[go: up one dir, main page]

WO2008035360A2 - Novel crystalline forms of candesartan cilexetil, candesartan, tritylated candesartan and tritylated candesartan cilexetil - Google Patents

Novel crystalline forms of candesartan cilexetil, candesartan, tritylated candesartan and tritylated candesartan cilexetil Download PDF

Info

Publication number
WO2008035360A2
WO2008035360A2 PCT/IN2007/000236 IN2007000236W WO2008035360A2 WO 2008035360 A2 WO2008035360 A2 WO 2008035360A2 IN 2007000236 W IN2007000236 W IN 2007000236W WO 2008035360 A2 WO2008035360 A2 WO 2008035360A2
Authority
WO
WIPO (PCT)
Prior art keywords
candesartan
methyl
novel crystalline
tritylated
candesartan cilexetil
Prior art date
Application number
PCT/IN2007/000236
Other languages
French (fr)
Other versions
WO2008035360A3 (en
Inventor
Pandurang Balwant Deshpande
Parven Kumar Luthra
Dhiraj Mohansinh Rathod
Lalitkumar Keshavlal Katariya
Himanshu Manojkumar Mehta
Original Assignee
Alembic Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alembic Limited filed Critical Alembic Limited
Publication of WO2008035360A2 publication Critical patent/WO2008035360A2/en
Publication of WO2008035360A3 publication Critical patent/WO2008035360A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to novel crystalline forms of Candesartan cilexetil and intermediate thereof. Particularly, the present invention relates to two novel crystalline forms of candesartan cilexetil which are designated as form G and form H and a novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil and process for their preparation.
  • Candesartan cilexetil is 1-[[(cyclohexyloxy)carbonyl]oxy]ethyl 2-ethoxy-1 -[[2-(IH-tetazole-5-yl)[1 , 1 '-biphenyl-4-yl]methyl]-IH-benzimidazole-7- carboxylate. Its molecular formula is 0 33 Ha 4 NeO 6 and mol wt is 610.66. Candesartan cilexetil is represented by structural formula (I).
  • Candesartan cilexteil is an ester prodrug of 2-ethoxy-1-[[2-(IH-tetrazole-5-yl)[1 ,1'- biphenyl-4-yl]methyl]-1 H benzimidazole-7-carboxylic acid (candesartan), known as a potent Angiotensin Il receptor antagonist. It is useful in the treatment of cardiovascular complaints such as hypertension and heart failure.
  • Candesartan cilexetil is a white to off-white powder and is sparingly soluble in water and in methanol. It is marketed by AstraZeneca under tradename ATACAND ® .
  • 5,196,444 relates to crystal form of Candesartan Cilexetil i.e. C-type crystal (form I) and it describes a process of preparation of Candesartan cilexetil in which it is formed by reacting 2-ethoxy-1-[[2'-(N-triphenyImethyltetrazol-5-yl)biphenyl -4-yl]methyl]benzimidazole-7-carboxylic acid in dimethylformamide with cyclohexyl- 1-iodoethyl carbonate to form cilexetil trityl candesartan and its subsequent deprotection with a methanolic hydrochloric acid gives candesartan cilexetil in 47% yield after column chromatography.
  • the yield of C-type crystal obtained by this process is very low.
  • the purification of final product by chromatography is commercially not suitable and is cumbersome at an industrial scale.
  • Candesartan cilexetil such as form I and form Il and an amorphous form.
  • candesartan cilexetil is heat sensitive and therefore grinding causes unwanted degradation and loss in purity.
  • WO2004085426 discloses 1 , 4-dioxane solvate and two crystalline forms of candesartan cilexetil.
  • WO2005077941 describes a process for the preparation of polymorphic forms of Candesartan cilexetil i.e. form-Ill, form-IV, form-V, form-VI, form-VII, form-VIII, form- IX, form-X, form-XI, form-XIII, form-XIV, form-XIV-1 , form-XV, form-XVI, form-XVII, form-VIII, form-XIX, form-XX, form-XXI, form-XXII or XXIII, having less than about 5% by weight of other polymorphic forms (form-l).
  • These forms are hydrates and solvates of candesartan cilexetil.
  • WO2005123721 A1 describes a process for the preparation of two crystalline forms i.e. form A, form B and an amorphous form. The process disclosed hereinabove are tedious, time consuming and operationally difficult at industrial scale.
  • WO2006048237 A1 describes a process for the preparation of form 5, form 6, form 7, form 8 and amorphous form. These forms are prepared by dissolving candesartan cilexetil in a chlorinated solvent, optionally concentrate thus obtain solution then liquid hydrocarbon is added to the solution to precipitate out these forms.
  • a primary object of the present invention is to provide novel crystalline forms of Candesartan cilexetil i.e. form G and form H.
  • Another object of the present invention is to provide a process for the preparation novel crystalline forms of Candesartan cilexetil i.e. form G and form H, which is simple and easy to handle at an industrial scale and cost effective.
  • Another object of the present invention is to provide a process for the preparing candesartan form G comprising steps of i) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution ii) cooling the said solution at O 0 C to 5 0 C
  • Yet another object of the present invention is to provide a process for the preparing candesartan form H comprising a step of heating candesartan cilexetil form G at 75°C under reduced pressure.
  • a further object of the present invention is to provide novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil.
  • An aspect of the present invention is to provide novel crystalline forms of Candesartan cilexetil i.e. form G and form H.
  • Another aspect of the present invention is to provide a process for the preparing candesartan form G comprising steps of iii) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution iv) cooling the said solution at 0 0 C to 5°C
  • Yet another aspect of the present invention is to provide a process for the preparing candesartan form H comprising a step of heating candesartan cilexetil form G at 75°C under reduced pressure.
  • a further aspect of the present invention is to provide novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil.
  • Figure-1 is an X-ray powder diffraction pattern of candesartan cilexetil form
  • Figure-2 is an X-ray powder diffraction pattern of candesartan cilexetil form
  • Figure-3 is an X-ray powder diffraction pattern of novel crystalline form of candesartan
  • Figure-4 is an X-ray powder diffraction pattern of novel crystalline form of tritylated candesartan
  • Figure-5 is an X-ray powder diffraction pattern of novel crystalline form of tritylated candesartan cilexetil
  • a novel crystalline form of Candesartan cilexetil designated as form G, characterized by an X-ray powder diffraction spectrum having peaks at about 6.1 , 7.2, 9.1 , 10.9, 11.9, 12.6, 13.1 , 16.4, 20.0, 20.8 and 23.3 ⁇ 0.2 degree two-theta.
  • Figure-1 depicts the X-ray powder diffraction spectrum of candesartan cilexetil form G.
  • a process for preparation of the form G of candesartan cilexetil comprising steps of i) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution ii) cooling the said solution at 0 0 C to 5°C
  • a novel crystalline form of Candesartan cilexetil designated as form H, characterized by an X-ray powder diffraction spectrum having peaks at about 9.2, 12.0, 13.0, 15.3, 16.1, 16.7, 17.2, 20.7, 21.0, 25.7 and 32.8 ⁇ 0.2 degree two-theta.
  • Figure-2 depicts the X-ray powder diffraction spectrum of candesartan cilexetil form H.
  • a process for preparation of the form H of candesartan cilexetil comprising a step of heating candesartan cilexetil form G at 75 0 C under reduced pressure.
  • the present invention is to provide a novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil.
  • FIG. 1 One aspect of the present invention, there is provided a novel crystalline form of candesartan, characterized by an X-ray powder diffraction spectrum having peaks at about 10.4, 11.6, 13.8, 19.1 , 20.6, 20.8, 21.8, 22.6, 23.3, 26.1 , 28.3 and 30.3 ⁇ 0.2 degree two-theta.
  • Figure-3 depicts the X-ray powder diffraction spectrum of a novel crystalline form of candesartan.
  • a novel crystalline form of candesartan is prepared by reacting methyl 1-[(2'-cyanobiphenyl-4-yl) methyl]-2- ethoxy-benzimidazole-7-carboxylate with sodium azide, tri butyl tin chloride in the presence of o-xylene at 135-15O 0 C to obtain methyl 2-ethoxy- 1-[(2'- ⁇ 1H-tetrazole-5- yl ⁇ biphenyl-4-yl)-methyl] benzimidazole-7-carboxylate which is hydrolyzed in the presence of sodium hydroxide at 80-85 0 C and recrystallized in acetone to obtain novel crystalline form of Candesartan (2-ethoxy- 1-[(2'- ⁇ 1 H-tetrazole-5-yl ⁇ biphenyl-4- yl)-methyl] benzimidazole-7-carboxylic acid).
  • a novel crystalline form of tritylated candesartan characterized by an X-ray powder diffraction spectrum having peaks at about 8.7, 9.4, 9.7, 11.6, 14.0, 14.4, 14.9, 18.2, 20.8, 21.1, 21.7, 23.1 , 25.4, 26.5 and 27.0 ⁇ 0.2 degree two-theta.
  • Figure-4 depicts the X-ray powder diffraction spectrum of novel crystalline form of tritylated candesartan.
  • a novel crystalline form of tritylated candesartan is prepared by reacting 2-ethoxy- 1 ⁇ [(2'- ⁇ 1 H-tetrazole-5-yl ⁇ biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid with trityl chloride solution in the presence of acetone and triethylamine to obtain novel crystalline form of tritylated candesartan (2-ethoxy- 1-[(2'- ⁇ N-tri phenyl methyl tetrazole-5-yl ⁇ biphenyl- 4-yl)-methyl] benzimidazole-7-carboxylic acid ).
  • a novel crystalline form of tritylated candesartan cilexetil characterized by an X-ray powder diffraction spectrum having peaks at about 8.6, 9.0, 9.7, 10.3, 12.0, 12.8, 15.2, 15.8, 16.2, 16.5, 17.3, 19.5, 19.8, 21.0, 21.4, 22.1 , 22.4 and 26.1 ⁇ 0.2 degree two-theta.
  • Figure- 5 depicts the X-ray powder diffraction spectrum of novel crystalline form of tritylated candesartan cilexetil.
  • a novel crystalline form of tritylated candesartan cilexetil is prepared by reacting 2-ethoxy- 1-[(2'- ⁇ N-tri phenyl methyl tetrazole-5-yl ⁇ biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid with cyclohexyl 1-chloroethylcarbonate in the presence of dimethylformamide, potassium ' carbonate to obtain tritylated candesartan cilexetil which is recrystallized in acetone to obtain novel crystalline form of tritylated candesartan cilexetil (( ⁇ )-1- (cyclohexyloxycarbonyloxy) ethyl-2-ethoxy- 1-[(2'- ⁇ N-tri phenyl methyl tetrazole-5- yl ⁇ biphenyl-4-yl)-methyl] benzimidazole
  • a solution of sodium azide (71.15 g) in D. M. water (214 ml) was prepared in round bottom flask and cooled to 0-10° C.
  • Tri-n-butyl tin chloride (237.58 g) was added to the reaction mass at 0-10° C within 30-60 minutes. Reaction mixture was stirred for 2 hours at 0-10° C.
  • O-xylene (1000 ml) was added to it and stirred. The o-xylene layer was separated and washed with 20 % brine solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides two novel crystalline forms of candesartan cilexetil which are designated as form G and form H and a novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil and process for their preparation thereof.

Description

NOVEL CRYSTALLINE FORMS
Field of invention:
The present invention relates to novel crystalline forms of Candesartan cilexetil and intermediate thereof. Particularly, the present invention relates to two novel crystalline forms of candesartan cilexetil which are designated as form G and form H and a novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil and process for their preparation.
Background of the invention:
The chemical name of Candesartan cilexetil is 1-[[(cyclohexyloxy)carbonyl]oxy]ethyl 2-ethoxy-1 -[[2-(IH-tetazole-5-yl)[1 , 1 '-biphenyl-4-yl]methyl]-IH-benzimidazole-7- carboxylate. Its molecular formula is 033Ha4NeO6 and mol wt is 610.66. Candesartan cilexetil is represented by structural formula (I).
Figure imgf000002_0001
Candesartan cilexteil is an ester prodrug of 2-ethoxy-1-[[2-(IH-tetrazole-5-yl)[1 ,1'- biphenyl-4-yl]methyl]-1 H benzimidazole-7-carboxylic acid (candesartan), known as a potent Angiotensin Il receptor antagonist. It is useful in the treatment of cardiovascular complaints such as hypertension and heart failure. Candesartan cilexetil is a white to off-white powder and is sparingly soluble in water and in methanol. It is marketed by AstraZeneca under tradename ATACAND®. U.S. Pat. No. 5,196,444 relates to crystal form of Candesartan Cilexetil i.e. C-type crystal (form I) and it describes a process of preparation of Candesartan cilexetil in which it is formed by reacting 2-ethoxy-1-[[2'-(N-triphenyImethyltetrazol-5-yl)biphenyl -4-yl]methyl]benzimidazole-7-carboxylic acid in dimethylformamide with cyclohexyl- 1-iodoethyl carbonate to form cilexetil trityl candesartan and its subsequent deprotection with a methanolic hydrochloric acid gives candesartan cilexetil in 47% yield after column chromatography. The yield of C-type crystal obtained by this process is very low. Moreover, the purification of final product by chromatography is commercially not suitable and is cumbersome at an industrial scale.
Chem. Pharm. Bull., 47(2), 182-186 (1999) discloses two crystalline forms of
Candesartan cilexetil such as form I and form Il and an amorphous form. In addition, candesartan cilexetil is heat sensitive and therefore grinding causes unwanted degradation and loss in purity.
WO2004085426 discloses 1 , 4-dioxane solvate and two crystalline forms of candesartan cilexetil.
WO2005077941 describes a process for the preparation of polymorphic forms of Candesartan cilexetil i.e. form-Ill, form-IV, form-V, form-VI, form-VII, form-VIII, form- IX, form-X, form-XI, form-XIII, form-XIV, form-XIV-1 , form-XV, form-XVI, form-XVII, form-VIII, form-XIX, form-XX, form-XXI, form-XXII or XXIII, having less than about 5% by weight of other polymorphic forms (form-l). These forms are hydrates and solvates of candesartan cilexetil.
WO2005123721 A1 describes a process for the preparation of two crystalline forms i.e. form A, form B and an amorphous form. The process disclosed hereinabove are tedious, time consuming and operationally difficult at industrial scale. WO2006048237 A1 describes a process for the preparation of form 5, form 6, form 7, form 8 and amorphous form. These forms are prepared by dissolving candesartan cilexetil in a chlorinated solvent, optionally concentrate thus obtain solution then liquid hydrocarbon is added to the solution to precipitate out these forms.
Objects of the invention:
A primary object of the present invention is to provide novel crystalline forms of Candesartan cilexetil i.e. form G and form H.
Another object of the present invention is to provide a process for the preparation novel crystalline forms of Candesartan cilexetil i.e. form G and form H, which is simple and easy to handle at an industrial scale and cost effective.
Another object of the present invention is to provide a process for the preparing candesartan form G comprising steps of i) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution ii) cooling the said solution at O0C to 50C
Yet another object of the present invention is to provide a process for the preparing candesartan form H comprising a step of heating candesartan cilexetil form G at 75°C under reduced pressure.
A further object of the present invention is to provide novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil.
Summary of the invention
An aspect of the present invention is to provide novel crystalline forms of Candesartan cilexetil i.e. form G and form H. Another aspect of the present invention is to provide a process for the preparing candesartan form G comprising steps of iii) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution iv) cooling the said solution at 00C to 5°C
Yet another aspect of the present invention is to provide a process for the preparing candesartan form H comprising a step of heating candesartan cilexetil form G at 75°C under reduced pressure.
A further aspect of the present invention is to provide novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil.
Brief description of the drawings Figure-1 is an X-ray powder diffraction pattern of candesartan cilexetil form G Figure-2 is an X-ray powder diffraction pattern of candesartan cilexetil form H Figure-3 is an X-ray powder diffraction pattern of novel crystalline form of candesartan Figure-4 is an X-ray powder diffraction pattern of novel crystalline form of tritylated candesartan
Figure-5 is an X-ray powder diffraction pattern of novel crystalline form of tritylated candesartan cilexetil
Detailed description of the invention:
According to the present invention, it provides novel crystalline forms of
Candesartan cilexetil i.e. form G and form H.
One aspect of the present invention, there is provided a novel crystalline form of Candesartan cilexetil, designated as form G, characterized by an X-ray powder diffraction spectrum having peaks at about 6.1 , 7.2, 9.1 , 10.9, 11.9, 12.6, 13.1 , 16.4, 20.0, 20.8 and 23.3 ±0.2 degree two-theta. Figure-1 depicts the X-ray powder diffraction spectrum of candesartan cilexetil form G.
According to another aspect of the present invention, there is provided a process for preparation of the form G of candesartan cilexetil comprising steps of i) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution ii) cooling the said solution at 00C to 5°C
One aspect of the present invention, there is provided a novel crystalline form of Candesartan cilexetil, designated as form H, characterized by an X-ray powder diffraction spectrum having peaks at about 9.2, 12.0, 13.0, 15.3, 16.1, 16.7, 17.2, 20.7, 21.0, 25.7 and 32.8 ±0.2 degree two-theta. Figure-2 depicts the X-ray powder diffraction spectrum of candesartan cilexetil form H.
According to another aspect of the present invention, there is provided a process for preparation of the form H of candesartan cilexetil comprising a step of heating candesartan cilexetil form G at 750C under reduced pressure.
Yet another embodiment, the present invention is to provide a novel crystalline form of candesartan, tritylated candesartan and tritylated candesartan cilexetil.
One aspect of the present invention, there is provided a novel crystalline form of candesartan, characterized by an X-ray powder diffraction spectrum having peaks at about 10.4, 11.6, 13.8, 19.1 , 20.6, 20.8, 21.8, 22.6, 23.3, 26.1 , 28.3 and 30.3 ±0.2 degree two-theta. Figure-3 depicts the X-ray powder diffraction spectrum of a novel crystalline form of candesartan. According to another aspect of the present invention, a novel crystalline form of candesartan is prepared by reacting methyl 1-[(2'-cyanobiphenyl-4-yl) methyl]-2- ethoxy-benzimidazole-7-carboxylate with sodium azide, tri butyl tin chloride in the presence of o-xylene at 135-15O0C to obtain methyl 2-ethoxy- 1-[(2'-{1H-tetrazole-5- yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylate which is hydrolyzed in the presence of sodium hydroxide at 80-850C and recrystallized in acetone to obtain novel crystalline form of Candesartan (2-ethoxy- 1-[(2'-{1 H-tetrazole-5-yl} biphenyl-4- yl)-methyl] benzimidazole-7-carboxylic acid).
Figure imgf000007_0001
One aspect of the present invention, there is provided a novel crystalline form of tritylated candesartan, characterized by an X-ray powder diffraction spectrum having peaks at about 8.7, 9.4, 9.7, 11.6, 14.0, 14.4, 14.9, 18.2, 20.8, 21.1, 21.7, 23.1 , 25.4, 26.5 and 27.0 ±0.2 degree two-theta. Figure-4 depicts the X-ray powder diffraction spectrum of novel crystalline form of tritylated candesartan.
According to another aspect of the present invention, a novel crystalline form of tritylated candesartan is prepared by reacting 2-ethoxy- 1 ~[(2'-{1 H-tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid with trityl chloride solution in the presence of acetone and triethylamine to obtain novel crystalline form of tritylated candesartan (2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-yl} biphenyl- 4-yl)-methyl] benzimidazole-7-carboxylic acid ).
Figure imgf000008_0001
One aspect of the present invention, there is provided a novel crystalline form of tritylated candesartan cilexetil, characterized by an X-ray powder diffraction spectrum having peaks at about 8.6, 9.0, 9.7, 10.3, 12.0, 12.8, 15.2, 15.8, 16.2, 16.5, 17.3, 19.5, 19.8, 21.0, 21.4, 22.1 , 22.4 and 26.1 ±0.2 degree two-theta. Figure- 5 depicts the X-ray powder diffraction spectrum of novel crystalline form of tritylated candesartan cilexetil.
According to another aspect of the present invention, a novel crystalline form of tritylated candesartan cilexetil is prepared by reacting 2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-yl}biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid with cyclohexyl 1-chloroethylcarbonate in the presence of dimethylformamide, potassium ' carbonate to obtain tritylated candesartan cilexetil which is recrystallized in acetone to obtain novel crystalline form of tritylated candesartan cilexetil ((±)-1- (cyclohexyloxycarbonyloxy) ethyl-2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5- yl}biphenyl-4-yl)-methyl] benzimidazole-7-carboxylate ).
Figure imgf000009_0001
The process of the present invention is described by the following examples, which are illustrative only and should not be construed so as to limit the scope of the ' invention in any manner.
Example-1
Preparation of Form G of candesartan cilexetil
10 g form C type solid (form-l) or mix form of candesartan cilexetil was dissolved in acetone (60 ml) and heated it to get clear solution at reflux temperature 50-55° C. The clear solution was cooled to 25-35° C and then further chilled it to 0-5° C and stirred for 2 hours. The solution was filtered and washed with chilled acetone (10 ml) and suck dried to obtain form G. X-ray powder diffraction pattern is matching with Figure-1.
Example-2
Preparation of Form H of candesartan cilexetil Form G was dried at 73-75° C under reduced pressure for about 48-50 hours to obtain form H (7.5 g) X-ray powder diffraction pattern is matching with Figure-2. Example-3
Preparation of 2-Ethoxy- 1-[(2'-{1H-tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid (CANDESARTAN)
A solution of sodium azide (71.15 g) in D. M. water (214 ml) was prepared in round bottom flask and cooled to 0-10° C. Tri-n-butyl tin chloride (237.58 g) was added to the reaction mass at 0-10° C within 30-60 minutes. Reaction mixture was stirred for 2 hours at 0-10° C. O-xylene (1000 ml) was added to it and stirred. The o-xylene layer was separated and washed with 20 % brine solution. Methyl 1-[(2'- cyanobiphenyl-4-yl)methyl]-2-ethoxy-benzimidazole-7-carboxylate (100 g) and o- xylene layer were taken into a round bottom flask and the temperature of reaction mixture was raised to 140-1450C & maintained for 8 hours. The reaction mass was cooled at 25-30° C and 5 % caustic solution was added to it. The reaction mass was heated to 80-85° C for 2 hours under stirring. After cooling the reaction mass, aqueous layer was separated. Acetone (700 ml) and sodium nitrite solution (41.95 gm sodium nitrite dissolved in 100 ml D. M. water) were added to aqueous layer and cooled to 0-15° C. The pH 3.7-4.3 was adjusted by dilute hydrochloric acid to obtain the desired compound. The product was filtered and washed with chilled D. M. water until neutral pH. Acetone (500 ml) was added to the wet cake and stirred for 1 hour at 25-35° C. The product was filtered, washed with acetone and dried at 25-35° C to obtain 90.0 g of title compound.
X-ray powder diffraction pattern is matching with Figure-3.
Example-4
Preparation of 2-Ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-yl} biphenyl-4- yl)-methyl] benzimidazole-7-carboxylic acid (TRITYLATED CANDESARTAN)
2-ethoxy- 1-[(2'-{1H-tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid (100 g), acetone (200 ml), triethylamine (27.55 g) were taken into round bottom flask and stirred. The reaction mass was refluxed at 55-6O0C and trityl chloride solution (69.7 g trityl chloride dissolved in 400 ml acetone) was added within 1-2 hours and refluxed reaction mass for 7 hours at 55-600C. The reaction was cooled to 25-300C and stirred for 30 minutes. The product was filtered and washed with acetone (100 ml) and dried. D. M. water (500 ml) was added to wet cake and stirred it for 30 minutes. The product was filtered, washed with D. M. water (200 ml) and dried at 50-550C to obtain 117 g of title compound. X-ray powder diffraction pattern is matching with Figure-4.
Example-5 Preparation of (±)-i-(cyclohexyloxycarbonyloxy) ethyl-2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7- carboxylate (TRITYLATED CANDESARTAN CILEXETIL)
2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid (100 g), dimethylformamide (200 ml), potassium carbonate (24.28 g) were taken into round bottom flask and stirred. The temperature of reaction mixture was raised to 60 to 7O0C and cyclohexyl 1-chloro ethyl carbonate
(36.33 g) was added within 1-2 hours and maintained at this temperature for 3 hours. The reaction mixture was cooled to 25 to 3O0C. The reaction mass was poured in D. M. water (800 ml) at 0 to 100C and stirred for 30 minutes at this temperature. The product was filtered and washed with chilled D. M. water until neutral pH. Acetone (500 ml) was added to wet cake and raised the temperature of reaction mixture to 55 to 6O0C. The reaction mixture was stirred for 30 minutes at 55 to 6O0C. The reaction mixture was cooled to 25 to 3O0C and stirred for 30 minutes at 25 to 3O0C. The product was filtered, washed with acetone (100 ml) and dried at 25 to 300C to obtain 115 g of title compound.
X-ray powder diffraction pattern is matching with Figure-5.

Claims

We claim:
1. A novel crystalline form of Candesartan cilexetil, designated as form G, characterized by an X-ray powder diffraction spectrum having peaks at about 6.1 , 7.2, 9.1, 10.9, 11.9, 12.6, 13.1, 16.4, 20.0, 20.8 and 23.3 ±0.2 degree two-theta.
2. The process for the preparation of the form G of candesartan cilexetil comprising steps of, i) dissolving candesartan cilexetil form C or mixture of forms in acetone and optionally heating until it becomes clear solution ii) cooling the said solution at 00C to 5°C
3. A novel crystalline form of Candesartan cilexetil, designated as form H, characterized by an X-ray powder diffraction spectrum having peaks at about
9.2, 12.0, 13.0, 15.3, 16.1, 16.7, 17.2, 20.7, 21.0, 25.7 and 32.8 ±0.2 degree two-theta.
4. The process for preparation of the form H of candesartan cilexetil comprising a step of heating candesartan cilexetil form G at 75°C under reduced pressure.
5. A novel crystalline form of candesartan, characterized by an X-ray powder diffraction spectrum having peaks at about 10.4, 11.6, 13.8, 19.1, 20.6, 20.8, 21.8, 22.6, 23.3, 26.1, 28.3 and 30.3 ±0.2 degree two-theta.
6. The process for the preparation of a novel crystalline form of candesartan comprising steps of,
« i) reacting methyl 1-[(2'-cyanobiphenyl-4-yl) methyl]-2~ethoxy- benzimidazole-7-carboxylate with sodium azide, tri butyl tin chloride in the presence of o-xylene at 135-15O0C to obtain methyl 2-ethoxy- 1-[(2'-{1 H-tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7- carboxylate; ii) hydrolyzing methyl 2-ethoxy- 1-[(2'-{1 H-tetrazole-5-yl} biphenyl-4- yl)-methyl] benzimidazole-7-carboxylate in the presence of sodium 5 hydroxide at 80-850C; and iii) recrystallizing the step (ii) in acetone to obtain novel crystalline form of candesartan (2-ethoxy- 1-[(2'-{1 H-tetrazole-5-yl} biphenyl-4-yl)- methyl] benzimidazole-7-carboxylic acid) 0 7. A novel crystalline form of tritylated candesartan, characterized by an X-ray powder diffraction spectrum having peaks at about 8.7, 9.4, 9.
7, 11.6, 14.0, 14.4, 14.9, 18.2, 20.
8, 21.1 , 21.7, 23.1, 25.4, 26.5 and 27.0 ±0.2 degree two- theta.
C 8. The process for the preparation of a novel crystalline form of tritylated candesartan comprising a step of, reacting 2-ethoxy- 1-[(2'-{1 H-tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid with trityl chloride solution in the presence of acetone and triethylamine to obtain novel crystalline form of tritylated candesartan (2-ethoxy- 1-[(2'-{N-tri phenyl methyl0 tetrazole-5-yl} biphenyl-4-yl)-methyl] benzimidazole-7-carboxylic acid).
9. A novel crystalline form of tritylated candesartan cilexetil, characterized by an X-ray powder diffraction spectrum having peaks at about 8.6, 9.0, 9.7, 10.3, 12.0, 12.8, 15.2, 15.8, 16.2, 16.5, 17.3, 19.5, 19.8, 21.0, 21.4, 22.1 , 22.4 and5 26.1 ±0.2 degree two-theta.
10. The process for the preparation of a novel crystalline form of tritylated candesartan cilexetil comprising steps of, i) reacting 2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-0 yl}biphenyl-4-yl)~methyl] benzimidazole-7-carboxylic acid with cyclohexyl 1-chloroethylcarbonate in the presence of dimethylformamide, potassium carbonate to obtain tritylated candesartan cilexetil recrystallizing the step (ii) in acetone to obtain novel crystalline form of tritylated candesartan cilexetil ((±)-i-(cyclohexyloxycarbonyloxy) ethyl-2-ethoxy- 1-[(2'-{N-tri phenyl methyl tetrazole-5-yl}biphenyl-4- yl)-methyl] benzimidazole-7-carboxylate ).
PCT/IN2007/000236 2006-06-13 2007-06-12 Novel crystalline forms of candesartan cilexetil, candesartan, tritylated candesartan and tritylated candesartan cilexetil WO2008035360A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN928/MUM/2006 2006-06-13
IN928MU2006 2006-06-13

Publications (2)

Publication Number Publication Date
WO2008035360A2 true WO2008035360A2 (en) 2008-03-27
WO2008035360A3 WO2008035360A3 (en) 2008-10-16

Family

ID=39190284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2007/000236 WO2008035360A2 (en) 2006-06-13 2007-06-12 Novel crystalline forms of candesartan cilexetil, candesartan, tritylated candesartan and tritylated candesartan cilexetil

Country Status (1)

Country Link
WO (1) WO2008035360A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692023B2 (en) 2004-02-11 2010-04-06 Teva Pharmaceutical Industries Ltd. Candesartan cilexetil polymorphs
WO2010060564A1 (en) 2008-11-27 2010-06-03 Bayer Schering Pharma Aktiengesellschaft Pharmaceutical dosage form comprising nifedipine or nisoldipine and an angiotensin-ii antagonist and/or a diuretic
WO2010146409A2 (en) 2009-06-19 2010-12-23 Nangenex, Inc. Nanoparticulate candesartan cilexetil compositions, process for the preparation thereof and pharmaceutical compositions containing them
WO2011092666A1 (en) 2010-01-29 2011-08-04 Ranbaxy Laboratories Limited An improved process for the preparation of candesartan cilexetil, polymorphic forms of n-trityl candesartan and their uses thereof
CN107709313A (en) * 2015-06-05 2018-02-16 浙江华海药业股份有限公司 A kind of method for preparing trityl candesartan
CN109627234A (en) * 2019-01-30 2019-04-16 浙江省食品药品检验研究院 A kind of candesartan cilexetil crystal and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196444A (en) * 1990-04-27 1993-03-23 Takeda Chemical Industries, Ltd. 1-(cyclohexyloxycarbonyloxy)ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate and compositions and methods of pharmaceutical use thereof
WO2004085426A1 (en) * 2003-03-27 2004-10-07 Hetero Drugs Limited Novel crystalline forms of candesartan cilexetil
WO2005077941A2 (en) * 2004-02-11 2005-08-25 Teva Pharmaceutical Industries Ltd. Candesartan cilexetil polymorphs
WO2005123721A2 (en) * 2004-06-18 2005-12-29 Ranbaxy Laboratories Limited Amorphous and polymorphic forms of candesartan cilexetil
EP1655298A1 (en) * 2004-11-03 2006-05-10 LEK Pharmaceuticals d.d. Novel polymorph forms of candesartan cilexetil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692023B2 (en) 2004-02-11 2010-04-06 Teva Pharmaceutical Industries Ltd. Candesartan cilexetil polymorphs
WO2010060564A1 (en) 2008-11-27 2010-06-03 Bayer Schering Pharma Aktiengesellschaft Pharmaceutical dosage form comprising nifedipine or nisoldipine and an angiotensin-ii antagonist and/or a diuretic
US9993432B2 (en) 2008-11-27 2018-06-12 Bayer Intellectual Property Gmbh Pharmaceutical dosage form comprising nifedipine or nisoldipine and an angiotensin II antagonist and/or a diuretic
WO2010146409A2 (en) 2009-06-19 2010-12-23 Nangenex, Inc. Nanoparticulate candesartan cilexetil compositions, process for the preparation thereof and pharmaceutical compositions containing them
WO2011092666A1 (en) 2010-01-29 2011-08-04 Ranbaxy Laboratories Limited An improved process for the preparation of candesartan cilexetil, polymorphic forms of n-trityl candesartan and their uses thereof
CN107709313A (en) * 2015-06-05 2018-02-16 浙江华海药业股份有限公司 A kind of method for preparing trityl candesartan
CN107709313B (en) * 2015-06-05 2020-10-23 浙江华海药业股份有限公司 Method for preparing trityl candesartan
CN109627234A (en) * 2019-01-30 2019-04-16 浙江省食品药品检验研究院 A kind of candesartan cilexetil crystal and preparation method thereof

Also Published As

Publication number Publication date
WO2008035360A3 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
FI93957C (en) Process for the preparation of pyrimidines
US8076492B2 (en) Process for preparing trityl olmesartan medoxomil and olmesartan medoxomil
AU646473B2 (en) Process for the manufacture of biphenylcarbonitriles
WO2008035360A2 (en) Novel crystalline forms of candesartan cilexetil, candesartan, tritylated candesartan and tritylated candesartan cilexetil
US8592474B2 (en) Process for the preparation or purification of olmesartan medoxomil
JPH04244080A (en) Process for preparing biphenylcarbonitrile
WO2011141933A2 (en) Process for preparation of 2-[3-cyano-4-(2-methylpropoxy)phenyl]-4-methylthiazole-5-carboxylic acid and its pharmaceutically acceptable salts
US20070093540A1 (en) process for the preparation of angiotensin ii antagonistic compounds
US20060287537A1 (en) Method of removing the triphenylmethane protecting group
KR101942064B1 (en) Novel zinc azide complex and a process for preparing tetrazole derivatives using the same
WO2012063269A2 (en) Process for preparing iloperidone
WO2005051929A1 (en) Conversion of aromatic nitriles into tetrazoles
US8907083B2 (en) Process for the preparation, of 2-(2-hydroxyphenyl)-benz [1, 3] oxazin-4-one and its use for preparation of 4-[3, 5-bis (2-hydroxyphenyl)-IH-I, 2, 4-triazolTI-yl] benzoic acid
US20080076932A1 (en) A process for the preparation of phenyltetrazole compounds
US7504516B2 (en) Crystalline forms of candesartan cilexetil
US20100210852A1 (en) Process for the preparation of candesartan cilexetil
WO2007054965A2 (en) Process for preparation of tetrazoles from aromatic cyano derivatives
US20090176849A1 (en) Process for the preparation of 2-alkyl-1-((2'-substituted-biphenyl-4-yl) Methyl)-imidazole, dihydroimidazole or benzimidazloe derivatives
CN105884747B (en) Preparation method for preparing Bruton's Tyrosine Kinase (BTK) kinase inhibitor
US7943780B2 (en) Process for the preparation of candesartan cilexetil
EP1899328B1 (en) A process for the preparation of losartan derivatives by chlorination and reduction of the respective 1h-imidazole-5-carbaldehydes
WO2014034868A1 (en) Method for producing biaryl compound
CZ2004218A3 (en) Process for preparing 4-chloro-N-(4,5-dihydro-1-H-imidazol-2-yl)-6-methoxy-2-methyl-5-pyrimidinamine
KR101009404B1 (en) (S) -ene- (1-carboxy-2-methyl-pro-1-fil) -ene-pentanoyl-ene- [2 '-(1H-tetrazol-5-yl) biphenyl-4-yl -Purity preparation method of -methyl] amine compound
KR20100055961A (en) New process for the preparation of compounds for the treatment of hypertension which have tetrazolyl biphenyl group

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859577

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07859577

Country of ref document: EP

Kind code of ref document: A2