WO2008002000A1 - Procédé pour transformer des contenus de dmb terrestre et passerelle utilisant ce procédé - Google Patents
Procédé pour transformer des contenus de dmb terrestre et passerelle utilisant ce procédé Download PDFInfo
- Publication number
- WO2008002000A1 WO2008002000A1 PCT/KR2007/000494 KR2007000494W WO2008002000A1 WO 2008002000 A1 WO2008002000 A1 WO 2008002000A1 KR 2007000494 W KR2007000494 W KR 2007000494W WO 2008002000 A1 WO2008002000 A1 WO 2008002000A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packet
- contents
- terrestrial dmb
- audio
- stream
- Prior art date
Links
- 230000001131 transforming effect Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 35
- 238000012545 processing Methods 0.000 claims abstract description 36
- 230000005540 biological transmission Effects 0.000 claims abstract description 19
- 238000010586 diagram Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H60/00—Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
- H04H60/76—Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet
- H04H60/81—Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by the transmission system itself
- H04H60/82—Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by the transmission system itself the transmission system being the Internet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/12—Systems in which the television signal is transmitted via one channel or a plurality of parallel channels, the bandwidth of each channel being less than the bandwidth of the television signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/102—Gateways
- H04L65/1023—Media gateways
- H04L65/103—Media gateways in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/65—Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/75—Media network packet handling
- H04L65/765—Media network packet handling intermediate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/236—Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
- H04N21/23608—Remultiplexing multiplex streams, e.g. involving modifying time stamps or remapping the packet identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/238—Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
- H04N21/2381—Adapting the multiplex stream to a specific network, e.g. an Internet Protocol [IP] network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/238—Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
- H04N21/2389—Multiplex stream processing, e.g. multiplex stream encrypting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/61—Network physical structure; Signal processing
- H04N21/6106—Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
- H04N21/6131—Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving transmission via a mobile phone network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/643—Communication protocols
- H04N21/64322—IP
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/643—Communication protocols
- H04N21/6437—Real-time Transport Protocol [RTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/647—Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
- H04N21/64707—Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless for transferring content from a first network to a second network, e.g. between IP and wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/20—Arrangements for broadcast or distribution of identical information via plural systems
- H04H20/24—Arrangements for distribution of identical information via broadcast system and non-broadcast system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H60/00—Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
- H04H60/02—Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
- H04H60/07—Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information characterised by processes or methods for the generation
Definitions
- the present invention relates to a terrestrial digital multimedia broadcasting
- DMB digital mobile broadband
- a gateway employing the same which provides the DMB services through not only a terrestrial DMB private network but also various telecommunication networks efficiently by considering characteristics of various telecommunication networks and formation of the terrestrial DMB contents.
- a terrestrial digital multimedia broadcasting is a digital multimedia broadcasting service providing terrestrial DMB contents, e.g., an audio, a data and multimedia through a terrestrial DMB network when a subscriber is in motion.
- the terrestrial DMB network is a private network having a low transmission rate implemented by private interface technology, e.g., a service transport interface (STI), an ensemble transport interface (ETI) and EN 300-401 coded orthogonal frequency division multiplexing (COFDM).
- a network supporting for the terrestrial DMB is defined as a terrestrial DMB private network.
- the terrestrial DMB private network high-compression coded contents are generated for the terrestrial DMB service, the terrestrial DMB contents can be provided through a channel having low transmission rate.
- the high- compression coded contents provided through the terrestrial DMB private network is defined as terrestrial DMB contents.
- the terrestrial DMB contents are provided through the terrestrial DMB private network.
- the terrestrial DMB service is activated, the terrestrial DMB contents are various. Therefore, request of user who wants to receive the terrestrial DMB contents through the various telecommunication networks as well as the terrestrial DMB private network is increased.
- the conventional transportation method presents IP packetization of the terrestrial DMB contents and transportation of the IP packet through the IP network, abstractly.
- IP Internet protocol
- the conventional transportation method has several problems. First, it does not consider characteristics of various IP networks. In addition, features of multimedia transportation technology through the IP network in which media information and control information separately transported and formation of the terrestrial DMB contents based on a terrestrial DMB standard are overlooked. That is, it is uncertain whether or not transportation of the terrestrial DMB contents through the IP network is possible. Therefore, a system for providing the terrestrial DMB service through the IP network, which considers characteristics of the various telecommunication networks and the formation of the terrestrial DMB contents, is needed.
- a gateway for transforming a terrestrial digital multimedia broadcasting (DMB) contents including: an ensemble transport interface (ETI) demultiplexing unit for dividing the terrestrial DMB contents having ETI frame format into a fast information channel (FIC) and a main service channel (MSC); a session description protocol (SDP) packet processing unit for converting the FIC into a SDP packet; a transmission control protocol/Internet protocol (TCP/IP) packet generating unit for generating a TCP/IP packet based on the SDP packet; a real-time transport protocol (RTP) packet processing unit for converting the MSC into a first RTP packet; a user datagram protocol/Internet protocol (UDP/IP) packet generating unit for generating a UDP/IP packet based on the RTP packet; and an IP output unit for transmitting the TCP/IP packet and the UDP/IP packet through an IP network.
- ETI ensemble transport interface
- FIC fast information channel
- MSC main service channel
- SDP session description protocol
- TCP/IP transmission control protocol
- a method for transforming a terrestrial digital multimedia broadcasting (DMB) contents including the steps of: a) demultiplexing the terrestrial DMB contents having ensemble transport interface (ETI) frame format into a fast information channel (FIC) and a main service channel (MSC); b) converting the FlC into a session description protocol (SDP) packet and generating a transmission control protocol/Internet protocol (TCP/IP) packet based on the SDP packet; c) converting the MSC into an RTP packet and generating a UDP/IP packet based on the RTP packet; and d) transmitting the TCP/IP packet and the UDP/IP packet through an IP network.
- ETI ensemble transport interface
- FEC fast information channel
- MSC main service channel
- SDP session description protocol
- TCP/IP transmission control protocol/Internet protocol
- a terrestrial digital multimedia broadcasting (DMB) contents service system including: an encoding means for encoding a DAB audio source, a DAB data source and a multimedia source; an ensemble multiplexing means for multiplexing the encoded DAB audio, the encoded DAB data and the encoded multimedia into a terrestrial DMB contents based on a ETI standard; a gateway for transforming the terrestrial DMB contents into packets having a IP format to access IP networks or transporting the terrestrial DMB contents to a coded orthogonal frequency division multiplexing (COFDM) encoding means to access a terrestrial DMB private network; and the COFDM encoding means for encoding the terrestrial DMB contents based on a COFDM and transmitting the encoded terrestrial DMB contents, wherein the gateway demultiplexes the terrestrial DMB contents based on the ETI frame format into a FlC and a MSC, converts the FlC into a packet having the IP format based on
- COFDM orthogonal frequency division multiplexing
- the present invention can provide a terrestrial DMB services to a user through not only a terrestrial DMB private network but also various telecommunication networks efficiently by considering characteristics of various telecommunication networks and formation of the terrestrial DMB contents.
- Fig. 1 is a block diagram illustrating a conventional terrestrial digital multimedia broadcasting (DMB) service system
- Fig. 2 is a block diagram illustrating a gateway in accordance with an embodiment of the present invention
- FIG. 3 is a detailed block diagram illustrating a first contents transformer of Fig. 2;
- FIG. 4 is a detailed block diagram illustrating a second contents transformer of Fig. 2;
- FIG. 5 is a detailed block diagram illustrating a third contents transformer of Fig. 2;
- FIG. 6 is a flowchart illustrating a method for transforming the terrestrial DMB contents in accordance with an embodiment of the present invention
- FIG. 7 is a detailed flowchart illustrating a method for transforming a fast information channel (FIC) of Fig. 6;
- FIG. 8 is a detailed flowchart illustrating a method for transforming a main service channel (MSC) of Fig. 6 in accordance with a first embodiment of the present invention
- FIG. 9 is a detailed flowchart illustrating a method for transforming the MSC in accordance with a second embodiment of the present invention.
- Fig. 10 is a detailed flowchart illustrating a method for transforming the MSC in accordance with a third embodiment of the present invention.
- Fig. 1 is a block diagram illustrating a conventional terrestrial digital multimedia broadcasting (DMB) service system.
- DMB digital multimedia broadcasting
- the terrestrial DMB service system of the present invention includes a digital audio broadcasting (DAB) audio encoder 100, a DAB data encoder 200, a multimedia encoder 300, an ensemble multiplexer 400, a gateway 500 and a coded orthogonal frequency division multiplexing (COFDM) encoder 600.
- DAB digital audio broadcasting
- COFDM coded orthogonal frequency division multiplexing
- the DAB audio encoder 100, the DAB data encoder 200 and the multimedia encoder 300 encode a DAB audio source, a DAB data source and a multimedia source, respectively, based on a digital multimedia broadcasting (DMB) standard to thereby generate coded DAB audio, coded DAB data and coded multimedia.
- DMB digital multimedia broadcasting
- the ensemble multiplexer 400 multiplexes the coded DAB audio encoded in the
- the DAB audio encoder 100, the coded DAB data encoded in the DAB data encoder 200 and the coded multimedia encoded in the multimedia encoder 300 into ensemble transport interface (ETI) frames and outputs the ETI frame to the gateway 500.
- the ETI frame includes a main service channel (MSC), a fast information cannel (FIC) and an ETI header.
- the MSC includes terrestrial DMB contents information, i.e. DAB audio information, DAB data information and multimedia information.
- the FIC includes control information, i.e. construction information and service information of the terrestrial DMB contents, for controlling the terrestrial DMB contents.
- the ETI header includes general construction information of the ETI frame. That is, the terrestrial DMB contents are generated based on a format of the ETI frame including the MSC, the FIC and the ETI header based on the terrestrial DMB standard.
- the gateway 500 transmits the terrestrial DMB contents generated by a format of the ETI frame to the COFDM encoder 600 or transforms the terrestrial DMB contents into packets having an Internet protocol (IP) format based on a network accessed by the terrestrial DMB service system.
- IP Internet protocol
- the gateway 500 bypasses the terrestrial DMB contents to the COFDM encoder 600.
- the COFDM encoder 600 encodes the terrestrial DMB contents based on a COFDM format and transmits the encoded terrestrial DMB contents through the DMB private network.
- the gateway 500 transforms the terrestrial DMB contents generated based on a format of the ETI frame into a format of IP in the various telecommunication networks. Particular diagram of the gateway will be described in detail referring to Figs. 2 to 5.
- the terrestrial DMB service system provides the terrestrial DMB contents through the terrestrial DMB private network and various telecommunication networks by adding the terrestrial DMB contents transforming gateway 500.
- FIG. 2 is a block diagram illustrating the gateway in accordance with an embodiment of the present invention.
- the gateway 500 bypasses the terrestrial DMB contents generated by the ETI frame format. Therefore, a user terminal, i.e., a terrestrial DMB private terminal, accessing the terrestrial DMB private network can be served by a conventional terrestrial DMB service system without the added gateway 500.
- the gateway 500 includes a plurality of contents transformers, in order to transform the terrestrial DMB contents based on characteristics of the various telecommunication networks.
- the various telecommunication networks may be a wired Internet, a wireless Internet, e.g., a wireless LAN, a wibro, a mobile telecommunication network, e.g., a code division multiple access (CDMA) and a global system for mobile communications (GSM).
- the wired Internet is the most stable and has high transmission bandwidth
- the mobile telecommunication network is the most unstable and has low transmission bandwidth.
- the gateway 500 must be designed to support each telecommunication network for transforming the terrestrial DMB contents efficiently considering the characteristics of telecommunication networks described above.
- the gateway 500 includes three contents transformers, i.e., a first contents transformer 210, second contents transformer 220 and third contents transformer 230.
- the first contents transformer 210, second contents transformer 220 and the third contents transformer 230 are described corresponding to the wired Internet, the wireless Internet and the mobile telecommunication network, respectively.
- FIG. 3 is a detailed block diagram illustrating a first contents transformer of the Fig.
- the first contents transformer 210 include a E ⁇ demultiplexing unit 301, a session description protocol (SDP) packet processing unit 302, a transmission control protocol/Internet protocol (TCP/IP) generating unit 303, a realtime transport protocol (RTP) packet processing unit 304, a user datagram protocol/ Internet protocol (UDP/IP) generating unit 305, and an IP output unit 306.
- SDP session description protocol
- TCP/IP transmission control protocol/Internet protocol
- RTP realtime transport protocol
- UDP/IP user datagram protocol/ Internet protocol
- the first contents transformer is designed for supporting the wired Internet.
- the terrestrial DMB contents having an E ⁇ frame format are inputted to the first contents transformer 210.
- the ETI frame includes a MSC having information of the terrestrial DMB contents, a FIC having control information of the terrestrial DMB contents and an E ⁇ header having construction information of the ETI frame.
- the ETI demultiplexing unit 301 analyzes the ETI header of the inputted ETI frame, demultiplexes the ETI frame into the MSC and the FIC, and outputs the FIC into the SDP packet processing unit 302 and the MSC into the RTP packet processing unit 304, respectively.
- the SDP packet processing unit 302 forms a SDP packet based on the inputted FIC.
- the SDP packet is generated based on the SDP which is a protocol describing session in Internet multimedia transmission technology.
- the SDP packet includes session information of the terrestrial DMB contents, e.g., a name and a purpose of a session, creator information of the session, media information for the session and information needed to transmit media e.g., address, port, format. That is, the SDP packet includes the session information as well as the control information of the terrestrial DMB contents which is included in the FIC.
- the session information for the SDP packet is inputted by a user terminal and saved in a predetermined database. Therefore, the SDP packet is generated based on the session information and the control information of the FIC.
- the TCP/IP generating unit 303 receives the SDP packet inputted from the SDP packet processing unit 302, generates the TCP/IP packet and outputs the TCP/IP packet into the IP output unit 306 for transmitting the SDP packet by IP format. Then, the IP output unit 306 transmits the TCP/IP packet through the wired Internet. That is, the SDP and the TCP/IP are used for transforming the FlC into the packet having the IP format.
- the RTP packet processing unit 304 receives the MSC and forms the
- the RTP packet is generated based on the RTP which is a protocol transmitting media in Internet multimedia transmission technology.
- the RTP packet includes information of the terrestrial DMB contents, e.g., DAB audio information, DAB data information, multimedia information.
- the RTP packet is generated by considering transmission characteristics of the terrestrial DMB contents. That is, size and payload type information of the RTP packet are setup for tra nsmission of the terrestrial DMB contents.
- the size of the RTP packet is defined by on the basis of 8 bytes as the same as the terrestrial DMB contents, and a payload type of the RTP packet may be decided as the terrestrial DMB contents.
- the UDP/IP generating unit 305 receives the RTP packet inputted from the RTP packet processing unit 304, generates the UDP/IP packet and outputs the UDP/IP packet into the IP output unit 306 for transmitting the RTP packet by IP format. Then, the IP output unit 306 transmits the UDP/IP packet through the wired Internet. That is, the RTP and the UDP/IP are used for transforming the MSC into the packet having the IP format.
- the terrestrial DMB contents are divided by media information and the control information of the terrestrial DMB contents.
- the media information of the terrestrial DMB contents is transformed by the RTP which is a protocol for transmitting media in the Internet multimedia transmission technology
- the control information of the terrestrial DMB contents is transformed by the SDP which is a protocol describing session in the Internet multimedia transmission technology. Therefore, the terrestrial DMB service system can be realized suitable for the characteristics of the Internet multimedia transmission technology, the media information and the control information of the terrestrial DMB contents are separately transmitted.
- FIG. 4 is a detailed block diagram illustrating a second contents transformer of Fig.
- the second contents transformer 220 includes an ETI demultiplexing unit
- the second contents transformer is designed for supporting wireless Internet.
- TCP/IP generating unit 403, the RTP packet processing unit 406, the UDP/IP generating unit 407, and the IP output unit 408 perform the same functions as the ETI demultiplexing unit 301, the SDP packet processing unit 302, the TCP/IP generating unit 303, the RTP packet processing unit 304, the UDP/IP generating unit 305, and the IP output unit 306 of Fig. 3, respectively.
- the second contents transformer 220 Since the second contents transformer 220 is corresponding to the wireless Internet which is unstable and has narrower bandwidth than the wired Internet, an additional decoding procedure of the MSC is needed for improving transmission efficiency.
- the second contents transformer 220 divides the MSC into sub channels, i.e., a DAB audio stream, a DAB data stream and a multimedia stream and transforms each of the sub channels.
- the MSC demultiplexing unit 404 receives the MSC from the ETI demultiplexing unit 401 and demultiplexes the MSC into the DAB audio stream, the DAB data stream and the multimedia stream.
- the RTP packet processing unit 406 generates an RTP packet based on the DAB audio stream and the DAB data stream.
- the UDP/IP generating unit 407 generates a UDP/IP packet based on the RTP packet and output the UDP/IP packet to the IP output unit 408.
- the multimedia stream is outer-decoded in the outer decoding unit 405.
- the outer-decoding is the deletion procedure of unnecessary bytes in the multimedia stream. Since the multimedia stream includes additional bytes by an outer-coding, the additional bytes do not necessary for IP transmission.
- the outer decoding unit 405 receives the MPEG-2 multimedia TS of which size is increased into 204 bytes by the outer-coding and generates a 188-byte MPEG-2 multimedia TS by the outer- decoding.
- the RTP packet processing unit 406 generates the RTP packet based on the outer- decoded multimedia stream.
- the UDP/IP generating unit 407 generates the UDP/IP packet based on the RTP packet, and output the UDP/IP packet into the IP output unit 408.
- the second contents transformer 220 divides the MSC into sub channels, converts and transmits each of the sub channels. Especially, the second contents transformer 220 decreases the size of the multimedia TS by using additional outer-decoding. Therefore, the second contents transformer 220 is needed for wireless Internet which is unstable and has narrower bandwidth than the wired Internet.
- FIG. 5 is a detailed block diagram illustrating a third contents transformer of Fig. 2.
- the third contents transformer 220 include a ETI demultiplexing unit
- the third contents transformer is designed for supporting a mobile telecommunication network.
- TCP/IP generating unit 503, the RTP packet processing unit 509, the UDP/IP generating unit 510, and the IP output unit 511 perform the same functions as the ETI demultiplexing units 301 and 401, the SDP packet processing units 302 and 402, the TCP/IP generating units 303 and 403, the RTP packet processing units 304 and 406, the UDP/IP generating units 305 and 407, and the IP output units 306 and 408 shown in Figs. 3 and 4, respectively.
- the MSC demultiplexing unit 504 and the outer coding unit 505 perform the same functions as the MSC demultiplexing unit 404 and the outer coding unit 405 of Fig. 4, respectively.
- the third contents transformer 230 Since the third contents transformer 230 is corresponding to the mobile telecommunication network which is unstable and has narrower bandwidth than the wired Internet and the wireless Internet, an additional decoding procedure of the multimedia outputted from the outer decoding unit 505 is needed.
- the third contents transformer 230 divides the multimedia stream into an audio stream and a video stream and transforms them.
- the multimedia stream analyzing/demultiplexing unit 506 receives the multimedia transport stream from the outer decoding unit 505, analyzes the multimedia stream and demultiplexes the multimedia stream into a video transport stream (TS) and an audio TS.
- TS video transport stream
- the video ES generating unit 507 receives the video TS from the multimedia stream analyzing/demultiplexing unit 506 and generates a video ES by demultiplexing and de- packetization of the video TS.
- the RTP packet processing unit 509 receives the video ES and generates an RTP packet based on the video ES.
- the UDP/IP generating unit 510 receives the RTP packet, generates the UDP/IP packet based on the RTP packet and outputs the UDP/IP packet into the IP output unit 511.
- the audio ES generating unit 508 receives the audio TS from the multimedia stream analyzing/demultiplexing unit 506 and generates an audio ES by demultiplexing and depacketization of the audio TS.
- the RTP packet processing unit 509 receives the audio ES and generates an RTP packet based on the audio ES.
- the UDP/IP generating unit 510 receives the RTP packet, generates the UDP/IP packet based on the RTP packet and outputs the UDP/IP packet into the IP output unit 511.
- the third contents transformer 230 divides the multimedia stream into the video TS and the audio TS, and generates the video ES and the audio ES by performing additional decoding of the video TS and the audio TS to thereby decrease data size. Therefore, the third contents transformer 230 is suitable to support themobile telecommunication network which is unstable and has narrower bandwidth than the wireless Internet.
- Fig. 6 is a flowchart illustrating a method for transforming the terrestrial DMB contents in accordance with an embodiment of the present invention.
- the terrestrial DMB contents having an ETI frame format are demultiplexed into a FIC and a MSC at step S601.
- the step S601 is performed identically in transforming the terrestrial DMB contents for all types of networks. That is, the terrestrial DMB contents are divided into the FIC (control information) and the MSC (media information) according to the characteristics of the Internet multimedia transportation technology.
- step S602 the FIC is converted into a packet of IP format to access telecommunication network based on the IP.
- the step S602 is performed identically in transforming the terrestrial DMB contents for all types of networks.
- the FIC conversion procedure is described in detail referring to Fig. 7.
- the MSC is converted into a packet of IP format to access telecommunication network based on the IP.
- the MSC conversion procedure is performed differently in transforming the terrestrial DMB contents for each type of networks.
- three MSC conversion procedures are described corresponding to the wired Internet, the wireless Internet and the mobile telecommunication network. Below, the three MSC conversion procedures are described in detail referring to Figs. 8 to 10.
- step S604 the packet of the IP format converted at the steps S602 and S603 is transmitted into the IP network. Then, transformation of the terrestrial DMB contents is terminated.
- FIG. 7 is a detailed flowchart illustrating a method for transforming a fast information channel (FIC) of Fig. 6.
- control information of the terrestrial DMB contents is extracted in the FIC at step S701.
- a SDP packet is generated based on the extracted control information and predetermined session information from a user terminal, because session information needed for the SDP packet includes not only the FIC but also additional information.
- a TCP/IP packet is generated by using the SDP packet at step S703. That is, the FIC conversion procedure S602 of Fig. 6 is terminated.
- Fig. 8 is a detailed flowchart illustrating a method for transforming a main service channel (MSC) of Fig. 6 in accordance with a first embodiment of the present invention.
- MSC main service channel
- the RTP packet is produced based on the MSC at step S 801.
- the size of the RTP packet is defined on the basis of 8 bytes as the same as the terrestrial DMB contents, and the payload type of the RTP packet may be decided by a type of the terrestrial DMB contents.
- the UDP/IP packet is generated based on the RTP packet. That is, the
- Fig. 9 is a detailed flowchart illustrating a method for transforming the MSC in accordance with a second embodiment of the present invention.
- the MSC is demultipexed into a DAB audio stream, a DAB data stream and a multimedia stream at step S 803. Then, the multimedia stream is outer-decoded at step S804.
- the RTP packet is produced based on the demultiplexed DAB audio steam and the demultiplexed DAB video stream at step S 803 and the outer-decoded multimedia stream at step S804.
- the RTP packet is generated by considering the characteristics of the terrestrial DMB contents transportation technology.
- the UDP/IP packet is generated based on the RTP packet. That is, the
- Fig. 10 is a detailed flowchart illustrating a method for transforming the MSC in accordance with a third embodiment of the present invention.
- the MSC is demultipexed into a DAB audio stream, a DAB data stream and a multimedia stream at step S 807 as the same as step S 803. Then, the multimedia stream is outer-decoded at step S808 as the same as step S804.
- the outer-decoded multimedia stream is demultiplexed into a video transport stream (TS) and an audio transport stream (TS). Then, a video elementary stream (ES) and an audio elementary stream (ES) are generated based on the video TS and the audio TS at step S810.
- TS video transport stream
- TS audio transport stream
- ES video elementary stream
- ES audio elementary stream
- the RTP packet is produced based on the demultiplexed DAB audio steam and the demultiplexed DAB video stream demultiplexed at step S807, the video ES and the audio ES generated at step S810.
- the UDP/IP packet is generated based on the RTP packet. That is, the MSC conversion procedure S603 needed to access the mobile telecommunication network is terminated.
- the MSC including the media information is decoded in accordance with the characteristics of network, i.e., stability and transportation bandwidth, differently. Therefore, the terrestrial DMB contents can be transported to a variety of IP networks efficiently.
- the above described method according to the present invention can be embodied as a program and be stored on a computer readable recording medium.
- the computer readable recording medium is any data storage device that can store data which can be read by the computer system.
- the computer readable recording medium includes a read-only memory (ROM), a random-access memory (RAM), a CD-ROM, a floppy disk, a hard disk and an optical magnetic disk.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Communication Control (AREA)
Abstract
La présente invention concerne une passerelle pour transformer des contenus de diffusion multimédia numérique (DMB) terrestre. Cette passerelle comprend une unité de démultiplexage avec interface de transport d'ensemble (ETI) pour diviser les contenus de DMB présentant un format de trame ETI en un canal d'information rapide (FIC) et un canal de service principal (MSC); une unité de traitement de paquet de protocole de description de session (SDP) pour convertir le FIC en un paquet SDP; une unité de génération de paquet TCP/IP pour générer un paquet TCP/IP d'après le paquet SDP; une unité de traitement de paquet de protocole de transport en temps réel (RTP) pour convertir le MSC en un premier paquet RTP; une unité de génération de paquet UDP/IP pour générer un paquet UDP/IP d'après le paquet RTP; et une unité de sortie IP pour transmettre le paquet TCP/IP et le paquet UDP/IP sur un réseau IP.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07708652A EP2039155A4 (fr) | 2006-06-30 | 2007-01-29 | Procédé pour transformer des contenus de dmb terrestre et passerelle utilisant ce procédé |
CN2007800323491A CN101513054B (zh) | 2006-06-30 | 2007-01-29 | 用于变换地面数字多媒体广播内容的方法和采用该方法的网关 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060061225 | 2006-06-30 | ||
KR10-2006-0061225 | 2006-06-30 | ||
KR1020060094380A KR100826669B1 (ko) | 2006-06-30 | 2006-09-27 | 지상파 dmb 콘텐츠 변환 방법 및 게이트웨이와 지상파 dmb 송신 시스템 및 방법 |
KR10-2006-0094380 | 2006-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008002000A1 true WO2008002000A1 (fr) | 2008-01-03 |
Family
ID=38845739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/000494 WO2008002000A1 (fr) | 2006-06-30 | 2007-01-29 | Procédé pour transformer des contenus de dmb terrestre et passerelle utilisant ce procédé |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2039155A4 (fr) |
KR (1) | KR100826669B1 (fr) |
CN (1) | CN101513054B (fr) |
WO (1) | WO2008002000A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009100246A3 (fr) * | 2008-02-05 | 2009-12-30 | Stratosaudio, Inc. | Systèmes, procédés et dispositifs pour explorer des radiodiffusions |
EP2146452A3 (fr) * | 2008-07-14 | 2012-09-12 | Electronics and Telecommunications Research Institute | Procédé destiné à fournir un service DMB par région et dispositif et procédé pour recevoir un service de diffusion par région. |
RU2495052C2 (ru) * | 2008-07-07 | 2013-10-10 | Акцо Нобель Н.В. | Упакованная композиция, содержащая соединение, подверженное экзотермическому разложению |
US9143833B2 (en) | 2007-12-14 | 2015-09-22 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US9355405B2 (en) | 2008-02-05 | 2016-05-31 | Stratosaudio, Inc. | System and method for advertisement transmission and display |
US10439837B2 (en) | 2003-03-21 | 2019-10-08 | Stratosaudio, Inc. | Broadcast response method and system |
US10491680B2 (en) | 2007-12-14 | 2019-11-26 | Stratosaudio, Inc. | Systems and methods for outputting updated media |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100981953B1 (ko) * | 2009-01-13 | 2010-09-13 | 주식회사 씨. 아이. 테크 | 광대역 이더넷 데이터를 송수신하기 위한 데이터 송수신장치 및 데이터 송수신방법 |
KR101887549B1 (ko) * | 2016-12-29 | 2018-08-13 | 주식회사 문화방송 | 실시간 데이터와 비실시간 데이터의 채널분리 송수신을 통한 위성항법보정 서비스 방법 및 이를 지원하는 시스템 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1009114A2 (fr) * | 1998-12-10 | 2000-06-14 | Ensigma Limited | Récepteur pour la réception de transmissions de radiodiffusion numérique |
WO2003045064A1 (fr) * | 2001-11-20 | 2003-05-30 | Nokia Corporation | Reseaux de telecommunications mobiles et services de radiodiffusion numerique |
WO2006001600A1 (fr) * | 2004-06-29 | 2006-01-05 | Electronics And Telecommunications Research Institute | Appareil et procede de terminal a service integre de telecommunication de diffusion multimedia numerique/mobile pour liaison de reseau entre une telecommunication de diffusion multimedia numerique et mobile |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1305276C (zh) * | 2004-01-15 | 2007-03-14 | 中兴通讯股份有限公司 | 一种快速处理实时媒体流数据包的方法及其系统 |
KR100600733B1 (ko) * | 2004-02-19 | 2006-07-14 | 엘지전자 주식회사 | 동영상 스트리밍 홈 네트워크 시스템 및 그 동작방법 |
KR100626665B1 (ko) * | 2004-08-03 | 2006-09-25 | 한국전자통신연구원 | 아이피 기반의 디지털 멀티미디어 방송 데이터 변환 장치및 그 방법과 그를 이용한 디지털 멀티미디어 방송 수신시스템 |
FR2878397A1 (fr) * | 2004-11-25 | 2006-05-26 | Thomson Licensing Sa | Appareil et methode de distribution sur un reseau local de services diffuses |
-
2006
- 2006-09-27 KR KR1020060094380A patent/KR100826669B1/ko not_active Expired - Fee Related
-
2007
- 2007-01-29 CN CN2007800323491A patent/CN101513054B/zh not_active Expired - Fee Related
- 2007-01-29 WO PCT/KR2007/000494 patent/WO2008002000A1/fr active Application Filing
- 2007-01-29 EP EP07708652A patent/EP2039155A4/fr not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1009114A2 (fr) * | 1998-12-10 | 2000-06-14 | Ensigma Limited | Récepteur pour la réception de transmissions de radiodiffusion numérique |
WO2003045064A1 (fr) * | 2001-11-20 | 2003-05-30 | Nokia Corporation | Reseaux de telecommunications mobiles et services de radiodiffusion numerique |
WO2006001600A1 (fr) * | 2004-06-29 | 2006-01-05 | Electronics And Telecommunications Research Institute | Appareil et procede de terminal a service integre de telecommunication de diffusion multimedia numerique/mobile pour liaison de reseau entre une telecommunication de diffusion multimedia numerique et mobile |
Non-Patent Citations (1)
Title |
---|
See also references of EP2039155A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10439837B2 (en) | 2003-03-21 | 2019-10-08 | Stratosaudio, Inc. | Broadcast response method and system |
US11265184B2 (en) | 2003-03-21 | 2022-03-01 | Stratosaudio, Inc. | Broadcast response method and system |
US11882335B2 (en) | 2007-12-14 | 2024-01-23 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US11778274B2 (en) | 2007-12-14 | 2023-10-03 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US9143833B2 (en) | 2007-12-14 | 2015-09-22 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US11252238B2 (en) | 2007-12-14 | 2022-02-15 | Stratosaudio, Inc. | Systems and methods for outputting updated media |
US10979770B2 (en) | 2007-12-14 | 2021-04-13 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US9549220B2 (en) | 2007-12-14 | 2017-01-17 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US10524009B2 (en) | 2007-12-14 | 2019-12-31 | Stratosaudio, Inc. | Systems and methods for scheduling interactive media and events |
US10491680B2 (en) | 2007-12-14 | 2019-11-26 | Stratosaudio, Inc. | Systems and methods for outputting updated media |
US9294806B2 (en) | 2008-02-05 | 2016-03-22 | Stratosaudio, Inc. | Systems, methods, and devices for scanning broadcasts |
US10423981B2 (en) | 2008-02-05 | 2019-09-24 | Stratosaudio, Inc. | System and method for advertisement transmission and display |
US10469888B2 (en) | 2008-02-05 | 2019-11-05 | Stratosaudio, Inc. | Systems, methods, and devices for scanning broadcasts |
US9953344B2 (en) | 2008-02-05 | 2018-04-24 | Stratosaudio, Inc. | System and method for advertisement transmission and display |
US9584843B2 (en) | 2008-02-05 | 2017-02-28 | Stratosaudio, Inc. | Systems, methods, and devices for scanning broadcasts |
US9355405B2 (en) | 2008-02-05 | 2016-05-31 | Stratosaudio, Inc. | System and method for advertisement transmission and display |
WO2009100246A3 (fr) * | 2008-02-05 | 2009-12-30 | Stratosaudio, Inc. | Systèmes, procédés et dispositifs pour explorer des radiodiffusions |
US11257118B2 (en) | 2008-02-05 | 2022-02-22 | Stratosaudio, Inc. | System and method for advertisement transmission and display |
US8875188B2 (en) | 2008-02-05 | 2014-10-28 | Stratosaudio, Inc. | Systems, methods, and devices for scanning broadcasts |
RU2495052C2 (ru) * | 2008-07-07 | 2013-10-10 | Акцо Нобель Н.В. | Упакованная композиция, содержащая соединение, подверженное экзотермическому разложению |
EP2146452A3 (fr) * | 2008-07-14 | 2012-09-12 | Electronics and Telecommunications Research Institute | Procédé destiné à fournir un service DMB par région et dispositif et procédé pour recevoir un service de diffusion par région. |
Also Published As
Publication number | Publication date |
---|---|
EP2039155A1 (fr) | 2009-03-25 |
CN101513054A (zh) | 2009-08-19 |
EP2039155A4 (fr) | 2010-11-17 |
KR20080003162A (ko) | 2008-01-07 |
CN101513054B (zh) | 2011-04-20 |
KR100826669B1 (ko) | 2008-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008002000A1 (fr) | Procédé pour transformer des contenus de dmb terrestre et passerelle utilisant ce procédé | |
US10911510B2 (en) | Apparatus and method for transmitting multimedia data in a broadcast system | |
CN101517553B (zh) | 用于对内容进行包化以经由网络传输的方法和设备 | |
US7313236B2 (en) | Methods and apparatus for secure and adaptive delivery of multimedia content | |
EP1715692A1 (fr) | Procede , dispositif et systeme de codage, de diffusion et de reception de contenu, et programme | |
US8054969B2 (en) | Transmission of a digital message interspersed throughout a compressed information signal | |
KR20170082064A (ko) | 방송 통신 융합망의 하이브리드 서비스를 위한 방송 서비스 제공 장치 및 이를 이용한 방법 | |
US12238370B2 (en) | Determination of availability of chunks of data for network streaming media data | |
KR100649399B1 (ko) | 아이피를 통해 디지털 방송 서비스를 제공하는 방법 | |
JP2008092214A (ja) | 送信機 | |
Westerlund et al. | RTP Payload Format for G. 719 | |
WO2024215363A1 (fr) | Extension d'en-tête de protocole de transport en temps réel pour mesure de retard dans la bande | |
Iyer et al. | Entropy based variable rate compression for low-bandwidth multi-media streams | |
KR100739308B1 (ko) | 비디오 스트림의 알티피 패킷화 방법 | |
Hatanaka et al. | RTP Payload Format for the Adaptive TRansform Acoustic Coding (ATRAC) Family | |
Hellwig et al. | Internet Engineering Task Force (IETF) X. Duan Request for Comments: 5993 S. Wang Category: Standards Track China Mobile Communications Corporation | |
Duan et al. | RTP Payload Format for Global System for Mobile Communications Half Rate (GSM-HR) | |
Westerlund et al. | RFC 5404: RTP Payload Format for G. 719 | |
Acher et al. | Digital broadcast networks supporting split-path communication for mobile devices | |
Lindsay et al. | RTP Payload Format for Standard apt-X and Enhanced apt-X Codecs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780032349.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07708652 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007708652 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |