用いて内 部組織の写真を撮った。次いで、その写真に映し出されている結晶粒子の輪郭を画 像処理し、各粒子を円と見立ててその直径を求め、平均化して求めた。写真の倍率 は約 30000倍とし、観察点数は各試料 3点とし、その平均値を求めた。 Next, 10 pellets of each composition were fired at a temperature shown in Table 1 in the air. The average particle size of crystal particles mainly composed of barium titanate was determined as follows. First, the fracture surface of the fired sample is roughly polished with # 1200 abrasive paper, then polished with a 3 m diameter diamond paste applied on a hard buff, and then soft buffed. Alumina abrasive grains having a particle size of 0.3 m were applied on the surface, and finish polishing was performed. Next, after etching with an acidic aqueous solution (hydrochloric acid hydrogen fluoride), a photograph of the internal tissue was taken using a scanning electron microscope. Next, the contours of the crystal grains shown in the photograph were image-processed, each particle was regarded as a circle, the diameter was obtained, and the average was obtained. The magnification of the photograph was about 30000 times, the number of observation points was 3 for each sample, and the average value was obtained.
[0094] 焼成後の試料の表面にインジウム ガリウムの導体層を印刷して誘電特性の評価 試料を得た(表 2および表 3中の試料 No. I—;!〜 34)。 [0094] An indium gallium conductor layer was printed on the surface of the fired sample to obtain a dielectric property evaluation sample (Sample Nos. I— ;! to 34 in Tables 2 and 3).
[0095] <評価〉 [0095] <Evaluation>
作製した誘電体磁器であるこれらの試料は、 LCRメーター 4284A(HP社製)を用 いて周波数 1. OkHz、入力信号レベル 1. 0V、温度 25°Cおよび 125°Cにて静電容 量を測定し、試料の直径と厚みおよび導体層の面積から 25°Cおよび 125°Cの比誘 電率を算出した。また、比誘電率の温度係数は、 25°Cおよび 125°Cにおける比誘電 率を、それぞれ前記式(1)に当てはめて算出した。これらの測定は試料数を各 10個 とし、その平均値を求めた。 These samples, which are dielectric ceramics, were measured for capacitance using an LCR meter 4284A (HP) at a frequency of 1. OkHz, an input signal level of 1.0 V, and temperatures of 25 ° C and 125 ° C. The specific dielectric constants at 25 ° C and 125 ° C were calculated from the diameter and thickness of the sample and the area of the conductor layer. The temperature coefficient of the relative permittivity was calculated by applying the relative permittivity at 25 ° C and 125 ° C to the formula (1). For these measurements, the number of samples was 10 and the average value was obtained.
[0096] また、得られた試料につ!/、て、電気誘起歪の大きさを誘電分極(分極電荷)の測定 によって求めた。この場合、電圧を ± 1250Vの範囲で変化させた時の 0Vにおける 電荷量 (残留分極)の値で評価した。 [0096] Further, for the obtained sample, the magnitude of the electrically induced strain was obtained by measuring dielectric polarization (polarization charge). In this case, the evaluation was made based on the amount of charge (residual polarization) at 0 V when the voltage was changed in the range of ± 1250 V.
[0097] また、試料の組成分析は、 ICP (Inductively Coupled Plasma)分析もしくは原 子吸光分析により行った。この場合、得られた試料を硼酸および炭酸ナトリウムに混 合し、溶融させたものを塩酸に溶解させて、まず、原子吸光分析により試料に含まれ る元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したもの を標準試料として、 ICP発光分光分析にかけて定量化した。また、各元素の価数を周 期表に示される価数として酸素量を求めた。 [0097] The composition analysis of the sample was performed by ICP (Inductively Coupled Plasma) analysis or atomic absorption analysis. In this case, the obtained sample was mixed with boric acid and sodium carbonate, and the molten material was dissolved in hydrochloric acid. First, qualitative analysis of the elements contained in the sample was performed by atomic absorption spectrometry, and then identified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. The amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.
[0098] 表 1に調製組成、仮焼粉末の平均粒径および焼成温度を、表 2および表 3に焼成 後の結晶粒子の平均粒径と特性(比誘電率、比誘電率の温度係数の絶対値、比誘 電率の温度変化の曲線、および分極電荷)の結果をそれぞれ示す。 [0098] Table 1 shows the prepared composition, the average particle size of the calcined powder, and the firing temperature, and Tables 2 and 3 show the average particle size and characteristics of the fired crystal particles (relative permittivity and temperature coefficient of relative permittivity). Absolute values, specific dielectric constant temperature change curves, and polarization charges) are shown.
[0099] ここで、表 1における Nb Oの添加量は、仮焼粉末 100質量部に対する割合である [0099] Here, the amount of Nb 2 O added in Table 1 is a ratio with respect to 100 parts by mass of the calcined powder.
。一方、表 2,表 3における Nb Oの含有量は、誘電体磁器 (試料)中におけるチタン
酸バリウム 100質量部に対する割合である。また、表 2,表 3に示す Mg、 Yおよび Mn の量は、酸化物換算量である。表 2,表 3中の「結晶粒子の平均粒径」は、チタン酸バ リウムを主成分とする結晶粒子の平均粒径を意味する。表 2,表 3中の「比誘電率の 温度係数の絶対値」は、前記で求めた比誘電率の温度係数における平均値の絶対 値を意味する。なお、表 2,表 3中、比誘電率の温度変化の曲線の欄において〇を付 してないものは、 25°Cを中心にして 2つのピークがみられなかった試料を、分極電荷 の欄にぉレ、て〇を付してなレ、ものは、分極電荷が 20nC/cm2以下ではな!/、試料を それぞれ示す。 . On the other hand, the NbO content in Tables 2 and 3 is the titanium content in the dielectric ceramic (sample). It is a ratio with respect to 100 parts by mass of barium acid. The amounts of Mg, Y and Mn shown in Tables 2 and 3 are oxide equivalents. In Tables 2 and 3, “average particle size of crystal particles” means the average particle size of crystal particles mainly composed of barium titanate. “Absolute value of temperature coefficient of relative permittivity” in Tables 2 and 3 means the absolute value of the average value of the temperature coefficient of relative permittivity obtained above. In Tables 2 and 3, those with no circles in the curve of the relative dielectric constant temperature change are those for which the two peaks centered at 25 ° C were not observed. If the column is marked with a circle, it indicates that the polarization charge is less than 20nC / cm 2 ! /, And the sample.
[表 1] 仮焼粉末の [Table 1] of calcined powder
組成 焼成温度 平均粒径 Composition Firing temperature Average particle size
試料 No. Sample No.
Ba Mg Y Mn Τί Nb205 Ba Mg Y Mn Τί Nb 2 0 5
U m °c モル モル モル モル ― 質量部 U m ° c mol mol mol mol-parts by mass
* I- 1 1 0.02 0.01 0.01 0.98 2.0 0.1 1200 * I- 1 1 0.02 0.01 0.01 0.98 2.0 0.1 1200
1- 2 1 0.02 0.01 0.01 0.98 4.0 0.1 12001- 2 1 0.02 0.01 0.01 0.98 4.0 0.1 1200
1- 3 1 0.02 0.01 0.01 0.98 6.0 0.1 12001- 3 1 0.02 0.01 0.01 0.98 6.0 0.1 1200
1-4 1 0.02 0.01 0.01 0.98 8.5 0.1 12001-4 1 0.02 0.01 0.01 0.98 8.5 0.1 1200
I- 5 1 0.02 0.01 0.01 0.98 15.0 0.1 1200I- 5 1 0.02 0.01 0.01 0.98 15.0 0.1 1200
1- 6 1 0.02 0.01 0.01 0.98 18.5 0.1 12001- 6 1 0.02 0.01 0.01 0.98 18.5 0.1 1200
1-7 1 0.02 0.01 0.01 0.98 32.0 0.1 1200 氺 1-8 1 0.02 0.01 0.01 0.98 50.0 0.1 12001-7 1 0.02 0.01 0.01 0.98 32.0 0.1 1200 氺 1-8 1 0.02 0.01 0.01 0.98 50.0 0.1 1200
* 1-9 1 0.02 0.0002 0.01 0.98 8.5 0.1 1200* 1-9 1 0.02 0.0002 0.01 0.98 8.5 0.1 1200
I― 9a 1 0.02 0.0007 0.01 0.98 8.5 0.1 1200I― 9a 1 0.02 0.0007 0.01 0.98 8.5 0.1 1200
I- 10 1 0.02 0.0015 0.01 0.98 8.5 0.1 1200I- 10 1 0.02 0.0015 0.01 0.98 8.5 0.1 1200
I- 11 1 0.02 0.005 0.01 0.98 8.5 0.1 1200I- 11 1 0.02 0.005 0.01 0.98 8.5 0.1 1200
I- 12 1 0.02 0.007 0.01 0.98 8.5 0.1 1200I- 12 1 0.02 0.007 0.01 0.98 8.5 0.1 1200
I- 13 1 0.02 0.03 0.01 0.98 8.5 0.1 1200I- 13 1 0.02 0.03 0.01 0.98 8.5 0.1 1200
* I- 14 1 0.02 0.04 0.01 0.98 8.5 0.1 1200* I- 14 1 0.02 0.04 0.01 0.98 8.5 0.1 1200
* I一 15 1 0.005 0.01 0.01 0.98 8.5 0.1 1200* I 1 15 1 0.005 0.01 0.01 0.98 8.5 0.1 1200
I- 16 1 0.01 0.01 0.01 0.98 8.5 0.1 1200I- 16 1 0.01 0.01 0.01 0.98 8.5 0.1 1200
I- 17 1 0.017 0.01 0.01 0.98 8.5 0.1 1200I- 17 1 0.017 0.01 0.01 0.98 8.5 0.1 1200
I- 18 1 0.023 0.01 0.01 0.98 8.5 0.1 1200I- 18 1 0.023 0.01 0.01 0.98 8.5 0.1 1200
I- 19 1 0.06 0.01 0.01 0.98 8.5 0.1 1200I- 19 1 0.06 0.01 0.01 0.98 8.5 0.1 1200
* 1-20 1 0.07 0.01 0.01 0.98 8.5 0.1 1200* 1-20 1 0.07 0.01 0.01 0.98 8.5 0.1 1200
1 - 21 \ 0.02 0.01 0.0002 0.98 8.5 0.1 1200 1-21 \ 0.02 0.01 0.0002 0.98 8.5 0.1 1200
1 0.02 0.01 0.005 0.98 8.5 0.1 1200 1 0.02 0.01 0.005 0.98 8.5 0.1 1200
I - 23 1 0.02 0.01 0.008 0.98 8.5 0.1 1200I-23 1 0.02 0.01 0.008 0.98 8.5 0.1 1200
1-24 1 0.02 0.01 0.015 0.98 8.5 0.1 12001-24 1 0.02 0.01 0.015 0.98 8.5 0.1 1200
1- 25 1 0.02 0.01 0.03 0.98 8.5 0.1 12001- 25 1 0.02 0.01 0.03 0.98 8.5 0.1 1200
* 1- 26 1 0.02 0.01 0.04 0.98 8.5 0.1 1200* 1- 26 1 0.02 0.01 0.04 0.98 8.5 0.1 1200
1- 27 1 0.02 0.01 0.01 0.97 8.5 0.1 12001- 27 1 0.02 0.01 0.01 0.97 8.5 0.1 1200
1-28 1 0.02 0.01 0.01 0.99 8.5 0.1 12001-28 1 0.02 0.01 0.01 0.99 8.5 0.1 1200
*卜 29 1 0.02 0.01 0 0.98 8.5 0.1 1200* 卜 29 1 0.02 0.01 0 0.98 8.5 0.1 1200
1-30 1 0.02 0.03 0.01 0.98 8.5 0.04 12001-30 1 0.02 0.03 0.01 0.98 8.5 0.04 1200
* 1-31 1 0.02 0.03 0.01 0.98 8.5 0.04 1100* 1-31 1 0.02 0.03 0.01 0.98 8.5 0.04 1100
1-32 1 0.02 0.01 0.01 0.98 4.0 0.1 12801-32 1 0.02 0.01 0.01 0.98 4.0 0.1 1280
1-33 1 0.02 0.01 0.01 0.98 8.5 0.1 1150 1-33 1 0.02 0.01 0.01 0.98 8.5 0.1 1150
1 0.02 0.01 0.01 0.98 8.5 0.1 1250 1 0.02 0.01 0.01 0.98 8.5 0.1 1250
の 示 Indication of
表 2および表 3の結果から明らかなように、本発明の誘電体磁器である試料 No. I As is apparent from the results in Tables 2 and 3, Sample No. I which is the dielectric ceramic of the present invention.
― 2 7 9a 10-13, 16-19, 21-25, 27 28 30 33および 34で (ま、 25C(こ
おける比誘電率が 250以上、 125°Cにおける比誘電率が 230以上であり、 25-125 °Cにおける比誘電率の温度係数が絶対値で 1000 X 10— 6/°C以下であった。 ― 2 7 9a 10-13, 16-19, 21-25, 27 28 30 33 and 34 Definitive relative dielectric constant of 250 or more, 230 or more relative dielectric constant at 125 ° C, the temperature coefficient of the dielectric constant at 25-125 ° C is was 1000 X 10- 6 / ° C or less in absolute value.
[0104] 特 ίこ、ノ リウム 1モノレ ίこ対して、 MgOを 0. 017〜0. 06モノレ、 Y Oを 0. 005〜0. [0104] Special metal, Norium 1 monolayer, MgO 0.01 to 0.06 monolayer, YO 0.005 to 0.00.
01モノレ、 MnOを 0· 01—0. 03モノレ、主成分であるチタン酸バリウム 100質量部に 対する Nb Oの含有量が 6. 3—15. 6質量部であり、ノ リウム 1モルに対するチタン のモノレ匕力 0. 97〜0. 98である試料 No. I— 3〜5、 11、 12、 17〜; 19、 24、 25、 27 01 monole, MnO 0 · 01—0.03 monole, the main component of barium titanate is 100 parts by mass of Nb 2 O. The content of NbO is 6.3-15. 6 parts by mass, and titanium per mol of norm Sample Nos. I—3 to 5, 11, 12, 17 to; 19, 24, 25, 27
、 33および 34では、 25°Cにおける比誘電率が 400以上、 125°Cにおける比誘電率 力 ¾80以上、比誘電率の温度係数が絶対値で 400 X 10— 6/°C以下であり、比誘電 率の変化率を示す曲線が— 55°C〜125°Cの温度範囲において 2つのピークを有し 、かつ電界 誘電分極特性の測定において大きなヒステリシスが見られなかった。ヒ ステリシスの見られなレ、試料は、分極電荷が 0Vにお!/、て 20nC/cm2以下であった。 In 33 and 34, more than 400 relative dielectric constant at 25 ° C, the relative dielectric constant force ¾80 or more at 125 ° C, the temperature coefficient of the relative dielectric constant of 400 X 10- 6 / ° C or less in absolute value, The curve showing the rate of change of the relative dielectric constant had two peaks in the temperature range of -55 ° C to 125 ° C, and no large hysteresis was observed in the measurement of the electric field dielectric polarization characteristics. In the samples where no hysteresis was observed, the sample had a polarization charge at 0V! /, 20 nC / cm 2 or less.
[0105] これらの試料から任意に選択した試料 No. I— 4の誘電体磁器の X線回折図を図 2 に、同試料の比誘電率の変化を示すグラフを図 3に、同試料の電界 誘電分極特性 を図 4にそれぞれ示す。なお、図 3中には、比較として本発明の範囲外の試料である 試料 No. 1 33、 34を示した。 [0105] Fig. 2 shows the X-ray diffraction pattern of the dielectric ceramic of sample No. I-4 arbitrarily selected from these samples, and Fig. 3 shows the graph showing the change in relative permittivity of the sample. Figure 4 shows the electric field dielectric polarization characteristics. In FIG. 3, Sample Nos. 1 33 and 34, which are samples outside the scope of the present invention, are shown for comparison.
[0106] 試料 No. I— 4の誘電体磁器は、図 2〜図 4に見られるように、結晶構造が立方晶 系を主体とするものであり、また、比誘電率の温度特性が 25°Cを中心に 2つのピーク を有し、比誘電率の変化率が小さぐさらに、電界 誘電分極特性のヒステリシスが 小さいものであった。また、他の試料についても結晶構造が立方晶系を主体とするも のであり、また、比誘電率の変化率が小さいものであった。 [0106] As shown in Figs. 2 to 4, the dielectric ceramic of Sample No. I-4 has a crystal structure mainly composed of a cubic system, and the temperature characteristics of relative permittivity is 25. It had two peaks centered around ° C, the rate of change of relative permittivity was small, and the hysteresis of electric field dielectric polarization characteristics was small. In addition, the other samples had a crystal structure mainly composed of a cubic system, and the rate of change in relative permittivity was small.
[0107] これに対して、本発明の範囲外の試料(試料 No. I— 1、 8、 9、 14、 15、 20、 26、 2 [0107] On the other hand, samples outside the scope of the present invention (Sample Nos. I-1, 8, 9, 14, 15, 20, 26, 2
9、 31および 32)では、 25°Cにおける比誘電率が 200未満である力、、または誘電分 極にヒステリシスがあり、比誘電率の温度係数が絶対値で 1000 X 10— 6/°Cよりも大き いものであった。 9, the 31 and 32), there is a hysteresis in the dielectric constant is less than 200 forces ,, or dielectric partial pole in 25 ° C, in absolute value temperature coefficient of the dielectric constant 1000 X 10- 6 / ° C It was bigger than that.
[0108] [実施例 Π] [0108] [Example Π]
<誘電特性の評価試料の作製 > <Preparation of dielectric properties evaluation sample>
前記評価試料を以下のようにして作製した。先ず、いずれも純度が 99. 9%の BaC O粉末、 TiO粉末、 MgO粉末、 Y O粉末、 MnCO粉末を用意し、表 4に示す割合
で調合し混合粉末を調製した。 The evaluation sample was produced as follows. First, prepare BaCO powder, TiO powder, MgO powder, YO powder, and MnCO powder with a purity of 99.9%, and the proportions shown in Table 4 And mixed powder was prepared.
[0109] 次に、上記で調製した混合粉末を温度 1000°Cにて仮焼して仮焼粉末を作製した 後、得られた仮焼粉末を粉砕して表 4に示す平均粒径を有する仮焼粉末を得た。仮 焼粉末の平均粒径は、前記実施例 Iと同様にして求めた。この後、仮焼粉末 100質 量部に対して、純度 99. 9%の Nb O粉末、 SiO粉末および B O粉末を表 4に示す 割合で混合した。この混合粉末を造粒し、直径 16. 5mm、厚さ lmmの形状のペレツ ト状に成形した。 [0109] Next, after the mixed powder prepared above was calcined at a temperature of 1000 ° C to prepare a calcined powder, the calcined powder obtained was pulverized to have an average particle size shown in Table 4 A calcined powder was obtained. The average particle size of the calcined powder was determined in the same manner as in Example I. Thereafter, Nb 2 O powder, SiO powder and B 2 O powder with a purity of 99.9% were mixed in a proportion shown in Table 4 with respect to 100 parts by mass of the calcined powder. This mixed powder was granulated and formed into a pellet shape having a diameter of 16.5 mm and a thickness of 1 mm.
[0110] 次に、各組成のペレットを 10個ずつ、大気中にて、表 4に示す温度で焼成した。焼 成後の試料の表面にインジウム ガリウムの導体層を印刷して誘電特性の評価試料 を得た(表 5および表 6中の試料 No. II— ;!〜 45)。なお、チタン酸バリウムを主成分と する結晶粒子の平均粒径は、前記実施例 Iと同様にして求めた。 Next, 10 pellets of each composition were fired at a temperature shown in Table 4 in the air. An indium gallium conductor layer was printed on the surface of the fired sample to obtain a dielectric property evaluation sample (Sample Nos. II— in Tables 5 and 6;! -45). The average particle size of the crystal particles mainly composed of barium titanate was determined in the same manner as in Example I.
[0111] <評価〉 [0111] <Evaluation>
作製した誘電体磁器であるこれらの試料について、前記実施例 Iと同様にして、比 誘電率、比誘電率の温度係数、および分極電荷を求めた。また、試料の組成分析を 前記実施例 Iと同様にして行った。さらに、酸素量を前記実施例 Iと同様にして求めた For these samples, which were dielectric ceramics, the dielectric constant, the temperature coefficient of the dielectric constant, and the polarization charge were determined in the same manner as in Example I. Further, the composition analysis of the sample was performed in the same manner as in Example I. Further, the oxygen amount was determined in the same manner as in Example I.
〇 Yes
[0112] 表 4に調製組成、仮焼粉末の平均粒径および焼成温度を、表 5および表 6に焼成 後の結晶粒子の平均粒径と特性の結果をそれぞれ示す。 [0112] Table 4 shows the preparation composition, the average particle size and calcining temperature of the calcined powder, and Table 5 and Table 6 show the results of the average particle size and characteristics of the crystal particles after firing, respectively.
[0113] ここで、表 5,表 6中の「結晶粒子の平均粒径」は、チタン酸バリウムを主成分とする 結晶粒子の平均粒径を意味する。表 5,表 6中の「比誘電率の温度係数の絶対値」 は、比誘電率の温度係数における平均値の絶対値を意味する。また、表 5,表 6中、 比誘電率の温度変化の曲線の欄において〇を付してないものは、 25°Cを中心にし て 2つのピークがみられなかった試料を、分極電荷の欄において〇を付してないもの は、分極電荷が 20nC/cm2以下ではな!/、試料をそれぞれ示す。 Here, “average particle size of crystal particles” in Tables 5 and 6 means the average particle size of crystal particles mainly composed of barium titanate. “Absolute value of temperature coefficient of relative permittivity” in Tables 5 and 6 means the absolute value of the average value of the temperature coefficient of relative permittivity. In Tables 5 and 6, those with no circles in the curve of the relative permittivity temperature change curve are those for which the two peaks centered at 25 ° C were not observed. The ones not marked with ◯ in the column indicate that the polarization charge is not less than 20 nC / cm 2 ! /, Respectively.
[0114] [表 4]
組成 [0114] [Table 4] composition
仮焼粉末の Calcined powder
Balモルに対する量 仮焼粉末 100質量部に対する量 焼成温度 試料 No. 平均粒径 Amount for Bal mol Amount for calcined powder Amount for 100 parts by mass
MgO Y203 MnC03 Ti Nb205 Si02 B203 MgO Y 2 0 3 MnC0 3 Ti Nb 2 0 5 Si0 2 B 2 0 3
モル モル モル モル 質量部 m °c Mol mol mol mol part m ° c
* II- 1 0.020 0.010 0.010 0.980 2 1.5 0.5 0.1 1200* II- 1 0.020 0.010 0.010 0.980 2 1.5 0.5 0.1 1200
* II -2 0.020 0.010 0.010 0.980 3.5 1.5 0.5 0.1 1200* II -2 0.020 0.010 0.010 0.980 3.5 1.5 0.5 0.1 1200
【卜 3 0.020 0.010 0.010 0.980 4 1.5 0.5 0.1 1200 【卜 3 0.020 0.010 0.010 0.980 4 1.5 0.5 0.1 1200
[1-4 0.020 0.010 0.010 0.980 6 1.5 0.5 0.1 1200 [1-4 0.020 0.010 0.010 0.980 6 1.5 0.5 0.1 1200
II -5 0.020 0,010 0.010 0.980 8.5 1.5 0.5 0.1 1200II -5 0.020 0,010 0.010 0.980 8.5 1.5 0.5 0.1 1200
II- 6 0.020 0.010 0.010 0.980 15 1.5 0.5 0.1 1200II- 6 0.020 0.010 0.010 0.980 15 1.5 0.5 0.1 1200
II - 7 0.020 0.010 0.010 0.980 18.5 1.5 0.5 0.1 1200II-7 0.020 0.010 0.010 0.980 18.5 1.5 0.5 0.1 1200
II -8 0.020 0.010 0.010 0.980 32 1.5 0.5 0.1 1200II -8 0.020 0.010 0.010 0.980 32 1.5 0.5 0.1 1200
* II -9 0.020 0.010 0.010 0.980 50 1.5 0.5 0.1 1200* II -9 0.020 0.010 0.010 0.980 50 1.5 0.5 0.1 1200
* II- 10 0.020 0.0002 0.010 0.980 8.5 1.5 0.5 0.1 1200* II- 10 0.020 0.0002 0.010 0.980 8.5 1.5 0.5 0.1 1200
11-11 0.020 0.0007 0.010 0.980 8.5 1.5 0.5 0.1 120011-11 0.020 0.0007 0.010 0.980 8.5 1.5 0.5 0.1 1200
II- 12 0.020 0.0015 0.010 0.980 8.5 1.5 0.5 0.1 1200II- 12 0.020 0.0015 0.010 0.980 8.5 1.5 0.5 0.1 1200
【卜 13 0.020 0.005 0.010 0.980 8.5 1.5 0.5 0.1 1200【卜 13 0.020 0.005 0.010 0.980 8.5 1.5 0.5 0.1 1200
Π- 14 0.020 0.007 0.010 0.980 8.5 1.5 0.5 0.1 120014-14 0.020 0.007 0.010 0.980 8.5 1.5 0.5 0.1 1200
IE - 15 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.1 1200IE-15 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.1 1200
* II- 16 0.020 0.040 0.010 0.980 8.5 1.5 0.5 0.1 1200* II- 16 0.020 0.040 0.010 0.980 8.5 1.5 0.5 0.1 1200
* II- 17 0.005 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200* II- 17 0.005 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
Εϊ- 18 0.010 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200Εϊ-18 0.010 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
11-19 0.017 0.010 0.010 0.980 8.5 1.5 0.5 0.1 120011-19 0.017 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
II -20 0.023 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200II -20 0.023 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
11-21 0.040 0.010 0.010 0.980 8.5 1.5 0.5 0.1 120011-21 0.040 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
II - 22 0.060 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200II-22 0.060 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
* II -23 0.070 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200* II -23 0.070 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
II -24 0.020 0.010 0.0002 0.980 8.5 1.5 0.5 0.1 1200II -24 0.020 0.010 0.0002 0.980 8.5 1.5 0.5 0.1 1200
11-25 0.020 0.010 0.005 0.980 8.5 1.5 0.5 0.1 120011-25 0.020 0.010 0.005 0.980 8.5 1.5 0.5 0.1 1200
11-26 0.020 0.010 0.008 0.980 8.5 1.5 0.5 0.1 120011-26 0.020 0.010 0.008 0.980 8.5 1.5 0.5 0.1 1200
II -27 0.020 0.010 0.013 0.980 8.5 1.5 0.5 0.1 1200II -27 0.020 0.010 0.013 0.980 8.5 1.5 0.5 0.1 1200
II -28 0.020 0.010 0.015 0.980 8.5 1.5 0.5 Ο.ΐ 1200II -28 0.020 0.010 0.015 0.980 8.5 1.5 0.5 Ο.ΐ 1200
[[-29 0.020 0.010 0.030 0.980 8.5 1.5 0.5 0.1 1200[[-29 0.020 0.010 0.030 0.980 8.5 1.5 0.5 0.1 1200
* ίϊ-30 0.020 0.010 0.040 0.980 8.5 1.5 0.5 0.1 1200* ίϊ-30 0.020 0.010 0.040 0.980 8.5 1.5 0.5 0.1 1200
II- 31 0.020 0.010 0.010 0.970 8.5 1.5 0.5 0.1 1200II- 31 0.020 0.010 0.010 0.970 8.5 1.5 0.5 0.1 1200
II -32 0.020 0.010 0.010 0.990 8.5 1.5 0.5 0.1 1200II -32 0.020 0.010 0.010 0.990 8.5 1.5 0.5 0.1 1200
* II -33 0.020 0.010 0 0.980 8.5 1.5 0.5 0.1 1200* II -33 0.020 0.010 0 0.980 8.5 1.5 0.5 0.1 1200
* U - 34 0.020 0.010 0.010 0.980 8.5 0.375 0.125 0.1 1300* U-34 0.020 0.010 0.010 0.980 8.5 0.375 0.125 0.1 1300
11-35 0.020 0.010 0.010 0.980 8.5 0.7 0.3 0.1 125011-35 0.020 0.010 0.010 0.980 8.5 0.7 0.3 0.1 1250
II -36 0.020 0.010 0.010 0.980 8.5 2.5 0.5 0.1 1170II -36 0.020 0.010 0.010 0.980 8.5 2.5 0.5 0.1 1170
11-37 0.020 0.010 0.010 0.980 8.5 3 1 0.1 115011-37 0.020 0.010 0.010 0.980 8.5 3 1 0.1 1150
11-38 0.020 0.010 0.010 0.980 8.5 4.5 1.5 0.1 115011-38 0.020 0.010 0.010 0.980 8.5 4.5 1.5 0.1 1150
II- 39 0.020 0.010 0.010 0.980 8.5 6 2 0.1 1100II- 39 0.020 0.010 0.010 0.980 8.5 6 2 0.1 1100
* Π-40 0.020 0.010 0.010 0.980 8.5 7 2.2 0.1 1100* Π-40 0.020 0.010 0.010 0.980 8.5 7 2.2 0.1 1100
11-41 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 120011-41 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1200
* II -42 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1160* II -42 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1160
* II -43 0.020 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1230* II -43 0.020 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1230
* 【〖- 44 0.020 0.010 0.010 0.980 8.5 6 0.125 0.1 1170* 【〖-44 0.020 0.010 0.010 0.980 8.5 6 0.125 0.1 1170
* 11-45 0.020 0.010 0.010 0.980 8.5 0.5 2 0.1 1170* 11-45 0.020 0.010 0.010 0.980 8.5 0.5 2 0.1 1170
*印は 発明の 囲^の 示 。
* Indicates the scope of the invention.
*印は 発明の 囲 の * Indicates the scope of the invention
S〕〔聖6I 1
[0117] 表 5および表 6の結果から明らかなように、本発明の誘電体磁器である試料 No. II - 3—8, 11— 15, 18— 22, 24—29, 31、 32、 35〜39および 41では、 25。Cにお ける比誘電率が 250以上、 125°Cにおける比誘電率が 230以上であり、 25~125°C における比誘電率の温度係数が絶対値で 1000 X 10— 6/°C以下であった。 S] (Saint 6I 1 [0117] As is apparent from the results in Tables 5 and 6, Sample Nos. II-3-8, 11-15, 18-22, 24-29, 31, 32, 35, which are dielectric ceramics of the present invention. ~ 39 and 41, 25. Contact Keru dielectric constant of 250 or more and C, and a dielectric constant of 230 or more at 125 ° C, 25 temperature coefficient of the dielectric constant at ~ 125 ° C is 1000 X 10- 6 / ° C or less in absolute value there were.
[0118] 特 ίこ、ノ リウム 1モノレ ίこ対して、 MgOを 0. 017〜0. 06モノレ、 Y Oを 0. 0015〜0 [0118] SPECIAL, NORIUM 1 MONOLE, MgO 0.01 ~ 0.06 MONO, YO 0.0015 ~ 0
• 01モノレ、 MnOを 0· 01—0. 03モノレ、主成分で るチタン酸ノ リウム 00質量 Wこ 対する Nb Oの含有量が 6. 3—15. 6質量部、 SiOが 0. 73—3. 13質量部および B Oが 0· 31— 1. 04質量部であり、ノ リウム 1モルに対するチタンのモル比が 0· 97• 01 monole, MnO 0 · 01—0.03 monole, the main component is 30 wt. W of NbO with 6.3-15.6 parts by mass, and SiO is 0.73-. 3. 13 parts by mass and BO are 0 · 31—1.04 parts by mass, and the molar ratio of titanium to 1 mol of norm is 0 · 97.
〜0. 98である試料 No. II— 4〜6、 12〜; 14、 19〜22、 27〜29、 31および 35〜37 では、 25°Cにおける比誘電率が 400以上、 125°Cにおける比誘電率が 380以上、比 誘電率の温度係数が絶対値で 400 X 10— 6/°C以下であり、比誘電率の変化率を示 す曲線が— 55°C〜125°Cの温度範囲において 2つのピークを有し、かつ誘電分極 の測定にお!/、て大きなヒステリシスが見られなかった。ヒステリシスの見られな!/、試料 は、分極電荷が 0Vにお!/、て 20nC/cm2以下であった。 Sample No. II of ˜0.98—4 to 6, 12 to; 14, 19 to 22, 27 to 29, 31 and 35 to 37, the relative dielectric constant at 25 ° C. is 400 or more, at 125 ° C. relative dielectric constant of 380 or more, the ratio temperature coefficient of the dielectric constant of 400 X 10- 6 / ° C or less in absolute value, the rate of change in dielectric constant indicates to curve - 55 ° to 125 temperature ° C There were two peaks in the range, and no significant hysteresis was observed in the measurement of dielectric polarization! ! /, Such seen hysteresis samples, polarization charge you to 0V! /, Was 20nC / cm 2 or less Te.
[0119] これらの試料から任意に選択した試料 No. II— 4の誘電体磁器の X線回折図を図 5 に示す。試料 No. II— 4の誘電体磁器は、図 5に見られるように、結晶構造が立方晶 系を主体とするものであった。 [0119] Figure 5 shows the X-ray diffraction pattern of the dielectric ceramic of Sample No. II-4 arbitrarily selected from these samples. As shown in Fig. 5, the dielectric ceramic of Sample No. II-4 was mainly composed of cubic crystal.
[0120] また、本発明の範囲の他の試料についても結晶構造が立方晶系を主体とするもの であった。 [0120] Also, other samples within the scope of the present invention have a crystal structure mainly composed of a cubic system.
[0121] これに対して、本発明の範囲外の試料(試料 No. 11— 1、 2、 9、 10、 16、 17、 23、 3 0、 33、 34、 40、 42〜45)では、 25。Cにおける 匕誘電率力 250未満である力、、また は誘電分極にヒステリシスがあり、比誘電率の温度係数が絶対値で 1009 X 10— 6/°C 以上であった。なお、試料 No. II— 34は、焼結不足のため未評価である。 [0121] On the other hand, samples outside the scope of the present invention (Sample Nos. 11-1, 1, 2, 9, 10, 16, 17, 23, 30, 33, 34, 40, 42 to 45) twenty five. The force ,, or less than匕誘conductivity force 250 at C of hysteresis to dielectric polarization, the temperature coefficient of the relative dielectric constant was in absolute value 1009 X 10- 6 / ° C or more. Sample No. II-34 has not been evaluated due to insufficient sintering.
[0122] [実施例 ΙΠ] [0122] [Example ΙΠ]
<誘電特性の評価試料の作製 > <Preparation of dielectric properties evaluation sample>
前記評価試料を以下のようにして作製した。先ず、いずれも純度が 99. 9%の BaC O粉末、 TiO粉末、 MgO粉末、 Y O粉末、 MnCO粉末を用意し、表 7に示す割合 で調合し混合粉末を調製した。
[0123] 次に、上記で調製した混合粉末を温度 1000°Cにて仮焼して仮焼粉末を作製した 後、得られた仮焼粉末を粉砕して表 7に示す平均粒径を有する仮焼粉末を得た。仮 焼粉末の平均粒径は、前記実施例 Iと同様にして求めた。この後、仮焼粉末 100質 量部に対して、純度 99. 9%の Nb O粉末、 SiO粉末および Li O粉末を表 7に示す 割合で混合した。この混合粉末を造粒し、直径 16. 5mm、厚さ lmmの形状のペレツ ト状に成形した。 The evaluation sample was produced as follows. First, BaC O powder, TiO powder, MgO powder, YO powder, and MnCO powder each having a purity of 99.9% were prepared and mixed at the ratios shown in Table 7 to prepare a mixed powder. [0123] Next, after the mixed powder prepared above was calcined at a temperature of 1000 ° C to prepare a calcined powder, the obtained calcined powder was pulverized to have an average particle size shown in Table 7 A calcined powder was obtained. The average particle size of the calcined powder was determined in the same manner as in Example I. Thereafter, Nb 2 O powder, SiO powder and Li 2 O powder with a purity of 99.9% were mixed in a proportion shown in Table 7 with respect to 100 parts by mass of the calcined powder. This mixed powder was granulated and formed into a pellet shape having a diameter of 16.5 mm and a thickness of 1 mm.
[0124] 次に、各組成のペレットを 10個ずつ、大気中にて、表 7に示す温度で焼成した。焼 成後の試料の表面にインジウム ガリウムの導体層を印刷して誘電特性の評価試料 を得た(表 8および表 9中の試料 No. Ill—;!〜 45)。なお、チタン酸バリウムを主成分 とする結晶粒子の平均粒径は、前記実施例 Iと同様にして求めた。 Next, 10 pellets of each composition were fired at a temperature shown in Table 7 in the air. An indium gallium conductor layer was printed on the surface of the sample after firing to obtain a sample for evaluation of dielectric properties (Sample Nos. Ill— ;! to 45 in Table 8 and Table 9). The average particle size of the crystal particles mainly composed of barium titanate was determined in the same manner as in Example I.
[0125] <評価〉 [0125] <Evaluation>
作製した誘電体磁器であるこれらの試料について、前記実施例 Iと同様にして、比 誘電率、比誘電率の温度係数、および分極電荷を求めた。また、試料の組成分析を 前記実施例 Iと同様にして行った。さらに、酸素量を前記実施例 Iと同様にして求めた For these samples, which were dielectric ceramics, the dielectric constant, the temperature coefficient of the dielectric constant, and the polarization charge were determined in the same manner as in Example I. Further, the composition analysis of the sample was performed in the same manner as in Example I. Further, the oxygen amount was determined in the same manner as in Example I.
〇 Yes
[0126] 表 7に調製組成、仮焼粉末の平均粒径および焼成温度を、表 8および表 9に焼成 後の結晶粒子の平均粒径と特性の結果をそれぞれ示す。 [0126] Table 7 shows the preparation composition, the average particle size of the calcined powder, and the firing temperature, and Tables 8 and 9 show the results of the average particle size and characteristics of the crystal particles after firing.
[0127] ここで、表 8,表 9中の「結晶粒子の平均粒径」は、チタン酸バリウムを主成分とする 結晶粒子の平均粒径を意味する。表 8,表 9中の「比誘電率の温度係数の絶対値」 は、比誘電率の温度係数における平均値の絶対値を意味する。また、表 8,表 9中、 比誘電率の温度変化の曲線の欄において〇を付してないものは、 25°Cを中心にし て 2つのピークがみられなかった試料を、分極電荷の欄において〇を付してないもの は、分極電荷が 20nC/cm2以下ではな!/、試料をそれぞれ示す。 [0127] Here, the "average particle diameter of crystal grains" in Tables 8 and 9 means the average particle diameter of crystal grains mainly composed of barium titanate. “Absolute value of temperature coefficient of relative permittivity” in Tables 8 and 9 means the absolute value of the average value of the temperature coefficient of relative permittivity. In Tables 8 and 9, those with no circle in the curve of the relative permittivity temperature change curve are those for which the two peaks centered at 25 ° C were not observed. The ones not marked with ◯ in the column indicate that the polarization charge is not less than 20 nC / cm 2 ! /, Respectively.
[0128] [表 7]
組成 [0128] [Table 7] composition
Ba1モルに対する量 仮焼粉末 100質最部に対する量 仮焼粉末の 試料 No. 平均粒径 焼成温度 Amount relative to 1 mol of Ba calcined powder Amount relative to the top of 100 quality Sample of calcined powder No. Average particle size Firing temperature
MgO Y203 MnC03 Ti Nb205 Si02 Li20 MgO Y 2 0 3 MnC0 3 Ti Nb 2 0 5 Si0 2 Li 2 0
モル モル モル モル 質量部 質量部 g畳部 a m °c Mol mol mol mol mass part mass part g tatami part a m ° c
* III - 1 0.020 0.010 0.010 0.980 2 1.5 0.5 0.1 1200* III-1 0.020 0.010 0.010 0.980 2 1.5 0.5 0.1 1200
* III - 2 0.020 0.010 0.010 0.980 3.5 1.5 0.5 0.1 1200* III-2 0.020 0.010 0.010 0.980 3.5 1.5 0.5 0.1 1200
III - 3 0.020 0.010 0.010 0.980 4 1.5 0.5 0.1 1200III-3 0.020 0.010 0.010 0.980 4 1.5 0.5 0.1 1200
III - 4 0.020 0.010 0.010 0.980 6 1.5 0.5 0.1 1200III-4 0.020 0.010 0.010 0.980 6 1.5 0.5 0.1 1200
III - 5 0.020 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200III-5 0.020 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 6 0.020 0.010 0.010 0.980 15 1.5 0.5 0.1 1200III-6 0.020 0.010 0.010 0.980 15 1.5 0.5 0.1 1200
III - 7 0.020 0.010 0.010 0.980 18.5 1.5 0.5 0.1 1200III-7 0.020 0.010 0.010 0.980 18.5 1.5 0.5 0.1 1200
III - 8 0.020 0.010 0.010 0.980 32 1.5 0.5 0.1 1200III-8 0.020 0.010 0.010 0.980 32 1.5 0.5 0.1 1200
* III - 9 0.020 0.010 0.010 0.980 50 1.5 0.5 0.1 1200* III-9 0.020 0.010 0.010 0.980 50 1.5 0.5 0.1 1200
* III - 10 0.020 0.0002 0.010 0.980 8.5 1.5 0.5 0.1 1200* III-10 0.020 0.0002 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 1 1 0.020 0.0007 0.010 0.980 8.5 1.5 0.5 0.1 1200III-1 1 0.020 0.0007 0.010 0.980 8.5 1.5 0.5 0.1 1200
HI - 12 0.020 0.0015 0.010 0.980 8.5 1.5 0.5 0.1 1200HI-12 0.020 0.0015 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 13 0.020 0.005 0.010 0.980 8.5 1.5 0.5 0.1 1200III-13 0.020 0.005 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 14 0.020 0.007 0.010 0.980 8.5 1.5 0.5 0.1 1200III-14 0.020 0.007 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 15 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.1 1200III-15 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.1 1200
* III - 16 0.020 0.040 0.010 0.980 8.5 1.5 0.5 0.1 1200* III-16 0.020 0.040 0.010 0.980 8.5 1.5 0.5 0.1 1200
* HI - 17 0.005 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200* HI-17 0.005 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 18 0.010 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200III-18 0.010 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 19 0.017 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200III-19 0.017 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 20 0.023 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200III-20 0.023 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 21 0.040 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200III-21 0.040 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
III - 22 0.060 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200III-22 0.060 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
* III - 23 0.070 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200 * III-23 0.070 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1200
0.020 0.010 0.0002 0.980 8.5 1.5 0.5 0.1 1200 0.020 0.010 0.0002 0.980 8.5 1.5 0.5 0.1 1200
III - 25 0.020 0.010 0.005 0.980 8.5 1.5 0.5 0.1 1200III-25 0.020 0.010 0.005 0.980 8.5 1.5 0.5 0.1 1200
III一 26 0.020 0.010 0.008 0.980 8.5 1.5 0.5 0.1 1200III 1 26 0.020 0.010 0.008 0.980 8.5 1.5 0.5 0.1 1200
III - 27 0.020 0.010 0.013 0.980 8.5 1.5 0.5 0.1 1200III-27 0.020 0.010 0.013 0.980 8.5 1.5 0.5 0.1 1200
III - 28 0.020 0.010 0.015 0.980 8.5 1.5 0.5 0.1 1200III-28 0.020 0.010 0.015 0.980 8.5 1.5 0.5 0.1 1200
III - 29 0.020 0.010 0.030 0.980 8.5 1.5 0.5 0.1 1200III-29 0.020 0.010 0.030 0.980 8.5 1.5 0.5 0.1 1200
* III - 30 0.020 0.010 0.040 0.980 8.5 1.5 0.5 0.1 1200* III-30 0.020 0.010 0.040 0.980 8.5 1.5 0.5 0.1 1200
III - 31 0.020 0.010 0.010 0.970 8.5 1.5 0.5 0.1 1200III-31 0.020 0.010 0.010 0.970 8.5 1.5 0.5 0.1 1200
III - 32 0.020 0.010 0.010 0.990 8.5 1.5 0.5 0.1 1200III-32 0.020 0.010 0.010 0.990 8.5 1.5 0.5 0.1 1200
* III - 33 0.020 0.010 0 0.980 8.5 1.5 0.5 0.1 1200* III-33 0.020 0.010 0 0.980 8.5 1.5 0.5 0.1 1200
* III - 34 0.020 0.010 0.010 0.980 8.5 0.375 0.125 0.1 1300* III-34 0.020 0.010 0.010 0.980 8.5 0.375 0.125 0.1 1300
III - 35 0.020 0.010 0.010 0.980 8.5 0.7 0.3 0.1 1250III-35 0.020 0.010 0.010 0.980 8.5 0.7 0.3 0.1 1250
III - 36 0.020 0.010 0.010 0.980 8.5 2.5 0.5 0.1 1 170III-36 0.020 0.010 0.010 0.980 8.5 2.5 0.5 0.1 1 170
III - 37 0.020 0.010 0.010 0.980 8.5 3 1 0.1 1 150III-37 0.020 0.010 0.010 0.980 8.5 3 1 0.1 1 150
HI - 38 0.020 0.010 0.010 0.980 8.5 4.5 1.5 0.1 1150HI-38 0.020 0.010 0.010 0.980 8.5 4.5 1.5 0.1 1150
III - 39 0.020 0.010 0.010 0.980 8.5 6 2 0.1 1 100III-39 0.020 0.010 0.010 0.980 8.5 6 2 0.1 1 100
* III - 40 0.020 0.010 0.010 0.980 8.5 7 2.2 0.1 1100* III-40 0.020 0.010 0.010 0.980 8.5 7 2.2 0.1 1100
III - 41 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1200III-41 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1200
* III - 42 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1 160* III-42 0.020 0.030 0.010 0.980 8.5 1.5 0.5 0.04 1 160
* III - 43 0.020 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1230* III-43 0.020 0.010 0.010 0.980 8.5 1.5 0.5 0.1 1230
* III - 44 0.020 0.010 0.010 0.980 8.5 6 0.125 0.1 1 170* III-44 0.020 0.010 0.010 0.980 8.5 6 0.125 0.1 1 170
* III - 45 0.020 0.010 0.010 0.980 8.5 0.5 2 0.1 1170* III-45 0.020 0.010 0.010 0.980 8.5 0.5 2 0.1 1170
*印は本発明の範 g外の試 tを示す。 * Indicates a test t outside the scope of the present invention.
8]
〔S031 8] [S031
表 8および表 9の結果から明らかなように、本発明の誘電体磁器である試料 No. Ill
- 3—8, 11— 15, 18— 22, 24—29, 31、 32、 35〜39および 41では、 25。Cにお ける比誘電率が 250以上、 125°Cにおける比誘電率が 230以上であり、 25~125°C における比誘電率の温度係数が絶対値で 1000 X 10— 6/°C以下であった。 As is apparent from the results in Table 8 and Table 9, sample No. Ill, which is the dielectric ceramic of the present invention. -25 for 3-8, 11-15, 18- 22, 24-29, 31, 32, 35-39 and 41. Contact Keru dielectric constant of 250 or more and C, and a dielectric constant of 230 or more at 125 ° C, 25 temperature coefficient of the dielectric constant at ~ 125 ° C is 1000 X 10- 6 / ° C or less in absolute value there were.
[0132] 特 ίこ、ノ リウム 1モノレ ίこ対して、 MgOを 0. 017〜0. 06モノレ、 Y Oを 0. 0015〜0[0132] SPECIAL, NORIUM 1 MONOLE, MgO 0.01 ~ 0.06 MONO, YO 0.0015 ~ 0
• 01モノレ、 MnOを 0· 01—0. 03モノレ、主成分で るチタン酸ノ リウム 00質量 Wこ 対する Nb Oの含有量が 6. 3—15. 6質量部、 SiOが 0. 73—3. 13質量部および Li Oが 0· 31— 1. 04質量部であり、ノ リウム 1モルに対するチタンのモル比が 0· 97 〜0. 98である試料 No. Ill— 4〜6、 12〜; 14、 19〜22、 27〜29、 31および 35〜37 では、 25°Cにおける比誘電率が 400以上、 125°Cにおける比誘電率が 380以上、比 誘電率の温度係数が絶対値で 400 X 10— 6/°C以下であり、比誘電率の変化率を示 す曲線が— 55°C〜125°Cの温度範囲において 2つのピークを有し、かつ誘電分極 の測定にお!/、て大きなヒステリシスが見られなかった。ヒステリシスの見られな!/、試料 は、分極電荷が 0Vにお!/、て 20nC/cm2以下であった。 • 01 monole, MnO 0 · 01—0.03 monole, the main component is 30 wt. W of NbO with 6.3-15.6 parts by mass, and SiO is 0.73-. 3. Sample No. Ill—4-6, 12 with 13 parts by mass and Li O of 0 · 31—1.04 parts by mass, and the molar ratio of titanium to 1 mol of norm is 0 · 97 to 0.98. ~; For 14, 19-22, 27-29, 31 and 35-37, the relative permittivity at 25 ° C is 400 or more, the relative permittivity at 125 ° C is 380 or more, and the relative permittivity temperature coefficient is absolute in no more than 400 X 10- 6 / ° C, relative dielectric constant change rate indicates to curve - has two peaks in a temperature range of 55 ° C~125 ° C, and contact to the measurement of dielectric polarization ! / No big hysteresis was seen. No hysteresis was observed! /, And the sample had a polarization charge at 0 V! /, Which was less than 20 nC / cm 2 .
[0133] これらの試料から任意に選択した試料 No. Ill— 4の誘電体磁器の X線回折図を図 [0133] X-ray diffraction pattern of dielectric porcelain of sample No. Ill-4 arbitrarily selected from these samples
6に示す。試料 No. Ill— 4の誘電体磁器は、図 6に見られるように、結晶構造が立方 晶系を主体とするものであった。 Shown in 6. As shown in Fig. 6, the dielectric porcelain of Sample No. Ill-4 has a crystal structure mainly composed of a cubic system.
[0134] また、本発明の範囲の他の試料についても結晶構造が立方晶系を主体とするもの であった。 [0134] In addition, other samples within the scope of the present invention also have a crystal structure mainly composed of a cubic system.
[0135] これに対して、本発明の範囲外の試料(試料 No. ΠΙ— 1、 2、 9、 10、 16、 17、 23、 [0135] In contrast, samples outside the scope of the present invention (Sample Nos. ΠΙ—1, 2, 9, 10, 16, 17, 23,
30、 33、 34、 40、 42〜45)では、 25。Cにおける 匕誘電率力 200未満である力、、また は誘電分極にヒステリシスがあり、比誘電率の温度係数が絶対値で 1043 X 10— 6/°C 以上であった。なお、試料 No. Ill— 34は、焼結不足のため未評価である。
30, 33, 34, 40, 42-45), 25. A is the force ,, or匕誘conductivity force less than 200 in the C of hysteresis to dielectric polarization, the temperature coefficient of the relative dielectric constant was in absolute value 1043 X 10- 6 / ° C or more. Sample No. Ill-34 has not been evaluated due to insufficient sintering.
Claims
[1] チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に形成された粒界相と 力、らなる誘電体磁器であって、 [1] A dielectric ceramic comprising crystal grains mainly composed of barium titanate and grain boundary phases and forces formed between the crystal grains,
前記チタン酸バリウムを構成するバリウム 1モルに対して、マグネシウムを MgO換算 で 0· 0 〜 0· 06モノレ、イットリウムを Y O換算で 0· 0007〜0· 03モノレ マンガンを Magnesium in the form of MgO in the range of 0 · 0 to 0 · 06 monole, and yttrium in the form of Y 2 O in the range of 0 · 0007 to 0 · 03
ΜηΟ換算で 0. 0002—0. 03モノレ含有するとともに、 Containing 0.00002-0.03 monole in terms of ΟηΟ,
さらに前記チタン酸バリウム 100質量部に対して、ニオブを Nb O換算で 4. 2—33. Furthermore, for 100 parts by weight of the barium titanate, niobium in terms of NbO is 4.2-3.
3質量部含有し、 Containing 3 parts by weight,
かつ前記結晶粒子の平均粒径が 0. 05-0. 25 mであることを特徴とする誘電体 And an average particle size of the crystal particles is 0.05 to 0.25 m.
[2] 前記チタン酸バリウムを構成するバリウム 1モルに対して、前記マグネシウムを MgO 換算で 0· 017—0. 06モノレ、前記イットリウムを Υ Ο換算で 0· 005—0. 01モノレ、前 記マンガンを ΜηΟ換算で 0. 01—0. 03モル含有するとともに、 [2] With respect to 1 mol of barium constituting the barium titanate, the magnesium is converted into Mg ··································· 06 Contains 0.01-0.03 moles of manganese in terms of ΜηΟ,
前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3—15. 6 質量部含有し、 Containing 6.3-15.6 parts by mass of the niobium in terms of NbO with respect to 100 parts by mass of the barium titanate,
かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル比が 0· 97 〜0. 98である請求項 1に記載の誘電体磁器。 2. The dielectric ceramic according to claim 1, wherein a molar ratio of titanium to 1 mol of barium constituting the barium titanate is from 0 · 97 to 0.98.
[3] 前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO換算で 0. 73-6. 3 質量部およびホウ素を B O換算で 0. 31-2. 1質量部含有する請求項 1に記載の 誘電体磁器。 [3] The method according to claim 1, further comprising 0.73-6.3 parts by mass of silicon in terms of SiO and 0.31-2.1 parts by mass of boron in terms of BO with respect to 100 parts by mass of barium titanate. The dielectric ceramic described.
[4] 前記チタン酸バリウムを構成するバリウム 1モルに対して、前記マグネシウムを MgO 換算で 0· 017—0. 06モノレ、前記イットリウムを Υ Ο換算で 0· 0015—0. 01モノレ、 前記マンガンを ΜηΟ換算で 0. 01—0. 03モル含有するとともに、 [4] With respect to 1 mol of barium constituting the barium titanate, the magnesium is converted into Mg ······························· 06 In 0.01 to 0.03 mol in terms of ΜηΟ,
前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3—15. 6
〜0. 98である請求項 1に記載の誘電体磁器。 For 100 parts by mass of the barium titanate, the niobium is 6.3-15. The dielectric ceramic according to claim 1, wherein the dielectric ceramic is .about.0.98.
[5] 前記チタン酸バリウム 100質量部に対して、さらに珪素を Si〇2換算で 0. 73-6. 3 質量部およびリチウムを Li O換算で 0. 3;!〜 2. 1質量部含有する請求項 1に記載の 誘電体磁器。 [5] In addition to 100 parts by mass of barium titanate, silicon is further contained in an amount of 0.773-6.3 parts by mass in terms of Si 2 and lithium is 0.3 in terms of Li 2 O; The dielectric ceramic according to claim 1.
[6] 前記チタン酸バリウムを構成するバリウム 1モルに対して、前記マグネシウムを MgO 換算で 0· 017—0. 06モノレ、前記イットリウムを Υ Ο換算で 0· 0015—0. 01モノレ、 前記マンガンを ΜηΟ換算で 0. 01—0. 03モル含有するとともに、 [6] With respect to 1 mol of barium constituting the barium titanate, the magnesium is converted into Mg ····························· 06 In 0.01 to 0.03 mol in terms of ΜηΟ,
前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3—15. 6 質量部含有し、 Containing 6.3-15.6 parts by mass of the niobium in terms of NbO with respect to 100 parts by mass of the barium titanate,
さらに前記チタン酸バリウム 100質量部に対して、珪素を SiO換算で 0. 73-3. 13 質量部およびリチウムを Li O換算で 0. 31-1. 04質量部含有し、 Furthermore, with respect to 100 parts by mass of the barium titanate, 0.73-3.13 parts by mass of silicon in terms of SiO and 0.31-1.04 parts by mass of lithium in terms of Li 2 O are contained,
かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル比が 0· 97 〜0. 98である請求項 1に記載の誘電体磁器。 2. The dielectric ceramic according to claim 1, wherein a molar ratio of titanium to 1 mol of barium constituting the barium titanate is from 0 · 97 to 0.98.
[7] 誘電体層と導体層との積層体から構成されているコンデンサであって、 [7] A capacitor composed of a laminate of a dielectric layer and a conductor layer,
前記誘電体層を構成する誘電体磁器が、チタン酸バリウムを主成分とする結晶粒子 と、該結晶粒子間に形成された粒界相とからなる誘電体磁器であり、 The dielectric ceramic constituting the dielectric layer is a dielectric ceramic composed of crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains,
前記チタン酸バリウムを構成するバリウム 1モルに対して、マグネシウムを MgO換算 で 0· 0 〜 0· 06モノレ、イットリウムを Y O換算で 0· 0007〜0· 03モノレ マンガンを Magnesium in the form of MgO in the range of 0 · 0 to 0 · 06 monole, and yttrium in the form of Y 2 O in the range of 0 · 0007 to 0 · 03
ΜηΟ換算で 0. 0002—0. 03モノレ含有するとともに、 Containing 0.00002-0.03 monole in terms of ΟηΟ,
さらに前記チタン酸バリウム 100質量部に対して、ニオブを Nb O換算で 4. 2—33. Furthermore, for 100 parts by weight of the barium titanate, niobium in terms of NbO is 4.2-3.
3質量部含有し、 Containing 3 parts by weight,
かつ前記結晶粒子の平均粒径が 0. 05-0. 25 mであることを特徴とするコンデン サ。 The capacitor is characterized in that the average grain size of the crystal grains is 0.05-0.25 m.
[8] 前記チタン酸バリウムを構成するバリウム 1モルに対して、前記マグネシウムを MgO 換算で 0· 017—0. 06モノレ、前記イットリウムを Υ Ο換算で 0· 005—0. 01モノレ、前 記マンガンを ΜηΟ換算で 0. 01—0. 03モル含有するとともに、 [8] With respect to 1 mol of barium constituting the barium titanate, the magnesium is converted into Mg ···································· 06 Contains 0.01-0.03 moles of manganese in terms of ΜηΟ,
前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3—15. 6 質量部含有し、
かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル比が 0· 97 〜0· 98である請求項 7に記載のコンデンサ。 Containing 6.3-15.6 parts by mass of the niobium in terms of Nb 2 O relative to 100 parts by mass of the barium titanate The capacitor according to claim 7, wherein a molar ratio of titanium to 1 mol of barium constituting the barium titanate is 0 · 97 to 0 · 98.
[9] 前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO換算で 0. 73-6. 3 質量部およびホウ素を B O換算で 0. 31-2. 1質量部含有する請求項 7に記載のコ [9] The method according to claim 7, further comprising: 0.73-6.3 parts by mass of silicon in terms of SiO and 0.31-2.1 parts by mass of boron in terms of BO with respect to 100 parts by mass of barium titanate. Listed
[10] 前記チタン酸バリウムを構成するバリウム 1モルに対して、前記マグネシウムを MgO 換算で 0· 017—0. 06モノレ、前記イットリウムを Υ Ο換算で 0· 0015—0. 01モノレ、 前記マンガンを ΜηΟ換算で 0. 01—0. 03モル含有するとともに、 [10] With respect to 1 mol of barium constituting the barium titanate, the magnesium is converted into Mg ······························ 06 In 0.01 to 0.03 mol in terms of ΜηΟ,
前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3—15. 6 質量部含有し、 Containing 6.3-15.6 parts by mass of the niobium in terms of NbO with respect to 100 parts by mass of the barium titanate,
さらに前記チタン酸バリウム 100質量部に対して、珪素を SiO換算で 0. 73-3. 13 質量部およびホウ素を B O換算で 0. 31〜; 1. 04質量部含有し、 Furthermore, with respect to 100 parts by mass of the barium titanate, 0.73-3.13 parts by mass of silicon in terms of SiO and 0.31 to 1.04 parts by mass of boron in terms of B 2 O were obtained,
かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル比が 0· 97 〜0. 98である請求項 7に記載のコンデンサ。 8. The capacitor according to claim 7, wherein a molar ratio of titanium to 1 mol of barium constituting the barium titanate is 0 · 97 to 0.98.
[11] 前記チタン酸バリウム 100質量部に対して、さらに珪素を SiO換算で 0. 73-6. 3 質量部およびリチウムを Li O換算で 0. 3;!〜 2. 1質量部含有する請求項 7に記載の コンデンサ。 [11] Claims further containing 0.773-6.3 parts by mass of SiO in terms of SiO and 0.3;! -2.1 parts by mass of Li in terms of LiO with respect to 100 parts by mass of the barium titanate. The capacitor according to Item 7.
[12] 前記チタン酸バリウムを構成するバリウム 1モルに対して、前記マグネシウムを MgO 換算で 0· 017—0. 06モノレ、前記イットリウムを Υ Ο換算で 0· 0015—0. 01モノレ、 前記マンガンを ΜηΟ換算で 0. 01—0. 03モル含有するとともに、 [12] With respect to 1 mole of barium constituting the barium titanate, the magnesium is converted into Mg ································ 06 In 0.01 to 0.03 mol in terms of ΜηΟ,
前記チタン酸バリウム 100質量部に対して、前記ニオブを Nb O換算で 6. 3—15. 6 質量部含有し、 Containing 6.3-15.6 parts by mass of the niobium in terms of NbO with respect to 100 parts by mass of the barium titanate,
さらに前記チタン酸バリウム 100質量部に対して、珪素を SiO換算で 0. 73-3. 13 質量部およびリチウムを Li O換算で 0. 31-1. 04質量部含有し、 Furthermore, with respect to 100 parts by mass of the barium titanate, 0.73-3.13 parts by mass of silicon in terms of SiO and 0.31-1.04 parts by mass of lithium in terms of Li 2 O are contained,
かつ前記チタン酸バリウムを構成するバリウム 1モルに対するチタンのモル比が 0· 97 〜0. 98である請求項 7に記載のコンデンサ。
8. The capacitor according to claim 7, wherein a molar ratio of titanium to 1 mol of barium constituting the barium titanate is 0 · 97 to 0.98.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200780043818XA CN101541709B (en) | 2006-11-29 | 2007-11-29 | Dielectric ceramic and capacitor |
| US12/475,273 US8107219B2 (en) | 2006-11-29 | 2009-05-29 | Dielectric ceramic and capacitor |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006321797 | 2006-11-29 | ||
| JP2006-321797 | 2006-11-29 | ||
| JP2007-068614 | 2007-03-16 | ||
| JP2007068614A JP5137429B2 (en) | 2006-11-29 | 2007-03-16 | Dielectric porcelain and capacitor |
| JP2007-076140 | 2007-03-23 | ||
| JP2007076138A JP5137430B2 (en) | 2007-03-23 | 2007-03-23 | Dielectric porcelain and capacitor |
| JP2007-076138 | 2007-03-23 | ||
| JP2007076140A JP5137431B2 (en) | 2007-03-23 | 2007-03-23 | Dielectric porcelain and capacitor |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/475,273 Continuation-In-Part US8107219B2 (en) | 2006-11-29 | 2009-05-29 | Dielectric ceramic and capacitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2008066119A1 true WO2008066119A1 (en) | 2008-06-05 |
Family
ID=39467907
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2007/073060 WO2008066119A1 (en) | 2006-11-29 | 2007-11-29 | Dielectric ceramic and capacitor |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2008066119A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010052964A (en) * | 2008-08-27 | 2010-03-11 | Murata Mfg Co Ltd | Dielectric ceramic and method for producing the same, and monolithic ceramic capacitor |
| US8383536B2 (en) * | 2009-07-22 | 2013-02-26 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04349168A (en) * | 1991-05-27 | 1992-12-03 | Tdk Corp | Ceramic dielectric material, laminated ceramic capacitor and method for preventing secular deterioration in ceramic capacitor |
| JPH0612917A (en) * | 1992-06-26 | 1994-01-21 | Teika Corp | Dielectric porcelain and its manufacture |
| JPH06251986A (en) * | 1993-02-25 | 1994-09-09 | Taiyo Yuden Co Ltd | Ceramic capacitor and manufacture thereof |
| JPH06251987A (en) * | 1993-02-25 | 1994-09-09 | Taiyo Yuden Co Ltd | Ceramic capacitor and manufacture thereof |
| JPH08151260A (en) * | 1994-11-28 | 1996-06-11 | Kyocera Corp | Dielectric porcelain composition |
| JP2001114559A (en) * | 1999-10-20 | 2001-04-24 | Rohm Co Ltd | Dielectric composition |
| JP2001302342A (en) * | 2000-04-25 | 2001-10-31 | Toshiba Corp | Dielectric ceramic composition, multilayer ceramic capacitor and method of manufacturing the same |
| JP2005145791A (en) * | 2003-11-19 | 2005-06-09 | Tdk Corp | Electronic components, dielectric porcelain composition, and method for manufacturing the same |
-
2007
- 2007-11-29 WO PCT/JP2007/073060 patent/WO2008066119A1/en active Application Filing
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04349168A (en) * | 1991-05-27 | 1992-12-03 | Tdk Corp | Ceramic dielectric material, laminated ceramic capacitor and method for preventing secular deterioration in ceramic capacitor |
| JPH0612917A (en) * | 1992-06-26 | 1994-01-21 | Teika Corp | Dielectric porcelain and its manufacture |
| JPH06251986A (en) * | 1993-02-25 | 1994-09-09 | Taiyo Yuden Co Ltd | Ceramic capacitor and manufacture thereof |
| JPH06251987A (en) * | 1993-02-25 | 1994-09-09 | Taiyo Yuden Co Ltd | Ceramic capacitor and manufacture thereof |
| JPH08151260A (en) * | 1994-11-28 | 1996-06-11 | Kyocera Corp | Dielectric porcelain composition |
| JP2001114559A (en) * | 1999-10-20 | 2001-04-24 | Rohm Co Ltd | Dielectric composition |
| JP2001302342A (en) * | 2000-04-25 | 2001-10-31 | Toshiba Corp | Dielectric ceramic composition, multilayer ceramic capacitor and method of manufacturing the same |
| JP2005145791A (en) * | 2003-11-19 | 2005-06-09 | Tdk Corp | Electronic components, dielectric porcelain composition, and method for manufacturing the same |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010052964A (en) * | 2008-08-27 | 2010-03-11 | Murata Mfg Co Ltd | Dielectric ceramic and method for producing the same, and monolithic ceramic capacitor |
| US8383536B2 (en) * | 2009-07-22 | 2013-02-26 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5069695B2 (en) | Dielectric porcelain and capacitor | |
| CN101541709B (en) | Dielectric ceramic and capacitor | |
| JP5108779B2 (en) | Dielectric porcelain and capacitor | |
| JP5185924B2 (en) | Dielectric porcelain and capacitor | |
| US8184428B2 (en) | Dielectric ceramic and capacitor | |
| US8107219B2 (en) | Dielectric ceramic and capacitor | |
| JP4931697B2 (en) | Dielectric porcelain and capacitor | |
| WO2008066119A1 (en) | Dielectric ceramic and capacitor | |
| JP5142649B2 (en) | Dielectric porcelain and capacitor | |
| WO2009147893A1 (en) | Dielectric ceramic and capacitor | |
| JP5142666B2 (en) | Dielectric porcelain and capacitor | |
| JP5289239B2 (en) | Dielectric porcelain and capacitor | |
| JP4836509B2 (en) | Dielectric porcelain | |
| JP5137430B2 (en) | Dielectric porcelain and capacitor | |
| JP5137431B2 (en) | Dielectric porcelain and capacitor | |
| JP5142665B2 (en) | Dielectric porcelain and capacitor | |
| JP5142651B2 (en) | Dielectric porcelain and capacitor | |
| WO2023054184A1 (en) | Multilayer ceramic capacitor | |
| JP2013173627A (en) | Dielectric ceramic composition and electronic component | |
| JP2009084062A (en) | Dielectric porcelain and capacitor | |
| JP2009292678A (en) | Dielectric ceramic and capacitor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200780043818.X Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07832775 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 07832775 Country of ref document: EP Kind code of ref document: A1 |