[go: up one dir, main page]

WO2008035571A1 - Élément électroluminescent organique - Google Patents

Élément électroluminescent organique Download PDF

Info

Publication number
WO2008035571A1
WO2008035571A1 PCT/JP2007/067391 JP2007067391W WO2008035571A1 WO 2008035571 A1 WO2008035571 A1 WO 2008035571A1 JP 2007067391 W JP2007067391 W JP 2007067391W WO 2008035571 A1 WO2008035571 A1 WO 2008035571A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
group
light
organic
emitting layer
Prior art date
Application number
PCT/JP2007/067391
Other languages
English (en)
Japanese (ja)
Inventor
Yoshiyuki Suzuri
Aki Nakata
Mitsuyoshi Naito
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008535314A priority Critical patent/JP5556014B2/ja
Publication of WO2008035571A1 publication Critical patent/WO2008035571A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an organic electoluminescence device (hereinafter also referred to as "organic EL device”). More specifically, the present invention relates to an organic electroluminescent device having improved luminous efficiency, driving life and chromaticity of blue phosphorescence. Background art
  • ELD electoluminescence display
  • ELD constituent elements include inorganic electoluminescence elements (also referred to as “inorganic EL elements”) and organic electroluminescence elements (also referred to as “organic EL elements”).
  • Inorganic electoric luminescence elements require a high alternating voltage to drive the power-emitting elements that have been used as planar light sources.
  • an organic electoluminescence device has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and electrons and holes are injected into the light emitting layer for recombination.
  • Excitons excitons
  • fluorescence 'phosphorescence fluorescence 'phosphorescence
  • the organic EL element is expected to be used as a thin film display, illumination, and backlight.
  • Non-Patent Documents 1 and 2 and Patent Document 1 phosphorescent materials have been developed since organic EL elements with higher luminance and efficiency can be obtained (see, for example, Non-Patent Documents 1 and 2 and Patent Document 1). This is because conventional phosphors emit light from excited singlets, and the production ratio of singlet excitons to triplet excitons is 1: 3. On the other hand, in the case of a phosphorescent material that utilizes light emission from excited triplets, the upper limit of internal quantum efficiency is 100 due to the exciton generation ratio and internal conversion from singlet excitons to triplet excitons. Therefore, in principle, the luminous efficiency is up to four times that of fluorescent materials.
  • Patent Document 1 U.S. Pat.No. 6,097,147
  • Non-patent literature 1 MA Baldo et al., Nature, 395, 151-; 154 (1998)
  • Non-patent literature 2 MA Baldo et al., Nature, 403, 17, 750-753 (200) 0 years)
  • the present invention has been made in view of the above problems, and a problem to be solved is to provide an organic electroluminescent device with improved blue phosphorescence efficiency, driving life and chromaticity. is there. Furthermore, it is providing the organic electroluminescent element which can take out white light emission including the said blue phosphorescence.
  • the present inventor controls the behavior of excitons generated by recombination of electrons and holes (carriers) to solve the above-mentioned problems, thereby improving luminous efficiency, lifetime, chromaticity of emitted color, etc. From the viewpoint of improvement, the present inventors have intensively studied the chemical structure of the luminescent dopant, the structure of the luminescent layer, the adjustment of the emission wavelength, and the like, and as a result, the present invention has been achieved.
  • An organic electroluminescent element comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two of the plurality of light emitting layers are represented by the following general formula (BD1
  • An organic electroluminescent device comprising a phosphorescent compound represented by the formula: [0012] [Chemical 1]
  • R represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • nl represents an integer of 0 to 5.
  • B to B are carbon atoms, nitrogen atoms, oxygen atoms or
  • M is 8 in the periodic table
  • X and X are each a carbon atom, nitrogen atom or oxygen atom
  • L represents an atomic group that forms a bidentate ligand together with X and X.
  • m2 is a force representing an integer of 0, 1 or 2
  • ml + m2 is 2 or 3.
  • the ionization potential (Ip) An organic electoluminescence device characterized by the following formula:
  • R, R and R each represent a substituent.
  • Z is necessary to form a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is group 8 to 1 in the periodic table
  • X and X each represent a carbon atom, a nitrogen atom or an oxygen atom
  • L represents a group of atoms that together with X and X form a bidentate ligand.
  • ml is 1, 2 or
  • R in the above general formula (AR1) is a substituent having a steric parameter value (Es value) of -0.5 or less.
  • R is the same as R.
  • M3 represents an integer from 0 to 4.
  • each of the electroluminescent luminescence spectra emitted from the at least two light emitting layers has a maximum emission wavelength ( ⁇ max), wherein the difference in max) is 20 nm or more.
  • the organic electoluminescence device according to any one of 1 to 7 above, which contains the compound represented by the general formula (BD 1) and has at least two luminescences
  • the organic electroluminescent device according to any one of 1 to 8, wherein the at least two light-emitting layers contain a host compound, and the at least two light-emitting layers are common.
  • An organic electoluminous element comprising: a host compound.
  • an organic EL element that emits relatively stable phosphorescence is obtained by including the compound represented by the general formula (BD1) in the light emitting layer. thing Can do.
  • a light emitting layer of completely different color for example, a light emitting layer of blue light (B), green light (G), red (R) light
  • B blue light
  • G green light
  • R red
  • the organic electroluminescent device of the present invention is an organic electroluminescent device comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two of the plurality of light emitting layers are provided.
  • the light emitting layer contains a compound represented by the general formula (BD1).
  • the organic electoluminescence device of the present invention is composed of components such as a support base (substrate), electrodes, and organic layers having various functions. Specific examples of preferred configurations are shown below, but the present invention is not limited thereto.
  • the “light emitting layer unit” is a structural unit having a plurality of light emitting layers, and refers to an organic layer laminated from the light emitting layer on the most anode side to the light emitting layer on the most cathode side.
  • Each light emitting layer is composed of an organic layer containing a light emitting compound having a different emission color. Note that it is also a preferable aspect that the unit has a non-light emitting intermediate layer between the light emitting layers.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. Even the interface between the light emitting layer and the adjacent layer may be used.
  • the light emitting layer unit includes a plurality of light emitting compounds containing two or more kinds of luminescent compounds having different emission peaks, each having an emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm. It can also consist of layers. Even if the unit has a non-light emitting intermediate layer between each light emitting layer and is composed of a plurality of light emitting layers, it contains two or more kinds of light emitting compounds having different light emission peaks in a single layer. Two or more different types of light emission may be emitted.
  • the light emitting layer unit has at least three light emitting layers.
  • the organic electoluminescence device of the present invention is characterized in that at least two light emitting layers among the plurality of light emitting layers constituting the light emitting layer unit contain a phosphorescent compound represented by the general formula (BD1). And By using the phosphorescent compound as a luminescent dopant, a relatively stable phosphorescent organic EL device can be obtained.
  • BD1 phosphorescent compound represented by the general formula (BD1).
  • the phosphorescent compound represented by the general formula (BD1) contained in the at least two light emitting layers differs depending on each light emitting layer. As a result, it is possible to dramatically achieve high luminous efficiency and long life.
  • the general formula (A) BD1) is a phosphorescent compound represented by the general formula (BD1) contained in the luminescent dopant A, a compound further contained in the luminescent layer A is a host compound A, and a luminescent layer B.
  • the photocompound is the light-emitting dopant B and the compound further contained in the light-emitting layer B is the host compound B, it is preferable that the following formula holds for the ionization potential (Ip).
  • the at least two light emitting layers contain a host compound and the at least two light emitting layers contain a common host compound.
  • the ionization potential should be measured with an atmospheric photoelectron spectrometer (for example, AC-1, AC-2, and AC-3 (manufactured by Riken Keiki Co., Ltd.)) or an ultraviolet photoelectron spectrometer (UPS). Is possible.
  • an atmospheric photoelectron spectrometer for example, AC-1, AC-2, and AC-3 (manufactured by Riken Keiki Co., Ltd.)
  • UPS ultraviolet photoelectron spectrometer
  • the film is formed on Onm and measured.
  • an organic thin film is formed to a thickness of 20 nm on a substrate having a gold thin film deposited on a silicon wafer.
  • Ip (host) can be measured by the above method.
  • the force Ip (dopant) may be difficult by the above method.
  • Ip dopant
  • a film in which a dopant and a host are doped to a predetermined concentration. Shi
  • the Ip peak of the dopant overlaps with the Ip peak of the host compound, which may be difficult to detect.
  • measurement may be performed by doping an optically inactive material only with a dopant.
  • optically inactive material examples include polyacrylate, polystyrene, and siloxane.
  • measurement may be performed by the cyclic voltammetry method (CV).
  • the measured value in this case must be converted to Ip because the oxidation potential is determined by the potential difference from the reference electrode.
  • the estimated value can be calculated by calibrating the CV value and Ip value with a known material. Examples of known materials include NPD, TPD, m-MTDATA, and the like.
  • the electroluminescent emission color is blue using the compound.
  • the difference between the maximum emission wavelengths ( ⁇ max) of the respective emission spectrums of the respective light emission from the at least two light emitting layers is within 3 ⁇ 40nm. It is preferable. In addition, when it is desired to obtain white light emission, it is also preferable that the difference between the maximum emission wavelengths ( ⁇ max) of the respective light emission luminescence spectra of the light emitted from the at least two light emitting layers is 20 nm or more. Better! /, One of the aspects. It is possible to adjust the chromaticity by selecting phosphorescent compounds having similar emission wavelengths.
  • an alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • cyclo Alkyl groups for example, cyclopentyl group, cyclohexinole group, etc.
  • alkenyl groups for example, bur group, allyl group, etc.
  • alkynyl groups for example, ethul group, propargyl group, etc.
  • aromatic hydrocarbon ring groups aromatic Also referred to as carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group,
  • Z represents a group of non-metallic atoms necessary for forming a 5- to 7-membered ring. Formed by Z 5 ⁇
  • Examples of the 7-membered ring include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
  • B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of them
  • the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle.
  • Examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazol ring, an oxadiazole ring, and a thiadiazole ring.
  • a pyrazole ring and an imidazole ring are preferable, and an imidazole ring is more preferable.
  • These rings may be further substituted with the above substituents.
  • Preferred examples of the substituent include an alkyl group and an aryl group, and more preferred is an aryl group.
  • L represents an atomic group forming a bidentate ligand together with X and X.
  • X — L — 2 represented by X
  • 1 1 2 1 1 2dentate ligand examples include, for example, substituted or unsubstituted phenylpyrrolidine, phenylpyrazonole, phenylimidazonole, phenyltriazolene, phenyltetrazole, virazol ball, Examples include picolinic acid and acetylacetone.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force of 0, 1 or 2 ml + m2 is 2 or 3.
  • m2 is preferably 0.
  • the metal represented by M includes a transition metal element of group 8 to group 10 of the periodic table (simply a transition).
  • iridium and platinum are preferred, and iridium is more preferred.
  • the phosphorescent compound represented by the general formula (BD1) according to the present invention has a polymerizable group or a reactive group!
  • the compound represented by the general formula (BD1) is preferably represented by the general formula (BD2).
  • R, R, and R each represent a substituent.
  • Z forms a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • B to B are carbon
  • M represents a metal of Group 8 to Group 10 in the periodic table.
  • X and X are carbon atoms
  • 1 1 2 represents a child, nitrogen atom or oxygen atom, L forms a bidentate ligand with X and X
  • ml represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • ml + m2 is 2 or 3.
  • R in the general formula (BD2) is represented by the general formula (AR1).
  • R in the general formula (AR1) has a stereo parameter value (Es value) of -0.5 or less.
  • R is the same as R.
  • M3 represents an integer from 0 to 4.
  • R to R in the general formula (BD2) have the same meaning as R1 in the general formula (BD1).
  • the "steric parameter value (Es value)" is a stereo parameter derived from chemical reactivity. The smaller this value is, the smaller! I can understand the group.
  • Es value will be described. In general, it is known that the effect of substituents on the progress of the reaction may only be considered as steric hindrance in the hydrolysis reaction of esters under acidic conditions.
  • the Es value is the numerical value of the steric hindrance of the substituent.
  • Es value of substituent X is the following chemical reaction formula
  • Es log (kX / kH)
  • the reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative.
  • the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
  • the Es value as defined in the present specification is that the hydrogen atom is not defined as 0 of the methyl group, and the methyl group is defined as 0. This is the Es value minus 1.24.
  • the Es value is not more than 0.5. Preferably it is 1 7.0 or more and 1 0.6 or less. Most preferably, it is 7.0 or more and 1 ⁇ 0 or less.
  • a ketoeenol tautomer when a ketoeenol tautomer may exist in a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less, for example, R and ⁇ , the keto moiety is enol. Es value is converted as an isomer of ru. If other tautomerism exists, the Es value is converted using the same conversion method. Furthermore, substituents with an Es value of ⁇ 0.5 or less are preferably electron-donating substituents in terms of electronic effects.
  • the electron-donating substituent is a substituent having a negative Hammett ⁇ ⁇ value described below, and such a substituent is closer to the bonding atom side than the hydrogen atom. It has the characteristic of easily giving electrons.
  • Specific examples of the substituent exhibiting electron donating properties include a hydroxyl group, an alkoxy group (for example, methoxy group,), an acetyloxy group, an amino group, a dimethylamino group, an acetylamino group, an alkyl group (for example, a methyl group, Ethyl group, propyl group, t-butyl group, etc.) and aryl group (eg, phenyl group, mesityl group, etc.).
  • Hammett's ⁇ ⁇ value for example, the following documents can be referred to.
  • the Hammett ⁇ ⁇ value according to the present invention refers to Hammett's substituent constant ⁇ ⁇ .
  • Hammett's ⁇ ⁇ value is a substituent constant determined by Hammett et al. From the electronic effects of substituents on the hydrolysis of ethyl benzoate. “Structure-activity relationship of drugs” (Nanedo: 1979), “Substituent Constants ior Correlation Analysis in chemistry and biology "(C. Hansch and A. Leo, John Wiley & Sons, New York, 1971) can be cited.
  • the host compound and the light-emitting dopant also referred to as “light-emitting dopant” and “light-emitting dopant compound” contained in the light-emitting layer will be described.
  • the host compound contained in the light emitting layer of the organic EL device according to the present invention transfers the energy of excitons generated by the recombination of carriers on the compound to the light emitting compound (light emitting dopant: guest compound).
  • the compound that emits light from the light-emitting compound and the carrier on the host compound are trapped in the light-emitting compound, and excitons are generated on the light-emitting compound.
  • the light-emitting compound emits light.
  • the ratio of the host compound among the compounds contained in the light emitting layer is preferably 20% by mass or more! /.
  • known host compounds may be used alone or in combination of two or more. By using multiple types of host compounds, it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient. In addition, by using a plurality of phosphorescent compounds used as a luminescent dopant described later, it becomes possible to mix different luminescence, thereby obtaining an arbitrary luminescent color. The type of phosphorescent compound and the amount of doping can be adjusted, and it can also be applied to lighting and knock lights.
  • Examples of the host compound according to the present invention include compounds represented by the following general formula (HI).
  • the compound is also preferably used in a layer adjacent to the light emitting layer (for example, a hole blocking layer).
  • represents an aromatic heterocyclic ring which may have a substituent, and ⁇ each has a substituent.
  • 1 2 represents an aromatic heterocycle or aromatic hydrocarbon ring that may be substituted, and ⁇ represents a divalent linking group.
  • R represents a hydrogen atom or a substituent.
  • the host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a bur group or an epoxy group ( Vapor deposition polymerizable luminescent host).
  • a known host compound while having a hole transport ability and an electron transport ability, it is possible to prevent the emission of light from being long-wavelength and to have a high
  • the host compound has a phosphorescence emission energy of 2.9 eV or more and a glass transition temperature (Tg) force of 90 ° C. or more. More preferred is a compound having a temperature of 100 ° C or higher. Also save the organic EL device From the viewpoint of improving the property (also referred to as improving durability) and reducing the uneven distribution of the compound at the light emitting layer interface, it is preferable that the host compound has the same physicochemical characteristics or the same molecular structure.
  • the organic compound of each layer constituting the organic electroluminescent device of the present invention is characterized by containing a material having a glass transition temperature (Tg) of 100 ° C. or higher at least 80% by mass or more of each layer.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) is DSC (Differential Scanning Colorimetry:
  • This value is obtained by a method based on JIS-K-7121 using the differential scanning calorimetry.
  • a host compound having the same physical characteristics as described above more preferably, by using a host compound having the same molecular structure, the entire organic compound layer (also referred to as an organic layer) of the organic EL element is used.
  • a uniform film property can be obtained, and the phosphorescence emission energy of the host compound can be adjusted to be 2.9 eV or more. Can be obtained.
  • the phosphorescent compound according to the present invention emits phosphorescence at room temperature.
  • host compounds and other compounds usually do not emit phosphorescence at room temperature. Therefore, it is necessary to measure at low temperature.
  • phosphorescence energy refers to the peak energy of the 0-0 transition band of the phosphorescence spectrum obtained when the emission vector is measured at room temperature or low temperature.
  • phosphorescence cannot be obtained usually at room temperature. Such compounds must be measured at low temperatures.
  • a thin film of about lOOnm is formed on a quartz substrate or a silicon wafer, and photoluminescence measurement is performed at a cryogenic temperature of 77K or less, preferably 4K. In this case, a spectrum with a mixture of fluorescence and phosphorescence is obtained. It is necessary to measure by setting a delay time from the time of light irradiation using a turret. However, in this method, the phosphorescence spectrum is very weak or almost no light emission can be obtained! /, In many cases. In such cases, it is preferable to measure in solution.
  • the phosphorescence vector may be slightly different between the thin film and the solution because the state is different from that in the thin film, but it is suitable for comparing materials relative to each other in measurement in the solution.
  • any solvent that can dissolve the compound may be used (substantially, the above-described measurement method has no problem because the solvent effect of the phosphorescence wavelength is negligible). .
  • the same thin film as the light-emitting layer that composes the element was prepared on the quartz substrate, and if necessary, sealed under nitrogen if necessary. taking measurement.
  • the force S which is a method for obtaining the 0-0 transition band, in the present invention, the 0 0 transition with the emission maximum wavelength appearing on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method. It is defined as a band.
  • the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish noise and peaks when enlarged.
  • the emission spectrum during excitation light irradiation (for convenience, this is called the steady light spectrum) is expanded, and the emission spectrum 100 ms after excitation light irradiation (for convenience, this is called the phosphorescence spectrum). It can be determined by reading the peak wavelength of the phosphorescence spectrum from the portion of the steady light spectrum derived from the phosphorescence spectrum.
  • by smoothing the phosphorescence spectrum it is possible to separate the noise and peak and read the peak wavelength. As the smoothing process, the Savitzky & Golay smoothing method or the like can be applied.
  • At least two light emitting layers are required to contain the phosphorescent compound represented by the above general formula (BD1), but can contain the compound as a light emitting dopant.
  • various luminescent compounds other than the phosphorescent compound represented by the general formula (BD1) can be used in combination as the luminescent dopant.
  • a phosphorescent compound also referred to as “phosphorescent compound”, “phosphorescent substance”, etc.
  • a fluorescent compound can be used as the luminescent dopant according to the present invention.
  • the luminescent dopant used in the light emitting layer and the light emitting unit of the organic EL device of the present invention (sometimes simply referred to as “light emitting material”) is as described above. It is necessary to contain at least one phosphorescent emitter simultaneously with the host compound. When using a fluorescent emitter together, it is preferable to select blue.
  • the phosphorescent compound according to the present invention (also referred to as “phosphorescent emitter” or “phosphorescent dopant”) is a compound in which light emission from an excited triplet is observed.
  • a preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, pp. 398 (1992 edition, Maruzen), 4th edition Experimental Chemistry Course 7.
  • the phosphorescence emitter according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.
  • the energy transfer type in which light is emitted from the phosphorescent emitter by being transferred to the body, and the other is that the phosphorescent emitter becomes a carrier trap, and carrier recombination occurs on the phosphorescent emitter, causing phosphorescence emission.
  • the phosphorescent material can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent emitter according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound ( Platinum complex compounds) and rare earth complexes, most preferably iridium compounds.
  • red is selected from iridium compounds.
  • fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene. And dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors. Further, conventionally known dopants can also be used in the present invention.
  • the thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 15 nm, and more preferably in the range of 3 to;! Onm range Forces suppress interaction such as energy transfer between adjacent light emitting layers, And it is preferable from the viewpoint of not giving a large load to the current-voltage characteristics of the element
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but is the same as the host material of at least one of the adjacent light emitting layers. It is preferable that
  • the non-light-emitting intermediate layer may contain a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Phosphorescent light emission energy, when the physicochemical properties such as glass transition temperature are the same, or when the molecular structure of the host compound is the same, etc.)
  • a compound common to each light-emitting layer for example, a host compound
  • each common host material where a common host material is used
  • Phosphorescent light emission energy when the physicochemical properties such as glass transition temperature are the same, or when the molecular structure of the host compound is the same, etc.
  • the excited triplet energy of the blue phosphorescent emitter is the largest.
  • a host material having an excitation triplet energy larger than that of the blue phosphorescent emitter described above may be included as a common host material in the light emitting layer and the non-light emitting intermediate layer.
  • the host material is responsible for carrier transport
  • a material having carrier transport capability is preferable.
  • Carrier mobility is used as a physical property that expresses carrier transport ability, and carrier mobility of organic materials generally depends on electric field strength. Since materials with high electric field strength dependency easily break the hole / electron injection / transport balance, it is preferable to use materials with low mobility dependence on electric field strength for the intermediate layer and host material.
  • the non-light emitting intermediate layer functions as a blocking layer, that is, a hole blocking layer and an electron blocking layer. It is given as.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole or multiple hole transport layers can be provided.
  • the hole transport material has either injection or transport of holes and / or a barrier property of electrons, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives
  • Examples thereof include conductors, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N ′ —tetraphenylenol 4,4 ′ diaminophenol; N, N ′ —diphenyl N, N ′ —Bis (3-methylphenyl) -1- [1, 1′-biphenyl] -1,4,4′-diamin (TPD); 2,2 bis (4 di-p-tolylaminophenol) propane; 1-bis (4-di-l-triaminophenenyl) cyclohexane; N, N, N ', N'-tetra-l-trinore 4, A'-diaminobiphenyl; 1,1-bis- (4-di-
  • No. 5,061,569 for example, 4, 4 ′ bis [ N- (1-naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4 308688 are linked in a starburst type 4, 4 ', A "—Tris [N— (3-Methylphenyl) 1 N phenyla )] Triphenylamine (MTDATA), etc.
  • polymer materials in which these materials are introduced into the polymer chain or these materials as the main chain of the polymer can also be used.
  • Inorganic compounds such as p-type SiC can also be used as hole injection materials and hole transport materials.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. S can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. It is done. In the present invention, it is preferable to use such a hole transport layer having a high rho property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and includes an electron injection layer and a hole blocking layer in a broad sense.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the negative electrode.
  • any material can be selected from conventionally known compounds, such as nitro-substituted fluorene derivatives and diphenylquinone derivatives.
  • Thiopyran dioxide derivatives carpositimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom
  • quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromo-1-8-quinolinol) ) Aluminum, Tris (2 methyl 8 quinolinol) aluminum, Tris (5 methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • methanol-free or metal phthalocyanine or those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material.
  • inorganic semiconductors such as n-type Si and n-type SiC can also be used. Can be used as an electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials. It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4 29 7076, JP-A-10-270172, JP-A 2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004). ) And the like. In the present invention, it is preferable to use such an electron transport layer having a high ⁇ property because an element with low power consumption can be produced.
  • the injection layer is a layer that is provided between the electrode and the organic layer in order to lower the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industrialization front line June 30, 1998, NTS Corporation) Issue) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123-166), which has a hole injection layer (one anode buffer layer) and an electron injection layer (one cathode buffer layer).
  • the injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer as described above.
  • anode buffer layer (hole injection layer)
  • examples include a phthalocyanine buffer layer represented by talocyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • a phthalocyanine buffer layer represented by talocyanine
  • an oxide buffer layer represented by vanadium oxide
  • an amorphous carbon buffer layer an amorphous carbon buffer layer
  • a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • the thickness of the buffer layer (injection layer) is preferably in the range of 0.1 to 5111, although it depends on the material desired to be a very thin film.
  • the hole blocking layer has the function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
  • the above-described configuration of the electron transport layer can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, see pages 237 of JP-A-11-204258, JP-A-11-204359, and “OLEDs and the Forefront of Industrialization (issued on November 30, 1998 by TS Co., Ltd.)”. There is a hole blocking layer described.
  • the hole blocking layer it is preferable that 50% by mass or more of the compound contained in the hole blocking layer has an ionization potential of 0.2 eV or more greater than the host compound of the short-wave light emitting layer. If the hole blocking layer according to the present invention contains the electron donor, the electron density increases, which is preferable for further lowering the voltage.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons.
  • the electron blocking layer preferably used in the present invention is a material for the hole transport layer. Further, when the above-mentioned elector acceptor is contained, the effect of lowering the voltage can be obtained.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to;! OOnm More preferably, it is 5 to 30 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) relating to the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc. Also, it may be transparent or opaque. It may be. In the case where light is extracted from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support base is a resin film capable of imparting flexibility to the organic EL element.
  • polyesterol such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cenorelose diacetate, cenorelose triacetate, cellulose acetate butyrate, and cellulose acetate propionate.
  • CAP senorelose acetate phthalate
  • TAC senorelose esters
  • senorelose nitrate or their derivatives, polyvinylidene chloride, polybulu alcohol, poly (ethylene butyl alcohol), syndiotactic polystyrene, polycarbonate, norbornene resin , Polymethylpentene, Polyetherketone, Polyimide, Polyethersulfone (PES), Polyphenylene sulfide, Polysulfones, Polyether Cycloolefin resins such asucimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethylmetatalylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or pearl (trade name, manufactured by Mitsui Chemicals) Etc.
  • the surface of the resin film may have an inorganic or organic coating or a hybrid coating of both.
  • a material for forming a barrier film formed on the surface of a resin film in order to obtain a high barrier film it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element.
  • silicon oxide, silicon dioxide, silicon nitride or the like can be used as long as it has a material.
  • the formation method of the noria film for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma weighting.
  • a method using an atmospheric pressure plasma polymerization method as described in JP-A No. 2004-68143 is particularly preferable.
  • the opaque support substrate include metal plates such as aluminum and stainless steel, film opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL device / the number of electrons sent to the organic EL device ⁇ 100.
  • Examples of the sealing means used for sealing the organic EL element of the present invention include a method in which a sealing member, an electrode, and a support base are bonded with an adhesive.
  • the sealing member may be in the form of a concave plate or a flat plate as long as it is disposed so as to cover the display area of the organic EL element.
  • transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, and a metal plate' film.
  • Examples of the glass plate include sodalite ash glass, norium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • polymer plate examples include polycarbonate, attalinole, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • a polymer film and a metal film can be preferably used because the device can be thinned.
  • the polymer film JIS K 7129- 19 92 water vapor permeability measured by the method conforming to (25 ⁇ 0. 5 ° C, relative humidity (90 ⁇ 2)% RH) is, 1 X 10- 3 g / (m 2 '24h) following barrier film it is preferred instrument further a is, JIS K 7126- oxygen permeability force 1 was measured by the method conforming to the 1987 X 10- 3 ml / m 2 ' 24h 'atm or less, the water vapor transmission rate (25 ⁇ 0. 5 ° C, relative humidity (90 ⁇ 2)% RH) is, 1 X 10- 3 g / ( m 2 - 24h) are the following high barrier film I like it! /
  • the sealing member is processed into a concave shape by sandblasting, chemical etching, or the like.
  • adhesives include photocuring and thermosetting adhesives having a reactive bur group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. Can be mentioned.
  • heat- and chemical-curing type such as epoxy type can be mentioned.
  • hot-melt polyamides, polyesters and polyolefins it is possible to list hot-melt polyamides, polyesters and polyolefins.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the organic EL element may be deteriorated by heat treatment, an element that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • the electrode and the organic layer are covered on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride Etc. can be used.
  • the method for forming these films is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method.
  • An ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase or liquid phase. This is preferred.
  • a vacuum can also be used.
  • a hygroscopic compound can be enclosed inside.
  • the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.) ), Metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid). Barium chlorate, magnesium perchlorate, etc.), and anhydrous salts are preferably used for sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the force that can be used for this S The material that can be used for the same glass plate, polymer plate 'film, metal plate' film, etc. used for the sealing, because it is lightweight and thin. It is preferable to use a polymer film.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • ITO indium tinoxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O—ZnO) that can form a transparent conductive film may be used.
  • IDIXO In 2 O—ZnO
  • a thin film is formed from these electrode materials by a method such as vapor deposition or sputtering, and a desired photolithography method is used.
  • the pattern is formed through a mask of the desired shape during the deposition or sputtering of the electrode material. Also good. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixture, indium, lithium / aluminum mixture, rare earth metal etc.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) mixture, lithium /
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is preferably 10 to 5 111, preferably 50 to 200 nm.
  • an organic-electric-luminescence element for backlights it is usually desirable that light be emitted in all directions so that the brightness does not change even if the viewing angle changes, but depending on the usage, the front brightness is higher.
  • the light extraction efficiency can be improved using these as long as the object effects are not impaired. I can do it.
  • the first diffusion plate is placed in contact with the surface of the glass substrate opposite to the light emitting layer.
  • the first lens sheet for example, 3M BEF ⁇ ⁇
  • the second lens sheet is Position the lens so that it is perpendicular to the lens stripe and the lens surface faces away from the glass substrate.
  • a second diffuser plate is placed in contact with the second lens sheet.
  • the shape of the first and second lens sheets is such that a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 m is formed of acrylic resin on a PET base material. Shapes with rounded apex angles (3M RBEF), shapes with randomly changing pitches (3M BEF 111), and other similar shapes.
  • the first diffusion plate is a film that is made by mixing beads that diffuse light on a PET substrate of about 100 m. The rate is about 85% and the haze value is about 75%.
  • the second diffusion plate is a film in which beads for diffusing light are mixed on a PET substrate of about 100 nm, with a transmittance of about 90% and a haze value of about 30%.
  • the diffusion plate arranged in contact with the glass substrate may be bonded to the glass substrate via an optical adhesive. Further, a layer that diffuses light directly on the surface of the glass substrate may be directly applied, or a fine structure for diffusing light on the surface of the glass substrate may be provided. As described above, the force S described for the glass substrate and the substrate may be a resin substrate.
  • a microlens array sheet is optically applied to the surface of the glass substrate opposite to the surface on which the organic light emitting layer is provided. Paste through adhesive.
  • Each microlens array sheet has a shape of 50m squares (pyramids) and microlenses whose apex angle is 90 degrees aligned at 50m pitch.
  • the sheet is manufactured by injecting a UV curable resin between a metal mold that is the mother mold of the microlens array and a glass plate placed with a 0.5 mm spacer between the glass substrate and the glass substrate.
  • the resin is cured by UV exposure to obtain a microlens array sheet.
  • a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable.
  • the microlens array sheet may be attached to the resin substrate.
  • the transparent lens / organic light emitting layer / electrode / sealing layer may be provided on the surface opposite to the surface on which the microlens array of the microlens array sheet is provided.
  • a microlens array sheet is placed on the surface of the glass substrate opposite to the surface on which the organic light emitting layer is provided. Then, the microlenses are pasted with an optical adhesive so that the uneven surface of the microlens faces the glass substrate.
  • the microlens array sheet has a shape in which microlenses having a structure in which the apexes of a rectangular shape each having a side of 50 am are flat are aligned at a pitch of 50 am. The flat top portion is adhered to the surface of the glass substrate.
  • each microlens a conical shape, a triangular pyramid shape, a convex lens shape, or the like can be applied.
  • the microlens array sheet may be attached to the resin substrate.
  • a low refractive index layer between the transparent electrode and the transparent substrate.
  • a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is longer than the wavelength in the light medium, preferably twice or more. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate. Examples of the low refractive index layer according to the present invention will be described below, but the present invention is not limited to these examples as long as the object effects are not impaired.
  • a method for producing a glass substrate in which hollow silica is dispersed by a zonore gel method to form a low refractive index layer will be described.
  • a low refractive index layer can be formed on a glass substrate by the following procedure.
  • Metal alkoxide original tetraethyl silicate Si (OC H): abbreviated as “TEOS”
  • a low refractive index layer having a thickness of 0. ⁇ ⁇ ⁇ refractive index 1.37 is formed.
  • spin coating is described as the solution coating method, but any method that can obtain a uniform film thickness, such as dip coating, may be used.
  • Force showing glass substrate as substrate process temperature Since the force is S150 ° C or less, it can be applied directly on the resin substrate. Further effects can be expected by selecting a lower refractive index and refractive index as the raw material compound or low refractive index material and making the resulting low refractive index layer have a refractive index of 1.37 or less.
  • the film thickness is preferably not less than 0. ⁇ m; more preferably not less than m.
  • hollow silica is described in, for example, JP-A-2001-167637, JP-A-2001-233611, JP-A-2002-79616, and the like.
  • the transparent low refractive index layer is formed by a silica air mouth gel obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide.
  • Siri-force air mouth gel is a light-transmitting porous material with a uniform ultra-fine structure.
  • Liquid A was prepared by mixing tetramethoxysilane oligomer and methanol
  • liquid B was prepared by mixing water, aqueous ammonia, and methanol.
  • the alkoxysilane solution obtained by mixing the A and B solutions is applied onto the substrate 2.
  • the alkoxysilane is gelled, it is immersed in a curing solution of water, aqueous ammonia and methanol, and then cured at room temperature for one day and night.
  • the cured thin gel compound is immersed in an isopropanol solution of hexamethyldisilazane, hydrophobized, and then subjected to supercritical drying to form a silica air
  • a film of low dielectric constant material containing water repellent hexamethyldisiloxane or hexamethyldisilazane as a low refractive index material is applied to a substrate.
  • water-repellent materials such as hexamethyldisiloxane and hexamethyldisilazane
  • alcohol or butyl acetate may be added as an additive to the solution of the low dielectric constant material used here, if necessary.
  • a low refractive index film made of a porous silica material is formed by evaporating the solvent, water, acid, alkali catalyst, surfactant, or the like in the solution of the low relative dielectric constant material by firing treatment or the like. This is washed to obtain a low refractive index film.
  • an intermediate layer is formed on the low refractive index film directly or with a transparent insulating film made of a SiO film by, for example, RF sputtering, After that, an ITO film is formed on the intermediate layer by DC sputtering to form a substrate with a transparent electrode.
  • JP-A-11-283751 As described in Japanese Patent Application No. 2005-48686, etc., it is preferable to use a method of introducing a diffraction grating in an interface or any medium that causes total reflection.
  • a diffraction grating is formed on a glass substrate.
  • This method utilizes the property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
  • Bragg diffraction such as first-order diffraction or second-order diffraction.
  • the light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode). It is intended to diffract and take out light. It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength in the medium of the light to be amplified.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb irregularity.
  • a glass-type resist is applied to the surface after washing the glass substrate.
  • two parallel lights with coherent wavelengths are irradiated onto the resist so that they face each other at an angle of ⁇ from the vertical direction of the substrate.
  • interference fringes having a pitch d are formed in the resist.
  • d / (2cos ⁇ ).
  • the substrate is rotated 90 degrees in the plane of the substrate to form a second interference fringe so as to be orthogonal to the first interference fringe. If the light beam to be exposed is kept as it is, second interference fringes are formed at a pitch of 300 nm.
  • the resist is exposed with two interference fringes superimposed to form a grid-like exposure pattern.
  • Appropriate exposure power and development conditions By setting, development is performed so that the resist is removed only in the areas where the two fringes overlap and are strongly exposed.
  • a pattern is formed in which the resist is removed in a substantially circular shape at the overlapping part of the lattices with vertical and horizontal pitches of 300 nm each.
  • the diameter of the circle is, for example, 220 nm.
  • etching is performed to form a hole with a depth of 200 nm in the portion where the range is removed. Thereafter, the resist is removed and the glass substrate is washed. As a result, a glass substrate is formed in which holes having a depth of 200 nm and a diameter of 220 nm are arranged on the surface at the apexes of a square lattice of 300 nm vertically and horizontally.
  • an ITO film with a film thickness of about 300 nm as measured from the bottom of the hole is formed by bias sputtering, and the surface irregularities are flattened to 50 nm or less by appropriately controlling the bias sputtering conditions. Power S can be.
  • a glass substrate with ITO for organic EL is formed.
  • a glass mold is formed by a similar method, and a UV-curable resist is transferred onto the glass substrate by a nanoimprint method.
  • a method of etching the glass substrate is also possible.
  • the pattern formed on the glass substrate is transferred to a mold by a technique such as nickel electroplating, and the mold is transferred to a resin by a nanoimprint technique. Can be implemented.
  • the front luminance amplification factor is increased.
  • the emission color is classified into blue light of 420 nm or more and less than 500 nm, green light of 500 nm or more and less than 550 nm, and red light of 600 nm or more and less than 650 nm. Accordingly, the force that varies depending on the material that emits light (substantially a dopant).
  • the front luminance peak value of the organic-electric-luminescence element in the absence of the light extraction and / or condensing sheet is On the other hand, qualitatively, blue is the smallest ratio.
  • the organic electroluminescent mouth luminescence element Since the blue color is generally rate-determined in the lifetime in continuous driving or the like, when such a light extraction and / or condensing sheet is used, the organic electroluminescent mouth luminescence element is used. And a longer service life is possible.
  • the driving voltage is limited by blue, which has the largest energy gap between HOMO and LUMO. Therefore, the organic EL element with improved light extraction has a design that requires less blue front luminance and can be driven. The voltage can be lowered.
  • the blue light-emitting layer can be made thinner and the driving voltage can be lowered, so that a longer life can be achieved compared to the case where there is no light extraction and / or light collecting sheet. It is possible to obtain white light.
  • the amplification factor of the front luminance by the light extraction and / or condensing sheet is measured by using a spectral radiance meter (for example, CS-1000 (manufactured by Konica Minolta Sensing)) or the like.
  • the brightness (2 ° C viewing angle front brightness) is set so that the optical axis of the spectroradiometer matches the normal from the light-emitting surface with or without the light extraction and / or condensing sheet.
  • the emission color of the organic electoluminescence device of the present invention and the compound related to the device is shown in Fig. 4.16 on page 108 of "New Color Science Handbook" (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured with the luminance meter CS-1000 (Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • a desired electrode material for example, a thin film of material force for an anode is formed on a suitable support substrate
  • An anode is produced by forming the film so as to have a film thickness of ⁇ m or less, preferably 10 to 200 nm, by vapor deposition or sputtering. Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed thereon. Make it.
  • Film in the case of employing an evaporation method different forces generally boat temperature 50 to 450 ° C such as the type of compound the deposition conditions used, the degree of vacuum 10- 6 to 10-2 Pa, the deposition rate 0.01 to 50 belly / second, substrate temperature—50 to 300. C, film thickness 0.1 to 5, preferably 5 to 200 nm.
  • a thin film made of a cathode material is formed thereon; m or less, and preferably formed by a method such as vapor deposition or sputtering so as to have a film thickness in the range of 50 to 200 nm.
  • the organic EL device is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order to produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the positive electrode in this order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the applied alternating current waveform may be arbitrary.
  • the organic electoluminescence element of the present invention can be used as a display device, a display, or various light sources.
  • light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sensors.
  • the light source include, but are not limited to, a light source and the like.
  • the light source can be effectively used as a backlight of a liquid crystal display device combined with a color filter or a light source for illumination.
  • Organic electric of the present invention In the case of a ToroRolminine sensor element, if necessary, it is necessary to use a metal mask during the film formation.
  • Patter patterning may be applied by the tinning method or the like. . In the case of patterning, it is possible to pattern the electrode electrode only, or the electrode electrode and the light emitting / emitting layer. You can either change the pattern, or you can pattern all layers of the element. .
  • the table display device can be used for a multi-color or white-white table display device.
  • a film can be formed by shaping.
  • conducting the patterning of the light emitting / emitting light layer there is no limit to the method, but it does not matter. These are the vapor deposition method, the ink jet method, and the printing method. .
  • the positive voltage is set to ++
  • the negative electrode is set to the same polarity, and a voltage of about 22VV to 4400VV is applied. If this is done, the emitted light can be generated by observation. . In addition, even if an electric voltage is applied with reverse polarity, the electric current does not flow and the emitted light is not generated at all. Good. .
  • the positive and negative electrodes are in a state of ++ and the negative and negative electrodes are in a single state. It emits light only when it is no longer visible. .
  • the wave waveform shape of the alternating current to be applied with the mark may be arbitrarily determined. .
  • light emission and emission light source lighting for home / house garden, interior lighting for car interior, back clock light for liquid crystal crystal, Signboard board advertising, light signal machine, light source of optical storage media, light source of electrophotographic photocopy machine, light transmission
  • the light source source of the communication processing processor, the light source source of the light sensor, etc. are listed, but these are not limited to these. .
  • the organic element EELL element of the present invention is used as a kind of lalamp lamp for illumination and light source. It's fine, and it's a professional type of projector that projects and projects image images, static still image images, and moving image images. It may be used as a display display device (type display) for the type of display that directly recognizes the image directly. .
  • the driving method is the simple simple mammary trix ((Pappa Shishibubu Mama Tori Rikukususu)) Even in the method
  • [[00118800]] contains a phosphorinous photosensitizing compound represented by the above general formula ((BBDD11)). Emits blue-blue light ((BB)) In addition to the light emitting layer that emits green light (G) and red (R) light, an organic EL device capable of extracting white light with improved chromaticity can be obtained. .
  • patterning may be performed by a metal mask, an ink jet printing method, or the like, as necessary, during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the gold complex according to the present invention is also known so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined, or combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
  • the white organic EL element used in the present invention is combined with the CF (color filter), and the element and the drive transistor circuit are arranged in accordance with the CF (color filter) pattern.
  • CF color filter
  • white light extracted from the organic-electric-luminescence element as a backlight
  • blue light, green light, and red light are obtained via a blue filter, a green filter, and a red filter.
  • a full-color organic-elect-luminous luminescence display is preferable.
  • various light-emitting light sources and lighting devices such as household lighting, interior lighting, and a kind of lamp such as an exposure light source
  • display devices such as backlights of liquid crystal display devices, etc.
  • backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc., and display devices are also required. Wide range of uses such as general household appliances.
  • LOOmmX lOOmm X l As a positive electrode, put a pattern on a substrate (NATechno glass NA45) made of ITO (indium tin oxide) on lOOnm on a 1mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • a substrate NATechno glass NA45
  • ITO indium tin oxide
  • dopant A and host A listed in Tables 2 to 4 were vapor-deposited at the vapor-deposition rates in the table to form a light-emitting layer A. Subsequently, dopant B and host B described in Tables 2 to 4 were deposited at the deposition rate in the table to obtain a light emitting layer B. As a hole blocking layer, the compound HBL1 was deposited by 10 nm.
  • the heating boat containing BAlq was energized and heated, and deposited on the hole blocking layer 1 at a deposition rate of 0. Inm / sec to provide an electron transport layer having a thickness of 20 nm.
  • the substrate temperature during vapor deposition was room temperature.
  • ⁇ ⁇ ( ⁇ ) in the table represents Ip (host compound A) —Ip (dopant A), and ⁇ ⁇ ( ⁇ ) « ⁇ ⁇ (host compound B) -Ip (dobanton).
  • External quantum efficiency and chromaticity are the values when 2.5 mA / cm 2 constant current is applied to the device.
  • the lifetime is the time when the luminance is halved at an initial luminance of 300 cd / m 2 .
  • Invented organic EL device 1 5 10.7 0.18, 0.38 2900
  • Invented organic EL device 1 6 10.1 0.17, 0.38 7000
  • the phosphorescent dopant of the light emitting layer A used in the examples exhibits blue light emission, but the chromaticity can be adjusted by changing the light emission ratio of the light emitting layer A. In this case, the effects of efficiency and life can be obtained in the same way.
  • Table 5 shows the maximum emission wavelengths of the phosphorescent dopants used in the examples.
  • Organic EL elements 3-1 and 3-2 were prepared in the same manner as in Example 1 except for the light emitting layer. Light emitting layer is front
  • the lifetime is the time when the luminance is halved at an initial luminance of 300 cd / m 2 , as a value relative to the element 3-3. Larger values indicate longer life.
  • the light emitting layer A emitted green light, the light emitting layer B emitted blue light, the light emitting layer C emitted red light, and the elements 3-1 to 3-3 emitted white light.
  • the light-emitting layer B uses the same phosphorescent dopant.
  • the ITO transparent electrode is formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • PEDOT / PSS polystyrene sulfonate
  • the substrate was transferred to a nitrogen atmosphere, and a solution of lOOmg Host4 and lOmg BD1-79 dissolved in 10ml toluene was formed by spin coating at 3000rpm for 30 seconds. did. Further, a solution obtained by dissolving lOOmg Host5 and lOmg BD1-99 in a mixed solvent of 10 ml of methylene chloride-methanol (1: 9) was formed by the spin coating method at 3000 rpm for 30 seconds. did.
  • Host4 does not dissolve in a mixed solvent of methylene chloride and methanol (1: 9) in which Host5 is dissolved, a laminated structure can be formed.
  • Heating was performed in a vacuum at 60 ° C for 1 hour to form two light-emitting layers.
  • Lithium fluoride 0.5 nm was deposited as a cathode buffer layer and aluminum lOnm was deposited as a cathode to form a cathode, whereby an organic EL device 41 was produced.
  • the organic EL device of the present invention can also be produced by coating.
  • an organic EL element obtained by coating can achieve the same effect as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

L'invention concerne un élément électroluminescent organique qui présente un rendement d'émission de lumière bleue phosphorescente, une durée de vie et une chromaticité améliorées. L'invention concerne également un élément électroluminescent organique qui peut extraire de la lumière blanche comprenant la lumière bleue phosphorescente. Les éléments électroluminescents organiques sont caractérisés par le fait qu'ils comportent une anode, une unité de couche émettantde la lumière ayant de multiples couches émettant de la lumière et une cathode, chacune des multiples couches émettant de la lumière contenant un composé phosphorescent représenté par la formule générale (BD1) (1).
PCT/JP2007/067391 2006-09-20 2007-09-06 Élément électroluminescent organique WO2008035571A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535314A JP5556014B2 (ja) 2006-09-20 2007-09-06 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-254127 2006-09-20
JP2006254127 2006-09-20

Publications (1)

Publication Number Publication Date
WO2008035571A1 true WO2008035571A1 (fr) 2008-03-27

Family

ID=39200398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067391 WO2008035571A1 (fr) 2006-09-20 2007-09-06 Élément électroluminescent organique

Country Status (2)

Country Link
JP (1) JP5556014B2 (fr)
WO (1) WO2008035571A1 (fr)

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035664A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010056669A1 (fr) * 2008-11-11 2010-05-20 Universal Display Corporation Émetteurs phosphorescents
JP2010118381A (ja) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc 白色有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2010140645A1 (fr) * 2009-06-03 2010-12-09 富士フイルム株式会社 Élément de conversion photoélectrique et son procédé de production, photocapteur, élément d'imagerie et son procédé de pilotage
JP2011009348A (ja) * 2009-06-24 2011-01-13 Konica Minolta Holdings Inc 白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2011051404A1 (fr) 2009-10-28 2011-05-05 Basf Se Complexes hétéroleptiques à base de carbène et leur utilisation dans l'électronique organique
WO2011070991A1 (fr) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Nouveau complexe de l'iridium, dispositif électroluminescent organique et appareil d'affichage d'images
WO2011073149A1 (fr) 2009-12-14 2011-06-23 Basf Se Complexes métalliques contenant des ligands diazabenzimidazole-carbéniques et leur utilisation dans des oled
WO2011155507A1 (fr) * 2010-06-08 2011-12-15 出光興産株式会社 Élément électroluminescent organique
WO2011155508A1 (fr) * 2010-06-08 2011-12-15 出光興産株式会社 Elément électroluminescent organique
JPWO2010095564A1 (ja) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
WO2012111548A1 (fr) * 2011-02-16 2012-08-23 コニカミノルタホールディングス株式会社 Elément électroluminescent organique, dispositif d'éclairage et dispositif d'affichage
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20130004780A (ko) * 2011-07-04 2013-01-14 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 사용한 유기전계발광소자
US8378339B2 (en) 2009-09-11 2013-02-19 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
WO2013058098A1 (fr) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 Élément électroluminescent organique
WO2013137162A1 (fr) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 Élément électroluminescent organique, dispositif d'éclairage et dispositif d'affichage
WO2013150909A1 (fr) * 2012-04-03 2013-10-10 コニカミノルタ株式会社 Élément électroluminescent organique
WO2014012972A1 (fr) 2012-07-19 2014-01-23 Basf Se Complexes métalliques binucléaires comprenant des ligands carbènes et leur utilisation dans des diodes électroluminescentes organiques (oled)
JP2014041846A (ja) * 2006-12-28 2014-03-06 Universal Display Corp 長寿命リン光発光有機発光デバイス(oled)構造
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US20140138652A1 (en) * 2012-11-22 2014-05-22 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
WO2014147134A1 (fr) 2013-03-20 2014-09-25 Basf Se Complexes de carbène d'azabenzimidazole formant des amplificateurs d'efficacité dans des oled
US8847208B2 (en) 2009-06-03 2014-09-30 Fujifilm Corporation Photoelectric conversion device and imaging device having decreased dark current
WO2014177518A1 (fr) 2013-04-29 2014-11-06 Basf Se Complexes de métal de transition avec des ligands carbène et leur utilisation dans des delo
WO2015000955A1 (fr) 2013-07-02 2015-01-08 Basf Se Complexes de métal et de carbène de type diazabenzimidazole monosubstitué destinés à être utilisés dans des diodes électroluminescentes organiques
JP2015503533A (ja) * 2011-12-28 2015-02-02 ソルヴェイ(ソシエテ アノニム) ヘテロレプチック金属錯体の製造
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2016016791A1 (fr) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) Benzimidazolo[1,2-a] benzimidazoles 2,9-fonctionnalisé utilisés comme hôtes pour diodes électroluminescentes organiques (oled)
EP2982676A1 (fr) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo [2,1-B] benzoxazoles pour applications électroniques
EP2993215A1 (fr) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles pour applications électroniques
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (fr) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles pour des applications électroniques
WO2016079169A1 (fr) 2014-11-18 2016-05-26 Basf Se Complexes de pt-carbène ou de pd-carbène destinés à être utilisés dans des diodes électroluminescentes organiques
WO2016079667A1 (fr) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Dérivés d'indole pour des applications électroniques
EP3034507A1 (fr) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd Dibenzothiophènes et dibenzofurannes 1-functionalisés pour diodes électroluminescentes organiques (OLED)
EP3034506A1 (fr) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd Dérivés de carbazole 4-fonctionnalisés pour applications électroniques
EP3053918A1 (fr) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd Benzimidazoles substitués par un 2-carbazole pour des applications électroniques
EP3054498A1 (fr) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3056504A1 (fr) 2015-02-16 2016-08-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3061763A1 (fr) 2015-02-27 2016-08-31 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3061759A1 (fr) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Dibenzofuranes à substituant nitrile
EP3070144A1 (fr) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Composés cycliques à sept chaînons
EP3072943A1 (fr) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Benzonitriles de dibenzofurane/carbazole-substitué
EP3075737A1 (fr) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo [1,2-a] benzimidazole portant des groupes heteroarylnitril aryl- ou pour diodes électroluminescentes organiques
EP3098229A1 (fr) 2015-05-15 2016-11-30 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3101021A1 (fr) 2015-06-01 2016-12-07 Universal Display Corporation Materiaux electroluminescents organiques et dispositfs
WO2016193243A1 (fr) 2015-06-03 2016-12-08 Udc Ireland Limited Dispositifs oled très efficaces à temps de déclin très courts
EP3124488A1 (fr) 2015-07-29 2017-02-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3150604A1 (fr) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Groupes benzimidazolo [1,2-a] benzimidazoles portant des benzimidazolo [1,2-a] benzimidazolyles, groupes carbazolyles, groupes benzofuranes ou benzothiophènes pour diodes électroluminescentes organiques
EP3150606A1 (fr) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles avec des groupements benzofurane ou benzothiophène pour des diodes émittant de la lumière
WO2017056055A1 (fr) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole portant des groupes triazine pour diodes électroluminescentes organiques
WO2017056053A1 (fr) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Groupes benzimidazolo[1,2-a]benzimidazolyle, groupes carbazolyle, groupes benzofuranne ou groupes benzothiophène portant un composé benzimidazolo[1,2-a] benzimidazole pour diodes électroluminescentes organiques
EP3159350A1 (fr) 2015-09-03 2017-04-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
WO2017078182A1 (fr) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Hétéroaryles fusionnés à un benzimidazole
WO2017093958A1 (fr) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Dérivés benzimidazolo[1,2-a]benzimidazole pour des diodes électroluminescentes organiques
WO2017109722A1 (fr) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Composés hétérocycliques azotés et dispositifs électroluminescents organiques contenant ceux-ci
EP3205658A1 (fr) 2016-02-09 2017-08-16 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3231809A2 (fr) 2016-04-11 2017-10-18 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
WO2017178864A1 (fr) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Composés cycliques à sept anneaux
EP3239161A1 (fr) 2013-07-31 2017-11-01 UDC Ireland Limited Complexes de carbène-métal diazabenzimidazole luminescent
EP3261146A2 (fr) 2016-06-20 2017-12-27 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3261147A1 (fr) 2016-06-20 2017-12-27 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
EP3270435A2 (fr) 2016-06-20 2018-01-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3297051A1 (fr) 2016-09-14 2018-03-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3301088A1 (fr) 2016-10-03 2018-04-04 Universal Display Corporation Pyridines condensées et tant que matériaux et dispositifs électroluminescents organiques
EP3305796A1 (fr) 2016-10-07 2018-04-11 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3321258A1 (fr) 2016-11-09 2018-05-16 Universal Display Corporation Complexes d'iridium avec 4-phénylbenzo[g]quinazoline ou 4-(3,5-dimethylphenylbenzo[g]quinazoline à être utilisés en tant que matériaux émetteurs dans le proche infrarouge or infrarouge de lumière dans des oleds
JP2018078299A (ja) * 2012-03-14 2018-05-17 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
EP3323822A1 (fr) 2016-09-23 2018-05-23 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3345914A1 (fr) 2017-01-09 2018-07-11 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3354654A2 (fr) 2016-11-11 2018-08-01 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3381927A1 (fr) 2017-03-29 2018-10-03 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3401318A1 (fr) 2017-05-11 2018-11-14 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3415521A1 (fr) 2011-06-14 2018-12-19 UDC Ireland Limited Complexes de métal comprenant des ligands de carbène d'azabenzimidazole et leur utilisation dans des oled
EP3418286A1 (fr) 2017-06-23 2018-12-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3444258A2 (fr) 2017-08-10 2019-02-20 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3489243A1 (fr) 2017-11-28 2019-05-29 University of Southern California Composés de carbène et dispositifs électroluminescents organiques
EP3492528A1 (fr) 2017-11-30 2019-06-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3492480A2 (fr) 2017-11-29 2019-06-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3613751A1 (fr) 2018-08-22 2020-02-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
JP2020059709A (ja) * 2018-10-08 2020-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含む有機発光素子
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (fr) 2019-02-01 2020-08-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3690973A1 (fr) 2019-01-30 2020-08-05 University Of Southern California Matériaux et dispositifs électroluminescents organiques
EP3715353A1 (fr) 2019-03-26 2020-09-30 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3750897A1 (fr) 2019-06-10 2020-12-16 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3771717A1 (fr) 2019-07-30 2021-02-03 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3778614A1 (fr) 2019-08-16 2021-02-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3816175A1 (fr) 2019-11-04 2021-05-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3845545A1 (fr) 2020-01-06 2021-07-07 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3858945A1 (fr) 2020-01-28 2021-08-04 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3937268A1 (fr) 2020-07-10 2022-01-12 Universal Display Corporation Delo plasmoniques et émetteurs à dipôle vertical
EP4001286A1 (fr) 2020-11-24 2022-05-25 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4001287A1 (fr) 2020-11-24 2022-05-25 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4016659A1 (fr) 2020-11-16 2022-06-22 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4019526A1 (fr) 2018-01-26 2022-06-29 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4039692A1 (fr) 2021-02-03 2022-08-10 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4053137A1 (fr) 2021-03-05 2022-09-07 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4056578A1 (fr) 2021-03-12 2022-09-14 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4060758A2 (fr) 2021-02-26 2022-09-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4059941A1 (fr) 2021-03-15 2022-09-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4059915A2 (fr) 2021-02-26 2022-09-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4075530A1 (fr) 2021-04-14 2022-10-19 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4075531A1 (fr) 2021-04-13 2022-10-19 Universal Display Corporation Delo plasmoniques et émetteurs à dipôle vertical
EP4074723A1 (fr) 2021-04-05 2022-10-19 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4079743A1 (fr) 2021-04-23 2022-10-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4086266A1 (fr) 2021-04-23 2022-11-09 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4112701A2 (fr) 2021-06-08 2023-01-04 University of Southern California Alignement moléculaire de phosphores homoleptiques d'iridium
EP4151699A1 (fr) 2021-09-17 2023-03-22 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4185086A1 (fr) 2017-07-26 2023-05-24 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4212539A1 (fr) 2021-12-16 2023-07-19 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4231804A2 (fr) 2022-02-16 2023-08-23 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4242285A1 (fr) 2022-03-09 2023-09-13 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4265626A2 (fr) 2022-04-18 2023-10-25 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4282863A1 (fr) 2022-05-24 2023-11-29 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4293001A1 (fr) 2022-06-08 2023-12-20 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4299693A1 (fr) 2022-06-28 2024-01-03 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4326030A1 (fr) 2022-08-17 2024-02-21 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362631A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362645A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362630A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4369898A1 (fr) 2022-10-27 2024-05-15 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4376583A2 (fr) 2022-10-27 2024-05-29 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4386065A1 (fr) 2022-12-14 2024-06-19 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
US12187748B2 (en) 2020-11-02 2025-01-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4489555A2 (fr) 2018-03-12 2025-01-08 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4580378A1 (fr) 2023-12-15 2025-07-02 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4592303A1 (fr) 2023-12-15 2025-07-30 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
US12428599B2 (en) 2021-03-09 2025-09-30 Universal Display Corporation Organic electroluminescent materials and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327432A (ja) * 2003-04-09 2004-11-18 Semiconductor Energy Lab Co Ltd 発光素子および発光装置
WO2005079118A1 (fr) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. Composant organique électroluminescent
WO2006009024A1 (fr) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. Dispositif et affichage électroluminescents organiques et dispositif d’éclairage
JP2006237306A (ja) * 2005-02-25 2006-09-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196639B2 (ja) * 2002-06-10 2008-12-17 三菱化学株式会社 有機金属錯体、およびこれを用いた有機電界発光素子
JP4427947B2 (ja) * 2002-11-18 2010-03-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
JP4337475B2 (ja) * 2003-08-27 2009-09-30 三菱化学株式会社 有機金属錯体、発光材料、および有機電界発光素子
JP4894513B2 (ja) * 2004-06-17 2012-03-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5151001B2 (ja) * 2004-07-15 2013-02-27 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5040077B2 (ja) * 2004-07-23 2012-10-03 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP4961664B2 (ja) * 2004-10-22 2012-06-27 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006067074A1 (fr) * 2004-12-23 2006-06-29 Ciba Specialty Chemicals Holding Inc. Complexes metalliques electroluminescents a ligands carbene nucleophiles
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
GB2442885B (en) * 2005-06-09 2011-07-13 Konica Minolta Holdings Inc Organic electroluminescence element, illuminator and display
WO2007029461A1 (fr) * 2005-09-02 2007-03-15 Konica Minolta Holdings, Inc. Dispositif électroluminescent organique, son procédé de fabrication, affichage comprenant un tel dispositif électroluminescent organique, et dispositif d'éclairage
US8148891B2 (en) * 2005-10-04 2012-04-03 Universal Display Corporation Electron impeding layer for high efficiency phosphorescent OLEDs
US20090230850A1 (en) * 2005-10-11 2009-09-17 Konica Minolta Holdings, Inc. Electroluminescent element, liquid crystal display and illuminating device
JP4887731B2 (ja) * 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP1953843B1 (fr) * 2005-10-31 2012-12-05 Konica Minolta Holdings, Inc. Dispositif electroluminescent organique, afficheur et dispositif d'eclairage
WO2007055186A1 (fr) * 2005-11-09 2007-05-18 Konica Minolta Holdings, Inc. Dispositif électroluminescent organique, affichage et dispositif d'éclairage
JPWO2007069539A1 (ja) * 2005-12-15 2009-05-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
CN101331626B (zh) * 2005-12-15 2011-08-17 出光兴产株式会社 有机电致发光元件用材料及使用其的有机电致发光元件
JP5286788B2 (ja) * 2006-01-25 2013-09-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007208102A (ja) * 2006-02-03 2007-08-16 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5520479B2 (ja) * 2006-02-20 2014-06-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、白色発光素子、及び照明装置
JP5226187B2 (ja) * 2006-02-21 2013-07-03 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007108362A1 (fr) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Dispositif électroluminescent organique, dispositif d'éclairage et d'affichage
JP5556012B2 (ja) * 2006-03-17 2014-07-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5228281B2 (ja) * 2006-03-20 2013-07-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子を用いた表示装置及び照明装置
WO2007119420A1 (fr) * 2006-03-22 2007-10-25 Konica Minolta Holdings, Inc. Élément électroluminescent organique, procédé de stabilisation de la chromaticité d'émission de l'élément électroluminescent organique, dispositif d'éclairage et dispositif d'affichage électronique
JP5683784B2 (ja) * 2006-03-23 2015-03-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007262135A (ja) * 2006-03-27 2007-10-11 Showa Denko Kk 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置
JP5103781B2 (ja) * 2006-04-20 2012-12-19 コニカミノルタホールディングス株式会社 化合物、該化合物を含む有機エレクトロルミネッセンス素子、照明装置
JP5560517B2 (ja) * 2006-04-26 2014-07-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035595A1 (fr) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Dispositifs électroluminescents organiques
WO2008035664A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage
JP5011908B2 (ja) * 2006-09-26 2012-08-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2008090912A1 (fr) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. Procédé de fabrication de dispositif électroluminescent organique, dispositif électroluminescent organique fabriqué par le procédé, dispositif d'affichage et dispositif illuminateur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327432A (ja) * 2003-04-09 2004-11-18 Semiconductor Energy Lab Co Ltd 発光素子および発光装置
WO2005079118A1 (fr) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. Composant organique électroluminescent
WO2006009024A1 (fr) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. Dispositif et affichage électroluminescents organiques et dispositif d’éclairage
JP2006237306A (ja) * 2005-02-25 2006-09-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置

Cited By (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035664A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2014041846A (ja) * 2006-12-28 2014-03-06 Universal Display Corp 長寿命リン光発光有機発光デバイス(oled)構造
CN103396455B (zh) * 2008-11-11 2017-03-01 通用显示公司 磷光发射体
WO2010056669A1 (fr) * 2008-11-11 2010-05-20 Universal Display Corporation Émetteurs phosphorescents
JP2010118381A (ja) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc 白色有機エレクトロルミネッセンス素子、表示装置、照明装置
JPWO2010095564A1 (ja) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
US8847141B2 (en) 2009-06-03 2014-09-30 Fujifilm Corporation Photoelectric conversion element, production method thereof, photosensor, imaging device and their driving method
CN104119265A (zh) * 2009-06-03 2014-10-29 富士胶片株式会社 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
US8847208B2 (en) 2009-06-03 2014-09-30 Fujifilm Corporation Photoelectric conversion device and imaging device having decreased dark current
CN102460760A (zh) * 2009-06-03 2012-05-16 富士胶片株式会社 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
CN102460760B (zh) * 2009-06-03 2014-08-27 富士胶片株式会社 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
CN104119265B (zh) * 2009-06-03 2016-07-13 富士胶片株式会社 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
WO2010140645A1 (fr) * 2009-06-03 2010-12-09 富士フイルム株式会社 Élément de conversion photoélectrique et son procédé de production, photocapteur, élément d'imagerie et son procédé de pilotage
KR101574379B1 (ko) 2009-06-03 2015-12-03 후지필름 가부시키가이샤 광전 변환 소자, 그 제조 방법, 광센서, 촬상 디바이스 및 그들의 구동 방법
JP2011009348A (ja) * 2009-06-24 2011-01-13 Konica Minolta Holdings Inc 白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8378339B2 (en) 2009-09-11 2013-02-19 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
US8637860B2 (en) 2009-09-11 2014-01-28 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US12376484B2 (en) 2009-10-28 2025-07-29 Basf Se Heteroleptic carbene complexes and the use thereof in organic electronics
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011051404A1 (fr) 2009-10-28 2011-05-05 Basf Se Complexes hétéroleptiques à base de carbène et leur utilisation dans l'électronique organique
WO2011070991A1 (fr) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Nouveau complexe de l'iridium, dispositif électroluminescent organique et appareil d'affichage d'images
US9045510B2 (en) 2009-12-08 2015-06-02 Canon Kabushiki Kaisha Iridium complex, organic light-emitting device, and image display apparatus
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
WO2011073149A1 (fr) 2009-12-14 2011-06-23 Basf Se Complexes métalliques contenant des ligands diazabenzimidazole-carbéniques et leur utilisation dans des oled
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
WO2011155508A1 (fr) * 2010-06-08 2011-12-15 出光興産株式会社 Elément électroluminescent organique
WO2011155507A1 (fr) * 2010-06-08 2011-12-15 出光興産株式会社 Élément électroluminescent organique
US8987715B2 (en) 2010-06-08 2015-03-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
EP2677561A4 (fr) * 2011-02-16 2016-06-29 Konica Minolta Inc Elément électroluminescent organique, dispositif d'éclairage et dispositif d'affichage
US9923154B2 (en) 2011-02-16 2018-03-20 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
WO2012111548A1 (fr) * 2011-02-16 2012-08-23 コニカミノルタホールディングス株式会社 Elément électroluminescent organique, dispositif d'éclairage et dispositif d'affichage
JP5853964B2 (ja) * 2011-02-16 2016-02-09 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP3415521A1 (fr) 2011-06-14 2018-12-19 UDC Ireland Limited Complexes de métal comprenant des ligands de carbène d'azabenzimidazole et leur utilisation dans des oled
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
KR20130004780A (ko) * 2011-07-04 2013-01-14 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 사용한 유기전계발광소자
KR101944860B1 (ko) * 2011-07-04 2019-02-01 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 사용한 유기전계발광소자
US9780322B2 (en) 2011-10-21 2017-10-03 Konica Minolta, Inc. Organic electroluminescent element
WO2013058098A1 (fr) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 Élément électroluminescent organique
JPWO2013058098A1 (ja) * 2011-10-21 2015-04-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2015503533A (ja) * 2011-12-28 2015-02-02 ソルヴェイ(ソシエテ アノニム) ヘテロレプチック金属錯体の製造
JP2018078299A (ja) * 2012-03-14 2018-05-17 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
US10361390B2 (en) 2012-03-14 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11063232B2 (en) 2012-03-14 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US12161007B2 (en) 2012-03-14 2024-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JPWO2013137162A1 (ja) * 2012-03-15 2015-08-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013137162A1 (fr) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 Élément électroluminescent organique, dispositif d'éclairage et dispositif d'affichage
JPWO2013150909A1 (ja) * 2012-04-03 2015-12-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2013150909A1 (fr) * 2012-04-03 2013-10-10 コニカミノルタ株式会社 Élément électroluminescent organique
WO2014012972A1 (fr) 2012-07-19 2014-01-23 Basf Se Complexes métalliques binucléaires comprenant des ligands carbènes et leur utilisation dans des diodes électroluminescentes organiques (oled)
EP3133079A1 (fr) 2012-07-19 2017-02-22 UDC Ireland Limited Complexes de métal binucléaire comportant des ligands de carbène et leur utilisation dans des oled
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
US9865822B2 (en) * 2012-11-22 2018-01-09 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
US20140138652A1 (en) * 2012-11-22 2014-05-22 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
WO2014147134A1 (fr) 2013-03-20 2014-09-25 Basf Se Complexes de carbène d'azabenzimidazole formant des amplificateurs d'efficacité dans des oled
WO2014177518A1 (fr) 2013-04-29 2014-11-06 Basf Se Complexes de métal de transition avec des ligands carbène et leur utilisation dans des delo
WO2015000955A1 (fr) 2013-07-02 2015-01-08 Basf Se Complexes de métal et de carbène de type diazabenzimidazole monosubstitué destinés à être utilisés dans des diodes électroluminescentes organiques
EP3266789A1 (fr) 2013-07-02 2018-01-10 UDC Ireland Limited Complexes métalliques contenant des ligands diazabenzimidazole-carbéniques monosubstitués destinés à être utilisés dans des diodes électroluminescentes organiques
EP3608329A1 (fr) 2013-07-02 2020-02-12 UDC Ireland Limited Complexes métalliques contenant des ligands diazabenzimidazole-carbéniques monosubstitués destinés à être utilisés dans des diodes électroluminescentes organiques
EP3239161A1 (fr) 2013-07-31 2017-11-01 UDC Ireland Limited Complexes de carbène-métal diazabenzimidazole luminescent
EP4600326A2 (fr) 2013-12-20 2025-08-13 UDC Ireland Limited Dispositifs oled hautement efficaces avec des temps de décroissance très courts
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (fr) 2013-12-20 2021-12-01 UDC Ireland Limited Dispositifs oled hautement efficaces avec de très courts temps de détérioration
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US12342715B2 (en) 2013-12-20 2025-06-24 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2016016791A1 (fr) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) Benzimidazolo[1,2-a] benzimidazoles 2,9-fonctionnalisé utilisés comme hôtes pour diodes électroluminescentes organiques (oled)
EP2982676A1 (fr) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo [2,1-B] benzoxazoles pour applications électroniques
EP2993215A1 (fr) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles pour applications électroniques
WO2016067261A1 (fr) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl) benzimidazo[1,2-a]benzimidazoles utilisés pour des applications électroniques
EP3015469A1 (fr) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles pour des applications électroniques
WO2016079667A1 (fr) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Dérivés d'indole pour des applications électroniques
WO2016079169A1 (fr) 2014-11-18 2016-05-26 Basf Se Complexes de pt-carbène ou de pd-carbène destinés à être utilisés dans des diodes électroluminescentes organiques
WO2016097983A1 (fr) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. Dibenzothiophènes et dibenzofurannes fonctionnalisés en 1 pour diodes électroluminescentes organiques (oled)
EP3034507A1 (fr) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd Dibenzothiophènes et dibenzofurannes 1-functionalisés pour diodes électroluminescentes organiques (OLED)
EP3034506A1 (fr) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd Dérivés de carbazole 4-fonctionnalisés pour applications électroniques
EP3053918A1 (fr) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd Benzimidazoles substitués par un 2-carbazole pour des applications électroniques
US11245081B2 (en) 2015-02-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3054498A1 (fr) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
WO2016125110A1 (fr) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bis-imidazolo-diazocines
EP3056504A1 (fr) 2015-02-16 2016-08-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3061759A1 (fr) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Dibenzofuranes à substituant nitrile
EP3061763A1 (fr) 2015-02-27 2016-08-31 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3070144A1 (fr) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Composés cycliques à sept chaînons
EP3072943A1 (fr) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Benzonitriles de dibenzofurane/carbazole-substitué
EP3075737A1 (fr) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo [1,2-a] benzimidazole portant des groupes heteroarylnitril aryl- ou pour diodes électroluminescentes organiques
WO2016157113A1 (fr) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole portant des groupes aryl- ou hétéroarylnitrile pour diodes électroluminescentes organiques
EP3098229A1 (fr) 2015-05-15 2016-11-30 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3101021A1 (fr) 2015-06-01 2016-12-07 Universal Display Corporation Materiaux electroluminescents organiques et dispositfs
WO2016193243A1 (fr) 2015-06-03 2016-12-08 Udc Ireland Limited Dispositifs oled très efficaces à temps de déclin très courts
EP4060757A1 (fr) 2015-06-03 2022-09-21 UDC Ireland Limited Dispositifs delo hautement efficaces avec de très courts temps de déclin
EP3124488A1 (fr) 2015-07-29 2017-02-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3760635A1 (fr) 2015-09-03 2021-01-06 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3159350A1 (fr) 2015-09-03 2017-04-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3150606A1 (fr) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles avec des groupements benzofurane ou benzothiophène pour des diodes émittant de la lumière
WO2017056053A1 (fr) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Groupes benzimidazolo[1,2-a]benzimidazolyle, groupes carbazolyle, groupes benzofuranne ou groupes benzothiophène portant un composé benzimidazolo[1,2-a] benzimidazole pour diodes électroluminescentes organiques
EP3150604A1 (fr) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Groupes benzimidazolo [1,2-a] benzimidazoles portant des benzimidazolo [1,2-a] benzimidazolyles, groupes carbazolyles, groupes benzofuranes ou benzothiophènes pour diodes électroluminescentes organiques
WO2017056052A1 (fr) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Groupes benzimidazolo[1,2-a]benzimidazolyle, groupes carbazolyle, groupes benzofuranne ou groupes benzothiophène portant un composé benzimidazolo[1,2-a] benzimidazole pour diodes électroluminescentes organiques
WO2017056055A1 (fr) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole portant des groupes triazine pour diodes électroluminescentes organiques
WO2017078182A1 (fr) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Hétéroaryles fusionnés à un benzimidazole
WO2017093958A1 (fr) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Dérivés benzimidazolo[1,2-a]benzimidazole pour des diodes électroluminescentes organiques
WO2017109727A1 (fr) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Phénylquinazolines hétérocondensées et leur utilisation dans des dispositifs électroniques
WO2017109722A1 (fr) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Composés hétérocycliques azotés et dispositifs électroluminescents organiques contenant ceux-ci
EP3858842A1 (fr) 2016-02-09 2021-08-04 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3205658A1 (fr) 2016-02-09 2017-08-16 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3231809A2 (fr) 2016-04-11 2017-10-18 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4122941A1 (fr) 2016-04-11 2023-01-25 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
WO2017178864A1 (fr) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Composés cycliques à sept anneaux
EP3758084A1 (fr) 2016-06-20 2020-12-30 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3261147A1 (fr) 2016-06-20 2017-12-27 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3270435A2 (fr) 2016-06-20 2018-01-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4349935A2 (fr) 2016-06-20 2024-04-10 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3261146A2 (fr) 2016-06-20 2017-12-27 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3920254A1 (fr) 2016-06-20 2021-12-08 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3843171A1 (fr) 2016-06-20 2021-06-30 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3297051A1 (fr) 2016-09-14 2018-03-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3323822A1 (fr) 2016-09-23 2018-05-23 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4477647A1 (fr) 2016-10-03 2024-12-18 Universal Display Corporation Pyridines condensees et tant que matériaux et dispositifs électroluminescents organiques
EP3301088A1 (fr) 2016-10-03 2018-04-04 Universal Display Corporation Pyridines condensées et tant que matériaux et dispositifs électroluminescents organiques
EP3858844A1 (fr) 2016-10-07 2021-08-04 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3305796A1 (fr) 2016-10-07 2018-04-11 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3321258A1 (fr) 2016-11-09 2018-05-16 Universal Display Corporation Complexes d'iridium avec 4-phénylbenzo[g]quinazoline ou 4-(3,5-dimethylphenylbenzo[g]quinazoline à être utilisés en tant que matériaux émetteurs dans le proche infrarouge or infrarouge de lumière dans des oleds
EP3789379A1 (fr) 2016-11-09 2021-03-10 Universal Display Corporation Complexes d'iridium avec 4-phénylbenzo[g]quinazoline ou 4-(3,5-dimethylphenylbenzo[g]quinazoline à être utilisés en tant que matériaux émetteurs dans le proche infrarouge or infrarouge de lumière dans des oleds
EP4092036A1 (fr) 2016-11-11 2022-11-23 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3354654A2 (fr) 2016-11-11 2018-08-01 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4212540A1 (fr) 2017-01-09 2023-07-19 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3689890A1 (fr) 2017-01-09 2020-08-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3345914A1 (fr) 2017-01-09 2018-07-11 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3381927A1 (fr) 2017-03-29 2018-10-03 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3730506A1 (fr) 2017-03-29 2020-10-28 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3985012A1 (fr) 2017-03-29 2022-04-20 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3401318A1 (fr) 2017-05-11 2018-11-14 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4141010A1 (fr) 2017-05-11 2023-03-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3418286A1 (fr) 2017-06-23 2018-12-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4185086A1 (fr) 2017-07-26 2023-05-24 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3444258A2 (fr) 2017-08-10 2019-02-20 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3783006A1 (fr) 2017-08-10 2021-02-24 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3878855A1 (fr) 2017-11-28 2021-09-15 University of Southern California Composés de carbène et dispositifs électroluminescents organiques
EP3489243A1 (fr) 2017-11-28 2019-05-29 University of Southern California Composés de carbène et dispositifs électroluminescents organiques
EP3492480A2 (fr) 2017-11-29 2019-06-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3492528A1 (fr) 2017-11-30 2019-06-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4550995A2 (fr) 2017-11-30 2025-05-07 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4019526A1 (fr) 2018-01-26 2022-06-29 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4489555A2 (fr) 2018-03-12 2025-01-08 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3613751A1 (fr) 2018-08-22 2020-02-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4206210A1 (fr) 2018-08-22 2023-07-05 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
JP7570448B2 (ja) 2018-10-08 2024-10-21 三星電子株式会社 有機金属化合物を含む有機発光素子
JP2023075238A (ja) * 2018-10-08 2023-05-30 三星電子株式会社 有機金属化合物及びそれを含む有機発光素子
JP7244396B2 (ja) 2018-10-08 2023-03-22 三星電子株式会社 有機金属化合物及びそれを含む有機発光素子
JP2020059709A (ja) * 2018-10-08 2020-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含む有機発光素子
EP3690973A1 (fr) 2019-01-30 2020-08-05 University Of Southern California Matériaux et dispositifs électroluminescents organiques
EP4301117A2 (fr) 2019-02-01 2024-01-03 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3689889A1 (fr) 2019-02-01 2020-08-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4134371A2 (fr) 2019-03-26 2023-02-15 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3715353A1 (fr) 2019-03-26 2020-09-30 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3750897A1 (fr) 2019-06-10 2020-12-16 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4219515A1 (fr) 2019-07-30 2023-08-02 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3771717A1 (fr) 2019-07-30 2021-02-03 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3778614A1 (fr) 2019-08-16 2021-02-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4472386A2 (fr) 2019-11-04 2024-12-04 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3816175A1 (fr) 2019-11-04 2021-05-05 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4151644A1 (fr) 2020-01-06 2023-03-22 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP3845545A1 (fr) 2020-01-06 2021-07-07 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3858945A1 (fr) 2020-01-28 2021-08-04 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4294157A2 (fr) 2020-01-28 2023-12-20 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP3937268A1 (fr) 2020-07-10 2022-01-12 Universal Display Corporation Delo plasmoniques et émetteurs à dipôle vertical
US12187748B2 (en) 2020-11-02 2025-01-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (fr) 2020-11-16 2022-06-22 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4329463A2 (fr) 2020-11-24 2024-02-28 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4001286A1 (fr) 2020-11-24 2022-05-25 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4001287A1 (fr) 2020-11-24 2022-05-25 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4039692A1 (fr) 2021-02-03 2022-08-10 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4059915A2 (fr) 2021-02-26 2022-09-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4060758A2 (fr) 2021-02-26 2022-09-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4053137A1 (fr) 2021-03-05 2022-09-07 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
US12428599B2 (en) 2021-03-09 2025-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (fr) 2021-03-12 2022-09-14 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4059941A1 (fr) 2021-03-15 2022-09-21 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4074723A1 (fr) 2021-04-05 2022-10-19 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4075531A1 (fr) 2021-04-13 2022-10-19 Universal Display Corporation Delo plasmoniques et émetteurs à dipôle vertical
EP4401530A2 (fr) 2021-04-14 2024-07-17 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4075530A1 (fr) 2021-04-14 2022-10-19 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4086266A1 (fr) 2021-04-23 2022-11-09 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4079743A1 (fr) 2021-04-23 2022-10-26 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4610330A2 (fr) 2021-04-23 2025-09-03 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4112701A2 (fr) 2021-06-08 2023-01-04 University of Southern California Alignement moléculaire de phosphores homoleptiques d'iridium
EP4471041A2 (fr) 2021-06-08 2024-12-04 University of Southern California Alignement moléculaire de luminophores homoleptiques à base d'iridium
EP4151699A1 (fr) 2021-09-17 2023-03-22 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4604707A2 (fr) 2021-12-16 2025-08-20 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4212539A1 (fr) 2021-12-16 2023-07-19 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4231804A2 (fr) 2022-02-16 2023-08-23 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4242285A1 (fr) 2022-03-09 2023-09-13 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4265626A2 (fr) 2022-04-18 2023-10-25 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4282863A1 (fr) 2022-05-24 2023-11-29 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4293001A1 (fr) 2022-06-08 2023-12-20 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4299693A1 (fr) 2022-06-28 2024-01-03 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4326030A1 (fr) 2022-08-17 2024-02-21 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362631A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362645A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4376583A2 (fr) 2022-10-27 2024-05-29 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4369898A1 (fr) 2022-10-27 2024-05-15 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362630A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4386065A1 (fr) 2022-12-14 2024-06-19 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4580378A1 (fr) 2023-12-15 2025-07-02 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4592303A1 (fr) 2023-12-15 2025-07-30 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs

Also Published As

Publication number Publication date
JP5556014B2 (ja) 2014-07-23
JPWO2008035571A1 (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5556014B2 (ja) 有機エレクトロルミネッセンス素子
JP5845599B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8242488B2 (en) Organic electroluminescent element, display device, and illuminating device
JP5600894B2 (ja) 白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8304764B2 (en) Organic electroluminescent element
WO2008029652A1 (fr) Dispositif électroluminescent organique, dispositif d'éclairage et écran d'affichage
WO2013168534A1 (fr) Élément à électroluminescence organique, procédé de production d'un élément à électroluminescence organique, dispositif d'affichage et dispositif d'éclairage
US9040975B2 (en) Organic electroluminescence element, illumination device, and display device
WO2009104488A1 (fr) Dispositif électroluminescent organique émettant de la lumière blanche
WO2008029729A1 (fr) Dispositif électroluminescent organique, dispositif d'éclairage et affichage utilisant un tel dispositif
JP4910435B2 (ja) 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
WO2008035595A1 (fr) Dispositifs électroluminescents organiques
JP6225915B2 (ja) 有機エレクトロルミネッセンス素子
JP2013102059A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP4853010B2 (ja) 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
JP2017079267A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP5521753B2 (ja) 有機エレクトロルミネッセンス素子
JP5381098B2 (ja) 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
JP2007258526A (ja) 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
JP2008235503A (ja) 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
JP2007250239A (ja) 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
JP2007251096A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンスディスプレイ
JP5835217B2 (ja) 有機エレクトロルミネッセンス素子
JP6197650B2 (ja) 有機el素子
WO2008026464A1 (fr) Élément électroluminescent organique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535314

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806832

Country of ref document: EP

Kind code of ref document: A1