[go: up one dir, main page]

WO2008035669A1 - Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication - Google Patents

Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication Download PDF

Info

Publication number
WO2008035669A1
WO2008035669A1 PCT/JP2007/068079 JP2007068079W WO2008035669A1 WO 2008035669 A1 WO2008035669 A1 WO 2008035669A1 JP 2007068079 W JP2007068079 W JP 2007068079W WO 2008035669 A1 WO2008035669 A1 WO 2008035669A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
inorganic hybrid
oxide fine
hybrid polymer
Prior art date
Application number
PCT/JP2007/068079
Other languages
English (en)
French (fr)
Inventor
Tarou Kanamori
Keisuke Yajima
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2008535353A priority Critical patent/JPWO2008035669A1/ja
Publication of WO2008035669A1 publication Critical patent/WO2008035669A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes

Definitions

  • the present invention relates to an organic-inorganic hybrid polymer composition in which key oxide fine particles and / or metal oxide fine particles are highly dispersed in an organic solvent containing an organic-inorganic hybrid polymer, and a cured product thereof.
  • siloxane binder As a means for imparting various functions to a siloxane material having excellent durability, a binder having a siloxane skeleton (hereinafter, also referred to as “siloxane binder”! /, U), cation oxide fine particles, and various metals. Compounding with oxide fine particles (hereinafter collectively referred to as “oxide fine particles”) is being studied. At this time, the siloxane-based binder and oxide fine particles are often prepared in the form of a dispersion containing them. On the other hand, since siloxane-based binders are difficult to dissolve in water, it is necessary to use an organic solvent as a dispersion medium.
  • oxide fine particles tend to aggregate in an organic solvent and are often dispersed in an aqueous medium. . Therefore, in order to finely disperse oxide fine particles in an organic solvent, phosphoric acid, sulfonic acid or carboxylic acid having an organic group having 6 or more carbon atoms (see Patent Document 1), an organic compound having an oxyalkylene group, It was necessary to use an ester such as phosphoric acid having an oxyalkylene group (see Patent Document 2) or a silane compound having an oxyalkylene group (see Patent Document 3).
  • oxide fine particles and a siloxane-based binder are combined by a method of finely dispersing oxide fine particles in an organic solvent using these compounds, the dispersibility of the dispersion is good.
  • the compatibility between the above compound and the siloxane-based binder is poor.
  • the coating film may be whitened.
  • phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group remains in this coating film. For this reason, problems such as coloration of the coating and generation of cracks may occur under ultraviolet irradiation.
  • the key oxide fine particles have an organic solvent dispersion that maintains dispersibility with its own surface charge. Although this dispersion has good dispersion stability, it is mixed with a siloxane binder. In this case, the silicon oxide fine particles may aggregate and whiten, or crack force S may occur.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-283822
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-185924
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-99879
  • the present invention is intended to solve the problems associated with the prior art as described above, and has a polysiloxane-based cured body having various functions and excellent in transparency and outdoor weather resistance, and the present invention. It is an object of the present invention to provide an organic-inorganic hybrid polymer composition in which oxide fine particles are highly dispersed and a method for producing the same, from which such a cured product can be obtained.
  • the organic fine particle-containing organic-inorganic hybrid polymer composition according to the present invention is present in an organic solvent in the presence of a basic compound, an acidic compound, or a metal chelate compound.
  • R 1 number of carbon atoms;!. Represents a monovalent organic group having 1-8, when present two may be different from one another the same R 2 are each independently A C 1-5 alkyl group or a C 1-6 acyl group n is an integer of 0-2.
  • the oxide fine particles (A) are mixed with an organic-inorganic hybrid polymer obtained by hydrolysis / condensation reaction with a polymer (b2) having a silyl group containing a silicon atom bonded to a hydroxyl group. It is obtained by dispersing in a solvent.
  • the oxide fine particles (A) and the organic-inorganic hybrid polymer (B) are preferably mixed in the presence of a basic compound.
  • the oxide fine particles (A) and the organic-inorganic hybrid polymer (B) are preferably mixed by a bead mill.
  • the organic-inorganic hybrid polymer (100 parts by weight of the oxide fine particles (A))
  • B) is preferably 1 to 1000 parts by weight in terms of complete hydrolysis condensate.
  • the silane compound (bl) and the polymer (b2) are combined into a completely hydrolyzed condensate content (Wbl) of the silane compound (bl) and a solid content content of the polymer (b2). Weight ratio with (Wb2)
  • the content of a silyl group containing a hydrolyzable group and / or a silicon atom bonded to a hydroxyl group is converted into the content of the silicon atom, 0.;! ⁇ 2 weight % Is preferred.
  • a cured product according to the present invention is obtained from the above-mentioned organic-inorganic hybrid polymer composition containing fine oxide particles.
  • a coating composition according to the present invention is characterized by comprising the above-mentioned organic fine particle-containing organic / inorganic hybrid polymer composition.
  • the laminate according to the present invention is characterized by having an organic base material and a coating film obtained from the coating composition provided on the organic base material.
  • oxide fine particles are highly developed in an organic solvent containing an organic-inorganic hybrid polymer without using a phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group.
  • a dispersed composition is obtained.
  • This composition is excellent in dispersion stability and can form a transparent cured product containing fine oxide particles and the organic-inorganic hybrid polymer. Since this cured product does not substantially contain the above-mentioned compound, it does not easily turn yellow even if left in an environment such as outdoors where it is irradiated with ultraviolet rays. Also, it is flexible due to the action of the organic-inorganic hybrid polymer. And excellent trackability to the substrate.
  • a cured product using zinc oxide fine particles, cerium oxide fine particles, or rutile-type titanium oxide fine particles as oxide fine particles is useful as an ultraviolet cut material.
  • the oxide fine particle-containing organic-inorganic hybrid polymer composition according to the present invention comprises an oxide fine particle (A) and an organic-inorganic hybrid polymer (B), phosphoric acid or the like having an organic group having 6 or more carbon atoms.
  • the power S can be obtained by mixing and dispersing in an organic solvent in the presence of a basic compound, acidic compound or metal chelate compound without using a compound having a xyalkylene group.
  • the oxide fine particles (A) used in the present invention are silicon oxide fine particles and / or metal oxide fine particles.
  • the metal oxide fine particles are not particularly limited as long as they are metal element oxide fine particles.
  • antimony oxide, zirconium oxide, anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, suboxide oxide Lead tantalum oxide, indium oxide, hafnium oxide, tin oxide, niobium oxide, anorenium oxide, cerium oxide, scandium oxide, yttrium oxide, lanthanum oxide, prasedium oxide, neodymium oxide, samarium oxide, pium oxide, gadolinium oxide Terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, lithium oxide, ytterbium oxide, lutetium oxide, calcium oxide, gallium oxide, lithium oxide, strontium oxide, tungsten oxide, barium oxide, magnesium oxide, and these And metal oxide fine particles such as an oxide of a
  • the oxide fine particles may be used alone or in combination of two or more.
  • the oxide fine particles (A) can be appropriately selected depending on the function to be imparted. For example, in the case of imparting a high refractive property, the TiO fine particles are preferable in the ultraviolet region.
  • UV cut function ZrO fine particles are preferable in order to achieve both high properties and high refractive properties.
  • UV cut function UV cut function
  • cerium oxide fine particles and zinc oxide fine particles are preferable.
  • antimony oxide-doped tin oxide fine particles and indium tin-based composite oxide fine particles are preferable.
  • the primary average particle size of the oxide fine particles (A) is preferably 0.1 to 100 nm, more preferably 0. !! to 70 nm, and particularly preferably 0.;! To 50 nm.
  • the primary average particle diameter of the oxide fine particles (A) is in the above range, a cured product having excellent light transmittance can be obtained.
  • Such oxide fine particles (A) are dispersed in a solvent! /, N! /, Even when added in a powder state, in a polar solvent such as isopropyl alcohol or a nonpolar solvent such as toluene. It may be added in the state of a dispersion dispersed therein.
  • the oxide fine particles (A) before the addition may be aggregated to form secondary particles.
  • it is preferable to use a powder because an appropriate organic solvent can be appropriately selected in consideration of the solubility of the organic-inorganic hybrid polymer (B).
  • the production method of the present invention is particularly effective when added in the form of powder.
  • the organic-inorganic hybrid polymer (B) used in the present invention contains a specific silane compound (bl ) And a polymer (b2) containing a specific silyl group are prepared by hydrolysis / condensation reaction. More specifically, it is prepared by adding a catalyst for promoting hydrolysis / condensation reaction and water to a mixture containing the silane compound (bl) and the polymer (b2) containing a silyl group.
  • the silane compound (b 1) used in the present invention has the following formula (1)
  • R 1 number of carbon atoms;!. Represents a monovalent organic group having 1-8, when present two may be different from one another the same R 2 are each independently A C 1-5 alkyl group or a C 1-6 acyl group n is an integer of 0-2.
  • organosilane (1) hydrolysates and organosilane (1) condensates
  • any one silane compound may be used, or any two silane compounds may be used in combination, or all three silane compounds may be used. You may mix and use a compound.
  • organosilane (1) when organosilane (1) is used as the silane compound (bl), organosilane (1) may be used alone or in combination of two or more.
  • the hydrolyzate and condensate of the organosilane (1) may be formed from one kind of organosilane (1), or may be formed by using two or more kinds of organosilane (1) in combination. Good.
  • the hydrolyzate of the organosilane (1) is sufficient if at least one of the 2 OR 4 groups contained in the organosilane (1) is hydrolyzed. It may be a product obtained by hydrolyzing an OR 2 group, a product obtained by hydrolyzing two or more OR 2 groups, or a mixture thereof.
  • the condensate of organosilane (1) is formed by condensation of silanol groups in the hydrolyzate generated by hydrolysis of organosilane (1) to form a Si—O—Si bond.
  • the condensate may be a product obtained by condensing a small part of silanol groups, most (including all) of the silanol groups, These mixtures are also included.
  • R 1 is a monovalent organic group having 1 to 8 carbon atoms, specifically, a methylol group, an ethyl group, an n propyl group, an i propyl group, an n butyl group.
  • alkyl group such as i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group;
  • Isacyl groups such as acetyl group, propionyl group, butyryl group, valeryl group, benzoyl group, trioyl group, force profile group;
  • Examples thereof include a bur group, an aryl group, a cyclohexyl group, a phenyl group, an epoxy group, a glycidyl group, a (meth) acryloxy group, a ureido group, an amide group, a fluoroacetamide group, and an isocyanate group.
  • examples of R 1 include substituted derivatives of the above organic groups.
  • examples of the substituent of the substituted derivative of R 1 include a halogen atom, a substituted or unsubstituted amino group, a hydroxyl group, a mercapto group, an isocyanate group, a glycidoxy group, a 3,4-epoxycyclohexylene group, and (meth) An acryloxy group, a ureido group, an ammonium base, etc. are mentioned.
  • the carbon number of R 1 composed of these substituted derivatives is preferably 8 or less including the carbon atom in the substituent.
  • R 2 which is an alkyl group having 1 to 5 carbon atoms includes, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and an n-pen.
  • R 2 which is an acyl group having 1 to 6 carbon atoms include an acetyl group, a propionyl group, a butyryl group, a valeryl group, and a force profile group.
  • a plurality of R 2 are present in the formula (1), they may be the same or different.
  • the trifunctional silane compound trialkoxysilanes are particularly preferable.
  • the bifunctional silane compound dialkoxysilanes are preferable.
  • the trifunctional silane compound / bifunctional silane compound is preferably 95/5 to 10% by weight ratio in terms of the total hydrolysis condensate of each. / 90, more preferably 90/10 to 30/70, particularly preferably 85/15 to 40/60.
  • the sum of the trifunctional silane compound and the bifunctional silane compound is 100. If the content of the trifunctional silane compound is too large, the dispersibility of the oxide fine particles may be inferior because it tends to aggregate. If the content of the trifunctional silane compound is too small, the functionality required for dispersing the oxide fine particles may be reduced.
  • the completely hydrolyzed condensate means a product in which the —OR group of a silane compound is hydrolyzed to 100% to be a SiOH group and further completely condensed to a siloxane structure.
  • one type of organosilane (1) may be used alone as the silane compound (bl), but two or more types of organosilane (1) may be used in combination.
  • the average value is n (hereinafter also referred to as “the average value of n”). ) Is preferably 0.5 to 1.9, more preferably 0 to 6 to 1.7, and particularly preferably 0.7 to 1.5.
  • the average value of n is less than the above lower limit, the storage stability of the organic-inorganic hybrid polymer composition may be inferior, and when the upper limit is exceeded, the curability of the cured body (coating film) may be inferior.
  • n can be adjusted to the above range by appropriately using a bifunctional to tetrafunctional silane compound and appropriately adjusting the blending ratio thereof.
  • organosilane (1) may be used as it is as silane compound (bl). However, a hydrolyzate and / or condensate of organosilane (1) can be used.
  • organosilane (1) When the organosilane (1) is used as a hydrolyzate and / or a condensate, it may be prepared by hydrolyzing and condensing the organosilane (1) in advance.
  • hybrid polymer (B) water is added to hydrolyze and condense the organosilane (1) with water to prepare a hydrolyzate and / or condensate of the organosilane (1). I like it! /
  • a condensate of organosilane (1) when used as the silane compound (b1) in the present invention, it may be prepared from the above organosilane (1) or may be obtained by shrinking a commercially available organosilane. A compound may be used.
  • Commercially available condensates of organosilane include Mitsubishi Chemical Corporation
  • MKC silicate Colcoat ethyl silicate, Toray Dow Coung Silicone Co., Ltd. silicone resin, GE Toshiba Silicone Co., Ltd. silicone resin, Shin-Etsu Chemical Co., Ltd. silicone resin And silicone oligomers, hydroxyl group-containing polydimethylsiloxane manufactured by Dow Co., Ltd., and silicone oligomers manufactured by Nippon Tunica.
  • silicone resin GE Toshiba Silicone Co., Ltd. silicone resin
  • Shin-Etsu Chemical Co., Ltd. silicone resin And silicone oligomers hydroxyl group-containing polydimethylsiloxane manufactured by Dow Co., Ltd.
  • silicone oligomers manufactured by Nippon Tunica These commercially available condensates of organosilanes may be used as they are or after further condensation.
  • the polymer (b2) containing a specific silyl group used in the present invention (hereinafter also referred to as “specific silyl group-containing polymer (b2)”) is bound to a hydrolyzable group and / or a hydroxyl group. It contains a silyl group having a carbon atom (hereinafter referred to as “specific silyl group”).
  • the specific silyl group-containing polymer (b2) preferably has a specific silyl group at the terminal and / or side chain of the polymer molecular chain.
  • the hydrolyzable group and / or hydroxyl group in the specific silyl group is co-condensed with the silane compound (b 1) to form the organic-inorganic hybrid polymer (B).
  • polymer (B) and oxide fine particles (A) are mixed and dispersed in an organic solvent in the presence of a basic compound, acidic compound or metal chelate compound
  • the oxide fine particles (A) are highly dispersed in the organic solvent. This is because the hydrolyzable group and / or hydroxyl group in the specific silyl group remaining in the organic-inorganic hybrid polymer (B) is condensed on the surface of the oxide fine particles (A) by the catalytic action of a basic compound or the like. This is presumably because the surface of the fine particles (A) becomes hydrophobic and the oxide fine particles (A) are easily finely dispersed in the organic solvent.
  • the content of the specific silyl group in the specific silyl group-containing polymer (b2) is usually 0.;! To 2 with respect to the polymer before the introduction of the specific silyl group, in terms of the amount of silicon atoms. % By weight, preferably 0.3-; 1.7% by weight.
  • the specific silyl group content in the specific silyl group-containing polymer (b2) is less than the above lower limit, the covalent bond site with the silane compound (bl) and the specific silyl group remaining in the organic-inorganic hybrid polymer (B) Therefore, the effect of the mixed dispersion process may not be obtained.
  • gelation may occur during storage of the composition.
  • X represents a hydrolyzable group such as a halogen atom, an alkoxyl group, an acetoxy group, a phenoxy group, a thioalkoxyl group, an amino group, or a hydroxyl group
  • R 5 is a hydrogen atom having 1 to 10 carbon atoms.
  • Such a specific silyl group-containing polymer (b2) is obtained, for example, by the following methods (I) and (ii):
  • hydrosilane compound (I) A hydrosilane compound having a specific silyl group represented by the above formula (3) (hereinafter, simply referred to as “hydrosilane compound (I)”) is converted to a bulle having a carbon-carbon double bond.
  • a method of causing an addition reaction to the carbon-carbon double bond in a polymer hereinafter referred to as “unsaturated butyl polymer”.
  • hydrosilane compound (I) used in the above method (I) examples include halogenated silanes such as methyldichlorosilane, trichlorosilane, and phenyldichlorosilane; methyldimethoxysilane, methinolegoxysilane. , Pheninoresimethoxysilane, trimethoxysilane, acetoxysilane, triacetoxysilane, and other acyloxysilanes; methyldiaminoxysilane, triaminoxysilane, dimethyl'aminoxysilane, and other aminoxysilanes . These hydrosilane compounds (I) can be used alone or in combination of two or more.
  • the unsaturated bulle polymer used in the method (I) is not particularly limited as long as it is a polymer having a hydroxyl group.
  • the following (I 1) and (I 2) It can be produced by a method or a combination thereof.
  • a radical polymerization initiator for example, 4, 4'-azobis-4-cyanovaleric acid having (1-2) functional group
  • both radical polymerization initiator and chain transfer agent are used.
  • a compound having a functional group ( ⁇ ) for example, 4, 4'-azobis 4-cyananovaleric acid and dithio) Glycolic acid etc.
  • (co) polymerization of bulle monomers and the functional group ( ⁇ ) derived from radical polymerization initiator or chain transfer agent at one or both ends of the polymer molecular chain
  • the polymer is reacted with an unsaturated compound having a functional group ( ⁇ ) and a carbon / carbon double bond.
  • Examples of the reaction between the functional group ( ⁇ ) and the functional group (/ 3) in the methods (1-1) and (I 2) include, for example, esterification reaction between a carboxyl group and a hydroxyl group, carboxylic acid anhydride, Ring-opening esterification reaction between a hydroxyl group and a hydroxyl group, ring-opening esterification reaction between a carboxyl group and an epoxy group, amidation reaction between a carboxyl group and an amino group, ring-opening between a carboxylic anhydride group and an amino group amide And urethanation reaction between an epoxy group and an amino group, a urethanation reaction between a hydroxyl group and an isocyanate group, and a combination of these reactions.
  • Examples of the bull monomers having a functional group ( ⁇ ) include unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid; maleic anhydride, anhydrous Unsaturated carboxylic acid anhydrides such as itaconic acid; 2-hydroxyethyl (meth) acrylate
  • Hydroxyl group-containing butyl monomers such as methylol (meth) acrylamide and 2-hydroxyethyl butyl ether; 2-aminoethinole (meth) acrylate, 2-aminopropynole (meth) acrylate, 3 aminopropyl (meth) attaly 1, 2, 1-trimethylamine (meth) acrylimide, 1 -methyl-1-ethylamine (meth) acrylimide, 1, 1 dimethyl 1 (2-Hydroxypropyl) amine (meth) acrylimide, 1, 1-dimethyl 1- (2, 2-phenyl 2, -hydro-chichetil) amamine (meth) acrylimide, 1, 1 dimethyl 1 ( 2 , hydroxy) 2 ,
  • bull monomers that can be copolymerized with a bull monomer having a functional group ( ⁇ )
  • styrene, ⁇ -methyl styrene, 4 methyl styrene, 2 methyl styrene, 3 methyl styrene, 4-methoxy styrene, 2 hydroxymethyl styrene, 4-ethyl styrene, 4-ethoxy styrene, 3, 4 dimethyl styrene, 3, Aromatic bullets such as 4 Jetylstyrene, 2 Chlorostyrene, 3-Chlorostyrene, 4 Chloro-3-Methylstyrene, 4 t-Butyl Styrene, 2, 4-Dichlorostyrene, 2,6-Dichlorostyrene, 1-Burnaphthalene Mer;
  • ethylene glycol di (meth) acrylate diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, trimethylol Polyfunctional monomers such as propanetri (meth) acrylate and pentaerythritol tetra (meth) acrylate;
  • Acid amide compounds such as (meth) acrylamide, N methylol (meth) acrylamide, N methoxymethyl (meth) amide, diacetone acrylamide, maleic acid amide and maleimide; Bull compounds such as butyl chloride, vinylidene chloride and fatty acid butyl ester;
  • Cyanide bur compounds such as acrylonitrile and methacrylonitrile; Fluorine atom-containing monomers such as trifluoroethyl (meth) acrylate and pentadecafluorooctyl (meth) acrylate;
  • Examples include dicaprolataton. These can be achieved by using S alone or in combination of two or more.
  • Examples of the unsaturated compound having a functional group (/ 3) and a carbon-carbon double bond include, for example, a bull monomer similar to a bull monomer having a functional group ( ⁇ ), An isocyanate group-containing unsaturated compound obtained by reacting the hydroxyl group-containing vinyl monomer and the diisocyanate compound in an equimolar amount can be exemplified.
  • CH CHSi (CH) (OCH)
  • CH CHSi (OCH)
  • CH CHSi (CH) C1
  • CH CHSiCl
  • bulle monomers to be copolymerized with the unsaturated silane compound include, for example, a bulle type monomer having the functional group ( ⁇ ) exemplified in the method (I 1) above! And other vinyl monomers.
  • Examples of the method for producing the specific silyl group-containing polymer (b2) include, for example, a method in which each monomer is added at once and polymerized. Continuously Alternatively, there may be mentioned a method in which polymerization is carried out by intermittent addition, or a method in which a monomer is continuously added from the start of polymerization. These polymerization methods may be combined.
  • the polymerization method includes solution polymerization.
  • the solvent used in the solution polymerization is not particularly limited as long as it can produce the specific silyl group-containing polymer (b2).
  • alcohols aromatic hydrocarbons, ethers, ketones, esters The ability to list things.
  • the alcohols include methanol, ethanol, n-propylenoleanolone, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol monole, tert-butylenorenolenole, and n-hexenoleanoreconole.
  • Ethylene glycolate Diethyleneglycolanol, Triethyleneglycolanol, Ethyleneglycolanol Monobutyl ether, Ethyleneglycolmonoethyletheracetate, Diethyleneglycolenomonoethylenoate, Propyleneglycolole Examples thereof include monomethylenoatenole, propylene monomethyl ether acetate, diacetone alcohol and the like.
  • examples of aromatic hydrocarbons include benzene, toluene, xylene, etc.
  • examples of ethers include tetrahydrofuran, dioxane, etc.
  • examples of ketones include acetonitrile, methyl ethyl ketone, and methyl isobutyl ketone.
  • esters include ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate, methyl 3-ethoxypropionate, 3 — Ethyl ethoxypropionate and the like.
  • These organic solvents may be used alone or in combination of two or more.
  • the specific silyl group-containing polymer (b2) in addition to the specific silyl group-containing polymer polymerized as described above, the specific silyl group-containing epoxy resin, the specific silyl group-containing polyester resin Other specific silyl group-containing polymers such as can also be used.
  • the specific silyl group-containing epoxy resin is, for example, in epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, aliphatic polydaricidyl ether, and aliphatic polyglycidyl ester.
  • Amino silanes, bur silanes, carboxy silanes, darines having specific silyl groups on the epoxy group of It can be produced by reacting sidylsilanes.
  • the above-mentioned specific silyl group-containing polyester resin is produced, for example, by reacting a carboxyl group or hydroxyl group contained in the polyester resin with aminosilanes, carboxysilanes, darisidylsilanes, etc. having a specific silyl group. can do.
  • the Mw in terms of polystyrene measured by the GPC method of the specific silyl group-containing polymer (b2) is preferably 2,000-100,000, more preferably 3,000-50,000.
  • the specific silyl group-containing polymer (b2) is determined by the power to use alone or in combination of two or more.
  • the silane compound (a) and the specific silyl group-containing polymer (b) it is preferred to add a catalyst to the mixture.
  • a catalyst By adding a catalyst, the degree of crosslinking of the organic-inorganic hybrid polymer (B) obtained can be increased, and the molecular weight of the polysiloxane produced by the polycondensation reaction of the organosilane (1) is increased. As a result, A cured product having excellent strength and long-term durability can be obtained, and the coating film can be thickened and applied easily.
  • the addition of the catalyst promotes the reaction between the silane compound (bl) and the specific silyl group-containing polymer (b2), and sufficient reaction sites (alkoxy groups) are formed in the organic-inorganic hybrid polymer (B). .
  • this organic-inorganic hybrid polymer (B) and oxide fine particles (A) are mixed and dispersed in an organic solvent in the presence of a basic compound or the like, the oxide fine particles (A) are highly dissolved in the organic solvent. Distributed. This is because the organic / inorganic hybrid polymer (B) is condensed on the surface of the oxide fine particles (A), the surface of the oxide fine particles (A) becomes hydrophobic, and the oxide fine particles (A) are finely dispersed in the organic solvent. This is presumed to be easier.
  • Examples of the catalyst used for promoting the hydrolysis' condensation reaction include basic compounds, acidic compounds, salt compounds, and metal chelate compounds.
  • Examples of the basic compound include ammonia (including aqueous ammonia), organic amine compounds, alkali metals such as sodium hydroxide and potassium hydroxide, and hydroxides of alkaline earth metals. And alkali metal alkoxides such as sodium methoxide and sodium ethoxide. Of these, ammonia and organic amine compounds are preferred.
  • organic amines examples include anolequinoleamine, alkoxyamine, alkanolamine, and arylamine.
  • alkylamine examples include methenoreamine, ethenoreamine, propylamine, butylamine, hexylamine, octylamine, N, N dimethylamine, N, N dimethylamine, N, N dipropylamine, N, N dibutylamine, trimethinoreamine, triethinoreamine, Examples thereof include alkylamines having an alkyl group having 1 to 4 carbon atoms such as tripropylamine and tributylamine.
  • alkoxyamines include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethyl.
  • Alkoxy groups having an alkoxy group having 1 to 4 carbon atoms such as amines, propoxychetylamines, propoxypropylamines, propoxybutylamines, butoxymethylamines, butoxysethylamines, butoxypropylamines, butoxybutylamines. Min etc. are mentioned.
  • alkanolamines include methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylmethanolamine, N-butylmethanolamine.
  • arylamine examples include aniline and N-methylaniline.
  • Tetraalkylammonium hydride such as tetraptylammonium hydroxide; tetraalkylethylenediamine such as tetramethylethylenediamine, tetraethylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine Methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutyramine, ethylaminomethylamine, ethylaminoethylamine, ethylaminopropylamine, Tilaminobutylamine, propylaminomethylamine, propylaminoethylamine, propylaminopropylamine, propylaminobutylamine, butylaminoaminomethylamine, butylaminoethylamine, butylaminopropylamine, The Alkylaminoalkylamines such as
  • Such basic compounds may be used singly or in combination of two or more. Of these, triethylamine, tetramethylammonium hydroxide, and pyridine are particularly preferable.
  • Examples of the acidic compound include organic acids and inorganic acids.
  • Examples of organic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, maleic anhydride, and methylmalonic acid.
  • the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
  • Such acidic compounds may be used singly or in combination of two or more.
  • maleic acid maleic anhydride, methanesulfonic acid, and acetic acid are particularly preferred.
  • the salt compound examples include alkali metal salts such as naphthenic acid, octylic acid, nitrous acid, sulfurous acid, aluminate, and carbonic acid.
  • metal chelate compounds examples include organometallic compounds and / or partial hydrolysates thereof (hereinafter, organometallic compounds and / or partial hydrolysates thereof are collectively referred to as “organic metal compounds”). It is done.
  • organometallic compounds include, for example, the following formula (a):
  • M represents at least one metal atom selected from the group consisting of zirconium, titanium and aluminum, and R 7 and R 8 are each independently a methyl group, an ethyl group, or an n-propyl group.
  • a monovalent hydrocarbon group having 1 to 6 carbon atoms such as a group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group, and phenyl group.
  • R 9 represents the carbon number;!
  • organic compound (a) (Hereinafter referred to as “organometallic compound (a)”)
  • organic metal compound of tetravalent tin (hereinafter referred to as “organotin compound”) in which 1 to 2 alkyl groups having 1 to 10 carbon atoms are bonded to one tin atom, or
  • tetraalkoxytitaniums such as tetramethoxytitanium, tetraethoxytitanium, tetraipropoxytitanium, tetranbutoxytitanium; mesopropyltriethoxysilane, nhexyltrimethoxysilane, cyclohexyltri Ethoxysilane, phenyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2 aminoethyl) aminopropyltrimethoxysilane, 3 — (2-Aminoethyl) monoaminopropyltriethoxysilane, 3- (2aminoethyl) -aminopropylmethyldimethoxysilane, 3-anilinopropyltri
  • organometallic compound (a) for example, tetra-n-butoxyzirconium, tri-n-butoxy-ethylacetoacetate zirconium, di-n-butoxy'bis (ethylacetylacetate) zirconium, n-butoxy'tris (ethyl)
  • Organic zirconium compounds such as acetoacetate) zirconium, tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium;
  • Carboxylic acid-type organotin compounds such as
  • Mercaptide-type organotin compounds such as
  • Sulfide-type organotin compounds such as
  • Organic tin oxides such as (C H) SnO and (C H) SnO, and these organic tin oxides
  • Reaction products of side and ester compounds such as silicate, dimethyl maleate, jetyl maleate, dioctyl phthalate;
  • Such metal chelate compounds may be used singly or in combination of two or more. Of these, tri-n-butoxy ethyl acetate acetate, di-propoxy bis (acetyl acetate) titanium, zi-propoxy ethyl acetate acetate, tris (ethyl acetate acetate) aluminum, or These partial hydrolysates are preferred.
  • the catalyst can also be used by mixing with a zinc compound or other reaction retarder.
  • the amount of the catalyst used is 100 parts by weight of the silane compound (bl) (in terms of a completely hydrolyzed condensate of the organosilane (1)). Usually from 0.001 to 100 parts by weight, preferably from 0.0 to 80 parts by weight, more preferably from 0.1 to 50 parts by weight.
  • the catalyst is an organometallic compound, it is usually 100 parts by weight or less, preferably 0. 0 parts by weight based on 100 parts by weight of the silane compound (bl) (in terms of complete hydrolysis condensate of organosilane (1)). ! To 80 parts by weight, more preferably 0.5 to 50 parts by weight. If the amount of the catalyst used exceeds the upper limit, the storage stability of the composition may be lowered, or the degree of crosslinking of the organic-inorganic hybrid polymer (B) may be too high.
  • water is added to the mixture of the silane compound (bl) and the specific silyl group-containing polymer (b2) to co-condense the silane compound (bl) and the specific silyl group-containing polymer (b2). It is preferable to prepare the organic / inorganic hybrid polymer (B).
  • the amount of water added at this time is usually 0.1-1 to 1.0 monole, preferably (or 0.2-0 to 1 mol of all OR 2 groups in the silane compound (bl)). 8 Monole, more preferably (between 0.25 and 0.6 mol.
  • a composition in which gelation hardly occurs when the amount of water added is in the above range shows good storage stability.
  • Fully cross-linked organic inorganic when the amount of water added is in the above range A hybrid polymer (B) is obtained, and a cured product having excellent mechanical strength can be obtained by using a composition containing such an organic-inorganic hybrid polymer (B).
  • the silane compound (bl) and the specific silyl group-containing polymer (b2) may be hydrolyzed and condensed in an organic solvent.
  • the organic solvent used in the preparation of the silyl group-containing polymer (b2) can be used as it is.
  • an organic solvent can be added if necessary.
  • the organic solvent used in the preparation of the silyl group-containing polymer (b2) may be removed and a new organic solvent may be added.
  • the organic solvent used in the preparation of the silyl group-containing polymer (b2) is used as it is, and the organic-inorganic hybrid polymer (B ) When the solid concentration at the time of preparation is in the above range, an organic solvent may be added or not.
  • the reactivity of the silane compound (bl) and the specific silyl group-containing polymer (b2) can be controlled by adjusting the solid content concentration during the preparation of the organic-inorganic hybrid polymer (B). If the solid content concentration during the preparation of the organic-inorganic hybrid polymer (B) is less than the above lower limit, the reactivity between the silane compound (bl) and the specific silyl group-containing polymer (b2) may be lowered. If the solid content concentration during the preparation of the organic-inorganic hybrid polymer (B) exceeds the upper limit, gelation may occur.
  • the amount of solid content at the solid content concentration mentioned here is the amount used in terms of solid hydrolysis condensate of the silane compound (bl) (Wbl) and the amount used in terms of solid content of the specific silyl group-containing polymer (b 2). This is the total amount of (Wb2).
  • the organic solvent is not particularly limited as long as the above components can be mixed uniformly.
  • the organic-inorganic hybrid polymer (B) in order to improve the storage stability of the organic-inorganic hybrid polymer composition, particularly the organic-inorganic hybrid polymer (B), the organic-inorganic hybrid polymer (B) is prepared, and if necessary, the stability is increased. It is preferable to add an improver.
  • the stability improver used in the present invention is represented by the following formula (6):
  • R 1Q is methyl group, ethyl group, n-propyl group, i-propyl group, n butyl group, sec butyl group, t butyl group, n pentyl group, n hexyl group, cyclohexyl group, Represents a monovalent hydrocarbon group having 6 to 6 carbon atoms, such as a phenyl group, and R 11 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, or a methoxy group, an ethoxy group, n- (Represents an alkoxyl group having 1 to 16 carbon atoms such as propoxy group, i-poxy group, n-butoxy group, sec-butoxy group, t-butoxy group, lauryloxy group, and stearoxy group.)
  • organometallic compounds are used as the catalyst, it is preferable to add a stability improver represented by the above formula (6).
  • the stability improver coordinates to the metal atom of the organometallic compound, and this coordination is excessive between the silane compound (bl) and the specific silyl group-containing polymer (b2). It is considered that the storage stability of the obtained organic-inorganic hybrid polymer composition, particularly the organic-inorganic hybrid polymer (B), can be further improved by suppressing the co-condensation reaction.
  • stability improvers include acetylacetone, methyl acetoacetate, ethyl acetoacetate, n-propyl acetoacetate, i-propyl acetoacetate, n-butyl acetoacetate, sec-butyl acetoacetate, acetoacetate t.
  • the stability improver may be used alone or in combination of two or more.
  • the amount of the stability improver used in the present invention is usually 2 moles or more, preferably 3 to 20 moles per mole of the organometallic compound of the organometallic compound. If the amount of the stability improver is less than the above lower limit, the effect of improving the storage stability of the resulting composition will be insufficient.
  • the organic-inorganic hybrid polymer (B) used in the present invention can be prepared by co-condensing the silane compound (bl) and the specific silyl group-containing polymer (b2). Particularly preferably, it can be prepared by adding a hydrolysis / condensation reaction application catalyst and water to a mixture of the silane compound (bl) and the specific silyl group-containing polymer (b2) to perform cocondensation.
  • Wbl is a value converted into a complete hydrolysis condensate of the silane compound (M)
  • Wb2 is a value converted into a solid content of the specific silyl group-containing polymer (b2).
  • the organic substrate surface such as an acrylic plate is organic without being treated with a primer or the like. Good adhesion to the substrate.
  • the organic-inorganic hybrid polymer (B) is preferably prepared by the following methods (1) to (3).
  • organosilane (1) as the silane compound (bl), adding water in the above range to the temperature, temperature of 40-80 ° C, time of 0.5-; Carry out the hydrolysis-condensation reaction of (1).
  • the specific silyl group-containing polymer (b2) and a catalyst for hydrolysis / condensation reaction are added and mixed, and further, the condensation reaction is carried out at a temperature of 40 to 80 ° C., a reaction time of 0.5 to 12 hours, and organic inorganic A hybrid polymer (B) is prepared. Then, if necessary, add other additives such as stability improvers.
  • the acidic compound used for neutralization the acidic compounds exemplified above can be used.
  • the amount of the acidic compound used is usually 0.5 to 2.0 monole, preferably 0.8 to 1.5 monole, more preferably 0.9 to 1. mol per 1 mol of the basic compound used for hydrolysis condensation. 3 mono.
  • an acidic compound is used by dissolving in water, it is usually 10 to 500 parts by weight, preferably 20 to 200 parts by weight with respect to 100 parts by weight in total of the silane compound (bl) and the specific silyl group-containing polymer (b2). Dissolve in 300 parts, more preferably 30-200 parts of water. After neutralization, the mixture is sufficiently stirred and allowed to stand, and after confirming phase separation between the aqueous phase and the organic solvent phase, the lower layer moisture is removed.
  • the water used for the water washing after neutralization is usually 10 to 500 parts by weight, preferably 20 to 300 parts per 100 parts by weight in total of the silane compound (bl) and the specific silyl group-containing polymer (b2). 30 to 200 parts, more preferably 30 to 200 parts.
  • washing with water is performed by adding water, stirring sufficiently, and then allowing to stand, and after confirming phase separation between the aqueous phase and the organic solvent phase, removing the moisture in the lower layer.
  • the number of washings is preferably 1 or more times, more preferably 2 or more times.
  • a metal chelate compound is used as the hydrolysis-condensation catalyst, it is preferable to add the stability improver after the reaction.
  • the weight-average molecular weight of the organic-inorganic hybrid polymer (B) obtained by the above method is usually 3,0 in terms of polystyrene measured by gel permeation chromatography.
  • the organic fine particle-containing organic / inorganic hybrid polymer composition according to the present invention comprises an oxide fine particle (A) and an organic / inorganic hybrid polymer (B), phosphoric acid having an organic group having 6 or more carbon atoms or an oxyalkylene group. It can be obtained by mixing with an organic solvent in the presence of a basic compound, an acidic compound or a metal chelate compound and subjecting it to a dispersion treatment, without using a compound having s.
  • organic solvent examples include the organic solvents exemplified in the organic-inorganic hybrid polymer (B).
  • organic solvents other than alcohols such as methyl ethyl ketone, methyl isobutyl ketone, diisoptyl ketone, and the like in that the dispersion stability of the organic inorganic hybrid polymer composition containing fine oxide particles is good.
  • Toluene, xylene, ethyl acetate, butyl acetate, and mixtures thereof are preferred.
  • These organic solvents are preferably used in a state where moisture has been removed by dehydration in advance.
  • the amount of the organic solvent used is not particularly limited as long as it is an amount that can uniformly disperse the oxide fine particles (A)! /, But the solid content of the obtained organic / inorganic hybrid polymer composition containing oxide fine particles is not limited.
  • the concentration is preferably 5 to 80% by weight, more preferably 7 to 70% by weight, and particularly preferably 10 to 60% by weight.
  • Examples of the basic compound, acidic compound, and metal chelate compound include the compounds exemplified in the organic-inorganic hybrid polymer (B).
  • organic-inorganic hybrid polymer (B) examples include the compounds exemplified in the organic-inorganic hybrid polymer (B).
  • acidic compounds and metal chelate compounds basic compounds and acidification Triethylamine, tetramethylammonium hydroxide, and pyridine are particularly preferred, in which a basic compound in which a compound is preferred and an organic amine compound in which a compound is preferred is more preferred.
  • the basic compound, acidic compound or metal chelate compound is usually added to the oxide fine particle-containing organic-inorganic hybrid polymer composition of the present invention in an amount of 0.00 with respect to 100 parts by weight of the oxide fine particles (A). ! ⁇ 20 parts by weight, preferably 0.005 ⁇ 10 parts by weight, more preferably 0.0;! ⁇ 5 parts by weight, more preferably 0.01 ⁇ ; It is desirable to contain 5 parts by weight.
  • the composition of the oxide fine particle-containing polysiloxane exhibits good dispersion stability.
  • the above-mentioned organic / inorganic hybrid polymer composition containing fine oxide particles is obtained by adding oxide fine particles (A), an organic / inorganic hybrid polymer (B), a basic compound, an acidic compound or a metal chelate compound to an organic solvent.
  • the oxide fine particles (A) can be prepared by dispersing them sufficiently in an organic solvent.
  • a known disperser such as a ball mill, a sand mill (bead mill, a high shear bead mill), a homogenizer, an ultrasonic homogenizer, a nanomizer, a propeller mixer, a high shear mixer, or a paint shaker.
  • a dispersed fine particle dispersion ball mill and a sand mill are preferably used.
  • the oxide fine particles (A) are mixed with the organic / inorganic nano- or hybrid polymer (B) in the presence of a basic compound, acidic compound or metal chelate compound, the basic compound, acidic compound or metal chelate is mixed.
  • the organic-inorganic hybrid polymer (B) condensation reaction proceeds on the surface of the oxide fine particles (A) by the catalytic action of the oxide compound, and the surface of the oxide fine particles (A) becomes hydrophobic and is finely dispersed in the organic solvent. It is assumed that it will be easy to do.
  • the organic / inorganic hybrid polymer composition containing fine oxide particles of the present invention is preferably an organic-inorganic hybrid polymer (B) based on 100 parts by weight of the fine oxide particles (A) in terms of complete hydrolysis condensate. 1 to 1000 parts by weight, more preferably 5 to 900 parts by weight, and particularly preferably 10 to 800 parts by weight.
  • the above-mentioned organic / inorganic hybrid polymer composition containing fine oxide particles comprises fine oxide particles.
  • the child (A) is a highly dispersed composition having a volume average dispersed particle size of 300 nm or less, preferably 200 nm or less, more preferably 150 nm or less.
  • Power S can be. Since this cured product contains the organic-inorganic hybrid polymer (B), it is excellent in weather resistance, flexibility and followability to the substrate.
  • the said base material is an organic base material
  • the adhesiveness of a base material and a hardening body improves further by processing the surface of an organic base material with a primer.
  • the weight ratio (Wbl / Wb2) of the content (Wbl) of the silane compound (bl) and the content (Wb2) of the specific silyl group-containing polymer (b2) is preferably 50 / 50-95 / 5, More preferably, when the organic / inorganic hybrid polymer (B) of 60/40 to 85/15 is used, the effect of primer treatment is great.
  • the primer include a solution containing the specific silyl group-containing polymer (b2).
  • the weight average molecular weights of the specific silyl group-containing polymer and the organic-inorganic hybrid polymer are shown as polystyrene conversion values measured by gel permeation chromatography under the following conditions.
  • the appearance of the obtained composition was visually observed.
  • the volume average dispersed particle size of the composition in which no sedimentation of the fine particles was observed was measured using a microtrack ultrafine particle size distribution meter (manufactured by Nikkiso Co., Ltd. UPA150 ”) and evaluated according to the following criteria.
  • Dispersibility was also evaluated according to the following criteria. That is, the appearance of the obtained composition was visually observed.
  • the volume average dispersed particle size of the composition in which no sedimentation of fine particles was observed was measured with a Microtrac ultrafine particle size distribution meter (“UPA150” manufactured by Nikkiso Co., Ltd.) and evaluated according to the following criteria.
  • AA No separation / sedimentation. Volume average dispersed particle size ⁇ 150nm.
  • A No separation / sedimentation. 150 nm ⁇ volume average dispersed particle size ⁇ 200 nm.
  • a cured product having a thickness of 5 m was produced on a quartz glass plate by drying and curing at 00 ° C. for 1 hour.
  • the cured product was measured for spectral transmittance at a wavelength of 500 to 700 nm with an ultraviolet-visible spectrophotometer and evaluated according to the following criteria.
  • Light transmittance is 70% or more and 90% or less.
  • the obtained composition was applied on a quartz glass plate so that the dry film thickness was 5 in, and then dried and cured at 100 ° C. for 1 hour to form a cured product having a thickness of 5 m on the quartz glass plate.
  • the light transmittance of this cured product at a wavelength of 450 nm was measured with an ultraviolet-visible spectrophotometer and evaluated according to the following criteria.
  • the primer treatment was carried out using 100 parts by weight of the solution containing the specific silyl group-containing polymer (b2-1) obtained in Preparation Example 11 below, and i-butyl alcohol solution of dioctyltin dimaleate ester (solid content concentration: about 10%) A solution obtained by adding 10 parts of the mixture and stirring sufficiently was applied so that the dry coating film was 1, im.
  • ⁇ Preparation Example 1 In a reactor equipped with a reflux condenser and a stirrer, add 55 parts of methyl methacrylate, 5 parts of 2 - ethyl hexyl acrylate, 5 parts of cyclohexyl methacrylate, 10 parts of ⁇ ⁇ -methacryloxypropyltrimethoxysilane , Add 20 parts of glycidyl metatalylate, 4 parts of 4- (meth) atalyloyloxy 2, 2, 6, 6 5 parts of tetramethylpiperidine, 75 parts of i-butyl alcohol, 50 parts of methyl ethyl ketone and 25 parts of methanol, and stir. While heating to 80 ° C.
  • a solution containing the union (b2 1) was obtained.
  • a reactor equipped with a reflux condenser and a stirrer was charged with 30 parts of methyl methacrylate, 10 parts of n-propyl acrylate, 10 parts of ⁇ -methacryloxypropyltrimethoxysilane, glycidyl methacrylate.
  • Powdered zinc oxide fine particles (primary average particle size:
  • a metal oxide fine particle-containing organic-inorganic hybrid polymer composition (2) having a solid content concentration of 20% by weight was prepared in the same manner as in Example 1 except that 100 parts by weight were used. The results of the evaluation of the properties of this composition are shown in Table 21.
  • a fine particle-containing organic-inorganic hybrid polymer composition (3) was prepared. The results of evaluating the properties of this composition are shown in Table 21.
  • Example 21 Similar to Example 2 except that 500 parts by weight of the solution containing the organic-inorganic hybrid polymer (B-2) (100 parts by weight in terms of solid content) was used instead of the solution containing the organic-inorganic hybrid polymer (B-1). Thus, an organic-inorganic hybrid polymer composition (5) containing metal oxide fine particles having a solid content concentration of 20% by weight was prepared. The results of evaluating the properties of this composition are shown in Table 21.
  • Example 2 Similar to Example 2 except that 500 parts by weight of the solution containing the organic-inorganic hybrid polymer (B-3) (100 parts by weight in terms of solid content) was used instead of the solution containing the organic-inorganic hybrid polymer (B-1).
  • an organic-inorganic hybrid polymer composition (6) containing metal oxide fine particles having a solid content concentration of 20% by weight was prepared. The results of evaluating the properties of this composition are shown in Table 2. Shown in 1.
  • Example 2 The same as Example 2 except that 500 parts by weight of the solution containing the organic-inorganic hybrid polymer (B-4) (100 parts by weight in terms of solid content) was used instead of the solution containing the organic-inorganic hybrid polymer (B-1).
  • an organic-inorganic hybrid polymer composition (7) containing metal oxide fine particles having a solid content concentration of 20% by weight was prepared. The results of evaluating the properties of this composition are shown in Table 21.
  • Powdery rutile type titanium oxide fine particles were dispersed in methylisoptyl ketone in the same manner as in Example 1 except that triethylamine was not used, but the titanium oxide fine particles settled.
  • Example 1 except that the solution containing the organic-inorganic hybrid polymer (B-1) was used.
  • powdery rutile-type titanium oxide fine particles were dispersed in methylisobutyl ketone, but the titanium oxide fine particles settled.
  • Titanium oxide fine particle water dispersion (Ishihara Sangyo Co., Ltd. “STS-01”, TiO concentration 30% by weight, titanium oxide fine particle volume level)
  • Uniformly dispersed particle size 60 nm, organic dispersant: 0 wt%) 300 parts by weight is put in a container, and 500 parts by weight of the solution containing the above organic-inorganic hybrid polymer (B-1) is added (100% in terms of solid content). Part by weight) and 400 parts by weight of methylisobutyl ketone, and further 2000 parts by weight of 0.1 mm diameter zircoyu beads were added to this mixture, and the mixture was stirred at 1500 rpm for 1 hour using bead minole. The titanium oxide fine particles settled.
  • polysiloxane with Mw 20,000 (GE Toshiba Silicone Co., Ltd., trade name: XR31—B2733U00 parts by weight and methinoisoisobutyl ketone 400 weights)
  • a metal oxide fine particle-containing polysiloxane composition (C5) having a solid content concentration of 20% by weight was obtained in the same manner as in Example 1 except that the solution containing the components was used. Is shown in Table 2-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

明 細 書
酸化物微粒子含有有機無機ハイブリッドポリマー組成物およびその製造 方法
技術分野
[0001] 本発明は、ケィ素酸化物微粒子および/または金属酸化物微粒子が有機無機ハ イブリツドポリマーを含む有機溶媒中に高度に分散した有機無機ハイブリッドポリマー 組成物およびその硬化体に関する。
背景技術
[0002] 従来から、耐久性に優れるシロキサン材料に各種機能を付与する手段として、シロ キサン骨格を有するバインダー(以下、「シロキサン系バインダー」とも!/、う)とケィ素酸 化物微粒子や各種金属酸化物微粒子(以下、これらをまとめて「酸化物微粒子」と略 す)との複合化が検討されている。このとき、シロキサン系バインダーと酸化物微粒子 はこれらを含む分散液の形態で調製されることが多い。ところ力 シロキサン系バイン ダ一は水に溶け難いため、分散媒として有機溶剤を使用する必要があり、一方、酸 化物微粒子は有機溶媒中で凝集しやすいため、水媒体中に分散させることが多い。 このため、有機溶媒中に酸化物微粒子を微分散させるには、炭素数 6以上の有機基 を有するリン酸、スルホン酸またはカルボン酸(特許文献 1参照)、ォキシアルキレン 基を有する有機化合物、ォキシアルキレン基を有するリン酸等のエステル (特許文献 2参照)、あるいはォキシアルキレン基を有するシラン化合物(特許文献 3参照)を用 いる必要があった。
[0003] しかしながら、これらの化合物を使用して酸化物微粒子を有機溶媒中に微分散さ せる方法で、酸化物微粒子とシロキサン系バインダーとを複合化させた場合、分散液 の分散性は良好であるが、上記化合物とシロキサン系バインダーとの相溶性が悪ぐ たとえば、溶媒を除去して塗膜を形成した場合、塗膜が白化することがあった。また、 製膜条件等を制御して透明な塗膜を形成しても、この塗膜には、炭素数 6以上の有 機基を有するリン酸等やォキシアルキレン基を有する化合物が残存するため、紫外 線照射下では塗膜の着色やクラック発生等の不具合が生じることがあった。 [0004] 一方、ケィ素酸化物微粒子には、自身の表面電荷で分散性を保った有機溶媒分 散体がある力 この分散体は分散安定性が良好であるものの、シロキサン系バインダ 一と混合した場合、ケィ素酸化物微粒子が凝集して白化したり、クラック力 S発生したり することがあった。
[0005] また、予めシランモノマーと酸化物微粒子とを含む分散液を調製し、このシランモノ マーを加水分解 ·縮合させてシロキサン系バインダーを形成した場合、得られる分散 液の分散性は低ぐ塗膜の透明性も低力、つた (特許文献 3の比較例参照)。
[0006] このような問題点は、シロキサン系バインダーとして有機無機ハイブリッドポリマーを 使用して酸化物微粒子と複合化した場合も例外ではなぐ酸化物微粒子による機能 を有し、かつ透明な塗膜を得ることはできな力 た。
特許文献 1 :特開 2004— 283822号公報
特許文献 2:特開 2005— 185924号公報
特許文献 3:特開 2004— 99879号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記のような従来技術に伴う問題を解決しょうとするものであって、各種 機能を有し、透明性および屋外耐候性に優れたポリシロキサン系硬化体、ならびにこ のような硬化体が得られる、酸化物微粒子が高度に分散した有機無機ハイブリッドポ リマー組成物およびその製造方法を提供することを目的としている。
課題を解決するための手段
[0008] 本発明者らは、上記問題点を解決すべく鋭意研究した結果、予め、シラン化合物と 加水分解性基および/または水酸基と結合したケィ素原子を含有するシリル基を有 する重合体とを加水分解 ·縮合反応させて有機無機ハイブリッドポリマーを調製し、こ の有機無機ハイブリッドポリマーを含有する有機溶媒中で、塩基性化合物、酸性化 合物または金属キレート化合物の存在下、酸化物微粒子を処理することにより、有機 無機ハイブリッドポリマーを含有する有機溶媒中で酸化物微粒子が高度に分散した 有機無機ハイブリッドポリマー組成物が得られることを見出し、さらに、この組成物か ら得られる硬化体力 透明性および耐候性に優れ、さらに柔軟性および基材に対す る追随性に優れることを見出し、本発明を完成するに至った。
[0009] すなわち、本発明に係る酸化物微粒子含有有機無機ハイブリッドポリマー組成物 は、有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で
(A)ケィ素酸化物微粒子および/または金属酸化物微粒子、および
(B)下記式(1)
R1 Si (OR2) ― (1)
(式中、 R1は、炭素数;!〜 8の 1価の有機基を示し、 2個存在する場合には互いに同じ であっても異なっていてもよい。 R2は、それぞれ独立に、炭素数 1〜5のアルキル基ま たは炭素数 1〜6のァシル基を示す。 nは 0〜2の整数である。 )
で表される少なくとも 1種のオルガノシラン、該オルガノシランの加水分解物および該 オノレガノシランの縮合物からなる群から選択される少なくとも 1種のシラン化合物 (bl )と、加水分解性基および/または水酸基と結合したケィ素原子を含有するシリル基 を有する重合体 (b2)とを加水分解 ·縮合反応させて得られる有機無機ハイブリッドポ リマーを混合して、前記酸化物微粒子 (A)を有機溶媒中に分散させることにより得ら れることを特徴とする。
[0010] 前記酸化物微粒子 (A)と前記有機無機ハイブリッドポリマー(B)とを塩基性化合物 の存在下で混合することが好ましレ、。
[0011] 前記酸化物微粒子(A)と前記有機無機ハイブリッドポリマー(B)とをビーズミルによ り混合することが好ましい。
[0012] 前記酸化物微粒子(A) 100重量部に対して、前記有機無機ハイブリッドポリマー(
B)を完全加水分解縮合物換算で 1〜; 1000重量部混合することが好ましい。
[0013] 前記シラン化合物 (bl)と重合体 (b2)とを、シラン化合物 (bl)の完全加水分解縮 合物換算の含有量 (Wbl )と重合体 (b2)の固形分換算の含有量 (Wb2)との重量比
(Wbl/Wb2)が、 5/95〜95/5の範囲〔ただ、し、 Wbl +Wb2 = 100とする。〕で 加水分解 ·縮合させること力好ましレ、。
[0014] 前記重合体 (b2)にお!/、て、加水分解性基および/または水酸基と結合したケィ素 原子を含有するシリル基の含有量が、ケィ素原子含有量に換算して、 0.;!〜 2重量 %であることが好ましい。
[0015] 本発明に係る硬化体は、上記酸化物微粒子含有有機無機ハイブリッドポリマー組 成物から得られることを特徴とする。
[0016] 本発明に係るコーティング用組成物は、上記酸化物微粒子含有有機無機ハイプリ ッドポリマー組成物からなることを特徴とする。
[0017] 本発明に係る積層体は、有機基材と、該有機基材上に設けられた、上記コーティン グ用組成物から得られる塗膜とを有することを特徴とする。
発明の効果
[0018] 本発明によると、炭素数 6以上の有機基を有するリン酸等やォキシアルキレン基を 有する化合物を使用せずに、有機無機ハイブリッドポリマーを含有する有機溶媒に 酸化物微粒子が高度に分散した組成物が得られる。この組成物は分散安定性に優 れているとともに、酸化物微粒子と上記有機無機ハイブリッドポリマーとを含有する透 明な硬化体を形成できる。この硬化体は、実質的に上記化合物を含まないため、屋 外などの紫外線が照射される環境下に長期間放置しても黄色化しにくぐまた、上記 有機無機ハイプリッドポリマーの作用により柔軟性および基材に対する追随性に優 れている。さらに、酸化物微粒子として酸化亜鉛微粒子や酸化セリウム微粒子、ルチ ル型酸化チタン微粒子を用いた硬化体は、紫外線カットの材料として有用である。 発明を実施するための最良の形態
[0019] 本発明に係る酸化物微粒子含有有機無機ハイブリッドポリマー組成物は、酸化物 微粒子 (A)と有機無機ハイブリッドポリマー(B)とを、炭素数 6以上の有機基を有する リン酸等やォキシアルキレン基を有する化合物を使用せずに、有機溶媒中、塩基性 化合物、酸性化合物または金属キレート化合物の存在下で混合して分散処理を施 すことにより得ること力 Sでさる。
[0020] 〔酸化物微粒子 (A)〕
本発明に用いられる酸化物微粒子 (A)は、ケィ素酸化物微粒子および/または金 属酸化物微粒子である。上記金属酸化物微粒子は、金属元素の酸化物微粒子であ ればその種類は特に限定されないが、たとえば、酸化アンチモン、酸化ジルコニウム 、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜 鉛、酸化タンタル、酸化インジウム、酸化ハフニウム、酸化スズ、酸化ニオブ、酸化ァ ノレミニゥム、酸化セリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プ ラセォジゥム、酸化ネオジゥム、酸化サマリウム、酸化ユウ口ピウム、酸化ガドリュウム、 酸化テルビ二ゥム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ッリウ ム、酸化イッテルビウム、酸化ルテチウム、酸化カルシウム、酸化ガリウム、酸化リチウ ム、酸化ストロンチウム、酸化タングステン、酸化バリウム、酸化マグネシウム、および これらの複合体、ならびにインジウムースズ複合酸化物などの上記金属 2種以上の複 合体の酸化物などの金属酸化物微粒子が挙げられる。また、上記酸化物微粒子 (A )として、ケィ素酸化物と金属酸化物との複合酸化物微粒子や金属酸化物微粒子の 表面をケィ素酸化物で被覆した酸化物微粒子を用いることもできる。
[0021] 本発明において、酸化物微粒子は、 1種単独で、または 2種以上を混合して使用し てもよい。酸化物微粒子 (A)は、付与する機能に応じて適宜選択することができるが 、たとえば、高屈折性を付与する場合には TiO微粒子が好ましぐ紫外領域の透明
2
性と高屈折性を両立させる場合には ZrO微粒子が好ましい。また、 UVカット機能を
2
付与する場合には、酸化セリウム微粒子、酸化亜鉛微粒子が好ましい。また、導電性 を付与する場合には、酸化アンチモンドープ酸化錫微粒子、インジウム 錫系複合 酸化物微粒子が好ましい。
[0022] 上記酸化物微粒子(A)の 1次平均粒子径は、好ましくは 0. l~100nm,より好まし くは 0. ;!〜 70nm、特に好ましくは 0. ;!〜 50nmである。酸化物微粒子(A)の 1次平 均粒子径が上記範囲にあると、光透過性に優れた硬化体を得ることができる。
[0023] このような酸化物微粒子 (A)は、溶媒に分散されて!/、な!/、粉体の状態で添加しても 、イソプロピルアルコールなどの極性溶媒中やトルエンなどの非極性溶媒中に分散し た分散体の状態で添加してもよい。添加前の酸化物微粒子 (A)は、凝集して二次粒 子を形成していてもよい。本発明では、有機無機ハイブリッドポリマー(B)の溶解性を 考慮して適切な有機溶媒を適宜選択できる点で、粉体を使用することが好ましい。ま た、本発明の製造方法は、粉体の状態で添加する場合に、特に有効である。
[0024] 〔有機無機ハイブリッドポリマー(B)〕
本発明に用いられる有機無機ハイブリッドポリマー(B)は、特定のシラン化合物 (bl )と特定のシリル基を含有する重合体 (b2)とを加水分解 ·縮合反応させることにより調 製される。より具体的には、上記シラン化合物 (bl)とシリル基を含有する重合体 (b2) とを含有する混合物に、加水分解 ·縮合反応を促進する触媒と水とを添加して調製さ れる。
[0025] (シラン化合物 (bl) )
本発明に用レ、られるシラン化合物 (b 1 )は、下記式( 1 )
R1 Si (OR2) ― (1)
(式中、 R1は、炭素数;!〜 8の 1価の有機基を示し、 2個存在する場合には互いに同じ であっても異なっていてもよい。 R2は、それぞれ独立に、炭素数 1〜5のアルキル基ま たは炭素数 1〜6のァシル基を示す。 nは 0〜2の整数である。 )
で表されるオルガノシラン(以下、「オルガノシラン(1)」ともいう)、オルガノシラン(1) の加水分解物およびオルガノシラン(1)の縮合物からなる群から選択される少なくと も 1種のシラン化合物であって、これら 3種のシラン化合物のうち、 1種のシラン化合物 だけを用いてもよぐ任意の 2種のシラン化合物を混合して用いてもよぐまたは 3種 すべてのシラン化合物を混合して用いてもよい。また、シラン化合物 (bl)として、ォ ルガノシラン(1)を使用する場合、オルガノシラン(1 )は 1種単独で使用しても、 2種 以上を併用してもよい。また、上記オルガノシラン(1)の加水分解物および縮合物は 、 1種のオルガノシラン(1)から形成したものでもよいし、 2種以上のオルガノシラン(1 )を併用して形成したものでもよい。
[0026] 上記オルガノシラン(1)の加水分解物は、オルガノシラン(1)に 2〜4個含まれる O R2基のうちの少なくとも 1個が加水分解されていればよぐたとえば、 1個の OR2基が 加水分解されたもの、 2個以上の OR2基が加水分解されたもの、あるいはこれらの混 合物であってもよい。
[0027] 上記オルガノシラン(1)の縮合物は、オルガノシラン(1)が加水分解して生成する 加水分解物中のシラノール基が縮合して Si— O— Si結合を形成したものである。本 発明では、シラノール基がすべて縮合している必要はなぐ前記縮合物は、僅かな一 部のシラノール基が縮合したもの、大部分 (全部を含む)のシラノール基が縮合したも の、さらにはこれらの混合物などをも包含する。 [0028] 上記式(1)において、 R1は炭素数 1〜8個の 1価の有機基であり、具体的には、メチ ノレ基、ェチル基、 n プロピル基、 i プロピル基、 n ブチル基、 i ブチル基、 sec ブチル基、 t ブチル基、 n へキシル基、 n へプチル基、 n ォクチル基、 2— ェチルへキシル基などのアルキル基;
ァセチル基、プロピオニル基、ブチリル基、バレリル基、ベンゾィル基、トリオイル基 、力プロィル基などのァシル基;
ビュル基、ァリル基、シクロへキシル基、フエニル基、エポキシ基、グリシジル基、(メ タ)アクリルォキシ基、ウレイド基、アミド基、フルォロアセトアミド基、イソシァネート基 などが挙げられる。
[0029] さらに、 R1として、上記有機基の置換誘導体などが挙げられる。 R1の置換誘導体の 置換基としては、たとえば、ハロゲン原子、置換もしくは非置換のアミノ基、水酸基、メ ルカプト基、イソシァネート基、グリシドキシ基、 3, 4—エポキシシクロへキシノレ基、(メ タ)アクリルォキシ基、ウレイド基、アンモニゥム塩基などが挙げられる。ただし、これら の置換誘導体からなる R1の炭素数は、置換基中の炭素原子を含めて 8個以下が好 ましい。式(1)中に R1が複数個存在する場合には、それぞれ同じであっても異なって いてもよい。
[0030] 炭素数が 1〜5個のアルキル基である R2として、たとえば、メチル基、ェチル基、 n- プロピル基、 i プロピル基、 n ブチル基、 sec ブチル基、 t ブチル基、 n ペン チル基などを挙げることができ、炭素数 1〜6のァシル基である R2としては、たとえば 、ァセチル基、プロピオニル基、ブチリル基、バレリル基、力プロィル基などが挙げら れる。式(1)中に R2が複数個存在する場合には、それぞれ同じであっても異なって いてもよい。
[0031] このようなオルガノシラン(1)として、具体的には、テトラメトキシシラン、テトラエトキ シシラン、テトラー n プロポキシシラン、テトラー i プロポキシシラン、テトラー n ブ トキシシランなどのテトラアルコキシシラン類(式(1)において n = 0);メチルトリメトキシ シラン、メチノレトリエトキシシラン、ェチノレトリメトキシシラン、ェチノレトリエトキシシラン、 n プロビルトリメトキシシラン、 n プロピルトリエトキシシラン、 i プロビルトリメトキシ シラン、 i プロピルトリエトキシシラン、 n ブチルトリメトキシシラン、 n ブチルトリエト ノレトリエトキシシラン、シクロへキシノレトリメトキシシラン、シクロへキシノレトリエトキシシラ ン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、 3—クロ口プロビルトリメトキ シシラン、 3—クロ口プロピルトリエトキシシラン、 3, 3, 3—トリフノレオ口プロピノレトリメト キシシラン、 3, 3, 3—トリフルォロプロピルトリエトキシシラン、 3—ァミノプロビルトリメ トキシシラン、 3 ァミノプロピルトリエトキシシラン、 2 ヒドロキシェチルトリメトキシシ ラン、 2—ヒドロキシェチルトリエトキシシラン、 2—ヒドロキシプロビルトリメトキシシラン 、 2 ヒドロキシプロピルトリエトキシシラン、 3 ヒドロキシプロビルトリメトキシシラン、 3 —ヒドロキシプロピルトリエトキシシラン、 3—メルカプトプロピルトリメトキシシラン、 3—
—イソシアナートプロピルトリエトキシシラン、 3—グリシドキシプロピルトリメトキシシラ ン、 3 グリシドキシプロピノレトリエトキシシラン、 2—(3, 4 エポキシシクロへキシノレ) ェチノレトリメトキシシラン、 2—(3, 4 エポキシシクロへキシノレ)ェチノレトリェトキシシラ 口ピルトリエトキシシラン、 3—ウレイドプロピルトリメトキシシラン、 3—ウレイドプロビルト リエトキシシランなどのトリアルコキシシラン類(式(1)において n= l);
ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジェチノレジメトキシシラン、ジェ チノレジェトキシシラン、ジー n プロピノレジメトキシシラン、ジー n プロピノレジェトキシ シラン、ジー i プロピノレジメトキシシラン、ジー i プロピノレジェトキシシラン、ジー n— ブチノレジメトキシシラン、ジー n ブチノレジェトキシシラン、ジー n ペンチノレジメトキ シシラン、ジー n ペンチノレジェトキシシラン、ジー n へキシノレジメトキシシラン、ジ n へキシノレジェトキシシラン、ジー n へプチノレジメトキシシラン、ジー n へプチ ノレジェトキシシラン、ジー n—才クチノレジメトキシシラン、ジー n 才クチノレジェトキシシ ラン、ジー n シクロへキシノレジメトキシシラン、ジー n シクロへキシノレジェトキシシラ 類(式(1)において n = 2); シラン (式(1)において n = 2)などが挙げられる。
[0032] これらのうち、式(1)において n= lである 3官能のシラン化合物が主として用いられ る。この 3官能のシラン化合物は、本発明に係る有機無機ハイブリッドポリマー組成物 の安定性の面から、式(1)において n = 2である 2官能のシラン化合物と併用すること が好ましい。 3官能シラン化合物としては、特にトリアルコキシシラン類が好ましぐ 2官 能シラン化合物としてはジアルコキシシラン類が好ましい。
[0033] 3官能シラン化合物と 2官能シラン化合物とを併用する場合、それぞれの完全加水 分解縮合物換算の重量比で、 3官能シラン化合物 /2官能シラン化合物が、好ましく は 95/5〜; 10/90、さらに好ましくは 90/10〜30/70、特に好ましくは 85/15〜 40/60である。ただし、 3官能シラン化合物と 2官能シラン化合物との合計 (完全カロ 水分解縮合物換算)を 100とする。 3官能シラン化合物の含有量が多すぎると凝集し 易くなるという点から酸化物微粒子の分散性に劣ることがあり、 3官能シラン化合物の 含有量が少なすぎると酸化物微粒子の分散に必要な官能基が少なくなるという点か ら酸化物微粒子の分散性に劣ることがある。なお、本明細書において、完全加水分 解縮合物とは、シラン化合物の— OR基が 100%加水分解して SiOH基となり、さらに 完全に縮合してシロキサン構造になったものをいう。
[0034] 本発明では、シラン化合物 (bl )として 1種のオルガノシラン(1)を単独で使用しても よいが、 2種以上のオルガノシラン(1)を併用してもよい。シラン化合物 (bl)として使 用した 2種以上のオルガノシラン(1)を、平均化して上記式(1)で表した場合、平均 ィ匕した n (以下、「nの平均ィ直」ともいう)は好ましくは 0· 5~ 1. 9、より好ましくは 0· 6〜 1. 7、特に好ましくは 0. 7〜; 1. 5である。 nの平均値が上記下限未満にあると有機無 機ハイブリッドポリマー組成物の貯蔵安定性が劣ることがあり、上記上限を超えると硬 化体 (塗膜)の硬化性が劣ることがある。
[0035] nの平均値は、 2官能〜 4官能のシラン化合物を適宜併用して、その配合割合を適 宜調整することにより、上記範囲に調整することができる。
[0036] なお、これは、シラン化合物 (bl)として加水分解物または縮合物を使用した場合も 同様である。
[0037] 本発明では、シラン化合物 (bl)として、オルガノシラン(1)をそのまま使用してもよ いが、オルガノシラン(1)の加水分解物および/または縮合物を使用することができ る。オルガノシラン(1)を加水分解物および/または縮合物として使用する場合、ォ ルガノシラン(1)を予め加水分解 ·縮合させて製造したものを用いてもよいが、後述す るように、有機無機ハイブリッドポリマー(B)を調製する際に、水を添加して、オルガノ シラン(1)と水とを加水分解 '縮合させて、オルガノシラン(1)の加水分解物および/ または縮合物を調製することが好まし!/、。 法)により測定したポリスチレン換算の重量平均分子量 (以下、「Mw」と表す)が、好 まし <は300〜; 100, 000、より好まし <は 500〜50, 000である。
[0039] 本発明におけるシラン化合物 (b 1 )としてオルガノシラン( 1 )の縮合物を用レ、る場合 、上記オルガノシラン(1)から調製してもよいし、市販されているオルガノシランの縮 合物を用いてもよい。市販されているオルガノシランの縮合物としては、三菱化学 (株
)製の MKCシリケート、コルコート社製のェチルシリケート、東レ.ダウコーユング.シリ コーン (株)製のシリコーンレジン、 GE東芝シリコーン (株)製のシリコーンレジン、信 越化学工業(株)製のシリコーンレジンやシリコーンオリゴマー、ダウコーユング.アジ ァ(株)製のヒドロキシル基含有ポリジメチルシロキサン、 日本ュニカー(株)製のシリコ ーンオリゴマーなどが挙げられる。これらの市販されて!/、るオルガノシランの縮合物は 、そのまま用いても、さらに縮合させて使用してもよい。
[0040] (シリル基含有重合体 (b2) )
本発明に用いられる特定のシリル基を含有する重合体 (b2) (以下、「特定シリル基 含有重合体 (b2)」とも!/、う)は、加水分解性基および/または水酸基と結合したケィ 素原子を有するシリル基(以下「特定シリル基」という)を含有する。この特定シリル基 含有重合体 (b2)は、重合体分子鎖の末端および/または側鎖に特定シリル基を有 することが好ましい。
[0041] この特定シリル基中の加水分解性基および/または水酸基が上記シラン化合物 (b 1)と共縮合することにより、有機無機ハイブリッドポリマー(B)が形成され、さらに、こ の有機無機ハイブリッドポリマー(B)と酸化物微粒子 (A)とを、有機溶媒中、塩基性 化合物、酸性化合物または金属キレート化合物の存在下で混合して分散処理すると 、有機溶媒中に酸化物微粒子 (A)が高度に分散される。これは、有機無機ハイブリツ ドポリマー(B)に残存する特定シリル基中の加水分解性基および/または水酸基が 、塩基性化合物等の触媒作用により酸化物微粒子 (A)の表面で縮合され、酸化物 微粒子 (A)の表面が疎水性となり、酸化物微粒子 (A)が有機溶媒中に微分散しや すくなるためと推測される。
[0042] 特定シリル基含有重合体 (b2)における特定シリル基の含有量は、ケィ素原子の量 に換算して、特定シリル基導入前の重合体に対して、通常 0.;!〜 2重量%、好ましく は 0. 3〜; 1. 7重量%である。特定シリル基含有重合体 (b2)における特定シリル基含 有量が上記下限未満になると、シラン化合物 (bl)との共有結合部位や有機無機ハ イブリツドポリマー(B)に残存する特定シリル基が少なくなるため、混合分散処理によ る効果が得られないことがある。一方、上記上限を超えると組成物の保管時にゲル化 が発生することがある。
[0043] 上記特定シリル基は、下記式(3)
[0044] [化 1]
Figure imgf000012_0001
[0045] (式中、 Xはハロゲン原子、アルコキシル基、ァセトキシ基、フエノキシ基、チォアルコ キシル基、アミノ基などの加水分解性基または水酸基を示し、 R5は水素原子、炭素 数 1〜 10のアルキル基または炭素数 1〜 10のァラルキル基を示し、 iは;!〜 3の整数 である。 )
で表される基であることが好ましレ、。
[0046] このような特定シリル基含有重合体 (b2)は、たとえば、下記 (I)や (Π)の方法により
、製造すること力 Sでさる。
[0047] (I)上記式(3)で表される特定シリル基を有するヒドロシラン化合物(以下、単に「ヒド ロシラン化合物 (I)」ともレ、う)を、炭素—炭素二重結合を有するビュル系重合体 (以 下、「不飽和ビュル系重合体」という)中の該炭素 炭素二重結合に付加反応させる 方法。 [0048] (Π)下記式(4)
[0049] [化 2]
Figure imgf000013_0001
[0050] (式中、 X、 R5、 iはそれぞれ上記式(3)における X, R5, iと同義であり、 R6は重合性 二重結合を有する有機基を示す)
で表されるシラン化合物(以下、「不飽和シラン化合物(Π)」と!/、う)と、他のビュル系 単量体とを共重合する方法。
[0051] 上記 (I)の方法に使用されるヒドロシラン化合物(I)としては、たとえば、メチルジクロ ノレシラン、トリクロルシラン、フエニルジクロルシランなどのハロゲン化シラン類;メチル ジメトキシシラン、メチノレジェトキシシラン、フエニノレジメトキシシラン、トリメトキシシラン ァセトキシシラン、トリァセトキシシランなどのァシロキシシラン類;メチルジァミノキシシ ラン、トリアミノキシシラン、ジメチル'ァミノキシシランなどのアミノキシシラン類などを 挙げること力 Sできる。これらのヒドロシラン化合物(I)は、単独でまたは 2種以上を混合 して使用すること力でさる。
[0052] また、上記 (I)の方法に使用される不飽和ビュル系重合体は、水酸基を有する重合 体以外であれば特に限定されず、たとえば、下記 (I 1)や (I 2)の方法あるいはこ れらの組み合わせなどによって製造することができる。
[0053] (I— 1)官能基 (以下、「官能基( 」という)を有するビュル系単量体を (共)重合し たのち、該 (共)重合体中の官能基( α )に、該官能基( α )と反応しうる官能基 (以下 、「官能基( /3 )」という)と炭素 ·炭素二重結合とを有する不飽和化合物を反応させる ことにより、重合体分子鎖の側鎖に炭素 炭素二重結合を有する不飽和ビュル系重 合体を製造する方法。
[0054] (1— 2)官能基 )を有するラジカル重合開始剤(たとえば、 4, 4 '—ァゾビス— 4— シァノ吉草酸など)を使用し、あるいは、ラジカル重合開始剤と連鎖移動剤の双方に 官能基(α )を有する化合物(たとえば、 4, 4 'ーァゾビス 4ーシァノ吉草酸とジチォ グリコール酸など)を使用して、ビュル系単量体を(共)重合して、重合体分子鎖の片 末端あるいは両末端にラジカル重合開始剤や連鎖移動剤に由来する官能基(《)を 有する (共)重合体を合成したのち、該 (共)重合体中の官能基( に、官能基( β ) と炭素 ·炭素二重結合とを有する不飽和化合物を反応させることにより、重合体分子 鎖の片末端あるいは両末端に炭素 炭素二重結合を有する不飽和ビュル系重合体 を製造する方法。
[0055] (1 - 1 )および (I 2)の方法における官能基( α )と官能基( /3 )との反応としては、 たとえば、カルボキシル基と水酸基とのエステル化反応、カルボン酸無水物基と水酸 基との開環エステル化反応、カルボキシル基とエポキシ基との開環エステル化反応、 カルボキシル基とアミノ基とのアミド化反応、カルボン酸無水物基とアミノ基との開環 アミド化反応、エポキシ基とァミノ基との開環付加反応、水酸基とイソシァネート基との ウレタン化反応や、これらの反応の組み合わせなどを挙げることができる。
[0056] 官能基(α )を有するビュル系単量体としては、たとえば、(メタ)アクリル酸、クロトン 酸、マレイン酸、フマル酸、ィタコン酸などの不飽和カルボン酸;無水マレイン酸、無 水ィタコン酸などの不飽和カルボン酸無水物; 2—ヒドロキシェチル(メタ)アタリレート
Ν メチロール(メタ)アクリルアミド、 2—ヒドロキシェチルビュルエーテルなどの水酸 基含有ビュル系単量体; 2 -アミノエチノレ (メタ)アタリレート、 2 -ァミノプロピノレ (メタ) アタリレート、 3 ァミノプロピル(メタ)アタリレート、 2 アミノエチルビュルエーテルな どのアミノ基含有ビュル系単量体; 1 , 1 , 1—トリメチルァミン (メタ)アクリルイミド、 1 - メチルー 1ーェチルァミン (メタ)アクリルイミド、 1 , 1 ジメチルー 1一(2—ヒドロキシ プロピル)ァミン(メタ)アクリルイミド、 1 , 1—ジメチルー 1— (2,—フエ二ルー 2,—ヒド 口キシェチル)ァミン (メタ)アクリルイミド、 1 , 1 ジメチルー 1 (2,ーヒドロキシー 2
—フエノキシプロピル)ァミン (メタ)アクリルイミドなどのァミンイミド基含有ビュル系単 量体;グリシジル (メタ)アタリレート、ァリルグリシジルエーテルなどのエポキシ基含有 ビュル系単量体などを挙げることができる。これらの官能基( α )を有するビュル系単 量体は、単独でまたは 2種以上を混合して使用することができる。
[0057] 官能基( α )を有するビュル系単量体と共重合可能な他のビュル系単量体としては 、たとえば、スチレン、 α—メチルスチレン、 4 メチルスチレン、 2 メチルスチレン、 3 メチルスチレン、 4ーメトキシスチレン、 2 ヒドロキシメチルスチレン、 4ーェチルス チレン、 4ーェトキシスチレン、 3, 4 ジメチルスチレン、 3, 4 ジェチルスチレン、 2 クロロスチレン、 3—クロロスチレン、 4 クロロー 3—メチルスチレン、 4 t ブチル スチレン、 2, 4—ジクロロスチレン、 2, 6—ジクロロスチレン、 1—ビュルナフタレンな どの芳香族ビュル単量体;
メチル (メタ)アタリレート、ェチル (メタ)アタリレート、プロピル (メタ)アタリレート、 n- ブチル (メタ)アタリレート、 i ブチル (メタ)アタリレート、ァミル (メタ)アタリレート、 i- ァミル (メタ)アタリレート、へキシル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリ レート、 n ォクチル(メタ)アタリレート、シクロへキシルメタタリレートなどの(メタ)アタリ レート化合物;
ジビュルベンゼン、エチレングリコールジ(メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレート、トリエチレングリコールジ(メタ)アタリレート、テトラエチレングリコー ルジ(メタ)アタリレート、プロピレングリコールジ(メタ)アタリレート、ジプロピレングリコ ールジ(メタ)アタリレート、トリプロピレングリコールジ(メタ)アタリレート、テトラプロピレ ングリコールジ(メタ)アタリレート、ブタンジオールジ(メタ)アタリレート、へキサンジォ ールジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリ トールテトラ (メタ)アタリレートなどの多官能性単量体;
(メタ)アクリルアミド、 N メチロール (メタ)アクリルアミド、 N メトキシメチル (メタ)ァ ミド、ダイアセトンアクリルアミド、マレイン酸アミド、マレイミドなどの酸アミド化合物; 塩化ビュル、塩化ビニリデン、脂肪酸ビュルエステルなどのビュル化合物;
1 , 3 ブタジエン、 2—メチルー 1 , 3 ブタジエン、 2, 3 ジメチルー 1 , 3 ブタジ ェン、 2—ネオペンチルー 1 , 3—ブタジエン、 2—クロロー 1 , 3—ブタジエン、 2—シ ァノー 1 , 3—ブタジエン、イソプレン、アルキル基、ハロゲン原子、シァノ基などの置 換基で置換された置換直鎖共役ペンタジェン類、直鎖状および側鎖状の共役へキ サジェンなどの脂肪族共役ジェン;
アクリロニトリル、メタアクリロニトリルなどのシアン化ビュル化合物; トリフルォロェチル(メタ)アタリレート、ペンタデカフルォロォクチル(メタ)アタリレート などのフッ素原子含有単量体;
2, 2, 6, 6 ペンタメチルピペリジンなどのピぺリジン系モノマー;
2— (2'ーヒドロキシ 5'—メタクリロキシェチルフエニル) 2H べンゾトリァゾー ノレ、 2— (2'ーヒドロキシ 3'—t ブチルー 5'—メタクリロキシェチルフエニル)ー2 H ベンゾトリァゾール、 2 ヒドロキシ一 4— (メタクリロイルォキシエトキシ)ベンゾフ ェノン、 2 ヒドロキシー 4 (アタリロイルォキシエトキシ)ベンゾフエノンなどの紫外線 吸収モノマー;
ジカプロラタトンなどが挙げられる。これらは、 1種単独あるいは 2種以上を併用して 用いること力 Sでさる。
[0058] 官能基(/3)と炭素 ·炭素二重結合とを有する不飽和化合物としては、たとえば、官 能基( α )を有するビュル系単量体と同様のビュル系単量体や、上記水酸基含有ビ 二ル系単量体とジイソシァネート化合物とを等モルで反応させることにより得られるィ ソシァネート基含有不飽和化合物などを挙げることができる。
[0059] また、上記 (Π)の方法に使用される不飽和シラン化合物(Π)としては、
CH =CHSi(CH ) (OCH ) 、 CH =CHSi(OCH ) 、
2 3 3 2 2 3 3
CH =CHSi(CH )C1、 CH =CHSiCl、
2 3 2 2 3
CH =CHCOO(CH ) Si(CH ) (OCH ) 、
2 2 2 3 3 2
CH =CHCOO(CH ) Si (OCH ) 、
2 2 2 3 3
CH =CHCOO(CH ) Si(CH ) (OCH ) 、
2 2 3 3 3 2
CH =CHCOO(CH ) Si (OCH ) 、
2 2 3 3 3
CH =CHCOO(CH ) Si(CH )C1、
2 2 2 3 2
CH =CHCOO(CH ) SiCl、
2 2 2 3
CH =CHCOO(CH ) Si(CH )C1、
2 2 3 3 2
CH =CHCOO(CH ) SiCl、
2 2 3 3
CH =C(CH )COO(CH ) Si(CH ) (OCH ) 、
Figure imgf000017_0001
Figure imgf000018_0001
[0061] を挙げること力 Sできる。これらは、 1種単独あるいは 2種以上を併用して用いることがで きる。
[0062] また、不飽和シラン化合物と共重合させる他のビュル系単量体としては、たとえば、 上記 (I 1)の方法にお!/、て例示した官能基( α )を有するビュル系単量体や他のビ 二ル系単量体などを挙げることができる。
[0063] 上記特定シリル基含有重合体 (b2)の製造方法としては、たとえば、一括して各単 量体を添加して重合する方法、単量体の一部を重合したのち、その残りを連続的に または断続的に添加して重合する方法、あるいは、単量体を重合開始時から連続的 に添加する方法などが挙げられる。また、これらの重合方法を組み合わせてもよい。
[0064] 好まし!/、重合方法としては、溶液重合が挙げられる。溶液重合に使用される溶媒は 、特定シリル基含有重合体 (b2)を製造できるものであれば特に制限されないが、た とえば、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類など を挙げること力 Sできる。上記アルコール類としては、メタノール、エタノール、 n—プロピ ノレアノレコーノレ、 i—プロピルアルコール、 n—ブチルアルコール、 sec—ブチルアルコ 一ノレ、 tーブチノレアノレコーノレ、 n—へキシノレアノレコーノレ、 n—オタチノレアノレコーノレ、ェ チレングリコーノレ、ジエチレングリコーノレ、 トリエチレングリコーノレ、エチレングリコーノレ モノブチルエーテル、エチレングリコールモノェチルエーテルアセテート、ジエチレン グリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレン モノメチルエーテルアセテート、ジアセトンアルコールなどを挙げることができる。また 、芳香族炭化水素類としては、ベンゼン、トルエン、キシレンなどが挙げられ、エーテ ノレ類としては、テトラヒドロフラン、ジォキサンなどが挙げられ、ケトン類としては、ァセト ン、メチルェチルケトン、メチルイソブチルケトン、ジイソプチルケトンなどが挙げられ、 エステル類としては、酢酸ェチル、酢酸プロピル、酢酸ブチル、炭酸プロピレン、乳酸 メチル、乳酸ェチル、乳酸ノルマルプロピル、乳酸イソプロピル、 3—エトキシプロピオ ン酸メチル、 3—エトキシプロピオン酸ェチルなどが挙げられる。これらの有機溶剤は 、 1種単独で用いても、 2種以上を混合して用いてもよい。
[0065] また、上記重合では、重合開始剤、分子量調整剤、キレート化剤、無機電解質は、 公知のものを使用することができる。
[0066] 本発明では、特定シリル基含有重合体 (b2)として、上記のようにして重合された特 定シリル基含有重合体の他に、特定シリル基含有エポキシ樹脂、特定シリル基含有 ポリエステル樹脂などの他の特定シリル基含有重合体を使用することもできる。上記 特定シリル基含有エポキシ樹脂は、たとえば、ビスフエノール A型エポキシ樹脂、ビス フエノール F型エポキシ樹脂、水添ビスフエノール A型エポキシ樹脂、脂肪族ポリダリ シジルエーテル、脂肪族ポリグリシジルエステルなどのエポキシ樹脂中のエポキシ基 に、特定シリル基を有するアミノシラン類、ビュルシラン類、カルボキシシラン類、ダリ シジルシラン類などを反応させることにより製造することができる。また、上記特定シリ ル基含有ポリエステル樹脂は、たとえば、ポリエステル樹脂中に含有されるカルボキ シル基や水酸基に、特定シリル基を有するアミノシラン類、カルボキシシラン類、ダリ シジルシラン類などを反応させることにより製造することができる。
[0067] 特定シリル基含有重合体 (b2)の GPC法により測定したポリスチレン換算の Mwは 、好ましくは 2, 000—100, 000、さらに好ましくは 3, 000—50, 000である。
[0068] 本発明にお!/、て、特定シリル基含有重合体 (b2)は、単独でまたは 2種以上を混合 して使用すること力でさる。
[0069] (触媒)
本発明では、上記シラン化合物 (bl)や特定シリル基含有重合体 (b2)の加水分解 •縮合反応を促進するために、上記シラン化合物(a)と特定シリル基含有重合体 (b) との混合物に触媒を添加することが好ましい。触媒を添加することにより、得られる有 機無機ハイブリッドポリマー(B)の架橋度を高めることができるとともに、オルガノシラ ン(1)の重縮合反応により生成するポリシロキサンの分子量が大きくなり、結果として 、強度、長期耐久性などに優れた硬化体を得ることができ、かつ塗膜の厚膜化や塗 装作業も容易となる。さらに、触媒の添加は、上記シラン化合物 (bl)と特定シリル基 含有重合体 (b2)との反応を促進し、有機無機ハイブリッドポリマー(B)に十分な反応 サイト(アルコキシ基)が形成される。この有機無機ハイブリッドポリマー(B)と酸化物 微粒子 (A)とを、有機溶媒中、塩基性化合物等の存在下で混合して分散処理すると 、有機溶媒中に酸化物微粒子 (A)が高度に分散される。これは、有機無機ハイブリツ ドポリマー(B)が酸化物微粒子 (A)の表面で縮合され、酸化物微粒子 (A)の表面が 疎水性となり、酸化物微粒子 (A)が有機溶媒中に微分散しやすくなるためと推測さ れる。
[0070] このような加水分解 '縮合反応を促進するために用いられる触媒としては、たとえば 、塩基性化合物、酸性化合物、塩化合物および金属キレート化合物が挙げられる。
[0071] (塩基性化合物)
上記塩基性化合物としては、アンモニア(アンモニア水溶液を含む)、有機アミン化 合物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属やアルカリ土類金属の水酸 化物、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属のアルコキシドが挙 げられる。これらのうち、アンモニアおよび有機アミン化合物が好ましい。
[0072] 有機ァミンとしては、ァノレキノレアミン、アルコキシァミン、アルカノールァミン、ァリー ルァミンなどが挙げられる。
[0073] アルキルァミンとしては、メチノレアミン、ェチノレアミン、プロピルァミン、ブチルァミン、 へキシルァミン、ォクチルァミン、 N, N ジメチルァミン、 N, N ジェチルァミン、 N , N ジプロピルァミン、 N, N ジブチルァミン、トリメチノレアミン、トリエチノレアミン、ト リプロピルァミン、トリブチルァミンなどの炭素数 1〜4のアルキル基を有するアルキル ァミンなどが挙げられる。
[0074] アルコキシァミンとしては、メトキシメチルァミン、メトキシェチルァミン、メトキシプロピ ルァミン、メトキシブチルァミン、エトキシメチルァミン、エトキシェチルァミン、エトキシ プロピルァミン、エトキシブチルァミン、プロポキシメチルァミン、プロポキシェチルアミ ン、プロポキシプロピルァミン、プロポキシブチルァミン、ブトキシメチルァミン、ブトキ シェチルァミン、ブトキシプロピルァミン、ブトキシブチルァミンなどの炭素数 1〜4の アルコキシ基を有するアルコキシァミンなどが挙げられる。
[0075] アルカノールァミンとしては、メタノールァミン、エタノールァミン、プロパノールァミン 、ブタノールァミン、 N メチルメタノールァミン、 N ェチルメタノールァミン、 N プ 口ピルメタノールァミン、 N ブチルメタノールァミン、 N メチルエタノールァミン、 N ェチルエタノールァミン、 N プロピルエタノールァミン、 N ブチルエタノールアミ ン、 N メチルプロパノールァミン、 N ェチルプロパノールァミン、 N プロピルプロ パノールァミン、 N ブチルプロパノールァミン、 N メチルブタノールアミン、 N ェ チルブタノールァミン、 N プロピルブタノールァミン、 N ブチルブタノールァミン、 N, N ジメチルメタノールァミン、 N, N ジェチルメタノールァミン、 N, N ジプロ ピルメタノールァミン、 N, N—ジブチルメタノールァミン、 N, N ジメチルエタノーノレ ァミン、 N, N ジェチルエタノールァミン、 N, N ジプロピルエタノールァミン、 N, N ジブチルエタノールァミン、 N, N ジメチルプロパノールァミン、 N, N ジェチ ノレプロパノールァミン、 N, N ジプロピルプロパノールァミン、 N, N—ジブチルプロ パノールァミン、 N, N ジメチルブタノールァミン、 N, N ジェチルブタノールアミン 、 N, N—ジプロピルブタノールァミン、 N, N—ジブチルブタノールァミン、 N—メチル ジメタノールァミン、 N—ェチルジメタノールァミン、 N—プロピルジメタノールァミン、 N—ブチノレジメタノーノレアミン、 N—メチノレジエタノーノレアミン、 N—ェチノレジェタノ一 ノレアミン、 N—プロピルジエタノールァミン、 N—ブチルジェタノールァミン、 N—メチ ノレジプロパノールァミン、 N—ェチルジプロパノールァミン、 N—プロピルジプロパノ ールァミン、 N—ブチルジプロパノールァミン、 N—メチルジブタノールァミン、 N—ェ チルジブタノールアミン、 N—プロピルジブタノールァミン、 N—ブチルジブタノールァ ミン、 N— (アミノメチル)メタノールァミン、 N— (アミノメチル)エタノールァミン、 N— ( アミノメチル)プロパノールァミン、 N— (アミノメチル)ブタノールァミン、 N— (アミノエ チル)メタノールァミン、 N— (アミノエチル)エタノールァミン、 N— (アミノエチル)プロ パノールァミン、 N— (アミノエチノレ)ブタノールアミン、 N— (ァミノプロピノレ)メタノーノレ ァミン、 N— (ァミノプロピル)エタノールァミン、 N— (ァミノプロピル)プロパノールアミ ン、 N— (ァミノプロピル)ブタノールァミン、 N— (アミノブチル)メタノールァミン、 N— (アミノブチル)エタノールァミン、 N— (アミノブチル)プロパノールァミン、 N— (ァミノ ブチル)ブタノールァミンなどの炭素数 1〜4のアルキル基を有するアル力ノールアミ ンが挙げられる。
[0076] ァリールァミンとしてはァニリン、 N—メチルァニリンなどが挙げられる。
[0077] さらに、上記以外の有機ァミンとして、テトラメチルアンモニゥムハイドロキサイド、テ トラェチルアンモニゥムハイドロキサイド、テトラプロピルアンモニゥムハイドロキサイド
、テトラプチルアンモニゥムハイドロキサイドなどのテトラアルキルアンモニゥムハイド口 キサイド;テトラメチルエチレンジァミン、テトラエチルエチレンジァミン、テトラプロピル エチレンジァミン、テトラブチルエチレンジァミンなどのテトラアルキルエチレンジアミ ン;メチルアミノメチルァミン、メチルアミノエチルァミン、メチルァミノプロピルァミン、メ チルアミノブチルァミン、ェチルアミノメチルァミン、ェチルアミノエチルァミン、ェチル ァミノプロピルァミン、ェチルアミノブチルァミン、プロピルアミノメチルァミン、プロピル アミノエチルァミン、プロピルアミノプロピルァミン、プロピルアミノブチルァミン、ブチ ノレアミノメチノレアミン、ブチルアミノエチルァミン、ブチルァミノプロピルァミン、ブチル アミノブチルァミンなどのアルキルアミノアルキルアミン;エチレンジァミン、へキサメチ レンジァミン、ジエチレントリァミン、トリエチレンテトラミン、テトラエチレンペンタミン、 m—フエ二レンジァミン、 p—フエ二レンジァミンなどのポリアミン;ピリジン、ピロ一ノレ、 ピぺラジン、ピロリジン、ピぺリジン、ピコリン、モルホリン、メチルモルホリン、ジァザビ シクロオクラン、ジァザビシクロノナン、ジァザビシクロウンデセンなども挙げられる。
[0078] このような塩基性化合物は、 1種単独で用いても、 2種以上を混合して用いてもよい 。これらのうち、トリエチルァミン、テトラメチルアンモニゥムハイドロキサイド、ピリジンが 特に好ましい。
[0079] (酸性化合物)
上記酸性化合物としては、有機酸および無機酸が挙げられる。有機酸としては、た とえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、へキサン酸、ヘプタン酸、ォクタ ン酸、ノナン酸、デカン酸、シユウ酸、マレイン酸、無水マレイン酸、メチルマロン酸、 アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、ァラキドン酸、ミキミ酸、 2—ェ チルへキサン酸、ォレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安 息香酸、 P—ァミノ安息香酸、 p—トルエンスルホン酸、ベンゼンスルホン酸、モノクロ 口酢酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ギ酸、マロン酸、メタンスルホ ン酸、フタル酸、フマル酸、クェン酸、酒石酸などが挙げられる。上記無機酸としては 、たとえば、塩酸、硝酸、硫酸、フッ酸、リン酸などが挙げられる。
[0080] このような酸性化合物は、 1種単独で用いても、 2種以上を混合して用いてもよい。
これらのうち、マレイン酸、無水マレイン酸、メタンスルホン酸、酢酸が特に好ましい。
[0081] (塩化合物)
上記塩化合物として、ナフテン酸、ォクチル酸、亜硝酸、亜硫酸、アルミン酸、炭酸 などのアルカリ金属塩などが挙げられる。
[0082] (金属キレート化合物)
上記金属キレート化合物としては、有機金属化合物および/またはその部分加水 分解物(以下、有機金属化合物および/またはその部分加水分解物をまとめて、「有 機金属化合物類」とレ、う)が挙げられる。
[0083] 上記有機金属化合物類としては、たとえば、下記式 (a)
M (OR7) (R8COCHCOR9) (a) (式中、 Mは、ジルコニウム、チタンおよびアルミニウムからなる群からを選択される少 なくとも 1種の金属原子を表し、 R7および R8は、それぞれ独立に、メチル基、ェチル 基、 n プロピル基、 i プロピル基、 n ブチル基、 sec ブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、シクロへキシル基、フエニル基などの炭素数 1〜6個 の 1価の炭化水素基を表し、 R9は、前記炭素数;!〜 6個の 1価の炭化水素基、または 、メトキシ基、エトキシ基、 n プロポキシ基、 i プロポキシ基、 n ブトキシ基、 sec— ブトキシ基、 t ブトキシ基、ラウリルォキシ基、ステアリルォキシ基などの炭素数 1〜1 6個のアルコキシル基を表し、 rおよび sは、それぞれ独立に 0〜4の整数であって、 (r + s) = (Mの原子価)の関係を満たす)
で表される化合物(以下、「有機金属化合物(a)」という)、
1つのスズ原子に炭素数 1〜 10個のアルキル基が 1〜2個結合した 4価のスズの有 機金属化合物(以下、「有機スズ化合物」という)、あるいは、
これらの部分加水分解物などが挙げられる。
また、有機金属化合物類として、テトラメトキシチタン、テトラエトキシチタン、テトラー i プロポキシチタン、テトラー n ブトキシチタンなどのテトラアルコキシチタン類;メ 口ピルトリエトキシシラン、 n へキシルトリメトキシシラン、シクロへキシルトリエトキシシ ラン、フエニルトリメトキシシラン、 3—クロ口プロピルトリエトキシシラン、 3—ァミノプロピ ルトリメトキシシラン、 3 ァミノプロピルトリエトキシシラン、 3— (2 アミノエチル)一ァ ミノプロピルトリメトキシシラン、 3— (2—アミノエチル)一ァミノプロピルトリエトキシシラ ン、 3—(2 アミノエチル)ーァミノプロピルメチルジメトキシシラン、 3 ァニリノプロピ ルトリメトキシシラン、 3—メルカプトプロピルトリエトキシシラン、 3—イソシァネートプロ ピルトリメトキシシラン、 3—グリシドキシプロピルトリエトキシシラン、 3—ウレイドプロピ ノレトリメトキシシランなどのトリアノレコキシシラン類;ジメチノレジェトキシシラン、ジェチノレ ジエトキシシラン、ジー n プロピノレジメトキシシラン、ジー i プロピノレジェトキシシラ ン、ジー n ペンチノレジメトキシシラン、ジー n 才クチノレジェトキシシラン、ジー n— 類などのチタンアルコレートおよびその縮合物を用いることができる。 [0085] 有機金属化合物(a)として、たとえば、テトラー n ブトキシジルコニウム、トリー n— ブトキシ ·ェチルァセトアセテートジルコニウム、ジ n—ブトキシ 'ビス(ェチルァセト アセテート)ジルコニウム、 n—ブトキシ 'トリス(ェチルァセトアセテート)ジルコニウム、 テトラキス(n—プロピルァセトアセテート)ジルコニウム、テトラキス(ァセチルァセトァ セテート)ジルコニウム、テトラキス(ェチルァセトアセテート)ジルコニウムなどの有機 ジルコニウム化合物;
テトラー i—プロポキシチタニウム、ジ i—プロポキシ.ビス(ェチルァセトアセテート )チタニウム、ジ i—プロポキシ 'ビス(ァセチルアセテート)チタニウム、ジ i—プロ ポキシ 'ビス(ァセチルアセトン)チタニウムなどの有機チタン化合物;
トリー i プロポキシアルミニウム、ジー i プロポキシ .ェチルァセトアセテートアルミ 二ゥム、ジ i—プロポキシ.ァセチルァセトナートアルミニウム、 i—プロポキシ 'ビス( ェチルァセトアセテート)アルミニウム、 i—プロポキシ 'ビス(ァセチルァセトナート)ァ ルミユウム、トリス(ェチルァセトアセテート)アルミニウム、トリス(ァセチルァセトナート) アルミニウム、モノァセチルァセトナート.ビス(ェチルァセトアセテート)アルミニウムな どの有機アルミニウム化合物が挙げられる。
[0086] 有機スズ化合物として、たとえば、
[0087] [化 4]
(c 4H3) 2S n (OCOC^H^) 2
(c 4H3) 2S n (OCOCH=CHCOOCH3) 2
(c 2S n (OCOCH-CHCOOC4H9) 2
(c 2 S n (OCOC8H17) 2
(c 3-^17^ 2 S n (OCOC„H23) 2
(c 8-^17' 2S n (OCOCH = CHCOOCH3) 2
(c 8H17〕 2S n (OCOCH = CHCOOC4H9) 2
(c 2S n (OCOCH-CHCOOC8H17)
Figure imgf000026_0001
(c 3S n (OCOCH = CHCOOC17H35)
(c sH-t 7) 2S n (OCOCH = CHCOOC18H37)
(C 8^17·· 2Sn (OCOCH-CHCOOC20H41)
(c 4H9) 2S n OCOCH3 o
(C4H9) 2SnOCOCH3
(C4H&) S n (OCOC^Haa) 3
(C4H9) S n (OCONa) 3
[0088] などのカルボン酸型有機スズ化合物;
[0089] [化 5]
{C4H9) 2Sn (SCH2C〇〇C8H17) 2
{C,jH9) 2Sn (SCH2CH2COOCgH17) 2、 (C3H17) 2Sn (SCH2COOC8H17) 2、 (C8H17) 2Sn (SCH2CH2COOCsH17) 2、 (C8H17) 2Sn (SCH2COOC12H25) 2、 (C8H17) 2Sn (SCH2CH2COOC12H25) 2、 (C4H9) Sn (SCOCH=CHCOOC8H17) 3、 (C8H17J S n (SCOCH=CHCOOC8H17) 3 (C H9) 2S n (SCH2COOCaH17)
o
i
(C4H&) 2S n (S CH2COOC8H17)
[0090] などのメルカプチド型有機スズ化合物;
[0091] [化 6]
(C4H9) 2S n=S、 (CaH17) 2Sn = S、
(C4Hq) Sn = S
I
S
I
(C4H9〕 Sn = S
[0092] などのスルフイド型有機スズ化合物;
[0093] [化 7]
(C+H9) S nC】 3、 (C4H9) 2S nC l 2、 (C8H17) 2S nC 12
(C H9) 2SnC 1
(C4H9) ES nC 1 [0094] などのクロライド型有機スズ化合物;
(C H ) SnO、 (C H ) SnOなどの有機スズオキサイドや、これらの有機スズォキ
4 9 2 8 17 2
サイドとシリケート、マレイン酸ジメチル、マレイン酸ジェチル、フタル酸ジォクチルな どのエステル化合物との反応生成物;
などが挙げられる。
[0095] このような金属キレート化合物は、 1種単独で用いても、 2種以上を混合して用いて もよい。これらのうち、トリー n—ブトキシ'ェチルァセトアセテートジルコニウム、ジ i プロポキシ ·ビス(ァセチルァセトナート)チタニウム、ジー i プロポキシ 'ェチルァ セトアセテートアルミニウム、トリス(ェチルァセトアセテート)アルミニウム、あるいはこ れらの部分加水分解物が好ましレ、。
[0096] また、上記触媒は、亜鉛化合物やその他の反応遅延剤と混合して使用することもで きる。
[0097] 上記触媒の使用量は、上記触媒が有機金属化合物類以外の場合には、シラン化 合物 (bl) 100重量部 (オルガノシラン(1)の完全加水分解縮合物換算)に対して、 通常 0. 001〜; 100重量き、好ましくは 0. 0;!〜 80重量き、さらに好ましくは 0. 1~5 0重量部である。上記触媒が有機金属化合物類の場合には、シラン化合物 (bl) 10 0重量部 (オルガノシラン(1)の完全加水分解縮合物換算)に対して、通常 100重量 部以下、好ましくは 0. ;!〜 80重量部、さらに好ましくは 0. 5〜50重量部である。上記 触媒の使用量が上記上限を超えると、組成物の保存安定性が低下したり、有機無機 ハイブリッドポリマー(B)の架橋度が高くなりすぎることがある。
[0098] (水)
本発明では、上記シラン化合物 (bl)と特定シリル基含有重合体 (b2)との混合物に 水を添加して、シラン化合物 (bl)と特定シリル基含有重合体 (b2)とを共縮合して有 機無機ハイブリッドポリマー(B)を調製することが好ましい。
[0099] このとき添加される水の量は、シラン化合物(bl)中の全ての OR2基 1モルに対して 、通常 0. 1— 1. 0モノレ、好ましく (ま、 0. 2—0. 8モノレ、より好ましく (ま、 0. 25—0. 6 モルである。水の添加量が上記範囲にあるとゲル化が発生しにくぐ組成物は良好な 貯蔵安定性を示す。また、水の添加量が上記範囲にあると十分に架橋した有機無機 ハイブリッドポリマー(B)が得られ、このような有機無機ハイブリッドポリマー(B)を含 む組成物を用いることによって、機械強度に優れた硬化体を得ることができる。
[0100] (有機溶媒)
本発明では、シラン化合物 (bl)と特定シリル基含有重合体 (b2)とを有機溶媒中で 加水分解 '縮合反応させてもよい。このとき、前記シリル基含有重合体 (b2)の調製時 に使用した有機溶媒をそのまま使用することができる。また、有機無機ハイブリッドポ リマー(B)調製時の固形分濃度を調整するために、必要に応じて、有機溶媒を添カロ することもできる。さらに、前記シリル基含有重合体 (b2)の調製時に使用した有機溶 媒を除去し、新たに有機溶媒を添加してもよレヽ。
[0101] 上記有機溶媒は、有機無機ハイブリッドポリマー(B)調製時の固形分濃度が、好ま しく (ま 10〜60重量0 /0、より好ましく (ま 15〜50重量0 /0、特 ίこ好ましく (ま 20〜40重量 %の範囲となる量を添加することができる。なお、前記シリル基含有重合体 (b2)の調 製時に使用した有機溶媒をそのまま使用して有機無機ハイブリッドポリマー(B)調製 時の固形分濃度が上記範囲にある場合には、有機溶媒を添加しても、添加しなくて あよい。
[0102] 有機無機ハイブリッドポリマー(B)調製時の固形分濃度を調整することによって、シ ラン化合物 (bl)と特定シリル基含有重合体 (b2)との反応性をコントロールすることが できる。有機無機ハイブリッドポリマー(B)調製時の固形分濃度が上記下限未満にな るとシラン化合物 (bl)と特定シリル基含有重合体 (b2)との反応性が低下することが ある。有機無機ハイブリッドポリマー(B)調製時の固形分濃度が上記上限を超えると ゲル化することがある。なお、ここで言う固形分濃度における固形分量は、シラン化合 物 (bl)の完全加水分解縮合物換算の使用量 (Wbl)と特定シリル基含有重合体 (b 2)の固形分換算の使用量 (Wb2)の総量である。
[0103] 上記有機溶媒としては、上記成分を均一に混合できるものであれば特に限定され ないが、上記特定シリル基含有重合体 (b2)の製造に用いられる有機溶媒として例示 した、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などを 挙げること力 Sできる。また、これらの有機溶剤は、 1種単独で用いても、 2種以上を混 合して用いてもよい。 [0104] (安定性向上剤)
本発明では、有機無機ハイブリッドポリマー組成物、特に有機無機ハイブリッドポリ マー(B)の保存安定性などを向上させるために、有機無機ハイブリッドポリマー(B) を調製した後、必要に応じて、安定性向上剤を添加することが好ましい。本発明に用 いられる安定性向上剤は、下記式(6)
R10COCH COR11 (6)
2
(式中、 R1Qは、メチル基、ェチル基、 n—プロピル基、 i—プロピル基、 n ブチル基、 sec ブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、シクロへキシル基 、フエニル基などの炭素数;!〜 6個の 1価の炭化水素基を表し、 R11は、前記炭素数 1 〜6個の 1価の炭化水素基、または、メトキシ基、エトキシ基、 n—プロポキシ基、 iープ 口ポキシ基、 n ブトキシ基、 sec ブトキシ基、 t ブトキシ基、ラウリルォキシ基、ステ ァリルォキシ基などの炭素数 1〜 16個のアルコキシル基を表す。)
で表される βージケトン類、 βーケトエステル類、カルボン酸化合物、ジヒドロキシ化 合物、ァミン化合物およびォキシアルデヒド化合物からなる群から選択される少なくと も 1種の化合物である。
[0105] 上記触媒として有機金属化合物類を使用した場合、上記式 (6)で表される安定性 向上剤を添加することが好ましい。安定性向上剤を用いることによって、安定性向上 剤が有機金属化合物類の金属原子に配位し、この配位が、シラン化合物 (bl)と特 定シリル基含有重合体 (b2)との過剰な共縮合反応を抑制し、得られる有機無機ハイ ブリツドボリマー組成物、特に有機無機ハイブリッドポリマー(B)の保存安定性をさら に向上させることができると考えられる。
[0106] このような安定性向上剤として、たとえば、ァセチルアセトン、ァセト酢酸メチル、ァ セト酢酸ェチル、ァセト酢酸 n プロピル、ァセト酢酸 i プロピル、ァセト酢酸 n ブチル、ァセト酢酸 sec ブチル、ァセト酢酸 tーブチル、へキサン 2, 4— ジオン、ヘプタン 2, 4 ジオン、ヘプタン 3, 5 ジオン、オクタン 2, 4 ジォ ン、ノナン一 2, 4 ジオン、 5 メチルへキサン一 2, 4 ジオン、マロン酸、シユウ酸、 フタル酸、グリコール酸、サリチル酸、ァミノ酢酸、ィミノ酢酸、エチレンジァミン四酢酸 、グリコール、カテコール、エチレンジァミン、 2, 2—ビビリジン、 1 , 10—フエナント口 リン、ジエチレントリァミン、 2—エタノールァミン、ジメチルダリ才キシム、ジチゾン、メ チォニン、サリチルアルデヒドなどが挙げられる。これらのうち、ァセチルアセトンおよ びァセト酢酸ェチルが好ましレ、。
[0107] また、安定性向上剤は、 1種単独で用いても、 2種以上を混合して用いてもよい。
[0108] 本発明に用いられる安定性向上剤の量は、前記有機金属化合物類の有機金属化 合物 1モルに対して、通常 2モル以上、好ましくは 3〜20モルが望ましい。安定性向 上剤の量が上記下限未満であると、得られる組成物の保存安定性の向上効果が不 充分となること力 Sfcる。
[0109] (有機無機ハイブリッドポリマー(B)の調製方法)
本発明に用いられる有機無機ハイブリッドポリマー(B)は、シラン化合物 (bl)と特 定シリル基含有重合体 (b2)とを共縮合させることにより調製できる。特に好ましくは、 シラン化合物 (bl)と特定シリル基含有重合体 (b2)との混合物に、加水分解'縮合反 応用触媒および水を添加して共縮合させることにより調製できる。
[0110] このとき、シラン化合物 (bl)の含有量 (Wbl)と特定シリル基含有重合体 (b2)の含 有量(Wb2)との重量匕(Wbl/Wb2)は、 Wbl +Wb2 = 100として、 5/95—95 /5であり、好ましくは 15/85〜85/15である。なお、 Wblはシラン化合物(M)の 完全加水分解縮合物換算値、 Wb2は特定シリル基含有重合体 (b2)の固形分換算 値である。重量比 (Wbl/Wb2)が上記範囲にあると透明性ゃ耐候性に優れた硬化 体を得ること力できる。さらに、 Wbl/Wb2力 好ましくは 5/95〜50/50、より好ま しくは 15/85〜40/60の場合には、アクリル板などの有機基材表面をプライマー 等で処理しなくても有機基材に対して良好な密着性を発現する。
[0111] 有機無機ハイブリッドポリマー(B)は、具体的には下記(1)〜(3)の方法により調製 することが好ましい。
[0112] (1)シラン化合物 (bl)と特定シリル基含有重合体 (b2)と加水分解 ·縮合反応用触 媒との混合液に、上記範囲の量の水を加えて、温度 40〜80°C、反応時間 0. 5〜; 12 時間でシラン化合物 (bl)と特定シリル基含有重合体 (b2)とを共縮合させて、有機無 機ハイブリッドポリマー(B)を調製する。その後、必要に応じて、安定性向上剤などの 他の添加剤を加えてもよ!/ヽ。 [0113] (2)シラン化合物(bl)としてオルガノシラン(1)を用い、これに上記範囲の量の水 を加えて、温度 40〜80°C、時間 0. 5〜; 12時間でオルガノシラン(1)の加水分解-縮 合反応を行う。次いで、特定シリル基含有重合体 (b2)および加水分解 ·縮合反応用 触媒を加えて混合し、さらに温度 40〜80°C、反応時間 0. 5〜; 12時間で縮合反応を 行い、有機無機ハイブリッドポリマー(B)を調製する。その後、必要に応じて、安定性 向上剤などの他の添加剤を加えてもょレ、。
[0114] (3)シラン化合物 (bl)と特定シリル基含有重合体 (b2)と加水分解 '縮合反応用触 媒との混合液に、上記範囲の量の水を加えて、温度 40〜80°C、反応時間 0. 5〜; 12 時間でシラン化合物 (bl)と特定シリル基含有重合体 (b2)とを加水分解 ·縮合させ、 有機無機ハイブリッドポリマー(B)を調製する。その後、必要に応じて、安定性向上 剤などの他の添加剤を加えてもょレヽ。
[0115] 上記で得られた有機無機ハイブリッドポリマー(B)の貯蔵安定性、および以降の金 属酸化物微粒子分散安定性確保の点から、加水分解縮合後に脱触媒工程として水 洗を行っても良い。特に加水分解縮合触媒として塩基性化合物を使用した場合、反 応後に酸性化合物による中和を行った上で、水洗を行うことがより好ましい。
[0116] 中和に使用する酸性化合物は上記例示した酸性化合物を使用することができる。
酸性化合物の使用量は加水分解縮合に使用した塩基性化合物 1モルに対し、通常 0. 5—2. 0モノレ、好ましくは 0. 8— 1. 5モノレ、さらに好ましくは 0. 9—1. 3モノレで る。酸性化合物を水に溶解して使用する場合は、シラン化合物 (bl)と特定シリル基 含有重合体 (b2)との合計 100重量部に対して、通常 10〜500重量部、好ましくは 2 0〜300部、より好ましくは 30〜200部の水に溶解する。中和後、十分に攪拌混合し て静置し、水相と有機溶媒相との相分離を確認後、下層の水分を除去する。
[0117] 中和後の水洗に使用する水は、シラン化合物 (bl)と特定シリル基含有重合体 (b2 )の合計 100重量部に対して、通常 10〜500重量部、好ましくは 20〜300部、より好 ましくは 30〜200部である。
[0118] 水洗は、水を添加して十分に攪拌した後、静置し、水相と有機溶媒相との相分離を 確認後、下層の水分を除去することにより行う。水洗回数は好ましくは 1回以上、さら に好ましくは 2回以上である。 [0119] 一方、加水分解縮合触媒として金属キレート化合物を使用した場合には、反応後 に上記安定性向上剤を添加することが好ましい。
[0120] 上記方法により得られる有機無機ハイブリッドポリマー(B)の重量平均分子量は、 ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算値で通常 3, 0
00— 200, 000、好まし <は 4, 000—150, 000、より好まし <は 5, 000—100, 000 である。
[0121] 〔酸化物微粒子含有有機無機ハイブリッドポリマー組成物〕
本発明に係る酸化物微粒子含有有機無機ハイブリッドポリマー組成物は、酸化物 微粒子 (A)と有機無機ハイブリッドポリマー(B)とを、炭素数 6以上の有機基を有する リン酸等やォキシアルキレン基を有する化合物を使用せずに、有機溶媒中、塩基性 化合物、酸性化合物または金属キレート化合物の存在下で混合して分散処理を施 すことにより得ること力 Sでさる。
[0122] (有機溶媒)
上記有機溶媒としては、上記有機無機ハイブリッドポリマー(B)において例示した 有機溶媒が挙げられる。これらの有機溶媒のうち、酸化物微粒子含有有機無機ハイ ブリツドボリマー組成物の分散安定性が良好であるという点でアルコール以外の有機 溶媒、たとえば、メチルェチルケトン、メチルイソブチルケトン、ジイソプチルケトン、ト ノレェン、キシレン、酢酸ェチル、酢酸ブチル、およびこれらの混合物などが好ましい。 また、これらの有機溶媒は、予め脱水処理を施して、水分を除去した状態で使用する ことが好ましい。
[0123] 上記有機溶媒の使用量は、酸化物微粒子 (A)を均一に分散できる量であれば特 に制限されな!/、が、得られる酸化物微粒子含有有機無機ハイブリッドポリマー組成物 の固形分濃度が、好ましくは 5〜80重量%、より好ましくは 7〜70重量%、特に好ま しくは 10〜60重量%となる量である。
[0124] (塩基性化合物、酸性化合物および金属キレート化合物)
上記塩基性化合物、酸性化合物および金属キレート化合物としては、上記有機無 機ハイブリッドポリマー(B)において例示した化合物が挙げられる。これらの塩基性 化合物、酸性化合物および金属キレート化合物のうち、塩基性化合物および酸性化 合物が好ましぐ塩基性化合物がより好ましぐ有機アミン化合物がさらに好ましぐト リエチルァミン、テトラメチルアンモニゥムハイドロキサイド、ピリジンが特に好ましい。
[0125] 上記塩基性化合物、酸性化合物または金属キレート化合物は、本発明の酸化物微 粒子含有有機無機ハイブリッドポリマー組成物に、上記酸化物微粒子 (A) 100重量 部に対して、通常 0. 00;!〜 20重量部、好ましくは 0. 005〜10重量部、より好ましく は 0. 0;!〜 5重量き、さらに好ましくは 0. 01〜;!重量き、特に好ましくは 0. 01-0. 5 重量部含有されていることが望ましい。上記塩基性化合物、酸性化合物または金属 キレート化合物が上記範囲にあると酸化物微粒子含有ポリシロキサンの組成物は良 好な分散安定性を示す。
[0126] (酸化物微粒子含有有機無機ハイブリッドポリマー組成物の製造方法)
上記酸化物微粒子含有有機無機ハイブリッドポリマー組成物は、有機溶媒に酸化 物微粒子 (A)と有機無機ハイブリッドポリマー(B)と、塩基性化合物、酸性化合物ま たは金属キレート化合物とを添加し、これらを十分に混合して酸化物微粒子 (A)を有 機溶媒中に分散させることにより調製することができる。このとき、ボールミル、サンドミ ル(ビーズミル,ハイシェアビーズミル)、ホジナイザー、超音波ホモジナイザー、ナノ マイザ一、プロペラミキサー、ハイシェアミキサー、ペイントシェーカーなどの公知の分 散機を用いることが好ましぐ特に高分散の微粒子分散体ボールミル、サンドミル (ビ ーズミル,ハイシェアビーズミル)が好適に使用される。上記のように、塩基性化合物 、酸性化合物または金属キレート化合物の存在下で酸化物微粒子 (A)と有機無機 ノ、イブリツドポリマー(B)とを混合すると、塩基性化合物、酸性化合物または金属キレ ート化合物の触媒作用により酸化物微粒子 (A)の表面で有機無機ハイブリッドポリマ 一(B)の縮合反応が進行し、酸化物微粒子 (A)の表面が疎水性となり、有機溶媒中 に微分散しやすくなると推測される。
[0127] 本発明の酸化物微粒子含有有機無機ハイブリッドポリマー組成物は、酸化物微粒 子 (A) 100重量部に対して、有機無機ハイブリッドポリマー(B)を完全加水分解縮合 物換算で、好ましくは 1〜; 1000重量部、より好ましくは 5〜900重量部、特により好ま しくは 10〜800重量部含有することが望ましい。
[0128] また、上記酸化物微粒子含有有機無機ハイブリッドポリマー組成物は、酸化物微粒 子 (A)が、体積平均分散粒径が 300nm以下、好ましくは 200nm以下、より好ましく は 150nm以下で高度に分散した組成物である。
[0129] 〔硬化体〕
本発明の酸化物微粒子分散体を、基材上などに塗工し、乾燥により溶媒を除去し て多官能ポリシロキサンを硬化させることにより、透明性に優れた硬化体 (膜)を形成 すること力 Sできる。この硬化体には、有機無機ハイブリッドポリマー(B)が含まれてい るため、耐候性、柔軟性および基材に対する追随性に優れている。また、上記基材 が有機基材の場合、有機基材の表面をプライマー等で処理することにより、さらに基 材と硬化体との密着性が向上する。特に、シラン化合物 (bl)の含有量 (Wbl)と特定 シリル基含有重合体 (b2)の含有量 (Wb2)との重量比 (Wbl/Wb2)が好ましくは 5 0/50—95/5,より好ましくは 60/40〜85/15の有機無機ノヽイブリツドポリマー( B)を使用した場合には、プライマー処理による効果が大きい。上記プライマーとして は、上記特定シリル基含有重合体 (b2)を含有する溶液が挙げられる。
[0130] [実施例]
以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定さ れるものではない。なお、実施例および比較例中の「部」および「%」は、特記しない 限り、「重量部」および「重量%」を示す。また、実施例および比較例における各種測 定は、下記の方法により行なった。
[0131] 〔GPC測定〕
特定シリル基含有重合体および有機無機ハイブリッドポリマーの重量平均分子量 は、ゲルパーミエーシヨンクロマトグラフィーにより下記条件で測定したポリスチレン換 算値として示した。
装置: HLC - 8120C (東ソ一(株)製)
カラム: TSK— gel MultiporeH —M (東ソ一社製)
XL
溶離液: THF、流量 0. 5mL/min、負荷量 5. 0%、 100 L
〔分散性 1〕
得られた組成物の外観を目視により観察した。微粒子の沈降が見られなかった組 成物の体積平均分散粒径を、マイクロトラック超微粒子粒度分布計(日機装 (株)製「 UPA150」)により測定し、下記基準で評価した。
A:分離沈降なし。体積平均分散粒径≤200nm。
B:分離沈降なし。 200nm<体積平均分散粒径≤ 300nm。
C :分離沈降なし。 300nm<体積平均分散粒径。
D :分離沈降あり。
[0132] 〔分散性 2〕
分散性について、以下の基準によっても評価した。すなわち、得られた組成物の外 観を目視により観察した。微粒子の沈降が見られなかった組成物の体積平均分散粒 径を、マイクロトラック超微粒子粒度分布計(日機装 (株)製「UPA150」)により測定し 、下記基準で評価した。
AA:分離沈降なし。体積平均分散粒径≤ 150nm。
A:分離沈降なし。 150nm<体積平均分散粒径≤ 200nm。
B:分離沈降なし。 200nm<体積平均分散粒径≤ 300nm。
C :分離沈降なし。 300nm<体積平均分散粒径。
D :分離沈降あり。
[0133] 〔塗膜透明性〕
得られた組成物を、乾燥膜厚が 5 inになるように石英ガラス板上に塗布した後、 1
00°Cで 1時間乾燥硬化させて石英ガラス板上に膜厚 5 mの硬化体を作製した。こ の硬化体の波長 500〜700nmにおける分光透過率を紫外可視分光光度計により 測定し、下記基準で評価した。
A:光透過率が 90%超。
B:光透過率が 70%以上 90%以下。
C :光透過率が 70%未満。
[0134] 〔黄色度〕
得られた組成物を、乾燥膜厚が 5 inになるように石英ガラス板上に塗布した後、 1 00°Cで 1時間乾燥硬化させて石英ガラス板上に膜厚 5 mの硬化体を作製した。こ の硬化体の波長 450nmの光透過率を紫外可視分光光度計により測定して、下記基 準で評価した。 A :光透過率が 90%超。
8 :光透過率が70〜90%。
C :光透過率が 70%未満。
[0135] 〔耐候性〕
得られた組成物 100部にジォクチルスズジマレエートエステルの i ブチルアルコ ール溶液(固形分濃度約 10%)を 5部添加し、十分に撹拌した溶液を、必要に応じて 表面をプライマー処理したアクリル板( (株)エンジニアリングテストサービス製、商品 名:アタリライト # 001)上に乾燥膜厚が 2 πιとなるように塗布した後、 80°Cで 30分 間乾燥して硬化体 (硬化膜)を形成した。なお、プライマー処理は、下記調製例 1 1 で得た特定シリル基含有重合体 (b2— 1)を含む溶液 100重量部にジォクチルスズ ジマレエートエステルの i ブチルアルコール溶液(固形分濃度約 10 % )を 10部添加 して十分に撹拌した溶液を、乾燥塗膜が 1 ,i mとなるように塗布することにより実施し た。
[0136] 得られた硬化体について、 JIS K5400に準拠して、サンシャインウエザーメーター
(スガ試験機 (株)製)で 2, 000時間の照射試験を実施し、 目視により外観を観察し て下記基準で評価した。また、ニチバン (株)製セロファンテープ(商品名:セロテープ (登録商標) No. 405)を用いてテープ剥離試験を実施し、密着性を下記基準で評 価した。
(外観) A:クラックなし、膜の剥がれは無ぐ照射試験前後で変化なし
B :膜の剥がれ無いが、一部クラックあり
C :膜の剥がれ無いが、全面クラックあり
D :膜の剥がれあり
(密着性) AA:テープを貼り付けた部分全てにおいて膜の剥がれなし
A:テープを貼り付けた部分のうち、膜が剥がれた箇所が 5%未満
B :テープを貼り付けた部分のうち、膜が剥がれた箇所が 5〜50%
C :テープを貼り付けた部分のうち、膜が剥がれた箇所が 50%超。
[0137] 〔特定シリル基含有重合体 (b2)の調製〕
<調製例 1 1〉 還流冷却器および攪拌機を備えた反応器に、メチルメタタリレート 55部、 2 ェチ ノレへキシルアタリレート 5部、シクロへキシルメタタリレート 5部、 Ίーメタクリロキシプロ ピルトリメトキシシラン 10部、グリシジルメタタリレート 20部、 4— (メタ)アタリロイルォキ シ 2, 2, 6, 6 テトラメチルピペリジン 5部、 i ブチルアルコール 75部、メチルェ チルケトン 50部およびメタノール 25部を加えて混合した後、攪拌しながら 80°Cに加 温した。この混合物にァゾビスイソバレロ二トリル 3部をキシレン 8部に溶解した溶液を 30分間かけて滴下した後、 80°Cで 5時間反応させた。冷却後、メチルェチルケトンを 36部加えて、固形分濃度が 35%、 GPC法により測定した Mwが 12, 000、固形分 中のケィ素含量が 1. 1重量%の特定シリル基含有重合体 (b2 1)を含む溶液を得 た。
[0138] <調製例 1 2〉
グリシジルメタタリレート 20部の代わりに、 2—ヒドロキシェチルメタタリレート 20部を 用いた以外は、調製例 1—1と同様にして、固形分濃度が 35%、 Mwが 13, 000、固 形分中のケィ素含量が 1. 1重量%の特定シリル基含有重合体 (b2— 2)を含む溶液 を得た。
[0139] <調製例 1 3〉
還流冷却器および攪拌機を備えた反応器に、メチルメタタリレート 30部、 n—プチ ルアタリレート 10部、 γ—メタクリロキシプロピルトリメトキシシラン 10部、グリシジルメタ
0部、 2— (2'—ヒドロキシ一 5'—メタクリロキシェチルフエニル) 2Η ベンゾトリア ゾール 20部、 iーブチノレアノレコーノレ 75部、メチルェチルケトン 50部およびメタノール 25部をカロえて混合した後、攪拌しながら 80°Cに加温した。この混合物にァゾビスイソ バレロ二トリル 4部をキシレン 10部に溶解した溶液を 30分間かけて滴下した後、 80 °Cで 5時間反応させた。冷却後、メチルェチルケトンを 83部加えて、固形分濃度が 3 0%、 GPC法により測定した Mwが 10, 000、固形分中のケィ素含量が 1. 1重量% の特定シリル基含有重合体 (b2— 3)を含む溶液を得た。
[0140] <調製例 1 4〉
還流冷却器および攪拌機を備えた反応器に、メチルメタタリレート 75部、 2 ェチ ノレへキシルアタリレート 5部、シクロへキシルメタタリレート 5部、 Ίーメタクリロキシプロ ピぺリジン 5部、 iーブチノレアノレコーノレ 75部、メチルェチルケトン 50部およびメタノー ル 25部をカロえて混合した後、攪拌しながら 80°Cに加温した。この混合物にァゾビス イソバレロ二トリル 3部をキシレン 8部に溶解した溶液を 30分間かけて滴下した後、 80 °Cで 5時間反応させた。冷却後、メチルェチルケトンを 35部加えて、固形分濃度が 3 5%、 GPC法により測定した Mwが 8, 000、固形分中のケィ素含量が 1. 1重量%の 特定シリル基含有重合体 (b2— 4)溶液を得た。
[0141] 〔有機無機ハイブリッドポリマー(B)の調製〕
<調製例 2 1〉
撹拌機および還流冷却器を備えた反応器に、シラン化合物 (bl)としてメチルトリメト キシシラン 24部とジメチルジメトキシシラン 10部、特定シリル基含有重合体 (b2)とし て上記特定シリル基含有重合体 (b2— 1)を含む溶液 118部、有機溶媒 (e)として i プロピルアルコール 10部、および加水分解 ·縮合反応触媒としてジ i プロポキシ · ェチルァセトアセテートアルミニウムの i プロピルアルコール 75%希釈液 2部を加え て混合し、攪拌しながら 50°Cに昇温した。これに水を 6部(シラン化合物 (M)中の全 ての OR2基 1モルに対して 0. 48モルに相当)を 30分間かけて滴下した後、 60°Cで 4 時間反応させ、 GPC法により測定した Mwが 13, 000の有機無機ハイブリッドポリマ 一(B— 1)を含む溶液を得た。その後、安定性向上剤としてァセチルアセトン 2部を 加えて 1時間撹拌した後、室温まで冷却し、希釈溶媒としてメチルイソプチルケトン 1 29部を加えて固形分濃度を 20重量%に調整した。
[0142] <調製例 2— 2〜2— 9〉
各成分を表 1に示す成分に変更した以外は、調製例 2 1と同様にして、有機無機 ハイブリッドポリマー(B— 2)〜(B— 9)を含む溶液(いずれも固形分濃度 20重量%) を調製した。結果を表 1に示す。
[0143] [表 1]
Figure imgf000040_0001
[実施例 1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径:30nm) 100重量部と、上記 有機無機ハイブリッドポリマー(B— 1 )を含む溶液 500重量部(固形分換算で 100重 量部)と、トリェチルァミン 0. 1重量部と、メチルイソブチルケトン 400重量部とを容器 に入れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部を添加して、ビー ズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固形分濃度 20重量 %の酸化物微粒子含有有機無機ハイブリッドポリマー組成物(1)を得た。この組成物 の特性を評価した結果を表 2 1に示す。
[0145] [実施例 2]
ルチル型酸化チタン微粒子の代わりに粉体状の酸化亜鉛微粒子(一次平均粒径:
20nm) 100重量部を使用した以外は、実施例 1と同様にして固形分濃度 20重量% の金属酸化物微粒子含有有機無機ハイブリッドポリマー組成物(2)を調製した。この 組成物の特性を評価した結果を表 2 1に示す。
[0146] [実施例 3]
ルチル型酸化チタン微粒子の代わりに粉体状の酸化ジルコニウム微粒子(一次平 均粒径: 20nm) 100重量部を使用した以外は、実施例 1と同様にして固形分濃度 20 重量%の金属酸化物微粒子含有有機無機ハイブリッドポリマー組成物(3)を調製し た。この組成物の特性を評価した結果を表 2 1に示す。
[0147] [実施例 4]
トリェチルァミンの代わりにメタンスルホン酸 0. 1重量部を使用した以外は、実施例
2と同様にして固形分濃度 20重量%の金属酸化物微粒子含有有機無機ハイブリッド ポリマー組成物(4)を調製した。この組成物の特性を評価した結果を表 2— 1に示す
[0148] [実施例 5]
有機無機ハイブリッドポリマー(B— 1)を含む溶液の代わりに有機無機ハイブリッド ポリマー(B— 2)を含む溶液 500重量部(固形分換算で 100重量部)を使用した以外 は、実施例 2と同様にして固形分濃度 20重量%の金属酸化物微粒子含有有機無機 ハイブリッドポリマー組成物(5)を調製した。この組成物の特性を評価した結果を表 2 1に示す。
[0149] [実施例 6]
有機無機ハイブリッドポリマー(B— 1)を含む溶液の代わりに有機無機ハイブリッド ポリマー(B— 3)を含む溶液 500重量部(固形分換算で 100重量部)を使用した以外 は、実施例 2と同様にして固形分濃度 20重量%の金属酸化物微粒子含有有機無機 ハイブリッドポリマー組成物(6)を調製した。この組成物の特性を評価した結果を表 2 1に示す。
[0150] [実施例 7]
有機無機ハイブリッドポリマー(B— 1)を含む溶液の代わりに有機無機ハイブリッド ポリマー(B— 4)を含む溶液 500重量部(固形分換算で 100重量部)を使用した以外 は、実施例 2と同様にして固形分濃度 20重量%の金属酸化物微粒子含有有機無機 ハイブリッドポリマー組成物(7)を調製した。この組成物の特性を評価した結果を表 2 1に示す。
[0151] [実施例 8〜; 12]
有機無機ハイブリッドポリマー(B— 1)を含む溶液の代わりに有機無機ハイブリッド ポリマー(B— 5)〜(B— 9)を含む溶液 500重量部(固形分換算で 100重量部)を使 用した以外は、実施例 2と同様にして固形分濃度 20重量%の金属酸化物微粒子含 有有機無機ハイブリッドポリマー組成物(8)〜(; 12)を調製した。この組成物の特性を 評価した結果を表 2 1に示す。
[0152] [比較例 1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、上記 有機無機ハイブリッドポリマー(B— 1)を含む溶液 500重量部(固形分換算で 100重 量部)と、ポリオキシエチレンアルキルリン酸エステル (楠本化成 (株)製、商品名: PL ADD EDI 51) 9重量部と、ァセチルアセトン 5重量部と、メチルイソブチルケトン 40 0重量部とを容器に入れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部 を添加して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固 形分濃度 20重量%の酸化物微粒子含有有機無機ハイブリッドポリマー組成物(C1) を得た。この分散体の特性を評価した結果を表 2— 2に示す。
[0153] [比較例 2]
トリェチルァミンを使用しな力 た以外は実施例 1と同様にして粉体状のルチル型 酸化チタン微粒子をメチルイソプチルケトンに分散させたが、酸化チタン微粒子が沈 降した。
[0154] [比較例 3]
有機無機ハイブリッドポリマー(B— 1)を含む溶液を使用しな力、つた以外は実施例 1 と同様にして粉体状のルチル型酸化チタン微粒子をメチルイソプチルケトンに分散さ せたが、酸化チタン微粒子が沈降した。
[0155] [比較例 4]
予め水にアナターゼ型酸化チタン微粒子を分散させた酸化チタン微粒子水分散体 (石原産業 (株)製「STS— 01」、TiO濃度 30重量%、酸化チタン微粒子の体積平
2
均分散粒径: 60nm、有機系分散剤: 0重量%) 300重量部を容器に入れ、これに、 上記有機無機ハイブリッドポリマー(B— 1)を含む溶液 500重量部(固形分換算で 10 0重量部)と、メチルイソプチルケトン 400重量部とを添加し、さらに、この混合物に 0. lmm径のジルコユアビーズ 2000重量部を添加して、ビーズミノレを用いて 1500rpm で 1時間攪拌して微粒子を分散させた力 酸化チタン微粒子が沈降した。
[0156] [比較例 5]
有機無機ハイブリッドポリマー(B— 1)を含む溶液の代わりに、 Mw= 20, 000のポ リシロキサン(GE東芝シリコーン(株)製、商品名: XR31— B2733U00重量部とメチ ノレイソプチルケトン 400重量部とを含む溶液を使用した以外は、実施例 1と同様にし て固形分濃度 20重量%の金属酸化物微粒子含有ポリシロキサン組成物(C5)を得 た。この組成物の特性を評価した結果を表 2— 2に示す。
[0157] [表 2-1]
[表 2 1]
Figure imgf000044_0001
Figure imgf000044_0002
[表 2— 2]
Figure imgf000045_0001

Claims

請求の範囲
[1] 有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で、
(A)ケィ素酸化物微粒子および/または金属酸化物微粒子、および
(B)下記式(1)
R1 Si (OR2) ― (1)
(式中、 R1は、炭素数;!〜 8の 1価の有機基を示し、 2個存在する場合には互いに同じ であっても異なっていてもよい。 R2は、それぞれ独立に、炭素数 1〜5のアルキル基ま たは炭素数 1〜6のァシル基を示す。 nは 0〜2の整数である。 )
で表される少なくとも 1種のオルガノシラン、該オルガノシランの加水分解物および該 オノレガノシランの縮合物からなる群から選択される少なくとも 1種のシラン化合物 (bl )と、加水分解性基および/または水酸基と結合したケィ素原子を含有するシリル基 を有する重合体 (b2)とを加水分解 ·縮合反応させて得られる有機無機ハイブリッドポ リマーを混合して、前記酸化物微粒子 (A)を有機溶媒中に分散させることにより得ら れる酸化物微粒子含有有機無機ハイブリッドポリマー組成物。
[2] 前記酸化物微粒子 (A)と前記有機無機ハイブリッドポリマー(B)とを塩基性化合物 の存在下で混合することを特徴とする請求項 1に記載の酸化物微粒子含有有機無 機ハイブリッドポリマー組成物。
[3] 前記酸化物微粒子 (A)と前記有機無機ハイブリッドポリマー(B)とをビーズミルによ り混合することを特徴とする請求項 1または 2に記載の酸化物微粒子含有有機無機 ハイブリッドポリマー組成物。
[4] 前記酸化物微粒子 (A) 100重量部に対して、前記有機無機ハイブリッドポリマー( B)を完全加水分解縮合物換算で 1〜; 1000重量部混合することを特徴とする請求項 ;!〜 3のいずれかに記載の酸化物微粒子含有有機無機ハイブリッドポリマー組成物。
[5] 前記シラン化合物 (bl)と重合体 (b2)とを、シラン化合物 (bl)の完全加水分解縮 合物換算の含有量 (Wbl )と重合体 (b2)の固形分換算の含有量 (Wb2)との重量比 (Wbl/Wb2)が、 5/95〜95/5の範囲〔ただ、し、 Wbl +Wb2 = 100とする。〕で 加水分解 ·縮合させることを特徴とする請求項 1〜4のいずれかに記載の酸化物微粒 子含有有機無機ハイブリッドポリマー組成物。
[6] 前記重合体 (b2)にお!/、て、加水分解性基および/または水酸基と結合したケィ素 原子を含有するシリル基の含有量が、ケィ素原子含有量に換算して、 0. ;!〜 2重量 %であることを特徴とする請求項;!〜 5のいずれかに記載の酸化物微粒子含有有機 無機ハイブリッドポリマー組成物。
[7] 請求項;!〜 6のいずれかに記載の酸化物微粒子含有有機無機ハイブリッドポリマー 組成物から得られる硬化体。
[8] 請求項;!〜 6のいずれかに記載の酸化物微粒子含有有機無機ハイブリッドポリマー 組成物からなるコーティング用組成物。
[9] 有機基材と、該有機基材上に設けられた、請求項 8に記載のコーティング用組成物 から得られる塗膜とを有する積層体。
[10] 下記式(1)
R1 Si (OR2) ― (1)
(式中、 R1は、炭素数;!〜 8の 1価の有機基を示し、 2個存在する場合には互いに同じ であっても異なっていてもよい。 R2は、それぞれ独立に、炭素数 1〜5のアルキル基ま たは炭素数 1〜6のァシル基を示す。 nは 0〜2の整数である。 )
で表される少なくとも 1種のオルガノシラン、該オルガノシランの加水分解物および該 オノレガノシランの縮合物からなる群から選択される少なくとも 1種のシラン化合物 (bl )と、加水分解性基および/または水酸基と結合したケィ素原子を含有するシリル基 を有する重合体 (b2)とを加水分解 '縮合反応させて有機無機ハイブリッドポリマー( B)を調製した後、
該有機無機ハイブリッドポリマー(B)とケィ素酸化物微粒子および/または金属酸 化物微粒子 (A)とを、有機溶媒中、塩基性化合物、酸性化合物または金属キレート 化合物の存在下で混合することを特徴とする酸化物微粒子含有有機無機ハイブリツ ドポリマー組成物の製造方法。
[11] 前記酸化物微粒子 (A)と前記有機無機ハイブリッドポリマー(B)とを塩基性化合物 の存在下で混合することを特徴とする請求項 10に記載の酸化物微粒子含有有機無 機ハイブリッドポリマー組成物の製造方法。
[12] 前記酸化物微粒子 (A)と前記有機無機ハイブリッドポリマー(B)とをビーズミルによ り混合することを特徴とする請求項 10または 11に記載の酸化物微粒子含有有機無 機ハイブリッドポリマー組成物の製造方法。
[13] 前記酸化物微粒子 (A) 100重量部に対して、前記有機無機ハイブリッドポリマー( B)を完全加水分解縮合物換算で 1〜; 1000重量部混合することを特徴とする請求項 10〜; 12のいずれかに記載の酸化物微粒子含有有機無機ハイブリッドポリマー組成 物の製造方法。
[14] 前記シラン化合物 (bl)と重合体 (b2)とを、シラン化合物 (bl)の完全加水分解縮 合物換算の含有量 (Wbl )と重合体 (b2)の固形分換算の含有量 (Wb2)との重量比 (Wbl/Wb2)が、 5/95〜95/5の範囲〔ただ、し、 Wbl +Wb2 = 100とする。〕で 加水分解 ·縮合させることを特徴とする請求項 10〜; 13のいずれかに記載の酸化物 微粒子含有有機無機ハイブリッドポリマー組成物の製造方法。
[15] 前記重合体 (b2)にお!/、て、加水分解性基および/または水酸基と結合したケィ素 原子を含有するシリル基の含有量が、ケィ素原子含有量に換算して、 0. ;!〜 2重量 %であることを特徴とする請求項 10〜; 14のいずれかに記載の酸化物微粒子含有有 機無機ハイブリッドポリマー組成物の製造方法。
PCT/JP2007/068079 2006-09-19 2007-09-18 Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication WO2008035669A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535353A JPWO2008035669A1 (ja) 2006-09-19 2007-09-18 酸化物微粒子含有有機無機ハイブリッドポリマー組成物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-253253 2006-09-19
JP2006253253 2006-09-19

Publications (1)

Publication Number Publication Date
WO2008035669A1 true WO2008035669A1 (fr) 2008-03-27

Family

ID=39200494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068079 WO2008035669A1 (fr) 2006-09-19 2007-09-18 Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication

Country Status (4)

Country Link
JP (1) JPWO2008035669A1 (ja)
KR (1) KR20090061659A (ja)
CN (1) CN101517003A (ja)
WO (1) WO2008035669A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077409A (ja) * 2008-08-26 2010-04-08 Jgc Catalysts & Chemicals Ltd 樹脂被覆金属酸化物粒子分散ゾルの製造方法および該樹脂被覆金属酸化物粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP4968491B1 (ja) * 2011-09-20 2012-07-04 大日本印刷株式会社 赤外線反射性フィルム
WO2013111735A1 (ja) 2012-01-25 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 光学フィルム
WO2013168714A1 (ja) 2012-05-08 2013-11-14 コニカミノルタ株式会社 合わせガラス
WO2014156822A1 (ja) 2013-03-29 2014-10-02 コニカミノルタ株式会社 合わせガラス
WO2014162864A1 (ja) 2013-04-02 2014-10-09 コニカミノルタ株式会社 熱線遮断性合わせガラス及び熱線遮断性合わせガラスの製造方法
JP2017020020A (ja) * 2015-07-14 2017-01-26 国立研究開発法人産業技術総合研究所 表面改質された球状単分散コアシェル型酸化セリウムポリマーハイブリッドナノ粒子
KR20170030532A (ko) 2014-07-14 2017-03-17 스미토모 오사카 세멘토 가부시키가이샤 금속 산화물 입자 분산액, 금속 산화물 입자 함유 조성물, 도막, 및 표시 장치
JPWO2016031931A1 (ja) * 2014-08-29 2017-07-27 住友大阪セメント株式会社 樹脂組成物、塗膜、塗膜付きプラスチックフィルム、及び表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118126624A (zh) * 2024-03-14 2024-06-04 上海暄洋化工材料科技有限公司 稀土荧光粉复合有机硅树脂温控涂层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183062A (ja) * 1996-10-30 1998-07-07 Jsr Corp コーティング用組成物
JPH1147688A (ja) * 1997-08-07 1999-02-23 Jsr Corp 樹脂成形品
JP2005113063A (ja) * 2003-10-09 2005-04-28 Jsr Corp コーティング組成物および構造体
WO2006025535A1 (ja) * 2004-09-03 2006-03-09 Jsr Corporation コーティング用組成物および下塗り剤、ならびに該組成物からなる塗膜を有する積層体、光触媒コーティングフィルムおよび成形体
WO2007108281A1 (ja) * 2006-03-16 2007-09-27 Jsr Corporation 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
WO2007119517A1 (ja) * 2006-03-31 2007-10-25 Jsr Corporation 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183062A (ja) * 1996-10-30 1998-07-07 Jsr Corp コーティング用組成物
JPH1147688A (ja) * 1997-08-07 1999-02-23 Jsr Corp 樹脂成形品
JP2005113063A (ja) * 2003-10-09 2005-04-28 Jsr Corp コーティング組成物および構造体
WO2006025535A1 (ja) * 2004-09-03 2006-03-09 Jsr Corporation コーティング用組成物および下塗り剤、ならびに該組成物からなる塗膜を有する積層体、光触媒コーティングフィルムおよび成形体
WO2007108281A1 (ja) * 2006-03-16 2007-09-27 Jsr Corporation 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
WO2007119517A1 (ja) * 2006-03-31 2007-10-25 Jsr Corporation 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077409A (ja) * 2008-08-26 2010-04-08 Jgc Catalysts & Chemicals Ltd 樹脂被覆金属酸化物粒子分散ゾルの製造方法および該樹脂被覆金属酸化物粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP4968491B1 (ja) * 2011-09-20 2012-07-04 大日本印刷株式会社 赤外線反射性フィルム
WO2013111735A1 (ja) 2012-01-25 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 光学フィルム
WO2013168714A1 (ja) 2012-05-08 2013-11-14 コニカミノルタ株式会社 合わせガラス
WO2014156822A1 (ja) 2013-03-29 2014-10-02 コニカミノルタ株式会社 合わせガラス
WO2014162864A1 (ja) 2013-04-02 2014-10-09 コニカミノルタ株式会社 熱線遮断性合わせガラス及び熱線遮断性合わせガラスの製造方法
KR20170030532A (ko) 2014-07-14 2017-03-17 스미토모 오사카 세멘토 가부시키가이샤 금속 산화물 입자 분산액, 금속 산화물 입자 함유 조성물, 도막, 및 표시 장치
JPWO2016031931A1 (ja) * 2014-08-29 2017-07-27 住友大阪セメント株式会社 樹脂組成物、塗膜、塗膜付きプラスチックフィルム、及び表示装置
JP2017020020A (ja) * 2015-07-14 2017-01-26 国立研究開発法人産業技術総合研究所 表面改質された球状単分散コアシェル型酸化セリウムポリマーハイブリッドナノ粒子

Also Published As

Publication number Publication date
JPWO2008035669A1 (ja) 2010-01-28
CN101517003A (zh) 2009-08-26
KR20090061659A (ko) 2009-06-16

Similar Documents

Publication Publication Date Title
WO2008035669A1 (fr) Composition polymère hybride organique-inorganique contenant de fines particules d&#39;oxyde et son procédé de fabrication
EP2085411A2 (en) Metal-coating material, method for protecting metal, and light emitting device
US7736735B2 (en) Coating composition, undercoating composition, multilayer body having coating film made of such composition, photocatalyst coating film, and molded body
US6756124B2 (en) Coating composition, method for producing the same, cured product and coating film
US20090093579A1 (en) Oxide particle-containing polysiloxane composition and method for producing same
JP2007270056A (ja) 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2007270055A (ja) 多官能ポリシロキサンおよび金属酸化物微粒子含有ポリシロキサン組成物、ならびにそれらの製造方法
JP2007291324A (ja) 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
WO2014069215A1 (ja) 保護板及び表示装置
WO2008007649A1 (fr) Composé de type résine contenant des particules d&#39;oxyde et procédé de production de celui-ci
JP2006116462A (ja) 可視光光触媒組成物およびその製造方法、ならびに可視光光触媒コーティング膜および該コーティング膜を有する積層体
JP2007277072A (ja) 酸化物微粒子分散体およびその製造方法
JP2006116461A (ja) 可視光光触媒層を有する積層体および可視光光触媒コーティングフィルム
JP2009173718A (ja) 金属コート材、および発光装置
JP4771029B2 (ja) ポリオルガノシロキサン/有機ポリマー複合粒子の水系分散体およびその製造方法
JP2009280692A (ja) 金属表面用コート材および発光装置、並びに金属表面保護方法
JP2005113028A (ja) コーティング組成物および構造体
JPH11130962A (ja) シリコーン樹脂含有エマルジョン組成物並びに該組成物の硬化被膜を有する物品及びその製造方法
JP2009191189A (ja) 金属コート材、および発光装置
JP2006068686A (ja) 可視光光触媒組成物およびその製造方法、ならびに可視光光触媒コーティング膜および該コーティング膜を有する積層体
CN101443414A (zh) 含氧化物微粒的聚硅氧烷组合物及其制备方法
JP2007277073A (ja) 酸化物微粒子分散体およびその製造方法
WO2011099505A1 (ja) 屋外設置用デバイスおよび屋外設置用デバイス用反射防止層
JP3336922B2 (ja) シリコーン樹脂含有エマルジョン組成物及びその製造方法並びに該組成物の硬化被膜を有する物品
JP2010042624A (ja) 積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034738.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535353

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097007871

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07807479

Country of ref document: EP

Kind code of ref document: A1