[go: up one dir, main page]

WO2008035685A1 - Polarization measuring device - Google Patents

Polarization measuring device Download PDF

Info

Publication number
WO2008035685A1
WO2008035685A1 PCT/JP2007/068113 JP2007068113W WO2008035685A1 WO 2008035685 A1 WO2008035685 A1 WO 2008035685A1 JP 2007068113 W JP2007068113 W JP 2007068113W WO 2008035685 A1 WO2008035685 A1 WO 2008035685A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
reflected
polarization
test surface
Prior art date
Application number
PCT/JP2007/068113
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Takahashi
Original Assignee
Olympus Medical Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corporation filed Critical Olympus Medical Systems Corporation
Priority to JP2008535362A priority Critical patent/JP5011302B2/en
Publication of WO2008035685A1 publication Critical patent/WO2008035685A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the present invention relates to a polarization measuring device.
  • a polarization measuring device is a device that irradiates a test surface with polarized light, receives reflected light, and measures a change in the polarization state of the received light. Used to detect the physical properties of!
  • FIG. 1 is an explanatory diagram showing an example of a basic configuration of a conventional polarization measuring device.
  • an optical member such as a lens for condensing (imaging) light on a predetermined surface is omitted.
  • the polarization measuring apparatus has a light source 51 and a polarizer 52 as a polarization projection unit on one optical path for projecting polarized light onto the test surface 53, and reflected from the test surface 53.
  • a polarizer 52 as a polarization projection unit on one optical path for projecting polarized light onto the test surface 53, and reflected from the test surface 53.
  • an analyzer 54 and a photodetector 55 are provided as polarized light receiving parts.
  • polarized light is incident on the test surface obliquely through the light source 51 and the polarizer 52, and the reflected light from the test surface 3 is incident on the analyzer 54, and the polarized light that has passed through the analyzer 54 Is detected by the photodetector 55, and changes in the polarization state due to reflection on the surface 53 to be detected are detected based on the measurement values obtained by the photodetector 55, and various physical properties of the specimen are detected based on the changes. (For example, absorption coefficient, film thickness, refractive index, etc.) (changes) can be detected.
  • the relative reference position of the polarizer 52 and the analyzer 54 is determined in advance, and the polarizer 52 and the analyzer 54 are rotated around the respective optical axes when measuring the test object.
  • the relative angle between the polarizer 52 and the analyzer 54 at which the intensity received by the optical detector 55 is minimum or maximum is detected, and the physical properties (changes) of the test object are determined from the relative angle. To detect.
  • a voltage control liquid crystal retarder (not shown) is further provided on the reflection optical path between the test surface 53 and the analyzer 54, and the voltage of the voltage control liquid crystal retarder is adjusted to adjust the analyzer 54. After that, the minimum value of the intensity received by the photodetector 55 is obtained, and various physical properties (changes) of the test object are detected from the voltage at that time.
  • an optical system for condensing the polarized light and irradiating the test surface, and the reflected light from the test surface are collected and applied to the photodetector. Since the optical systems for guiding are arranged on separate optical paths, the optical path spreads in the direction of incidence and reflection with respect to the surface to be measured, resulting in an increase in size and a large space for the equipment. The space was narrowed. In such an apparatus, measurement must be performed in a state where the test object is fixed, and the use of the polarization state in the industrial product such as measurement of the film thickness or birefringence of the industrial crystal material is unavoidable. It was limited to measuring changes.
  • the power of light emitting elements such as LD and LED is used as an illumination light source.
  • these light emitting elements are not configured so that the light emitting points have a uniform shape. For this reason, if the configuration is such that the image of the light emission point is formed on the test surface, the intensity distribution of the illumination light varies greatly depending on the site of the test surface at the irradiation position, and the accuracy of the measured value deteriorates. It is easy to end up.
  • the irradiation area on the surface to be measured is small, a stable measurement value cannot be obtained because the relative area of dirt and dust on the surface to be measured is large.
  • the irradiation area on the test surface is small, the position adjustment between the test surface and the illumination light source, which is easily affected by the relative displacement between the test surface and the light emitting unit, becomes complicated. was there.
  • an object of the present invention is to provide a polarization measuring device that can be remarkably reduced in size as compared with conventional polarization measuring devices and that can be easily expanded to applications other than industrial use.
  • Another object of the present invention is to provide a polarization measuring device that can improve measurement accuracy and perform stable measurement, and can eliminate the complexity of position adjustment between the surface to be measured and the illumination light source. It is to provide.
  • a polarization measuring device condenses the polarized light from the polarization projection unit, the polarization light receiving unit, and the polarization projection unit and irradiates the surface to be examined.
  • the optical axis of the light reflected by the surface and guided to the polarized light receiving unit is symmetrically arranged with respect to the central axis of the same optical system. And is configured to intersect at least once.
  • the surface to be examined is irradiated from the polarization projection unit arranged symmetrically with respect to the central axis of the transmission optical system at the pupil position of the intensity distribution uniformizing optical system. It is preferable to include an elongated slit extending in a direction perpendicular to the same virtual plane including the optical axis of polarized light to be reflected and the optical axis of light reflected by the test surface and guided to the polarized light receiving unit. .
  • the polarization projection unit is configured as a telecentric optical system at least on the emission side, and the polarization light receiving unit is separated from the polarization projection unit in the transmission optical system.
  • the polarization measuring device includes a polarization projection unit having a light source and a polarizer, a polarization light receiving unit having an analyzer and a light receiving device, and condensing the polarized light from the polarization projection unit.
  • a transmission optical system that irradiates the surface and collects light reflected by the test surface and guides it to the polarized light receiving unit, and the transmission optical system irradiates the test surface from the polarized light projection unit
  • the optical axis of polarized light and the optical axis of the light reflected by the test surface and guided to the polarized light receiving unit are arranged symmetrically with respect to the central axis of the same optical system and intersect at least once.
  • the polarization projection unit includes an intensity distribution equalizing optical system that equalizes an intensity distribution of light emitted from the light source, and a light beam having a predetermined range at a pupil position of the intensity distribution equalizing optical system.
  • the cross section is projected onto the test surface.
  • the transmission optical system emits the polarized light from the polarization projection unit so as to irradiate the surface to be measured obliquely, and is reflected on the surface to be measured. It is preferable to have a tip optical system configured to allow incident light to enter the inside. Further, in the polarization measuring device of the present invention, the tip optical system includes an irradiation light total reflection surface that totally reflects the light incident on the test surface toward the test surface, and is reflected by the test surface and enters the test light. It is preferable to be composed of a prism having a reflection light total reflection surface that totally reflects light!
  • the transmission optical system is more than the tip optical system. And an optical axis of polarized light that irradiates the test surface from the polarized light projection unit at a position away from the test surface, and an optical axis of light that is reflected by the test surface and guided to the polarized light receiving unit. At least once, and configured so as to be parallel to the central axis of the transmission optical system, and the tip optical system is configured to make the incident light incident so that the polarized light from the polarization projection unit enters perpendicularly.
  • a surface an irradiation light total reflection surface that totally reflects light incident inside from the irradiation light incident surface toward the test surface, and an irradiation light that vertically emits the light totally reflected by the irradiation light total reflection surface
  • An exit surface a reflected light incident surface that vertically enters light reflected by the test surface, a reflected light total reflection surface that totally reflects light incident inside from the reflected light incident surface, and the reflected light total reflection And a reflected light exit surface for emitting the light totally reflected by the surface vertically.
  • the transmission optical system irradiates the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system.
  • the optical axis of the light that is reflected by the test surface and guided to the polarized light receiving unit are inclined with respect to the central axis of the transmission optical system, and the tip optical system is
  • the irradiation light total reflection surface that totally reflects the light incident on the inner surface toward the test surface, and the reflected light total reflection surface that reflects the light incident on the test surface and total reflection. It is preferable that it is composed of a prism.
  • the transmission optical system irradiates the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system.
  • the optical axis of the light that is reflected by the test surface and guided to the polarized light receiving unit are inclined with respect to the central axis of the transmission optical system, and the tip optical system is The irradiation light total reflection surface that totally reflects the light incident inside from the irradiation light incident surface toward the test surface, and the irradiation light emission surface that vertically emits the light totally reflected by the irradiation light total reflection surface And a reflected light incident surface for vertically incidence of light reflected by the test surface, and a reflected light total reflection surface for totally reflecting light incident on the inside from the reflected light incident surface. It is preferable that
  • the transmission optical system irradiates the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system.
  • An optical axis of polarized light that is reflected by the surface to be measured and guided to the polarized light receiving unit is inclined with respect to the central axis of the transmission optical system, and the tip optical
  • the prism is constituted by a prism having a reflected light total reflection surface that totally reflects incident light, and a reflected light emission surface that vertical
  • the prism has a side total reflection prism having the irradiation light total reflection surface and the reflection light total reflection surface on side surfaces symmetrical to a central axis of the transmission optical system. It is preferable to be.
  • an irradiation light total reflection surface that totally reflects incident irradiation light and a reflection light total reflection surface that totally reflects incident reflection light are respectively provided in the transmission optical system. It is preferable to have it at a plurality of locations on the side surface symmetrical to the central axis.
  • the prism is made of a crystalline material.
  • the prism is arranged so that the crystalline C-axis is parallel to the central axis direction of the transmission optical system.
  • the prism is arranged so that the crystalline C-axis is perpendicular to the central axis direction of the transmission optical system.
  • the transmission optical system further applies polarization to the surface to be inspected from the polarization projection unit to the polarization projection unit side and the polarization light receiving unit side. It is preferable to have a relay optical system that crosses the optical axis of the light beam and the optical axis of the light reflected by the test surface and guided to the polarized light receiving unit.
  • the polarization measuring device of the present invention can be remarkably reduced in size compared to the conventional polarization measuring device, and for non-industrial uses, for example, medical uses such as inspection of tooth surface conditions, for example, However, it is easy to expand the application for use as an analytical instrument such as DNA chip inspection, etc., but it is possible to improve the measurement accuracy and perform stable measurement. A polarization measuring device that can eliminate the complication of the position adjustment can be obtained.
  • FIG. 1 is an explanatory diagram showing an example of a basic configuration of a polarization measuring device of a conventional polarization measuring device.
  • FIG. 2 is a conceptual diagram showing a basic configuration of the polarization measuring device of the present invention.
  • FIG. 3 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a conceptual diagram showing an enlarged configuration of a main part of FIG.
  • FIG. 5 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing a partially enlarged configuration of the main part of FIG.
  • FIG. 7 is an explanatory view showing a modification of the tip optical system in the polarization measuring device of the second embodiment.
  • FIG. 8 is an explanatory view showing another modification of the tip optical system in the polarization measuring device of the second embodiment.
  • FIGS. 9 (a) and 9 (b) are images of light emission points when a light emitting element such as an LD or LED is used as the light source of the polarization measuring device of the present invention shown in FIGS. It is explanatory drawing which shows the shape of.
  • FIG. 10 shows a configuration of the polarization measuring device of the present invention shown in FIGS. 2 to 5 when the image of the light emitting point as shown in FIG. 9 (b) is formed on the surface to be measured.
  • FIG. 3 is an explanatory diagram conceptually showing the size of a relative area of dirt or dust on a test surface with respect to an image of a light emitting point.
  • FIG. 11 is a conceptual diagram showing a basic configuration of a polarization measuring apparatus according to a third embodiment of the present invention.
  • FIG. 12 shows the size of the image of the optical cross section at the pupil position of the intensity uniformizing optical system in the polarization measuring device shown in FIG. 11 in comparison with the size of the image of the light emitting point shown in FIG. It is an explanatory diagram.
  • FIG. 13 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the fourth embodiment of the present invention.
  • FIG. 14 is a conceptual diagram showing an enlarged configuration of a main part of a transmission optical system in the polarization measuring device of FIG.
  • FIG. 15 is an explanatory diagram showing the path of light reflected by the test surface when the distance (working distance) from the test surface is different in the polarization measuring device of the fourth embodiment.
  • FIG. 2 is a conceptual diagram showing a basic configuration of the polarization measuring apparatus of the present invention.
  • the polarization measuring device of the present invention condenses the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 1 in a spot shape and irradiates the test surface 3 and reflects it on the test surface 3. It has a transmission optical system 4 that collects the reflected light in the form of a spot and guides it to the polarized light receiving unit 2.
  • the polarization projection unit 1 includes a light source la and a polarizer lb such as a polarizing plate that converts light emitted from the light source la into predetermined polarization and a polarization beam splitter that transmits only predetermined polarization.
  • a configuration is employed and configured to project polarized light.
  • the polarization light receiving unit 2 employs a conventionally known optical configuration including, for example, an analyzer 2 a such as a polarizing beam splitter or a rotatable analyzer plate and a light receiving device 2 b such as a photodetector,
  • an analyzer 2 a such as a polarizing beam splitter or a rotatable analyzer plate
  • a light receiving device 2 b such as a photodetector
  • the change of the polarization state of the light reflected at 3 can be detected.
  • the polarization projection unit 1 and the polarization light receiving unit 2 are not limited to the configuration shown in FIG. 2, and are conventionally employed in a polarization measuring apparatus.
  • a characteristic configuration of the present invention resides in the transmission optical system 4.
  • the polarization measuring device of the present invention includes a transmission optical system 4 in which the optical path of projection light and the optical path of reflected light are provided in a common optical system. Provided.
  • the transmission optical system 4 is irradiated from the polarization projection unit 1 to the test surface 3 in order to provide the optical path of the projection light and the optical path of the reflected light in a common optical system.
  • Polarized light The axis and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving unit 2 are arranged symmetrically with respect to the central axis O of the same optical system.
  • the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarization light receiving unit 2 are configured to cross at least once.
  • the optical path used for the projection light and the reflected light can be configured in an elongated shape, and it is not necessary to widen the optical path in the direction of incidence and reflection with respect to the test surface.
  • the space used for the optical path of the projection light and the reflected light can be reduced in size.
  • the application can be easily expanded to non-industrial uses, for example, medical uses such as inspection of the surface condition of teeth, and uses as analysis devices such as inspection of DNA chips.
  • the polarized light from the polarization projection unit 1 is emitted so as to irradiate the test surface 3 obliquely, and the light reflected by the test surface 3 is internally introduced.
  • the transmission optical system 4 is equipped with a tip optical system (not shown in FIG. 2) configured to be incident.
  • the tip optical system includes an irradiation light total reflection surface that totally reflects light incident on the test surface toward the test surface, and a reflection that reflects light incident on the test surface after being reflected by the test surface. And a prism having a light total reflection surface.
  • the prism having the irradiation light total reflection surface and the reflection light total reflection surface is provided as the tip optical system, the optical path used for the projection light and the reflection light is elongated while being covered.
  • the surface can be irradiated obliquely at a large incident angle, and the same function as that of a conventional polarization measuring device can be easily exhibited.
  • the incident surface of the tip optical system is perpendicular to the incident light, and the exit surface is perpendicular to the emitted light.
  • the incident angle and reflection angle with respect to the surface to be measured are determined only by the irradiation light total reflection surface and reflection light total reflection surface. Since it is not necessary to consider the light refraction at the entrance surface and the exit surface of the tip optical system, it is possible to measure the polarization state with high accuracy and little light loss on the surface to be measured.
  • FIG. 3 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the first embodiment of the present invention.
  • the polarization measuring apparatus according to the first embodiment condenses the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 2 in a spot shape or a slit shape and irradiates the surface 3 to be examined. It has a transmission optical system 4 that condenses the light reflected by the surface 3 in a spot shape or slit shape and guides it to the polarized light receiving unit 2.
  • the polarization projection unit 1 may have any configuration as long as it can project linearly polarized light in the form of a spot or slit.
  • the polarization detector 2 may have any configuration as long as it can detect a change in polarization state.
  • the transmission optical system 4 includes a lens 41 that converts the polarized light from the polarization projection unit 1 into a parallel light beam, and a condensing lens that condenses the parallel light of the lens 41 force and projects it onto the test surface 3. 42 and a tip optical system 43.
  • the transmission optical system 4 is an optical system in which the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 is the same as the optical axis of the light reflected by the test surface 3 and guided to the polarization light receiving unit 2. It is configured to be arranged symmetrically with respect to the central axis O of the system.
  • the transmission optical system 4 includes a lens 41 having an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3 and an optical axis of light reflected from the test surface 3 and guided to the polarization light receiving unit 2. And a converging lens 42 so as to intersect once.
  • CP is an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3 and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. The crossing position is shown.
  • FIG. 4 is an enlarged conceptual diagram showing the configuration of the main part of FIG.
  • the polarization projection unit 1 is conceptually shown as having a polarizer 1A, and the polarization light receiving unit 2 is branched by a polarization beam splitter 2A and a polarization beam splitter 2A.
  • This is conceptually shown as a configuration having photodetectors 2B1 and 2B2 arranged in the optical path.
  • the optical unit 2 may have the same configuration as in FIG.
  • the optical axis of polarized light that exits the condensing lens 42 and enters the tip optical system 43 is parallel to the central axis O of the transmission optical system 4. Further, the optical axis of the light that exits from the tip optical system 43 and enters the condenser lens 42 is also parallel to the central axis O of the transmission optical system 4.
  • the tip optical system 43 includes an irradiation light incident surface 43a, an irradiation light total reflection surface 43b, an irradiation light output surface 43c, a reflected light incident surface 43d, a reflected light total reflection surface 43e, and a reflected light output surface 43f. It consists of a prism.
  • the irradiation light incident surface 43 a is arranged perpendicular to the central axis O of the transmission optical system 4.
  • the polarized light emitted from the polarization projection unit 1 and passed through the lens 41 and the condenser lens 42 is vertically incident.
  • the irradiation light total reflection surface 43b is configured to totally reflect the light incident inside from the irradiation light incident surface 43a toward the test surface 3.
  • the irradiation light exit surface 43c is configured to emit vertically the light totally reflected by the irradiation light total reflection surface 43b.
  • the reflected light incident surface 43d is configured so that the light reflected by the test surface 3 is incident vertically.
  • the reflected light total reflection surface 43e is configured to totally reflect the light incident on the inside from the reflected light incident surface 43d.
  • the reflected light emitting surface 43f is provided at a position symmetrical to the central axis O of the transmission optical system 4 on the same plane as the irradiated light incident surface 43a, and vertically emits the light totally reflected by the reflected light total reflection surface 43e. It is configured to let you.
  • the polarization from the polarization projection unit 1 is bent in the optical path via the lens 41 of the transmission optical system 4, and is transmitted to the lens 42.
  • Incident light is incident on the irradiation light incident surface 43 a of the prism 43 perpendicularly while being condensed through the condenser lens 42.
  • the polarized light incident on the irradiation light incident surface 43a is totally reflected toward the test surface 3 by the irradiation light total reflection surface 43b.
  • the light totally reflected by the irradiation light total reflection surface 43b is emitted vertically through the irradiation light emission surface 43c, and is incident at a predetermined incident angle at the position intersecting with the central axis O of the transmission optical system 4 ′ on the test surface 3. Incident at.
  • the light reflected by the surface to be inspected 3 travels along the optical path opposite to the irradiation light with the central axis O of the transmission optical system 4 as symmetric. That is, the light reflected by the test surface 3 enters the reflected light incident surface 43d of the prism 43 vertically. The light incident inside from the reflected light incident surface 43d is totally reflected by the reflected light total reflection surface 43e. At this time, the optical axis of the light totally reflected by the reflected light total reflection surface 43e is the transmission optical Parallel to the central axis O of system 4. Further, the light totally reflected by the reflected light total reflection surface 43e is emitted vertically through the reflected light emission surface 43f and enters the condenser lens.
  • the light incident on the condensing lens 42 is incident on the lens 41 with its optical path bent. At this time, the optical axis of the polarized light irradiated from the polarized light projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2 intersect at the intersection position CP.
  • the light incident on the lens 41 is collected at the intermediate image position S12.
  • the light condensed at the intermediate imaging position S12 enters the polarization light receiving unit 2 and the polarization state is detected via the polarization light reception unit 2.
  • the transmission optical system 4 is configured in an elongated shape by providing the optical path used for the projection light and the reflected light in the same transmission optical system 4. Since it is not necessary to widen the optical path in the incident and reflection directions with respect to the surface to be measured, the space used for the optical path of the projection light and the reflected light can be significantly reduced as compared with the conventional polarization measuring device. As a result, the application can be easily expanded to non-industrial uses, for example, medical uses such as inspection of tooth surface conditions, and uses as analysis devices such as DNA chip inspection.
  • the prism 43 having the irradiation light total reflection surface 43b and the reflected light total reflection surface 43e is provided as the tip optical system, the optical path used for the projection light and the reflection light is elongated, It is possible to irradiate the test surface obliquely at a large incident angle, and it becomes easy to exert the same function as a conventional polarization measuring device.
  • the irradiation light incident surface 43a and the reflected light incident surface 43d of the prism 43 are configured to be perpendicular to the incident light, respectively, and the irradiation light emission surface 43c and the reflected light emission surface 43f are arranged.
  • the incident angle and the reflection angle with respect to the test surface 3 can be determined only by the irradiation light total reflection surface 43b and the reflection light total reflection surface 43e, and on the incident surface and the output surface of the prism 43 which is the tip optical system. Since it is not necessary to consider the refraction of light, it is possible to measure the polarization state of the surface 3 to be measured with high accuracy and with little light loss.
  • the prism 43 can be made of quartz.
  • the prism 43 can also be made of a crystalline material.
  • the prism 43 is preferably arranged so that the crystalline C-axis is parallel to the direction of the central axis O of the transmission optical system 4.
  • the prism 43 may be arranged so that the crystalline C axis is perpendicular to the central axis O direction of the transmission optical system 4.
  • the transmission optical system 4 is further polarized and projected onto the polarization projection unit 1 side and the polarization light receiving unit 2 side according to the application.
  • One or more relay optical systems are provided to cross the optical axis of the polarized light radiated from the part 1 to the test surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving part 2 and long.
  • An optical system may be configured.
  • FIG. 5 is a cross-sectional view taken along the optical axis showing the overall configuration of the polarization measuring apparatus which is a force and a second embodiment of the present invention.
  • the polarization measuring apparatus of the second embodiment condenses the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 2 in a spot shape and irradiates the test surface 3 with the test surface 3. It has a transmission optical system 4 'that collects the reflected light in a spot shape and guides it to the polarized light receiving unit 2.
  • the configurations of the polarization projection unit 1 and the polarization light receiving unit 2 are the same as those in the first embodiment shown in FIG.
  • the transmission optical system 4 ' includes a relay optical system including a lens 41', a lens 42 ', and a lens 43', a lens 44, a lens 45, a lens 46, and a tip optical system 47. Is configured with
  • the transmission optical system 4 includes an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3, and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. Are arranged symmetrically with respect to the central axis O of the same optical system. Further, the transmission optical system 4 ′ includes a lens having an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3 and an optical axis of light reflected from the test surface 3 and guided to the polarization light receiving unit 2.
  • reference numeral 48 'de notes a holding frame for holding the lenses 44', 45 ', 46', and 49 'denotes a lens barrel that holds the relay optical system and the holding frame 48'.
  • CP1 and CP2 indicate positions where the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 intersects with the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2. ing.
  • FIG. 6 is a conceptual diagram showing a partially enlarged configuration of the main part of FIG.
  • the relay optical system is The polarized light condensed at the intermediate imaging position SI 1 is condensed at the intermediate imaging position S21.
  • the lenses 44 ', 45', 46 ' are optical paths so as to be inclined with respect to the central axis O of the transmission optical system so as to project the polarized light condensed at the intermediate imaging position S21 onto the test surface 3. Is bent and emitted toward the tip optical system 47 ′.
  • the tip optical system 47 ' includes an irradiation light incident surface 47a', an irradiation light total reflection surface 47b ', and an irradiation light emission surface.
  • the irradiation light incident surface 47a ' is arranged perpendicular to the central axis O of the transmission optical system 4'.
  • the polarized light emitted from the polarization projection unit 1 and incident through the relay optical system and the lenses 44 ′, 45 ′, and 46 ′ is incident obliquely.
  • the irradiation light total reflection surface 47b ′ is configured to totally reflect the light incident inside from the irradiation light incident surface 47a ′ toward the test surface 3.
  • the irradiation light exit surface 47c ′ is arranged perpendicular to the central axis O of the transmission optical system 4 ′.
  • the light totally reflected by the irradiated light total reflection surface 47b ′ is configured to be emitted obliquely.
  • the reflected light incident surface 47d ′ is provided at a position symmetrical to the central axis O of the transmission optical system 4 ′ in the same plane as the irradiation light total reflection surface 47c ′, and obliquely enters the light reflected by the test surface 3. It is configured to shoot.
  • the reflected light total reflection surface 47e ′ is provided on the side surface symmetrical to the irradiation light total reflection surface 47b ′ and the central axis O of the transmission optical system 4 ′. It is configured to reflect.
  • the reflected light exit surface 47f ′ is symmetric with respect to the central axis O of the transmission optical system 4 ′ in the same plane as the incident light incident surface 47a ′, and is provided near or substantially at the same position as the irradiated light incident surface 47a ′. It is configured so that the light totally reflected by the reflected light total reflection surface 47e 'is emitted obliquely!
  • the irradiation light incident surface 47a ′ and the reflected light emission surface 47f ′ are overlapped at the same position, and the position force of the overlapped surface is detected from the polarization projection unit 1.
  • This is a position CP1 where the optical axis of the polarized light irradiating the surface 3 intersects the optical axis of the light reflected by the surface 3 to be detected and guided to the polarized light receiving unit 2.
  • the irradiation light incident surface 47a 'and the reflected light emission surface 47f' are not overlapped at the same position, and the optical axis of polarized light irradiating the surface 3 to be measured from the polarization projection unit 1 and the surface to be measured Position CP1 where the optical axis of the light reflected by 3 and guided to the polarized light receiving section 2 intersects is located inside or outside the tip optical system 47 ′. Configured to do! /, Even! /.
  • the polarization from the polarization projection unit 1 is collected at the intermediate imaging position S21 via the relay optical system of the transmission optical system 4 '. After shining, it enters the lens 43 ′ at a position off the central axis O of the transmission optical system 4 ′.
  • the light incident on the lens 43 ′ is obliquely incident on the irradiation light incident surface 47a ′ of the prism 47 ′ while being condensed through the lenses 44 ′ and 45 ′.
  • the polarized light incident on the irradiation light incident surface 47a ′ is refracted by a predetermined amount to reach the irradiation light total reflection surface 47b ′, and is totally reflected toward the test surface 3 by the irradiation light total reflection surface 47b ′.
  • the light totally reflected by the irradiation light total reflection surface 47 is emitted obliquely through the irradiation light emission surface 47c ′, refracted by a predetermined amount, and intersects the central axis O of the transmission optical system 4 ′ on the test surface 3. It is incident at a predetermined angle of incidence.
  • the light reflected by the surface to be inspected 3 travels in the direction opposite to the irradiation light with the central axis O of the transmission optical system 4 'as symmetric. That is, the light reflected by the test surface 3 is obliquely incident on the reflected light incident surface 47d ′ of the prism 47 ′. The light incident on the reflected light incident surface 47d ′ is refracted by a predetermined amount, reaches the reflected light total reflection surface 47e ′, and is totally reflected by the reflected light total reflection surface 47e ′.
  • the light totally reflected by the reflected light total reflection surface 47e ′ is emitted obliquely through the reflected light emission surface 47f ′, refracted by a predetermined amount, and enters the lens 46 ′.
  • the optical axis of the polarized light irradiated from the polarized light projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2 intersect at the intersection position CP1.
  • the light incident on the lens 46 'passes through the lenses 45' and 44 'and is collected at the intermediate image position S22.
  • the light condensed at the intermediate imaging position S22 is condensed at the intermediate imaging position S12 via the relay optical system.
  • the optical axis of the polarization irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarization light receiving unit 2 intersect at the intersection position CP2. .
  • the light collected at the intermediate imaging position S 12 enters the polarization light receiving unit 2, and the polarization state is detected via the polarization light reception unit 2.
  • the optical path used for the projection light and the reflected light is provided in the same transmission optical system 4 ′, so that the transmission optical system 4 ′ is elongated. Since the optical path does not need to be widened in the direction of incidence and reflection on the surface to be measured, the space used for the optical path of the projected light and reflected light can be significantly reduced compared to conventional polarization measuring devices. . As a result, for non-industrial applications, for example, inspection of tooth surface conditions, etc. Applications can be easily expanded for medical use, for example, as an analytical device such as DNA chip inspection.
  • the side surface reflecting prism 47 ' having the irradiation light total reflection surface 47b' and the reflection light total reflection surface 47e 'is provided. While the optical path used for reflected light is elongated, it can be irradiated obliquely at a large incident angle with respect to the surface to be measured, and functions similar to those of a conventional polarization measuring device can be easily exhibited.
  • the prism 47 'can be made of quartz.
  • the prism 47 'can be made of a crystalline material.
  • it is preferable that the prism 47 ′ is arranged so that the crystalline C-axis is parallel to the direction of the central axis O of the transmission optical system 4 ′.
  • the prism 47 ′ may be arranged so that the crystalline C axis is perpendicular to the central axis O direction of the transmission optical system 4 ′.
  • the polarization direction and the crystal axis cannot be made coincident, but inside the prism 47 ', the optical path of the polarized light that irradiates the test surface 3 and the optical path of the light reflected by the test surface 3 Therefore, it is possible to measure the polarization state with higher accuracy and reliability.
  • the transmission optical system 4 ′ is provided from the polarization projection unit 1 to the test surface 3 on the polarization projection unit 1 side and the polarization light receiving unit 2 side.
  • the relay optical system is configured to cross the optical axis of the polarized light to be irradiated and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2, the transmission optical system 4 ′ has such a configuration.
  • the relay optical system may not be provided.
  • the transmission optical system 4 ′ may be provided with a plurality of such relay optical systems depending on the application to form a long optical system.
  • the configuration is almost the same as that of the reflected light emitting surface 47f ′.
  • CP11, CP12, and CP13 indicate the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3, and the light reflected from the test surface 3 and guided to the polarization light receiving unit 2. The position where the axis intersects is shown.
  • the thinned tip optical system can be made long in the direction of the central axis O of the transmission optical system 4 ', and it is difficult to make a space around the test surface 3 It is advantageous for the measurement of the case.
  • Light total reflection surface 4 7b3 "'Irradiated light exit surface 47c"' that emits light that is totally reflected by light, and reflected light entrance surface 47d “'that makes light reflected by the test surface 3 enter vertically
  • a side reflecting prism having a reflected light emitting surface 47f “'that vertically emits the light totally reflected by the light total reflecting surface 47e3"' may be used.
  • the entrance surface of the tip optical system is perpendicular to the incident light
  • the exit surface is perpendicular to the exit light
  • the incident angle and reflection angle with respect to the test surface 3 are It is determined only by the irradiation light total reflection surface and the reflection light total reflection surface, and it is not necessary to consider the light refraction at the entrance surface and the exit surface of the tip optical system.
  • the polarization state can be measured.
  • the light emitting element such as LD or LED
  • the light emitting element is, for example, as shown in FIGS. 9 (a) and 9 (b).
  • the light emitting points are not configured to have a uniform shape.
  • the above-described polarization measuring device according to the present invention when the light emission point image is formed on the test surface, a large difference occurs in the light intensity distribution depending on the part of the test surface at the irradiation position. The accuracy of the measured value of reflected light is likely to deteriorate.
  • the irradiation area on the test surface is small, stable measurements can be obtained as the relative area of dirt and dust on the test surface increases as shown in Fig. 10. I can't. Furthermore, if the irradiation area on the test surface is small, the position adjustment between the test surface and the illumination light source, which is greatly affected by the relative displacement between the test surface and the light emitting unit, becomes complicated.
  • the present applicant has conceived a polarization measuring device in which the following configuration is added to the configuration of the polarization measuring device according to the present invention.
  • FIG. 11 is a conceptual diagram showing the basic configuration of this improved polarization measuring device according to the present invention
  • FIG. 12 is an optical cross section at the pupil position of the intensity uniformizing optical system in the polarization measuring device shown in FIG.
  • FIG. 10 is an explanatory diagram showing the size of the image in comparison with the size of the image of the light emitting point shown in FIG. Note that the same components as those of the polarization measuring apparatus shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the polarization projection unit 1 is configured to have an intensity distribution uniformizing optical system lc that uniformizes the intensity distribution of light emitted from the light source la. Further, the light beam cross-sectional force S in a predetermined range at the pupil position I d of the intensity distribution uniformizing optical system lc is projected onto the test surface 3. In this way, even if the intensity distribution on the light emitting surface of the light source la is non-uniform, the test surface 3 is irradiated with light of uniform intensity, improving the accuracy of the measurement values obtained from the irradiated surface. Therefore, stable measurement can be performed.
  • the polarization measuring device of the present invention is directed from the polarization projection unit 1 arranged symmetrically with the central axis of the transmission optical system 4 to the test surface 3 at the pupil position Id of the intensity distribution uniformizing optical system lc.
  • the polarized light is projected obliquely with respect to the test surface. For this reason, the reflected light from the test surface is also reflected obliquely. That is, in the transmission optical system 4 shown in FIG. 11, the outgoing light (that is, illumination light) and the incident light (that is, the reflection from the test surface 3) with respect to the surface 3 to be measured. (Irradiation) has a predetermined angle.
  • the center If the light beam illuminating the test surface 3 in a direction perpendicular to the axis O greatly expands, it cannot be emitted from the irradiation light exit surface of the transmission optical system 4 toward the test surface 3 and is reflected internally. Of the light reflected from the surface 3 to be measured, light that cannot enter the reflected light incident surface of the transmission optical system 4 is generated, and these lights enter the polarization receiver 2 and become flare, ghost, etc. It may cause the S / N ratio to deteriorate.
  • the emitted light that is, illumination light
  • the incident light with respect to the test surface 3
  • the polarization projection unit 1 is arranged at the pupil position Id of the intensity distribution uniformizing optical system lc symmetrically with the central axis O of the transmission optical system 4 to the test surface 3.
  • Direction perpendicular to the same imaginary plane including the optical axis of the polarized light irradiating and the optical axis of the light reflected from the surface 3 to be detected and guided to the polarization receiver 2 (in FIG. 1, perpendicular to the paper surface) Elongate slits Id 'extending in the same direction.
  • the optical axis of the polarization irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarization light receiving unit 2 are the same. Since the illumination light does not spread in a direction along the virtual plane and perpendicular to the central axis O, the outgoing light (that is, the illumination light) and the incident light (that is, the illumination light from the test surface 3). As shown in Fig. 12, the illumination area for the test surface 3 can be expanded as much as possible and the noise-generating parts such as flares and ghosts can be cut without being affected by the angle of the reflected light). / N ratio is high! /, Brightness and polarization are detected.
  • the distance (working distance) between the test surface 3 and the front end surface of the transmission optical system 4 may vary. However, if the working distance varies, the imaging position of the reflected light may deviate from the light receiving device of the polarized light receiving unit 2, and the received light detection intensity may be uneven.
  • the polarization projection unit 1 is at least on the output side.
  • the light receiving unit 2 is configured as a recentric optical system, and the polarized light receiving unit 2 is reflected by the optical axis of the polarized light irradiated from the polarized light projecting unit 1 to the test surface 3 and the test surface 3 in the transmission optical system 4 and reflected by the polarized light receiving unit 2.
  • An image forming optical system 2c that forms an image of a position CP at which the optical axis of the light guided to the light receiving device 2b is formed.
  • any reflected light reflected by the test surface 3 is at the position CP in the transmission optical system 4. It forms an image and enters parallel to the imaging optical system 2c.
  • the position CP is conjugate with the light receiving surface of the light receiving device 2b, and the image at the position P is formed on the light receiving device 2b via the imaging optical system 2c. For this reason, it is possible to detect a stable polarization state without causing unevenness in the received light detection intensity.
  • FIG. 13 is a cross-sectional view taken along the optical axis showing the overall configuration of the polarization measuring apparatus according to the third embodiment of the present invention.
  • the polarization measuring apparatus according to the third embodiment is configured to collect the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 2 and irradiate the test surface 3 with the light reflected by the test surface 3. It has a transmission optical system 4 that collects the light and guides it to the polarized light receiver 2.
  • the polarization projection unit 1 includes a light source la, a polarizer lb, an intensity distribution uniformizing optical system lc, and a slit Id ′, and is configured as a telecentric optical system on the exit side.
  • the polarizer lb includes a polarizing plate that converts light emitted from the light source la into predetermined polarization, a polarizing beam splitter that transmits only predetermined polarization, and the like.
  • the intensity distribution uniformizing optical system lc is composed of, for example, a condenser lens and has a function of uniformizing the intensity distribution of the light emitted from the light source la.
  • the slit Id ' is an optical axis of polarized light that irradiates the test surface 3 from the polarization projection unit 1 arranged symmetrically with respect to the central axis of the transmission optical system 4 at the pupil position Id of the intensity distribution uniformizing optical system lc. And a direction perpendicular to the same imaginary plane including the optical axis of the light reflected from the surface 3 to be measured and guided to the polarized light receiving unit 2 (in FIG. 13, the direction perpendicular to the paper surface). Is formed into an elongated shape
  • the polarization projection unit 1 includes the slit Id ′ at the pupil position Id of the intensity distribution uniformizing optical system lc.
  • the cross-sectional force of the light beam is configured to be projected onto the test surface 3.
  • the polarization detection unit 2 includes an analyzer 2a, a light receiving device 2b, and an imaging optical system 2c.
  • the analyzer 2a is composed of, for example, a polarizing beam splitter or a rotatable analyzer plate.
  • the light receiving device 2b is configured by a photodetector or the like, detects a change in the polarization state due to reflection on the surface 3 to be detected from the intensity value of the received polarized light, and detects the detection based on the change. It is configured so that various physical properties of the object can be detected. If the analyzer 2a and the light receiving device 2b can detect the polarization state of the light reflected by the surface 3 to be detected, they are used in conventional polarization measuring devices! It is good even if you use a misaligned one.
  • the imaging optical system 2c is an optical axis of polarized light that is irradiated from the polarization projection unit 1 to the test surface 3, and the light that is reflected by the test surface 3 and guided to the polarization light receiving unit 2.
  • An image of a position CP where the axis intersects is formed on the light receiving device 2b.
  • the transmission optical system 4 includes a lens 41 that condenses the parallel light beam from the polarization projection unit 1 at the position CP, and a lens 42 that projects the light from the lens 41 into the test surface 3 as a parallel light beam. And a tip optical system 43.
  • the transmission optical system 4 includes an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3, and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. It is configured to be arranged symmetrically with respect to the central axis O of the same optical system!
  • the transmission optical system 4 includes an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3, and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. It is configured to cross once at the position CP via the lens 41 and the lens 42! /.
  • FIG. 14 is a conceptual diagram showing an enlarged configuration of a main part of the transmission optical system 4 in the polarization measuring device of FIG.
  • the optical axis of the polarized light that exits the lens 42 and enters the tip optical system 43 is parallel to the central axis O of the transmission optical system 4. Further, the optical axis of the light emitted from the tip optical system 43 and incident on the lens 42 is also parallel to the central axis O of the transmission optical system 4.
  • the leading optical system 43 includes an irradiation light incident surface 43a, an irradiation light total reflection surface 43b, an irradiation light emission surface 43c, a reflected light incident surface 43d, a reflected light total reflection surface 43e, and a reflected light emission. It consists of a prism with face 43f.
  • the irradiation light incident surface 43a is arranged perpendicular to the central axis O of the transmission optical system 4.
  • the polarized light emitted from the polarization projection unit 1 and passed through the lenses 41 and 42 is vertically incident.
  • the irradiation light total reflection surface 43b is configured to totally reflect the light incident inside from the irradiation light incident surface 43a toward the test surface 3.
  • the irradiation light exit surface 43c is configured to emit vertically the light totally reflected by the irradiation light total reflection surface 43b.
  • the reflected light incident surface 43d is configured so that the light reflected by the test surface 3 is incident vertically.
  • the reflected light total reflection surface 43e is configured to totally reflect the light incident inside from the reflected light incident surface 43d.
  • the reflected light exit surface 43f is provided at a position symmetrical to the central axis O of the transmission optical system 4 in the same plane as the irradiated light incident surface 43a, and vertically reflects the light totally reflected by the reflected light total reflection surface 43e. It is comprised so that it may radiate
  • the light emitted from the light source la in the polarization projection unit 1 is parallel through the condenser lens as the intensity distribution uniformizing optical system lc. After being converted into a light beam and converted into a predetermined linearly polarized light through the polarizer lb, it is emitted as an elongated flat light beam extending in a direction perpendicular to the paper surface through the slit Id ′.
  • the polarized light from the polarization projection unit 1 is bent in the optical path through the lens 41 of the transmission optical system 4 and enters the lens 42, and then enters the irradiation light incident surface 43a of the prism 43 through the lens 42. Incident vertically.
  • the polarized light incident on the irradiation light incident surface 43a is totally reflected toward the test surface 3 by the irradiation light total reflection surface 43b.
  • the light totally reflected by the irradiation light total reflection surface 43b is emitted vertically via the irradiation light emission surface 43c, and at a predetermined incident angle at a position intersecting the central axis O of the transmission optical system 4 ′ on the test surface 3. Incident.
  • the light reflected by the surface to be inspected 3 travels along the optical path opposite to the irradiation light with the central axis O of the transmission optical system 4 as symmetric. That is, the light reflected by the test surface 3 enters the reflected light incident surface 43d of the prism 43 vertically. The light incident inside from the reflected light incident surface 43d is totally reflected by the reflected light total reflection surface 43e. At this time, the optical axis of the light totally reflected by the reflected light total reflection surface 43e is parallel to the central axis O of the transmission optical system 4. Further, the light totally reflected by the reflected light total reflection surface 43e is emitted vertically through the reflected light emission surface 43f and enters the lens 42.
  • the light incident on the lens 42 is incident on the lens 41 with its optical path bent.
  • the polarization projection unit 1 The optical axis of polarized light applied to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2 intersect at the intersection position CP.
  • the light incident on the lens 41 enters the polarized light receiving unit 2 in the form of a parallel light beam.
  • the light incident on the polarized light receiving unit 2 is imaged on the light receiving device 2b via the imaging lens 2c.
  • only predetermined linearly polarized light is transmitted through the analyzer 2a in the middle.
  • the light receiving device 2b detects changes in the polarization state due to reflection on the test surface 3 from the intensity value of the received polarized light, and detects various physical properties of the test object based on the changes.
  • the polarization projection unit 1 is configured to have the intensity distribution uniformizing optical system lc that uniformizes the intensity distribution of the light emitted from the light source la, Further, since the light beam cross-sectional force S in the predetermined range at the pupil position Id of the intensity distribution uniformizing optical system lc is projected onto the test surface 3, even if the intensity distribution on the light emitting surface of the light source la is non-uniform The test surface 3 is irradiated with light of uniform intensity, and the accuracy of the measurement values obtained from the irradiated surface is improved, and stable measurement can be performed.
  • the irradiation area on the test surface 3 is enlarged, so that a stable measurement value can be obtained as the relative area of dirt and dust on the test surface 3 is reduced. Furthermore, even if there is a relative positional shift between the test surface 3 and the light emitting portion, it becomes difficult to be affected, and the position adjustment between the test surface 3 and the light source la becomes easy.
  • the polarization projection unit 1 arranged symmetrically with respect to the central axis of the transmission optical system 4 is examined at the pupil position Id of the intensity distribution uniformizing optical system lc.
  • the illumination light does not spread in the direction perpendicular to the central axis O along the same virtual plane including the optical axis of the light guided to 2, the emitted light (that is, the illumination light) to the test surface 3 and As shown in Fig. 12, which is not affected by the angle of incident light (ie, reflected light from the test surface 3), the illumination area for the test surface 3 is expanded as much as possible.
  • the polarization projection unit 1 is configured as a telecentric optical system at least on the emission side
  • the polarization light receiving unit 2 is a polarization projection unit in the transmission optical system 4.
  • the image of the position CP where the optical axis of the polarized light radiated from 1 to the test surface 3 intersects the optical axis of the light reflected by the test surface 3 and guided to the polarization receiver 2 is formed on the light receiving device 2b. Since the image optical system 2c is included, for example, as shown in FIG.
  • the polarization measuring device of the third embodiment has various functions and effects described in relation to the polarization measuring device of the first embodiment.
  • the polarization measuring device of the third embodiment it can be remarkably miniaturized as compared with the conventional polarization measuring device, and for non-industrial uses, for example, medical examination such as inspection of tooth surface condition.
  • medical examination such as inspection of tooth surface condition.
  • it can be easily expanded for use as an analytical device such as DNA chip inspection, and it is possible to perform stable measurement with improved measurement accuracy.
  • a polarization measuring device that can eliminate the complication of the positional adjustment is obtained.
  • the transmission optical system 4 is further provided on the polarization projection unit 1 side and the polarization light receiving unit 2 side according to the application.
  • a long optical system is provided with one or more relay optical systems that cross the optical axis of polarized light radiated from 1 to the test surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving unit 2. You may configure the system.
  • the polarization measuring device of the present invention can be used in an engineering field in which a change in physical properties is required in real time, a medical field in which, for example, a dental surface condition is required, or a DNA chip. This is useful in the biological field where testing is required.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A polarization measuring device includes: a polarized light projection unit (1); a polarized light reception unit (2); and a transmission optical system (4) which collects the polarized light from the polarized light projection unit (1) so as to apply it to a plane under test (3), collects the light reflected by the plane under test (3), and introduces it to the polarized light reception unit (2). The transmission optical system (4) includes an optical axis of the polarized light applied from the polarized light projection unit (1) to the plane under test (3) and an optical axis of the light reflected from the plane under test (3) and introduced to the polarized light reception unit (2) which are arranged symmetrically about a center axis O of the same optical system and configured so that they intersect at least once. The polarized light projection unit (1) includes an intensity distribution uniformizing optical system (1c) for uniformizing the intensity distribution of the light emitted from a light source (1a). A light flux cross section of a predetermined range at a pupil position (1d) of the intensity distribution uniformizing optical system (1c) is projected to the plane under test (3).

Description

明 細 書  Specification
偏光測定装置  Polarimeter
技術分野  Technical field
[0001] 本発明は、偏光測定装置に関するものである。  The present invention relates to a polarization measuring device.
背景技術  Background art
[0002] 偏光測定装置は、被検面に偏光を照射して、その反射光を受光し、受光した光の偏 光状態の変化を測定する装置であり、従来、工業分野において、被検物の物性(の 変化)を検出するために用いられて!/、る。  A polarization measuring device is a device that irradiates a test surface with polarized light, receives reflected light, and measures a change in the polarization state of the received light. Used to detect the physical properties of!
[0003] 図 1は従来の偏光測定装置の基本構成の一例を示す説明図である。なお、便宜上、 光を所定面に集光(結像)させるためのレンズ等の光学部材は省略してある。  FIG. 1 is an explanatory diagram showing an example of a basic configuration of a conventional polarization measuring device. For convenience, an optical member such as a lens for condensing (imaging) light on a predetermined surface is omitted.
[0004] 偏光測定装置は、被検面 53に対して偏光を投影するための一方の光路上に、偏光 投影部として、光源 51と、偏光子 52を有し、被検面 53から反射した光を受光するた めの他方の光路上に、偏光受光部として、検光子 54と、光検出器 55を有している。  [0004] The polarization measuring apparatus has a light source 51 and a polarizer 52 as a polarization projection unit on one optical path for projecting polarized light onto the test surface 53, and reflected from the test surface 53. On the other optical path for receiving light, an analyzer 54 and a photodetector 55 are provided as polarized light receiving parts.
[0005] そして、光源 51 ,偏光子 52を介して、偏光を被検面に斜めに照射するとともに、被検 面 3からの反射光を検光子 54に入射させ、検光子 54を通過した偏光を光検出器 55 で受光し、光検出器 55での測定値を介して、被検面 53を反射したことによる偏光状 態の変化を検出し、その変化に基づいて被検物の諸物性 (例えば、吸収係数、膜厚 、屈折率など)(の変化)を検出することができるようになつている。  [0005] Then, polarized light is incident on the test surface obliquely through the light source 51 and the polarizer 52, and the reflected light from the test surface 3 is incident on the analyzer 54, and the polarized light that has passed through the analyzer 54 Is detected by the photodetector 55, and changes in the polarization state due to reflection on the surface 53 to be detected are detected based on the measurement values obtained by the photodetector 55, and various physical properties of the specimen are detected based on the changes. (For example, absorption coefficient, film thickness, refractive index, etc.) (changes) can be detected.
[0006] 例えば、偏光子 52ゃ検光子 54の相対的な基準位置を予め定めておくと共に、被検 物を測定時に偏光子 52ゃ検光子 54をそれぞれの光軸を中心に回転させて、光検 出器 55で受光した強度が最小あるいは最大となる偏光子 52と検光子 54との相対的 な角度を検出し、その相対的な角度からその被検物の諸物性(の変化)を検出する。  [0006] For example, the relative reference position of the polarizer 52 and the analyzer 54 is determined in advance, and the polarizer 52 and the analyzer 54 are rotated around the respective optical axes when measuring the test object. The relative angle between the polarizer 52 and the analyzer 54 at which the intensity received by the optical detector 55 is minimum or maximum is detected, and the physical properties (changes) of the test object are determined from the relative angle. To detect.
[0007] また、例えば、さらに電圧制御液晶リターダ(図示省略)を被検面 53と検光子 54との 間の反射光路上に設けて、電圧制御液晶リターダの電圧を調整することによって検 光子 54を経て光検出器 55で受光する強度の最小値を求め、そのときの電圧から被 検物の諸物性 (の変化)を検出する。  [0007] Further, for example, a voltage control liquid crystal retarder (not shown) is further provided on the reflection optical path between the test surface 53 and the analyzer 54, and the voltage of the voltage control liquid crystal retarder is adjusted to adjust the analyzer 54. After that, the minimum value of the intensity received by the photodetector 55 is obtained, and various physical properties (changes) of the test object are detected from the voltage at that time.
[0008] このような従来の偏光測定装置としては、例えば、特開 2001— 296182号に記載の 装置がある。 As such a conventional polarization measuring apparatus, for example, as described in JP-A-2001-296182 There is a device.
[0009] し力、しながら、従来の偏光測定装置では、偏光を集光して被検面に照射するための 光学系と、被検面からの反射光を集光して光検出器に導くための光学系とが、それ ぞれ別々の光路上に配置されていたため、被検面に対する入射及び反射方向に光 路が広がって大型化してしまい、装置の配置スペースが多く取られ、測定スペースが 狭められていた。そして、このような装置では、被検物を固定した状態で測定せざる を得ず、工業用の結晶材料の膜厚ゃ複屈折率などの測定等、用途が工業用製品に おける偏光状態の変化の測定に限定されたものとなっていた。  However, in the conventional polarization measuring device, an optical system for condensing the polarized light and irradiating the test surface, and the reflected light from the test surface are collected and applied to the photodetector. Since the optical systems for guiding are arranged on separate optical paths, the optical path spreads in the direction of incidence and reflection with respect to the surface to be measured, resulting in an increase in size and a large space for the equipment. The space was narrowed. In such an apparatus, measurement must be performed in a state where the test object is fixed, and the use of the polarization state in the industrial product such as measurement of the film thickness or birefringence of the industrial crystal material is unavoidable. It was limited to measuring changes.
[0010] また、従来の偏光測定装置においては、照明光源として LDや LEDなどの発光素子 力はく用いられる。しかし、これらの発光素子は、発光点が均一形状となるように構成 されてはいない。このため、発光点の像が被検面に結像するような構成にすると、照 射位置での被検面の部位によって照明光の強度分布に大きな差異が生じ、測定値 の精度が劣化してしまい易い。また、被検面における照射面積が小さいために、被検 面におけるよごれやゴミの相対的面積が大きくなつて安定した測定値が得られない。 さらに、被検面における照射面積が小さいと、被検面と発光部との相対的な位置ず れの影響を大きく受け易ぐ被検面と照明光源との位置調整が煩雑化してしまうという 問題があった。  [0010] In addition, in the conventional polarization measuring device, the power of light emitting elements such as LD and LED is used as an illumination light source. However, these light emitting elements are not configured so that the light emitting points have a uniform shape. For this reason, if the configuration is such that the image of the light emission point is formed on the test surface, the intensity distribution of the illumination light varies greatly depending on the site of the test surface at the irradiation position, and the accuracy of the measured value deteriorates. It is easy to end up. In addition, since the irradiation area on the surface to be measured is small, a stable measurement value cannot be obtained because the relative area of dirt and dust on the surface to be measured is large. Furthermore, if the irradiation area on the test surface is small, the position adjustment between the test surface and the illumination light source, which is easily affected by the relative displacement between the test surface and the light emitting unit, becomes complicated. was there.
[0011] それ故、本発明の目的は、従来の偏光測定装置に比べて格段に小型化でき、工業 用以外の用途にも用途を拡大させ易い偏光測定装置を提供することにある。  [0011] Therefore, an object of the present invention is to provide a polarization measuring device that can be remarkably reduced in size as compared with conventional polarization measuring devices and that can be easily expanded to applications other than industrial use.
[0012] 本発明の他の目的は、測定精度を向上させて安定した計測を行うことができ、被検 面と照明光源との位置調整の煩雑化を解消することが可能な偏光測定装置を提供 することにある。  Another object of the present invention is to provide a polarization measuring device that can improve measurement accuracy and perform stable measurement, and can eliminate the complexity of position adjustment between the surface to be measured and the illumination light source. It is to provide.
発明の開示  Disclosure of the invention
[0013] 上記目的を達成するため、本発明による偏光測定装置は、偏光投影部と、偏光受光 部と、前記偏光投影部からの偏光を集光して被検面に照射するとともに該被検面で 反射した光を集光して前記偏光受光部に導く伝送光学系を有し、前記伝送光学系 は、前記偏光投影部から前記被検面へ照射する偏光の光軸と、前記被検面で反射 して前記偏光受光部に導かれる光の光軸とが、同一の光学系の中心軸に対称に配 置され、且つ、少なくとも一回交差するように、構成されていることを特徴としている。 [0013] In order to achieve the above object, a polarization measuring device according to the present invention condenses the polarized light from the polarization projection unit, the polarization light receiving unit, and the polarization projection unit and irradiates the surface to be examined. A transmission optical system that condenses the light reflected by the surface and guides the light to the polarized light receiving unit, and the transmission optical system includes an optical axis of polarized light that irradiates the test surface from the polarized light projection unit, and the test target. The optical axis of the light reflected by the surface and guided to the polarized light receiving unit is symmetrically arranged with respect to the central axis of the same optical system. And is configured to intersect at least once.
[0014] また、本発明の偏光測定装置においては、前記強度分布均一化光学系の瞳位置に 、前記伝送光学系の中心軸に対称に配置された前記偏光投影部から前記被検面へ 照射する偏光の光軸と前記被検面で反射して前記偏光受光部に導かれる光の光軸 とを含む同一仮想平面に対して垂直な方向に延びた、細長形状のスリットを備えるの が好ましい。 In the polarization measuring apparatus of the present invention, the surface to be examined is irradiated from the polarization projection unit arranged symmetrically with respect to the central axis of the transmission optical system at the pupil position of the intensity distribution uniformizing optical system. It is preferable to include an elongated slit extending in a direction perpendicular to the same virtual plane including the optical axis of polarized light to be reflected and the optical axis of light reflected by the test surface and guided to the polarized light receiving unit. .
[0015] また、本発明の偏光測定装置においては、前記偏光投影部が、少なくとも出射側に テレセントリックな光学系として構成され、前記偏光受光部が、前記伝送光学系にお いて前記偏光投影部から前記被検面へ照射する偏光の光軸と前記被検面で反射し て前記偏光受光部に導かれる光の光軸とが交差する位置の像を前記受光装置に結 像する結像光学系を有するのが好まし!/、。  In the polarization measuring device of the present invention, the polarization projection unit is configured as a telecentric optical system at least on the emission side, and the polarization light receiving unit is separated from the polarization projection unit in the transmission optical system. An imaging optical system for forming an image at a position where the optical axis of polarized light irradiating the test surface and the optical axis of light reflected by the test surface and guided to the polarized light receiving unit intersect with the light receiving device Preferred to have! / ,.
[0016] また、本発明による偏光測定装置は、光源と偏光子を有する偏光投影部と、検光子 と受光装置を有する偏光受光部と、前記偏光投影部からの偏光を集光して被検面に 照射するとともに該被検面で反射した光を集光して前記偏光受光部に導く伝送光学 系とを有し、前記伝送光学系が、前記偏光投影部から前記被検面へ照射する偏光 の光軸と、前記被検面で反射して前記偏光受光部に導かれる光の光軸とが、同一の 光学系の中心軸に対称に配置され、且つ、少なくとも一回交差するように構成され、 前記偏光投影部が、前記光源から出射した光の強度分布を均一化する強度分布均 一化光学系を有し、且つ、前記強度分布均一化光学系の瞳位置における所定範囲 の光束断面が、前記被検面に投影されるようにしたことを特徴としている。  [0016] Further, the polarization measuring device according to the present invention includes a polarization projection unit having a light source and a polarizer, a polarization light receiving unit having an analyzer and a light receiving device, and condensing the polarized light from the polarization projection unit. A transmission optical system that irradiates the surface and collects light reflected by the test surface and guides it to the polarized light receiving unit, and the transmission optical system irradiates the test surface from the polarized light projection unit The optical axis of polarized light and the optical axis of the light reflected by the test surface and guided to the polarized light receiving unit are arranged symmetrically with respect to the central axis of the same optical system and intersect at least once. The polarization projection unit includes an intensity distribution equalizing optical system that equalizes an intensity distribution of light emitted from the light source, and a light beam having a predetermined range at a pupil position of the intensity distribution equalizing optical system. The cross section is projected onto the test surface.
[0017] また、本発明の偏光測定装置においては、前記伝送光学系が、前記偏光投影部か らの偏光を被検面に対して斜めに照射するように出射させるとともに前記被検面で反 射した光を内部に入射させるように構成された、先端光学系を有するのが好ましい。 また、本発明の偏光測定装置においては、前記先端光学系が、内部に入射した光 を被検面に向けて全反射する照射光全反射面と、前記被検面で反射し内部に入射 した光を全反射する反射光全反射面と、を有するプリズムで構成されて!/、るのが好ま しい。  [0017] In the polarization measuring apparatus of the present invention, the transmission optical system emits the polarized light from the polarization projection unit so as to irradiate the surface to be measured obliquely, and is reflected on the surface to be measured. It is preferable to have a tip optical system configured to allow incident light to enter the inside. Further, in the polarization measuring device of the present invention, the tip optical system includes an irradiation light total reflection surface that totally reflects the light incident on the test surface toward the test surface, and is reflected by the test surface and enters the test light. It is preferable to be composed of a prism having a reflection light total reflection surface that totally reflects light!
[0018] また、本発明の偏光測定装置においては、前記伝送光学系が、前記先端光学系より も前記被検面から離れた位置において、前記偏光投影部から前記被検面へ照射す る偏光の光軸と、前記被検面で反射して前記偏光受光部に導かれる光の光軸とを、 少なくとも一回交差させた後に、該伝送光学系の中心軸に対して平行になるように構 成され、前記先端光学系が、前記偏光投影部からの偏光を垂直に入射させる照射 光入射面と、前記照射光入射面から内部に入射した光を被検面に向けて全反射す る照射光全反射面と、前記照射光全反射面で全反射した光を垂直に出射させる照 射光出射面と、前記被検面で反射した光を垂直に入射させる反射光入射面と、前記 反射光入射面から内部に入射した光を全反射する反射光全反射面と、前記反射光 全反射面で全反射した光を垂直に出射させる反射光出射面と、を有するプリズムで 構成されてレ、るのが好ましレ、。 [0018] In the polarization measuring device of the present invention, the transmission optical system is more than the tip optical system. And an optical axis of polarized light that irradiates the test surface from the polarized light projection unit at a position away from the test surface, and an optical axis of light that is reflected by the test surface and guided to the polarized light receiving unit. At least once, and configured so as to be parallel to the central axis of the transmission optical system, and the tip optical system is configured to make the incident light incident so that the polarized light from the polarization projection unit enters perpendicularly. A surface, an irradiation light total reflection surface that totally reflects light incident inside from the irradiation light incident surface toward the test surface, and an irradiation light that vertically emits the light totally reflected by the irradiation light total reflection surface An exit surface, a reflected light incident surface that vertically enters light reflected by the test surface, a reflected light total reflection surface that totally reflects light incident inside from the reflected light incident surface, and the reflected light total reflection And a reflected light exit surface for emitting the light totally reflected by the surface vertically. Has been Shi favored, Ru of Les,.
[0019] また、本発明の偏光測定装置においては、前記伝送光学系が、前記先端光学系より も前記被検面から離れた位置において、前記偏光投影部から前記被検面へ照射す る偏光の光軸と、前記被検面で反射して前記偏光受光部に導かれる光の光軸とを、 該伝送光学系の中心軸に対して斜めになるように構成され、前記先端光学系が、内 部に入射した光を被検面に向けて全反射する照射光全反射面と、前記被検面で反 射し内部に入射した光を全反射する反射光全反射面と、を有するプリズムで構成さ れているのが好ましい。 [0019] In the polarization measuring device of the present invention, the transmission optical system irradiates the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system. And the optical axis of the light that is reflected by the test surface and guided to the polarized light receiving unit are inclined with respect to the central axis of the transmission optical system, and the tip optical system is The irradiation light total reflection surface that totally reflects the light incident on the inner surface toward the test surface, and the reflected light total reflection surface that reflects the light incident on the test surface and total reflection. It is preferable that it is composed of a prism.
[0020] また、本発明の偏光測定装置においては、前記伝送光学系が、前記先端光学系より も前記被検面から離れた位置において、前記偏光投影部から前記被検面へ照射す る偏光の光軸と、前記被検面で反射して前記偏光受光部に導かれる光の光軸とを、 該伝送光学系の中心軸に対して斜めになるように構成され、前記先端光学系が、前 記照射光入射面から内部に入射した光を被検面に向けて全反射する照射光全反射 面と、前記照射光全反射面で全反射した光を垂直に出射させる照射光出射面と、前 記被検面で反射した光を垂直に入射させる反射光入射面と、前記反射光入射面か ら内部に入射した光を全反射する反射光全反射面と、を有するプリズムで構成されて いるのが好ましい。  [0020] In the polarization measuring apparatus of the present invention, the transmission optical system irradiates the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system. And the optical axis of the light that is reflected by the test surface and guided to the polarized light receiving unit are inclined with respect to the central axis of the transmission optical system, and the tip optical system is The irradiation light total reflection surface that totally reflects the light incident inside from the irradiation light incident surface toward the test surface, and the irradiation light emission surface that vertically emits the light totally reflected by the irradiation light total reflection surface And a reflected light incident surface for vertically incidence of light reflected by the test surface, and a reflected light total reflection surface for totally reflecting light incident on the inside from the reflected light incident surface. It is preferable that
[0021] また、本発明の偏光測定装置においては、前記伝送光学系が、前記先端光学系より も前記被検面から離れた位置において、前記偏光投影部から前記被検面へ照射す る偏光の光軸と、前記被検面で反射して前記偏光受光部に導かれる光の光軸とを、 該伝送光学系の中心軸に対して斜めになるように構成され、前記先端光学系が、前 記偏光投影部からの偏光を垂直に入射させる照射光入射面と、前記照射光入射面 力 内部に入射した光を被検面に向けて全反射する照射光全反射面と、前記照射 光全反射面で全反射した光を垂直に出射させる照射光出射面と、前記被検面で反 射した光を垂直に入射させる反射光入射面と、前記反射光入射面から内部に入射し た光を全反射する反射光全反射面と、前記反射光全反射面で全反射した光を垂直 に出射させる反射光出射面と、を有するプリズムで構成されているのが好ましい。 In the polarization measuring device of the present invention, the transmission optical system irradiates the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system. An optical axis of polarized light that is reflected by the surface to be measured and guided to the polarized light receiving unit is inclined with respect to the central axis of the transmission optical system, and the tip optical An irradiation light incident surface on which the polarized light from the polarization projection unit is incident vertically; an irradiation light total reflection surface that totally reflects light incident on the irradiation light incident surface force toward the test surface; Irradiation light exit surface for emitting the light totally reflected by the illumination light total reflection surface vertically, reflected light entrance surface for allowing the light reflected by the test surface to enter vertically, and from the reflected light entrance surface to the inside It is preferable that the prism is constituted by a prism having a reflected light total reflection surface that totally reflects incident light, and a reflected light emission surface that vertically emits light totally reflected by the reflected light total reflection surface.
[0022] また、本発明の偏光測定装置においては、前記プリズムが、前記照射光全反射面と 前記反射光全反射面を前記伝送光学系の中心軸に対称な側面に有する側面全反 射プリズムであるのが好ましレ、。  In the polarization measuring device of the present invention, the prism has a side total reflection prism having the irradiation light total reflection surface and the reflection light total reflection surface on side surfaces symmetrical to a central axis of the transmission optical system. It is preferable to be.
[0023] また、本発明の偏光測定装置においては、入射した照射光を全反射する照射光全 反射面及び入射した反射光を全反射する反射光全反射面を、夫々、前記伝送光学 系の中心軸に対称な側面の複数箇所に有するのが好ましい。  In the polarization measuring device of the present invention, an irradiation light total reflection surface that totally reflects incident irradiation light and a reflection light total reflection surface that totally reflects incident reflection light are respectively provided in the transmission optical system. It is preferable to have it at a plurality of locations on the side surface symmetrical to the central axis.
[0024] また、本発明の偏光測定装置にお!/、ては、前記プリズムが結晶質で構成されてレ、る のが好ましい。  [0024] Further, in the polarization measuring apparatus of the present invention, it is preferable that the prism is made of a crystalline material.
[0025] また、本発明の偏光測定装置においては、前記結晶質の C軸が前記伝送光学系の 中心軸方向に対して平行となるように、前記プリズムが配置されているのが好ましい。  In the polarization measuring device of the present invention, it is preferable that the prism is arranged so that the crystalline C-axis is parallel to the central axis direction of the transmission optical system.
[0026] また、本発明の偏光測定装置においては、前記結晶質の C軸が前記伝送光学系の 中心軸方向に対して垂直となるように、前記プリズムが配置されているのが好ましい。  In the polarization measuring apparatus of the present invention, it is preferable that the prism is arranged so that the crystalline C-axis is perpendicular to the central axis direction of the transmission optical system.
[0027] また、本発明の偏光測定装置においては、さらに、前記伝送光学系が、前記偏光投 影部側及び前記偏光受光部側に、前記偏光投影部から前記被検面へ照射する偏 光の光軸と、前記被検面で反射して前記偏光受光部に導かれる光の光軸とを交差さ せるリレー光学系を有するのが好ましレ、。  [0027] In the polarization measuring device of the present invention, the transmission optical system further applies polarization to the surface to be inspected from the polarization projection unit to the polarization projection unit side and the polarization light receiving unit side. It is preferable to have a relay optical system that crosses the optical axis of the light beam and the optical axis of the light reflected by the test surface and guided to the polarized light receiving unit.
[0028] 本発明の偏光測定装置によれば、従来の偏光測定装置に比べて格段に小型化でき 、工業用以外の用途にも、例えば、歯の表面状態の検査など医療の用途や、例えば 、 DNAチップの検査などの分析装置としての用途などに、用途を拡大させ易ぐしか も、測定精度を向上させて安定した計測を行うことができ、被検面と照明光源との位 置調整の煩雑化を解消することが可能な偏光測定装置が得られる。 [0028] According to the polarization measuring device of the present invention, it can be remarkably reduced in size compared to the conventional polarization measuring device, and for non-industrial uses, for example, medical uses such as inspection of tooth surface conditions, for example, However, it is easy to expand the application for use as an analytical instrument such as DNA chip inspection, etc., but it is possible to improve the measurement accuracy and perform stable measurement. A polarization measuring device that can eliminate the complication of the position adjustment can be obtained.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は従来の偏光測定装置の偏光測定装置の基本構成の一例を示す説明図 である。 FIG. 1 is an explanatory diagram showing an example of a basic configuration of a polarization measuring device of a conventional polarization measuring device.
[図 2]図 2は本発明の偏光測定装置における基本構成を示す概念図である。  FIG. 2 is a conceptual diagram showing a basic configuration of the polarization measuring device of the present invention.
[図 3]図 3は本発明の第 1実施形態にかかる偏光測定装置の全体構成を示す光軸に 沿う断面図である。  FIG. 3 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the first embodiment of the present invention.
[図 4]図 4は図 3の要部の構成を拡大して示す概念図である。  [FIG. 4] FIG. 4 is a conceptual diagram showing an enlarged configuration of a main part of FIG.
[図 5]図 5は本発明の第 2実施形態にかかる偏光測定装置の全体構成を示す光軸に 沿う断面図である。  FIG. 5 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the second embodiment of the present invention.
[図 6]図 6は図 5の要部の構成を部分的に拡大して示す概念図である。  FIG. 6 is a conceptual diagram showing a partially enlarged configuration of the main part of FIG.
[図 7]図 7は第 2実施形態の偏光測定装置における先端光学系の一変形例を示す説 明図である。  FIG. 7 is an explanatory view showing a modification of the tip optical system in the polarization measuring device of the second embodiment.
[図 8]図 8は第 2実施形態の偏光測定装置における先端光学系の他の変形例を示す 説明図である。  FIG. 8 is an explanatory view showing another modification of the tip optical system in the polarization measuring device of the second embodiment.
[図 9]図 9 (a)及び図 9 (b)は図 2乃至図 5に示した本発明の偏光測定装置の光源とし て LDや LEDなどの発光素子を用いた場合における発光点の像の形状を示す説明図 である。  [FIG. 9] FIGS. 9 (a) and 9 (b) are images of light emission points when a light emitting element such as an LD or LED is used as the light source of the polarization measuring device of the present invention shown in FIGS. It is explanatory drawing which shows the shape of.
[図 10]図 10は図 2乃至図 5に示した本発明の偏光測定装置において、図 9(b)に示す ような発光点の像が被検面に結像する構成にしたときの、発光点の像に対する被検 面のよごれやゴミの相対的面積の大きさを概念的に示す説明図である。  [FIG. 10] FIG. 10 shows a configuration of the polarization measuring device of the present invention shown in FIGS. 2 to 5 when the image of the light emitting point as shown in FIG. 9 (b) is formed on the surface to be measured. FIG. 3 is an explanatory diagram conceptually showing the size of a relative area of dirt or dust on a test surface with respect to an image of a light emitting point.
[図 11]図 11は本発明の第 3実施形態にかかる偏光測定装置における基本構成を示 す概念図である。 FIG. 11 is a conceptual diagram showing a basic configuration of a polarization measuring apparatus according to a third embodiment of the present invention.
[図 12]図 12は図 11に示した偏光測定装置における強度均一化光学系の瞳位置に おける光学断面の像の大きさを図 4に示した発光点の像の大きさと比較して示す説 明図である。  [FIG. 12] FIG. 12 shows the size of the image of the optical cross section at the pupil position of the intensity uniformizing optical system in the polarization measuring device shown in FIG. 11 in comparison with the size of the image of the light emitting point shown in FIG. It is an explanatory diagram.
[図 13]図 13は本発明の第 4実施形態にかかる偏光測定装置の全体構成を示す光軸 に沿う断面図である。 [図 14]図 14は図 13の偏光測定装置における伝送光学系の要部の構成を拡大して 示す概念図である。 FIG. 13 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the fourth embodiment of the present invention. FIG. 14 is a conceptual diagram showing an enlarged configuration of a main part of a transmission optical system in the polarization measuring device of FIG.
[図 15]図 15は第 4実施形態の偏光測定装置において、被検面との距離 (作動距離) が異なる場合における被検面で反射した光の経路を示す説明図である。  FIG. 15 is an explanatory diagram showing the path of light reflected by the test surface when the distance (working distance) from the test surface is different in the polarization measuring device of the fourth embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 実施例の説明に先立ち、本発明の作用効果について説明する。 Prior to the description of the embodiments, the function and effect of the present invention will be described.
[0031] 図 2は本発明の偏光測定装置における基本的な構成を示す概念図である。本発明 の偏光測定装置は、偏光投影部 1と、偏光受光部 2と、偏光投影部 1からの偏光をス ポット状に集光して被検面 3に照射するとともに被検面 3で反射した光をスポット状に 集光して偏光受光部 2に導く伝送光学系 4を有して!/、る。 FIG. 2 is a conceptual diagram showing a basic configuration of the polarization measuring apparatus of the present invention. The polarization measuring device of the present invention condenses the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 1 in a spot shape and irradiates the test surface 3 and reflects it on the test surface 3. It has a transmission optical system 4 that collects the reflected light in the form of a spot and guides it to the polarized light receiving unit 2.
[0032] 偏光投影部 1は、光源 laと光源 laから出射した光から所定の偏光に変換する偏光 板や所定の偏光のみを透過させる偏光ビームスプリッタなどの偏光子 lbを有する、 従来公知の光学構成が採用され、偏光を投影するように構成されている。 [0032] The polarization projection unit 1 includes a light source la and a polarizer lb such as a polarizing plate that converts light emitted from the light source la into predetermined polarization and a polarization beam splitter that transmits only predetermined polarization. A configuration is employed and configured to project polarized light.
[0033] 偏光受光部 2は、例えば、偏光ビームスプリッタゃ回転可能な検光板などの検光子 2 aと光検出器などの受光装置 2bを有する、従来公知の光学構成が採用され、被検面The polarization light receiving unit 2 employs a conventionally known optical configuration including, for example, an analyzer 2 a such as a polarizing beam splitter or a rotatable analyzer plate and a light receiving device 2 b such as a photodetector,
3で反射した光の偏光状態の変化を検出することができるように構成されている。 なお、偏光投影部 1、偏光受光部 2は、図 2に示す構成に限定されるものでなぐ従 来、偏光測定装置に採用されて!、るレ、ずれの構成も採用可能である。 The change of the polarization state of the light reflected at 3 can be detected. Note that the polarization projection unit 1 and the polarization light receiving unit 2 are not limited to the configuration shown in FIG. 2, and are conventionally employed in a polarization measuring apparatus.
[0034] 本発明の特徴的な構成は、伝送光学系 4にある。 A characteristic configuration of the present invention resides in the transmission optical system 4.
本発明の偏光測定装置では、特開 2001— 296182で示した従来の偏光測定装 置とは異なり、投影光の光路と反射光の光路とを共通の光学系に持たせた伝送光学 系 4を設けている。  Unlike the conventional polarization measuring device disclosed in Japanese Patent Laid-Open No. 2001-296182, the polarization measuring device of the present invention includes a transmission optical system 4 in which the optical path of projection light and the optical path of reflected light are provided in a common optical system. Provided.
[0035] 被検面に対して、最小スポットで偏光を投影するためには、光学系を介して偏光を集 光させる必要がある。また、この種の偏光測定装置は、偏光を被検面に対して斜めに 投影させるので、被検面に対する投影光と反射光の光路は、共通の光学系において 中心軸を外れた位置を通る。  In order to project polarized light with a minimum spot onto the surface to be measured, it is necessary to collect the polarized light through an optical system. In addition, since this type of polarization measuring device projects polarized light obliquely onto the surface to be measured, the optical path of the projected light and the reflected light on the surface to be measured passes through a position off the central axis in the common optical system. .
[0036] そこで、本発明の偏光測定装置では、投影光の光路と反射光の光路とを共通の光学 系に設けるために、伝送光学系 4を、偏光投影部 1から被検面 3へ照射する偏光の光 軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが同一の光学系の中 心軸 Oに対称に配置されるように構成している。 Therefore, in the polarization measuring apparatus of the present invention, the transmission optical system 4 is irradiated from the polarization projection unit 1 to the test surface 3 in order to provide the optical path of the projection light and the optical path of the reflected light in a common optical system. Polarized light The axis and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving unit 2 are arranged symmetrically with respect to the central axis O of the same optical system.
[0037] また、投影光の光路と反射光の光路とを同一の光学系の中心軸を対称に別光路とし て設けた伝送光学系を介して偏光を集光させるためには、光を光軸に対して交差す る方向に曲げる必要があるため、これらの光路を少なくとも一回は交差させることが必 要となる。 [0037] In addition, in order to collect the polarized light via the transmission optical system in which the optical path of the projection light and the optical path of the reflected light are provided as separate optical paths with the central axis of the same optical system being symmetrical, Since it is necessary to bend in a direction that intersects the axis, it is necessary to cross these optical paths at least once.
[0038] そこで、本発明の偏光測定装置では、偏光投影部 1から被検面 3へ照射する偏光の 光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが少なくとも一回交 差するように構成している。  Therefore, in the polarization measuring device of the present invention, the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarization light receiving unit 2 Are configured to cross at least once.
このように構成すれば、投影光及び反射光のために用いる光路を細長状に構成で き、被検面に対する入射及び反射方向に光路を広げずに済むため、従来の偏光測 定装置に比べて格段に投影光及び反射光の光路に用いるスペースを小型化できる 。その結果、工業用以外の用途にも、例えば、歯の表面状態の検査など医療の用途 や、例えば、 DNAチップの検査などの分析装置としての用途などに、用途を拡大さ せ易くなる。  With this configuration, the optical path used for the projection light and the reflected light can be configured in an elongated shape, and it is not necessary to widen the optical path in the direction of incidence and reflection with respect to the test surface. In particular, the space used for the optical path of the projection light and the reflected light can be reduced in size. As a result, the application can be easily expanded to non-industrial uses, for example, medical uses such as inspection of the surface condition of teeth, and uses as analysis devices such as inspection of DNA chips.
[0039] また、本発明の偏光測定装置では、偏光投影部 1からの偏光を被検面 3に対して斜 めに照射するように出射させるとともに、被検面 3で反射した光を内部に入射させるよ うに構成された先端光学系(図 2では不図示)を、伝送光学系 4に備えている。具体 的には、前記先端光学系は、内部に入射した光を被検面に向けて全反射する照射 光全反射面と、前記被検面で反射し内部に入射した光を全反射する反射光全反射 面と、を有するプリズムで構成されている。  [0039] Further, in the polarization measuring device of the present invention, the polarized light from the polarization projection unit 1 is emitted so as to irradiate the test surface 3 obliquely, and the light reflected by the test surface 3 is internally introduced. The transmission optical system 4 is equipped with a tip optical system (not shown in FIG. 2) configured to be incident. Specifically, the tip optical system includes an irradiation light total reflection surface that totally reflects light incident on the test surface toward the test surface, and a reflection that reflects light incident on the test surface after being reflected by the test surface. And a prism having a light total reflection surface.
[0040] このように、先端光学系として、照射光全反射面と反射光全反射面とを有するプリズ ムを備えれば、投影光及び反射光のために用いる光路を細長状にしながら、被検面 に対して大きな入射角で斜めに照射させることができ、従来の偏光測定装置と同様 の機能を発揮させ易くなる。  [0040] As described above, when the prism having the irradiation light total reflection surface and the reflection light total reflection surface is provided as the tip optical system, the optical path used for the projection light and the reflection light is elongated while being covered. The surface can be irradiated obliquely at a large incident angle, and the same function as that of a conventional polarization measuring device can be easily exhibited.
[0041] なお、本発明の偏光測定装置においては、先端光学系の入射面は入射光に対して 垂直に、出射面は出射光に対して垂直であるのが好ましい。このようにすれば、被検 面に対する入射角及び反射角が照射光全反射面及び反射光全反射面のみで決定 することができ、先端光学系の入射面及び出射面における光の屈折を考慮しなくて 済むので、被検面に対して高精度かつ、光量ロスの少ない偏光状態の測定ができる[0041] In the polarization measuring apparatus of the present invention, it is preferable that the incident surface of the tip optical system is perpendicular to the incident light, and the exit surface is perpendicular to the emitted light. In this way, the incident angle and reflection angle with respect to the surface to be measured are determined only by the irradiation light total reflection surface and reflection light total reflection surface. Since it is not necessary to consider the light refraction at the entrance surface and the exit surface of the tip optical system, it is possible to measure the polarization state with high accuracy and little light loss on the surface to be measured.
Yes
[0042] 以下、本発明の偏光測定装置の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the polarization measuring apparatus of the present invention will be described with reference to the drawings.
[0043] 図 3は本発明の第 1実施形態にかかる偏光測定装置の全体構成を示す光軸に沿う 断面図である。第 1実施形態の偏光測定装置は、偏光投影部 1と、偏光受光部 2と、 偏光投影部 2からの偏光をスポット状またはスリット状に集光して被検面 3に照射する とともに被検面 3で反射した光をスポット状またはスリット状に集光して偏光受光部 2に 導く伝送光学系 4を有して!/、る。  FIG. 3 is a cross-sectional view along the optical axis showing the overall configuration of the polarization measuring apparatus according to the first embodiment of the present invention. The polarization measuring apparatus according to the first embodiment condenses the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 2 in a spot shape or a slit shape and irradiates the surface 3 to be examined. It has a transmission optical system 4 that condenses the light reflected by the surface 3 in a spot shape or slit shape and guides it to the polarized light receiving unit 2.
[0044] 偏光投影部 1は、直線偏光をスポット状またはスリット状に集光して投影することがで きる構成であればどのような構成でもよレ、。  [0044] The polarization projection unit 1 may have any configuration as long as it can project linearly polarized light in the form of a spot or slit.
また、偏光検出部 2は、偏光状態の変化を検出することができるものであれば、どの ような構成でもよい。  The polarization detector 2 may have any configuration as long as it can detect a change in polarization state.
[0045] 伝送光学系 4は、偏光投影部 1からの偏光を平行光束にするレンズ 41と、レンズ 41 力、らの平行光を集光して被検面 3に投影するための集光レンズ 42と、先端光学系 43 を有している。また、伝送光学系 4は、偏光投影部 1から被検面 3へ照射する偏光の 光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが同一の光学系の 中心軸 Oに対称に配置されるように構成されている。さらに、伝送光学系 4は、偏光 投影部 1から被検面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に 導かれる光の光軸とが、レンズ 41と集光レンズ 42とを介して一回交差するように構成 されている。  [0045] The transmission optical system 4 includes a lens 41 that converts the polarized light from the polarization projection unit 1 into a parallel light beam, and a condensing lens that condenses the parallel light of the lens 41 force and projects it onto the test surface 3. 42 and a tip optical system 43. In addition, the transmission optical system 4 is an optical system in which the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 is the same as the optical axis of the light reflected by the test surface 3 and guided to the polarization light receiving unit 2. It is configured to be arranged symmetrically with respect to the central axis O of the system. Further, the transmission optical system 4 includes a lens 41 having an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3 and an optical axis of light reflected from the test surface 3 and guided to the polarization light receiving unit 2. And a converging lens 42 so as to intersect once.
[0046] なお、図 3中、 CPは偏光投影部 1から被検面 3へ照射する偏光の光軸と、被検面 3で 反射して偏光受光部 2に導かれる光の光軸とが交差する位置を示している。  In FIG. 3, CP is an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3 and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. The crossing position is shown.
[0047] 図 4は図 3の要部の構成を拡大して示す概念図である。なお、図 4では、便宜上、偏 光投影部 1を偏光子 1 Aを有する構成で概念的に示し、また、偏光受光部 2を偏光ビ 一ムスプリッタ 2Aと、偏光ビームスプリッタ 2Aで分岐された光路に配置された光検出 器 2B1 , 2B2を有する構成で概念的に示してある。もちろん、偏光投影部 1、偏光受 光部 2は図 2と同様の構成でもよい。 FIG. 4 is an enlarged conceptual diagram showing the configuration of the main part of FIG. In FIG. 4, for convenience, the polarization projection unit 1 is conceptually shown as having a polarizer 1A, and the polarization light receiving unit 2 is branched by a polarization beam splitter 2A and a polarization beam splitter 2A. This is conceptually shown as a configuration having photodetectors 2B1 and 2B2 arranged in the optical path. Of course, the polarization projection unit 1, polarization receiver The optical unit 2 may have the same configuration as in FIG.
[0048] 集光レンズ 42を出射して先端光学系 43に入射する偏光の光軸は、伝送光学系 4の 中心軸 Oに対して平行になっている。また、先端光学系 43を出射して集光レンズ 42 に入射する光の光軸も、伝送光学系 4の中心軸 Oに対して平行になっている。先端 光学系 43は、照射光入射面 43aと、照射光全反射面 43bと、照射光出射面 43cと、 反射光入射面 43dと、反射光全反射面 43eと、反射光出射面 43fを有するプリズムで 構成されている。 The optical axis of polarized light that exits the condensing lens 42 and enters the tip optical system 43 is parallel to the central axis O of the transmission optical system 4. Further, the optical axis of the light that exits from the tip optical system 43 and enters the condenser lens 42 is also parallel to the central axis O of the transmission optical system 4. The tip optical system 43 includes an irradiation light incident surface 43a, an irradiation light total reflection surface 43b, an irradiation light output surface 43c, a reflected light incident surface 43d, a reflected light total reflection surface 43e, and a reflected light output surface 43f. It consists of a prism.
[0049] 照射光入射面 43aは、伝送光学系 4の中心軸 Oに対して垂直に配置されている。そ して、偏光投影部 1から出射し、レンズ 41、集光レンズ 42を経た偏光を垂直に入射さ せるように、構成されている。照射光全反射面 43bは、照射光入射面 43aから内部に 入射した光を被検面 3に向けて全反射するように、構成されている。照射光出射面 4 3cは、照射光全反射面 43bで全反射した光を垂直に出射させるように、構成されて いる。反射光入射面 43dは、被検面 3で反射した光を垂直に入射させるように、構成 されている。反射光全反射面 43eは、反射光入射面 43dから内部に入射した光を全 反射するように、構成されている。反射光出射面 43fは、照射光入射面 43aと同一平 面における伝送光学系 4の中心軸 Oに対称な位置に設けられており、反射光全反射 面 43eで全反射した光を垂直に出射させるように、構成されている。  The irradiation light incident surface 43 a is arranged perpendicular to the central axis O of the transmission optical system 4. The polarized light emitted from the polarization projection unit 1 and passed through the lens 41 and the condenser lens 42 is vertically incident. The irradiation light total reflection surface 43b is configured to totally reflect the light incident inside from the irradiation light incident surface 43a toward the test surface 3. The irradiation light exit surface 43c is configured to emit vertically the light totally reflected by the irradiation light total reflection surface 43b. The reflected light incident surface 43d is configured so that the light reflected by the test surface 3 is incident vertically. The reflected light total reflection surface 43e is configured to totally reflect the light incident on the inside from the reflected light incident surface 43d. The reflected light emitting surface 43f is provided at a position symmetrical to the central axis O of the transmission optical system 4 on the same plane as the irradiated light incident surface 43a, and vertically emits the light totally reflected by the reflected light total reflection surface 43e. It is configured to let you.
[0050] このように構成された第 1実施形態の偏光測定装置によれば、偏光投影部 1からの偏 光は、伝送光学系 4のレンズ 41を介して光路を曲げられて、レンズ 42に入射し、集光 レンズ 42を介して集光されながら、プリズム 43の照射光入射面 43aに垂直に入射す る。照射光入射面 43aに入射した偏光は、照射光全反射面 43bで被検面 3に向けて 全反射される。照射光全反射面 43bで全反射した光は、照射光出射面 43cを介して 垂直に出射させられて被検面 3における伝送光学系 4 'の中心軸 Oと交わる位置に所 定の入射角で入射する。  [0050] According to the polarization measuring apparatus of the first embodiment configured as described above, the polarization from the polarization projection unit 1 is bent in the optical path via the lens 41 of the transmission optical system 4, and is transmitted to the lens 42. Incident light is incident on the irradiation light incident surface 43 a of the prism 43 perpendicularly while being condensed through the condenser lens 42. The polarized light incident on the irradiation light incident surface 43a is totally reflected toward the test surface 3 by the irradiation light total reflection surface 43b. The light totally reflected by the irradiation light total reflection surface 43b is emitted vertically through the irradiation light emission surface 43c, and is incident at a predetermined incident angle at the position intersecting with the central axis O of the transmission optical system 4 ′ on the test surface 3. Incident at.
[0051] 被検面 3で反射した光は、伝送光学系 4の中心軸 Oを対称として、照射光と逆向きの 光路を迪る。即ち、被検面 3で反射した光は、プリズム 43の反射光入射面 43dに垂 直に入射する。反射光入射面 43dから内部に入射した光は、反射光全反射面 43eで 全反射される。このとき、反射光全反射面 43eで全反射した光の光軸は、伝送光学 系 4の中心軸 Oに対して平行になる。さらに、反射光全反射面 43eで全反射した光は 、反射光出射面 43fを介して垂直に出射させられて集光レンズ 42に入射する。集光 レンズ 42に入射した光は、光路を曲げられて、レンズ 41に入射する。このとき、偏光 投影部 1から被検面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に 導かれる光の光軸とが交差位置 CPで交差する。レンズ 41に入射した光は、中間結 像位置 S 12に集光される。中間結像位置 S12に集光された光は、偏光受光部 2に入 射し、偏光受光部 2を介して偏光状態が検出される。 [0051] The light reflected by the surface to be inspected 3 travels along the optical path opposite to the irradiation light with the central axis O of the transmission optical system 4 as symmetric. That is, the light reflected by the test surface 3 enters the reflected light incident surface 43d of the prism 43 vertically. The light incident inside from the reflected light incident surface 43d is totally reflected by the reflected light total reflection surface 43e. At this time, the optical axis of the light totally reflected by the reflected light total reflection surface 43e is the transmission optical Parallel to the central axis O of system 4. Further, the light totally reflected by the reflected light total reflection surface 43e is emitted vertically through the reflected light emission surface 43f and enters the condenser lens. The light incident on the condensing lens 42 is incident on the lens 41 with its optical path bent. At this time, the optical axis of the polarized light irradiated from the polarized light projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2 intersect at the intersection position CP. The light incident on the lens 41 is collected at the intermediate image position S12. The light condensed at the intermediate imaging position S12 enters the polarization light receiving unit 2 and the polarization state is detected via the polarization light reception unit 2.
[0052] 従って、第 1実施形態の偏光測定装置によれば、投影光及び反射光のために用いる 光路を同一の伝送光学系 4に設けたことによって、伝送光学系 4を細長状に構成す ること力 Sでき、被検面に対する入射及び反射方向に光路を広げずに済むため、従来 の偏光測定装置に比べて格段に投影光及び反射光の光路に用いるスペースを小型 化できる。その結果、工業用以外の用途にも、例えば、歯の表面状態の検査など医 療の用途や、例えば、 DNAチップの検査などの分析装置としての用途などに、用途 を拡大させ易くなる。 Therefore, according to the polarization measuring apparatus of the first embodiment, the transmission optical system 4 is configured in an elongated shape by providing the optical path used for the projection light and the reflected light in the same transmission optical system 4. Since it is not necessary to widen the optical path in the incident and reflection directions with respect to the surface to be measured, the space used for the optical path of the projection light and the reflected light can be significantly reduced as compared with the conventional polarization measuring device. As a result, the application can be easily expanded to non-industrial uses, for example, medical uses such as inspection of tooth surface conditions, and uses as analysis devices such as DNA chip inspection.
[0053] また、先端光学系として、照射光全反射面 43bと反射光全反射面 43eとを有するプリ ズム 43を備えたので、投影光及び反射光のために用いる光路を細長状にしながら、 被検面に対して大きな入射角で斜めに照射させることができ、従来の偏光測定装置 と同様の機能を発揮させ易くなる。  [0053] Since the prism 43 having the irradiation light total reflection surface 43b and the reflected light total reflection surface 43e is provided as the tip optical system, the optical path used for the projection light and the reflection light is elongated, It is possible to irradiate the test surface obliquely at a large incident angle, and it becomes easy to exert the same function as a conventional polarization measuring device.
[0054] さらに、プリズム 43の照射光入射面 43a,反射光入射面 43dは、それぞれ入射光に 対して垂直となるように構成されており、また、照射光出射面 43c,反射光出射面 43f は、それぞれ出射光に対して垂直となるように構成されている。このため、被検面 3に 対する入射角及び反射角が照射光全反射面 43b及び反射光全反射面 43eのみで 決定することができ、先端光学系であるプリズム 43の入射面及び出射面における光 の屈折を考慮しなくて済むので、被検面 3に対して高精度かつ、光量ロスの少ない偏 光状態の測定ができる。  [0054] Further, the irradiation light incident surface 43a and the reflected light incident surface 43d of the prism 43 are configured to be perpendicular to the incident light, respectively, and the irradiation light emission surface 43c and the reflected light emission surface 43f are arranged. Are configured to be perpendicular to the emitted light. For this reason, the incident angle and the reflection angle with respect to the test surface 3 can be determined only by the irradiation light total reflection surface 43b and the reflection light total reflection surface 43e, and on the incident surface and the output surface of the prism 43 which is the tip optical system. Since it is not necessary to consider the refraction of light, it is possible to measure the polarization state of the surface 3 to be measured with high accuracy and with little light loss.
[0055] なお、プリズム 43は、石英で構成することができる。また、プリズム 43は、結晶質で構 成することもできる。その場合には、その結晶質の C軸が伝送光学系 4の中心軸 O方 向に対して平行となるように、プリズム 43が配置されているのが好ましい。あるいは、 その結晶質の C軸が伝送光学系 4の中心軸 O方向に対して垂直となるように、プリズ ム 43を配置してもよい。そのようにすれば、偏光方向と結晶軸とを一致させることがで きるため、より高精度かつ、光量ロスの少ない偏光状態の測定ができる。 Note that the prism 43 can be made of quartz. The prism 43 can also be made of a crystalline material. In that case, the prism 43 is preferably arranged so that the crystalline C-axis is parallel to the direction of the central axis O of the transmission optical system 4. Or The prism 43 may be arranged so that the crystalline C axis is perpendicular to the central axis O direction of the transmission optical system 4. By doing so, since the polarization direction and the crystal axis can be made to coincide with each other, it is possible to measure the polarization state with higher accuracy and less light loss.
[0056] また、図 2及び図 3に示した第 1実施形態の偏光測定装置では、伝送光学系 4を、用 途に応じてさらに偏光投影部 1側及び偏光受光部 2側に、偏光投影部 1から被検面 3 へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸と を交差させるリレー光学系を一個又は複数個設けて長い光学系を構成してもよい。 [0056] In addition, in the polarization measuring device of the first embodiment shown in Figs. 2 and 3, the transmission optical system 4 is further polarized and projected onto the polarization projection unit 1 side and the polarization light receiving unit 2 side according to the application. One or more relay optical systems are provided to cross the optical axis of the polarized light radiated from the part 1 to the test surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving part 2 and long. An optical system may be configured.
[0057] 図 5は本発明の第 2実施形態に力、かる偏光測定装置の全体構成を示す光軸に沿う 断面図である。第 2実施形態の偏光測定装置は、偏光投影部 1と、偏光受光部 2と、 偏光投影部 2からの偏光をスポット状に集光して被検面 3に照射するとともに被検面 3 で反射した光をスポット状に集光して偏光受光部 2に導く伝送光学系 4'を有している FIG. 5 is a cross-sectional view taken along the optical axis showing the overall configuration of the polarization measuring apparatus which is a force and a second embodiment of the present invention. The polarization measuring apparatus of the second embodiment condenses the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 2 in a spot shape and irradiates the test surface 3 with the test surface 3. It has a transmission optical system 4 'that collects the reflected light in a spot shape and guides it to the polarized light receiving unit 2.
[0058] 偏光投影部 1と、偏光受光部 2の構成は、図 2に示した第 1実施形態と同様である。 The configurations of the polarization projection unit 1 and the polarization light receiving unit 2 are the same as those in the first embodiment shown in FIG.
[0059] 伝送光学系 4'は、レンズ 41 'とレンズ 42'とレンズ 43'とで構成されたリレー光学系と 、レンズ 44,と、レンズ 45,と、レンズ 46,と、先端光学系 47'を有して構成されている [0059] The transmission optical system 4 'includes a relay optical system including a lens 41', a lens 42 ', and a lens 43', a lens 44, a lens 45, a lens 46, and a tip optical system 47. Is configured with
[0060] また、伝送光学系 4'は、偏光投影部 1から被検面 3へ照射する偏光の光軸と、被検 面 3で反射して偏光受光部 2に導かれる光の光軸とが同一の光学系の中心軸 Oに対 称に配置されるように構成されている。さらに、伝送光学系 4'は、偏光投影部 1から被 検面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の 光軸とが、レンズ 44' , 45' , 46 'と先端光学系 47'とを介して一回、リレー光学系を 介して一回、の計二回交差するように構成されている。なお、なお、図 5中、 48'はレ ンズ 44' , 45' , 46 'を保持する保持枠、 49'はリレー光学系と保持枠 48 'を保持する 鏡筒である。また、 CP1 , CP2は偏光投影部 1から被検面 3へ照射する偏光の光軸と 、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが交差する位置を示して いる。 [0060] The transmission optical system 4 'includes an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3, and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. Are arranged symmetrically with respect to the central axis O of the same optical system. Further, the transmission optical system 4 ′ includes a lens having an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3 and an optical axis of light reflected from the test surface 3 and guided to the polarization light receiving unit 2. It is configured to intersect two times in total, once through 44 ′, 45 ′, 46 ′ and the tip optical system 47 ′, and once through the relay optical system. In FIG. 5, reference numeral 48 'denotes a holding frame for holding the lenses 44', 45 ', 46', and 49 'denotes a lens barrel that holds the relay optical system and the holding frame 48'. CP1 and CP2 indicate positions where the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 intersects with the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2. ing.
[0061] 図 6は図 5の要部の構成を部分的に拡大して示す概念図である。リレー光学系は、中 間結像位置 S I 1に集光された偏光を、中間結像位置 S21に集光する。レンズ 44' , 45 ' , 46 'は、中間結像位置 S21に集光された偏光を被検面 3に投影するように、伝 送光学系の中心軸 Oに対して斜めになるように光路を曲げて先端光学系 47'に向け て出射させるように構成されている。 FIG. 6 is a conceptual diagram showing a partially enlarged configuration of the main part of FIG. The relay optical system is The polarized light condensed at the intermediate imaging position SI 1 is condensed at the intermediate imaging position S21. The lenses 44 ', 45', 46 'are optical paths so as to be inclined with respect to the central axis O of the transmission optical system so as to project the polarized light condensed at the intermediate imaging position S21 onto the test surface 3. Is bent and emitted toward the tip optical system 47 ′.
[0062] 先端光学系 47 'は、照射光入射面 47a'と、照射光全反射面 47b'と、照射光出射面  [0062] The tip optical system 47 'includes an irradiation light incident surface 47a', an irradiation light total reflection surface 47b ', and an irradiation light emission surface.
47c'と、反射光入射面 47d'と、反射光全反射面 47e'と、反射光出射面 47f 'を有す る側面反射プリズムで構成されてレ、る。  47c ′, a reflected light incident surface 47d ′, a reflected light total reflection surface 47e ′, and a side surface reflecting prism having a reflected light exit surface 47f ′.
[0063] 照射光入射面 47a'は、伝送光学系 4'の中心軸 Oに対して垂直に配置されている。  [0063] The irradiation light incident surface 47a 'is arranged perpendicular to the central axis O of the transmission optical system 4'.
そして、偏光投影部 1から出射し、リレー光学系、レンズ 44' , 45' , 46 'を経た偏光を 斜めに入射させるように、構成されている。照射光全反射面 47b'は、照射光入射面 47a'から内部に入射した光を被検面 3に向けて全反射するように、構成されている。 照射光出射面 47c'は、伝送光学系 4'の中心軸 Oに対して垂直に配置されている。 そして、照射光全反射面 47b'で全反射した光を斜めに出射させるように、構成され ている。反射光入射面 47d'は、照射光全反射面 47c 'と同一平面における伝送光学 系 4'の中心軸 Oに対称な位置に設けられており、被検面 3で反射した光を斜めに入 射させるように、構成されている。反射光全反射面 47e'は、照射光全反射面 47b'と 伝送光学系 4'の中心軸 Oに対称な側面に設けられており、反射光入射面 47d'から 内部に入射した光を全反射するように、構成されている。反射光出射面 47f'は、照 射光入射面 47a'と同一平面における伝送光学系 4'の中心軸 Oに対称な位置であつ て、照射光入射面 47a'の近傍又はほぼ同位置に設けられており、反射光全反射面 47e'で全反射した光を斜めに出射させるように、構成されて!/、る。  The polarized light emitted from the polarization projection unit 1 and incident through the relay optical system and the lenses 44 ′, 45 ′, and 46 ′ is incident obliquely. The irradiation light total reflection surface 47b ′ is configured to totally reflect the light incident inside from the irradiation light incident surface 47a ′ toward the test surface 3. The irradiation light exit surface 47c ′ is arranged perpendicular to the central axis O of the transmission optical system 4 ′. The light totally reflected by the irradiated light total reflection surface 47b ′ is configured to be emitted obliquely. The reflected light incident surface 47d ′ is provided at a position symmetrical to the central axis O of the transmission optical system 4 ′ in the same plane as the irradiation light total reflection surface 47c ′, and obliquely enters the light reflected by the test surface 3. It is configured to shoot. The reflected light total reflection surface 47e ′ is provided on the side surface symmetrical to the irradiation light total reflection surface 47b ′ and the central axis O of the transmission optical system 4 ′. It is configured to reflect. The reflected light exit surface 47f ′ is symmetric with respect to the central axis O of the transmission optical system 4 ′ in the same plane as the incident light incident surface 47a ′, and is provided near or substantially at the same position as the irradiated light incident surface 47a ′. It is configured so that the light totally reflected by the reflected light total reflection surface 47e 'is emitted obliquely!
[0064] また、図 5及び図 6の例では、照射光入射面 47a'と反射光出射面 47f'は、同じ位置 で重なっており、この重なった面の位置力 偏光投影部 1から被検面 3へ照射する偏 光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが交差する位 置 CP1となっている。  In the examples of FIGS. 5 and 6, the irradiation light incident surface 47a ′ and the reflected light emission surface 47f ′ are overlapped at the same position, and the position force of the overlapped surface is detected from the polarization projection unit 1. This is a position CP1 where the optical axis of the polarized light irradiating the surface 3 intersects the optical axis of the light reflected by the surface 3 to be detected and guided to the polarized light receiving unit 2.
[0065] なお、照射光入射面 47a'と反射光出射面 47f 'は、同じ位置で重ならずに、偏光投 影部 1から被検面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に導 かれる光の光軸とが交差する位置 CP1が、先端光学系 47'の内部又は外部に位置 するように構成されて!/、てもよ!/、。 [0065] The irradiation light incident surface 47a 'and the reflected light emission surface 47f' are not overlapped at the same position, and the optical axis of polarized light irradiating the surface 3 to be measured from the polarization projection unit 1 and the surface to be measured Position CP1 where the optical axis of the light reflected by 3 and guided to the polarized light receiving section 2 intersects is located inside or outside the tip optical system 47 ′. Configured to do! /, Even! /.
[0066] このように構成された第 2実施形態の偏光測定装置によれば、偏光投影部 1からの偏 光は、伝送光学系 4'のリレー光学系を介して中間結像位置 S21で集光した後、レン ズ 43'における伝送光学系 4'の中心軸 Oを外れる位置に入射する。レンズ 43'に入 射した光は、レンズ 44' , 45'を介して集光されながら、プリズム 47'の照射光入射面 47a'に斜めに入射する。照射光入射面 47a'に入射した偏光は、所定量屈折して照 射光全反射面 47b'に達し、照射光全反射面 47b'で被検面 3に向けて全反射される 。照射光全反射面 47 で全反射した光は、照射光出射面 47c 'を介して斜めに出射 させられ、所定量屈折して被検面 3における伝送光学系 4 'の中心軸 Oと交差する位 置に所定の入射角で入射する。  [0066] According to the polarization measuring apparatus of the second embodiment configured as described above, the polarization from the polarization projection unit 1 is collected at the intermediate imaging position S21 via the relay optical system of the transmission optical system 4 '. After shining, it enters the lens 43 ′ at a position off the central axis O of the transmission optical system 4 ′. The light incident on the lens 43 ′ is obliquely incident on the irradiation light incident surface 47a ′ of the prism 47 ′ while being condensed through the lenses 44 ′ and 45 ′. The polarized light incident on the irradiation light incident surface 47a ′ is refracted by a predetermined amount to reach the irradiation light total reflection surface 47b ′, and is totally reflected toward the test surface 3 by the irradiation light total reflection surface 47b ′. The light totally reflected by the irradiation light total reflection surface 47 is emitted obliquely through the irradiation light emission surface 47c ′, refracted by a predetermined amount, and intersects the central axis O of the transmission optical system 4 ′ on the test surface 3. It is incident at a predetermined angle of incidence.
[0067] 被検面 3で反射した光は、伝送光学系 4'の中心軸 Oを対称として、照射光と逆向き の光路を迪る。即ち、被検面 3で反射した光は、プリズム 47'の反射光入射面 47d' に斜めに入射する。反射光入射面 47d'に入射した光は、所定量屈折して反射光全 反射面 47e'に達し、反射光全反射面 47e'で全反射される。さらに、反射光全反射 面 47e'で全反射した光は、反射光出射面 47f'を介して斜めに出射させられ、所定 量屈折してレンズ 46 'に入射する。このとき、偏光投影部 1から被検面 3へ照射する 偏光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが交差位置 CP1で交差する。レンズ 46 'に入射した光は、レンズ 45'、 44'を経て、中間結像位 置 S22に集光される。中間結像位置 S22に集光された光は、リレー光学系を介して 中間結像位置 S 12に集光される。このとき、偏光投影部 1から被検面 3へ照射する偏 光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが交差位置 CP 2で交差する。中間結像位置 S 12に集光された光は、偏光受光部 2に入射し、偏光 受光部 2を介して偏光状態が検出される。  [0067] The light reflected by the surface to be inspected 3 travels in the direction opposite to the irradiation light with the central axis O of the transmission optical system 4 'as symmetric. That is, the light reflected by the test surface 3 is obliquely incident on the reflected light incident surface 47d ′ of the prism 47 ′. The light incident on the reflected light incident surface 47d ′ is refracted by a predetermined amount, reaches the reflected light total reflection surface 47e ′, and is totally reflected by the reflected light total reflection surface 47e ′. Further, the light totally reflected by the reflected light total reflection surface 47e ′ is emitted obliquely through the reflected light emission surface 47f ′, refracted by a predetermined amount, and enters the lens 46 ′. At this time, the optical axis of the polarized light irradiated from the polarized light projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2 intersect at the intersection position CP1. The light incident on the lens 46 'passes through the lenses 45' and 44 'and is collected at the intermediate image position S22. The light condensed at the intermediate imaging position S22 is condensed at the intermediate imaging position S12 via the relay optical system. At this time, the optical axis of the polarization irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarization light receiving unit 2 intersect at the intersection position CP2. . The light collected at the intermediate imaging position S 12 enters the polarization light receiving unit 2, and the polarization state is detected via the polarization light reception unit 2.
[0068] 従って、第 2実施形態の偏光測定装置によれば、投影光及び反射光のために用いる 光路を同一の伝送光学系 4'に設けたことによって、伝送光学系 4'を細長状に構成 すること力 Sでき、被検面に対する入射及び反射方向に光路を広げずに済むため、従 来の偏光測定装置に比べて格段に投影光及び反射光の光路に用いるスペースを小 型化できる。その結果、工業用以外の用途にも、例えば、歯の表面状態の検査など 医療の用途や、例えば、 DNAチップの検査などの分析装置としての用途などに、用 途を拡大させ易くなる。 Therefore, according to the polarization measuring device of the second embodiment, the optical path used for the projection light and the reflected light is provided in the same transmission optical system 4 ′, so that the transmission optical system 4 ′ is elongated. Since the optical path does not need to be widened in the direction of incidence and reflection on the surface to be measured, the space used for the optical path of the projected light and reflected light can be significantly reduced compared to conventional polarization measuring devices. . As a result, for non-industrial applications, for example, inspection of tooth surface conditions, etc. Applications can be easily expanded for medical use, for example, as an analytical device such as DNA chip inspection.
[0069] また、先端光学系として、照射光全反射面 47b'と反射光全反射面 47e 'とを有する 側面反射プリズム 47'を備えたので、簡単な形状のプリズムを用いて、投影光及び反 射光のために用いる光路を細長状にしながら、被検面に対して大きな入射角で斜め に照射させることができ、従来の偏光測定装置と同様の機能を発揮させ易くなる。  [0069] Further, as the tip optical system, the side surface reflecting prism 47 'having the irradiation light total reflection surface 47b' and the reflection light total reflection surface 47e 'is provided. While the optical path used for reflected light is elongated, it can be irradiated obliquely at a large incident angle with respect to the surface to be measured, and functions similar to those of a conventional polarization measuring device can be easily exhibited.
[0070] なお、プリズム 47'は、石英で構成することができる。また、プリズム 47'は、結晶質で 構成することもできる。その場合には、その結晶質の C軸が伝送光学系 4'の中心軸 O方向に対して平行となるように、プリズム 47'が配置されているのが好ましい。ある いは、その結晶質の C軸が伝送光学系 4'の中心軸 O方向に対して垂直となるように 、プリズム 47'を配置してもよい。そのようにすれば、偏光方向と結晶軸とを一致させ ることはできないが、プリズム 47'の内部において、被検面 3を照射する偏光の光路と 、被検面 3で反射した光の光路とにおける、偏光方向に対する結晶軸の条件を等しく すること力 Sできるため、より高精度で、信頼性の高い偏光状態の測定ができる。  [0070] Note that the prism 47 'can be made of quartz. The prism 47 'can be made of a crystalline material. In that case, it is preferable that the prism 47 ′ is arranged so that the crystalline C-axis is parallel to the direction of the central axis O of the transmission optical system 4 ′. Alternatively, the prism 47 ′ may be arranged so that the crystalline C axis is perpendicular to the central axis O direction of the transmission optical system 4 ′. By doing so, the polarization direction and the crystal axis cannot be made coincident, but inside the prism 47 ', the optical path of the polarized light that irradiates the test surface 3 and the optical path of the light reflected by the test surface 3 Therefore, it is possible to measure the polarization state with higher accuracy and reliability.
[0071] なお、図 5に示した第 2実施形態の偏光測定装置では、伝送光学系 4'を、偏光投影 部 1側及び偏光受光部 2側に、偏光投影部 1から被検面 3へ照射する偏光の光軸と、 被検面 3で反射して偏光受光部 2に導かれる光の光軸とを交差させるリレー光学系を 備えて構成したが、伝送光学系 4'にこのようなリレー光学系を備えなくても良い。ある いは、伝送光学系 4'を、用途に応じてこのようなリレー光学系を複数個設けて長い光 学系を構成してもよい。  In the polarization measuring device of the second embodiment shown in FIG. 5, the transmission optical system 4 ′ is provided from the polarization projection unit 1 to the test surface 3 on the polarization projection unit 1 side and the polarization light receiving unit 2 side. Although the relay optical system is configured to cross the optical axis of the polarized light to be irradiated and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2, the transmission optical system 4 ′ has such a configuration. The relay optical system may not be provided. Alternatively, the transmission optical system 4 ′ may be provided with a plurality of such relay optical systems depending on the application to form a long optical system.
[0072] また、第 2実施形態の偏光測定装置に用いる先端光学系として、側面反射プリズム 4 7'の代わりに、図 7に示すように、内部で複数回(図 7では便宜上、反射回数を 2回と している)反射させるようにして、入射した照射光を全反射する照射光全反射面 47bl ", 47b2"及び入射した反射光を全反射する反射光全反射面 47el", 47e2"を、夫 々、伝送光学系 4'の中心軸 Oに対称な側面の複数箇所に有する側面反射プリズム 47"を用いてもよい。なお、側面反射プリズム 47"における照射光入射面 47a",照射 光出射面 47c",反射光入射面 47d",反射光出射面 47f"は、図 6に示した側面反射 プリズム 47'における照射光入射面 47a' ,照射光出射面 47c ' ,反射光入射面 47d' ,反射光出射面 47f'とほぼ同様に構成されている。また、図 7中、 CP11 , CP12, C P13は偏光投影部 1から被検面 3へ照射する偏光の光軸と、被検面 3で反射して偏 光受光部 2に導かれる光の光軸とが交差する位置を示している。 [0072] Further, as a tip optical system used in the polarization measuring device of the second embodiment, instead of the side reflecting prism 4 7 ', as shown in FIG. The reflected light total reflection surface 47bl ", 47b2" and the reflected light total reflection surface 47el ", 47e2" which totally reflects the incident reflected light. May be used as the side reflecting prisms 47 "having a plurality of side faces symmetrical to the central axis O of the transmission optical system 4 '. The light exit surface 47c ", the reflected light entrance surface 47d", and the reflected light exit surface 47f "are the illumination light entrance surface 47a ', the illumination light exit surface 47c', and the reflected light entrance surface of the side reflecting prism 47 'shown in FIG. 47d ' Thus, the configuration is almost the same as that of the reflected light emitting surface 47f ′. In FIG. 7, CP11, CP12, and CP13 indicate the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3, and the light reflected from the test surface 3 and guided to the polarization light receiving unit 2. The position where the axis intersects is shown.
[0073] 側面反射プリズム 47"を用いれば、細径化した先端光学系を伝送光学系 4'の中心 軸 O方向に長くとることができ、被検面 3の周囲にスペースをとることが難しい場合の 測定に有利となる。 [0073] If the side reflecting prism 47 "is used, the thinned tip optical system can be made long in the direction of the central axis O of the transmission optical system 4 ', and it is difficult to make a space around the test surface 3 It is advantageous for the measurement of the case.
[0074] さらに、第 2実施形態の偏光測定装置に用いる先端光学系として、側面反射プリズム 47 'の代わりに、図 8に示すように、内部で複数回(図 8では便宜上 3回)反射させるよ うにして、入射した照射光を全反射する照射光全反射面 47b " , 47b2" ', 47b3" ' 及び入射した反射光を全反射する反射光全反射面 47el" ' , 47e2" ' , 47e3" 'を有 すると共に、伝送光学系 4'の中心軸 Oに対して斜めになるようにして入射する偏光 投影部 1からの偏光を垂直に入射させる照射光入射面 47a" 'と、照射光全反射面 4 7b3" 'で全反射した光を垂直に出射させる照射光出射面 47c" 'と、被検面 3で反射 した光を垂直に入射させる反射光入射面 47d" 'と、反射光全反射面 47e3" 'で全反 射した光を垂直に出射させる反射光出射面 47f" 'を有する側面反射プリズムを用レ、 てもよい。  [0074] Further, as a tip optical system used in the polarization measuring device of the second embodiment, instead of the side reflecting prism 47 ', it is internally reflected a plurality of times (as shown in FIG. 8, three times for convenience) as shown in FIG. Thus, the incident light total reflection surface 47b ", 47b2" ', 47b3 "' that totally reflects the incident illumination light and the reflected light total reflection surface 47el" ', 47e2 "', Polarized light incident on the transmission optical system 4 ′ at an angle with respect to the central axis O of the transmission optical system 4 ′. Light total reflection surface 4 7b3 "'Irradiated light exit surface 47c"' that emits light that is totally reflected by light, and reflected light entrance surface 47d "'that makes light reflected by the test surface 3 enter vertically A side reflecting prism having a reflected light emitting surface 47f "'that vertically emits the light totally reflected by the light total reflecting surface 47e3"' may be used.
[0075] 側面反射プリズム 47" 'を用いれば、先端光学系の入射面は入射光に対して垂直に 、出射面は出射光に対して垂直となり、被検面 3に対する入射角及び反射角が照射 光全反射面及び反射光全反射面のみで決定され、先端光学系の入射面及び出射 面における光の屈折を考慮しなくて済むので、被検面に対して高精度かつ、光量口 スの少なレ、偏光状態の測定ができる。  [0075] If the side reflecting prism 47 "'is used, the entrance surface of the tip optical system is perpendicular to the incident light, the exit surface is perpendicular to the exit light, and the incident angle and reflection angle with respect to the test surface 3 are It is determined only by the irradiation light total reflection surface and the reflection light total reflection surface, and it is not necessary to consider the light refraction at the entrance surface and the exit surface of the tip optical system. The polarization state can be measured.
[0076] ところで、以上説明した本発明の偏光測定装置において、光源 laに LDや LEDなど の発光素子を用いた場合、発光素子は、例えば、図 9(a), (b)に示すように、発光点が 均一形状となるように構成されてはいない。このため、上記の本発明における偏光測 定装置において、発光点の像が被検面に結像するような構成にすると、照射位置で の被検面の部位によって光強度分布に大きな差異が生じ、反射光の測定値の精度 が劣化してしまい易い。また、被検面における照射面積が小さいため、図 10に示す ような被検面におけるよごれやゴミの相対的面積が大きくなつて安定した測定値が得 られない。さらに、被検面における照射面積が小さいと、被検面と発光部との相対的 な位置ずれの影響を大きく受け易ぐ被検面と照明光源との位置調整が煩雑化して しまう。 By the way, in the polarization measuring apparatus of the present invention described above, when a light emitting element such as LD or LED is used as the light source la, the light emitting element is, for example, as shown in FIGS. 9 (a) and 9 (b). The light emitting points are not configured to have a uniform shape. For this reason, in the above-described polarization measuring device according to the present invention, when the light emission point image is formed on the test surface, a large difference occurs in the light intensity distribution depending on the part of the test surface at the irradiation position. The accuracy of the measured value of reflected light is likely to deteriorate. In addition, since the irradiation area on the test surface is small, stable measurements can be obtained as the relative area of dirt and dust on the test surface increases as shown in Fig. 10. I can't. Furthermore, if the irradiation area on the test surface is small, the position adjustment between the test surface and the illumination light source, which is greatly affected by the relative displacement between the test surface and the light emitting unit, becomes complicated.
[0077] そこで、本件出願人は、上記の本発明にかかる偏光測定装置の構成に次の構成を 付加した偏光測定装置を想到した。  Therefore, the present applicant has conceived a polarization measuring device in which the following configuration is added to the configuration of the polarization measuring device according to the present invention.
[0078] 図 11は本発明に係るこの改良された偏光測定装置における基本構成を示す概念図 、図 12は図 11に示した偏光測定装置における強度均一化光学系の瞳位置におけ る光学断面の像の大きさを図 9に示した発光点の像の大きさと比較して示す説明図 である。なお、図 2に示した本発明に力、かる偏光測定装置と同様の構成要素につい ては同じ符号で示し、説明は省略する。  FIG. 11 is a conceptual diagram showing the basic configuration of this improved polarization measuring device according to the present invention, and FIG. 12 is an optical cross section at the pupil position of the intensity uniformizing optical system in the polarization measuring device shown in FIG. FIG. 10 is an explanatory diagram showing the size of the image in comparison with the size of the image of the light emitting point shown in FIG. Note that the same components as those of the polarization measuring apparatus shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
[0079] この改良された偏光測定装置では、偏光投影部 1が、光源 laから出射した光の強度 分布を均一化する強度分布均一化光学系 lcを有して構成されている。また、強度分 布均一化光学系 lcの瞳位置 I dにおける所定範囲の光束断面力 S、被検面 3に投影さ れるようにしている。このようにすれば、光源 laの発光面における強度分布が不均一 であっても、被検面 3には均一な強度の光が照射されるので、照射面から得られる測 定値の精度が向上し安定した計測を行うことができるようになる。  In this improved polarization measuring apparatus, the polarization projection unit 1 is configured to have an intensity distribution uniformizing optical system lc that uniformizes the intensity distribution of light emitted from the light source la. Further, the light beam cross-sectional force S in a predetermined range at the pupil position I d of the intensity distribution uniformizing optical system lc is projected onto the test surface 3. In this way, even if the intensity distribution on the light emitting surface of the light source la is non-uniform, the test surface 3 is irradiated with light of uniform intensity, improving the accuracy of the measurement values obtained from the irradiated surface. Therefore, stable measurement can be performed.
[0080] また、図 12に示すように、被検面 3における照射面積が拡大されるため、被検面 3に おけるよごれやゴミの相対的面積が小さくなつて安定した測定値が得られ、さらに、被 検面 3と発光部との相対的な位置ずれがあつたとしてもその影響を受け難くなり、被 検面 3と光源 laとの位置調整が簡単になる。  [0080] Further, as shown in FIG. 12, since the irradiation area on the test surface 3 is enlarged, a stable measurement value can be obtained as the relative area of dirt and dust on the test surface 3 is reduced, Furthermore, even if there is a relative positional shift between the test surface 3 and the light emitting part, it becomes difficult to be affected, and the position adjustment between the test surface 3 and the light source la becomes easy.
[0081] また、本発明の偏光測定装置は、強度分布均一化光学系 lcの瞳位置 Idに、伝送光 学系 4の中心軸に対称に配置された偏光投影部 1から被検面 3へ照射する偏光の光 軸と被検面 3で反射して偏光受光部 2に導かれる光の光軸とを含む同一仮想平面に 対して垂直な方向(図 1 1においては紙面に対して垂直な方向)に延びた、細長形状 のスリット I d,を備えている。  In addition, the polarization measuring device of the present invention is directed from the polarization projection unit 1 arranged symmetrically with the central axis of the transmission optical system 4 to the test surface 3 at the pupil position Id of the intensity distribution uniformizing optical system lc. The direction perpendicular to the same virtual plane including the optical axis of the polarized light to be irradiated and the optical axis of the light reflected from the surface 3 to be detected and guided to the polarization receiver 2 (in FIG. Elongate slit Id, extending in the direction).
[0082] 上述したように、偏光測定装置では、偏光を被検面に対し斜めに投影させる。このた め、被検面からの反射光も斜めに反射される。即ち、図 11に示す伝送光学系 4にお いて被検面 3に対する出射光(即ち、照明光)及び入射光(即ち、被検面 3からの反 射光)は、所定の角度を有している。このとき、偏光投影部 1から被検面 3へ照射する 偏光の光軸と被検面 3で反射して偏光受光部 2に導かれる光の光軸とを含む同一仮 想平面に沿い且つ中心軸 Oに対して垂直な方向に被検面 3に照射する光束が大きく 拡がった場合には、伝送光学系 4の照射光出射面から被検面 3に向けて出射できず に内部で反射する光や、また、被検面 3で反射した光のうち伝送光学系 4の反射光 入射面に入射できない光が発生し、これらの光が偏光受光部 2に入り込んでフレア やゴースト等となって S/N比を劣化させる原因となりかねない。 As described above, in the polarization measuring device, the polarized light is projected obliquely with respect to the test surface. For this reason, the reflected light from the test surface is also reflected obliquely. That is, in the transmission optical system 4 shown in FIG. 11, the outgoing light (that is, illumination light) and the incident light (that is, the reflection from the test surface 3) with respect to the surface 3 to be measured. (Irradiation) has a predetermined angle. At this time, along the same virtual plane including the optical axis of the polarized light irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2, the center If the light beam illuminating the test surface 3 in a direction perpendicular to the axis O greatly expands, it cannot be emitted from the irradiation light exit surface of the transmission optical system 4 toward the test surface 3 and is reflected internally. Of the light reflected from the surface 3 to be measured, light that cannot enter the reflected light incident surface of the transmission optical system 4 is generated, and these lights enter the polarization receiver 2 and become flare, ghost, etc. It may cause the S / N ratio to deteriorate.
[0083] 従って、強度分布均一化光学系 lcの瞳位置 Idにおける所定範囲の光束断面を被 検面 3に投影する場合には、被検面 3に対する出射光(即ち、照明光)及び入射光( 即ち、被検面 3からの反射光)の角度を考慮した形状の光束断面とすることが望まれ Therefore, when projecting a light beam cross section within a predetermined range at the pupil position Id of the intensity distribution uniformizing optical system lc onto the test surface 3, the emitted light (that is, illumination light) and the incident light with respect to the test surface 3 It is desirable to make the light beam cross-section in a shape that takes into account the angle of the reflected light (that is, the reflected light from the test surface 3).
[0084] そこで、本発明の偏光測定装置では、強度分布均一化光学系 lcの瞳位置 Idに、伝 送光学系 4の中心軸 Oに対称に配置された偏光投影部 1から被検面 3へ照射する偏 光の光軸と被検面 3で反射して偏光受光部 2に導かれる光の光軸とを含む同一仮想 平面に対して垂直な方向(図 1においては紙面に対して垂直な方向)に延びた、細 長形状のスリット Id'を備えている。 Therefore, in the polarization measuring apparatus of the present invention, the polarization projection unit 1 is arranged at the pupil position Id of the intensity distribution uniformizing optical system lc symmetrically with the central axis O of the transmission optical system 4 to the test surface 3. Direction perpendicular to the same imaginary plane including the optical axis of the polarized light irradiating and the optical axis of the light reflected from the surface 3 to be detected and guided to the polarization receiver 2 (in FIG. 1, perpendicular to the paper surface) Elongate slits Id 'extending in the same direction.
[0085] このようにすれば、偏光投影部 1から被検面 3へ照射する偏光の光軸と被検面 3で反 射して偏光受光部 2に導かれる光の光軸とを含む同一仮想平面に沿い且つ中心軸 Oに対して垂直な方向には照明光が拡がらないので、被検面 3に対する出射光(即 ち、照明光)及び入射光(即ち、被検面 3からの反射光)の角度に影響されることなく 、図 12に示すように、被検面 3に対する照明領域を極力拡大し且つフレアやゴースト 等のノイズの発生する部分をカットでき、少な!/、S/N比の高!/、明るレ、偏光を検出す ること力 S可倉 となる。  In this way, the optical axis of the polarization irradiated from the polarization projection unit 1 to the test surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarization light receiving unit 2 are the same. Since the illumination light does not spread in a direction along the virtual plane and perpendicular to the central axis O, the outgoing light (that is, the illumination light) and the incident light (that is, the illumination light from the test surface 3). As shown in Fig. 12, the illumination area for the test surface 3 can be expanded as much as possible and the noise-generating parts such as flares and ghosts can be cut without being affected by the angle of the reflected light). / N ratio is high! /, Brightness and polarization are detected.
[0086] また、実際の偏光測定に際しては、被検面 3と伝送光学系 4の先端面との間の距離( 作動距離)が変動することがある。しかるに、作動距離が変動すると、反射光の結像 位置が偏光受光部 2の受光装置からずれて、受光検出強度にムラが生じてしまうお それがある。  In actual polarization measurement, the distance (working distance) between the test surface 3 and the front end surface of the transmission optical system 4 may vary. However, if the working distance varies, the imaging position of the reflected light may deviate from the light receiving device of the polarized light receiving unit 2, and the received light detection intensity may be uneven.
[0087] そこで、本発明の偏光測定装置においては、偏光投影部 1が、少なくとも出射側にテ レセントリックな光学系として構成され、偏光受光部 2が、伝送光学系 4において偏光 投影部 1から被検面 3へ照射する偏光の光軸と被検面 3で反射して偏光受光部 2に 導かれる光の光軸とが交差する位置 CPの像を受光装置 2bに結像する結像光学系 2 cを有している。 Therefore, in the polarization measuring device of the present invention, the polarization projection unit 1 is at least on the output side. The light receiving unit 2 is configured as a recentric optical system, and the polarized light receiving unit 2 is reflected by the optical axis of the polarized light irradiated from the polarized light projecting unit 1 to the test surface 3 and the test surface 3 in the transmission optical system 4 and reflected by the polarized light receiving unit 2. An image forming optical system 2c that forms an image of a position CP at which the optical axis of the light guided to the light receiving device 2b is formed.
[0088] このようにすれば、測定毎に被検面 3との間の距離 (作動距離)が異なっても、被検面 3で反射したいずれの反射光も伝送光学系 4における位置 CPに結像し、結像光学 系 2cに平行に入射する。このとき、位置 CPは、受光装置 2bの受光面と共役であり、 位置 Pの像は、結像光学系 2cを介して受光装置 2bに結像する。このため、受光検出 強度にムラが生じることなく安定した偏光状態の検出が可能となる。  In this way, even if the distance (working distance) from the test surface 3 is different for each measurement, any reflected light reflected by the test surface 3 is at the position CP in the transmission optical system 4. It forms an image and enters parallel to the imaging optical system 2c. At this time, the position CP is conjugate with the light receiving surface of the light receiving device 2b, and the image at the position P is formed on the light receiving device 2b via the imaging optical system 2c. For this reason, it is possible to detect a stable polarization state without causing unevenness in the received light detection intensity.
[0089] 以下、本発明の偏光測定装置の第 3実施形態を図面を用いて説明する。 Hereinafter, a third embodiment of the polarization measuring device of the present invention will be described with reference to the drawings.
[0090] 図 13は本発明の第 3実施形態に力、かる偏光測定装置の全体構成を示す光軸に沿う 断面図である。図中、第 1実施形態と同一の部材及び部分には同一の符号が用いら れている。第 3実施形態の偏光測定装置は、偏光投影部 1と、偏光受光部 2と、偏光 投影部 2からの偏光を集光して被検面 3に照射するとともに被検面 3で反射した光を 集光して偏光受光部 2に導く伝送光学系 4を有して!/、る。  FIG. 13 is a cross-sectional view taken along the optical axis showing the overall configuration of the polarization measuring apparatus according to the third embodiment of the present invention. In the figure, the same symbols are used for the same members and portions as in the first embodiment. The polarization measuring apparatus according to the third embodiment is configured to collect the polarized light from the polarization projection unit 1, the polarization light receiving unit 2, and the polarization projection unit 2 and irradiate the test surface 3 with the light reflected by the test surface 3. It has a transmission optical system 4 that collects the light and guides it to the polarized light receiver 2.
[0091] 偏光投影部 1は、光源 laと、偏光子 lbと、強度分布均一化光学系 lcと、スリット Id' を有し、出射側にテレセントリックな光学系として構成されている。  The polarization projection unit 1 includes a light source la, a polarizer lb, an intensity distribution uniformizing optical system lc, and a slit Id ′, and is configured as a telecentric optical system on the exit side.
[0092] 偏光子 lbは、光源 laから出射した光から所定の偏光に変換する偏光板や所定の偏 光のみを透過させる偏光ビームスプリッタなどで構成されている。  The polarizer lb includes a polarizing plate that converts light emitted from the light source la into predetermined polarization, a polarizing beam splitter that transmits only predetermined polarization, and the like.
[0093] 強度分布均一化光学系 lcは、例えば、コンデンサーレンズなどで構成されており、 光源 laから出射した光の強度分布を均一化する機能を有している。  [0093] The intensity distribution uniformizing optical system lc is composed of, for example, a condenser lens and has a function of uniformizing the intensity distribution of the light emitted from the light source la.
[0094] スリット Id'は、強度分布均一化光学系 lcの瞳位置 Idに、伝送光学系 4の中心軸に 対称に配置された偏光投影部 1から被検面 3へ照射する偏光の光軸と被検面 3で反 射して偏光受光部 2に導かれる光の光軸とを含む同一仮想平面に対して垂直な方 向(図 13においては紙面に対して垂直な方向)に延びた、細長形状に形成されてい  [0094] The slit Id 'is an optical axis of polarized light that irradiates the test surface 3 from the polarization projection unit 1 arranged symmetrically with respect to the central axis of the transmission optical system 4 at the pupil position Id of the intensity distribution uniformizing optical system lc. And a direction perpendicular to the same imaginary plane including the optical axis of the light reflected from the surface 3 to be measured and guided to the polarized light receiving unit 2 (in FIG. 13, the direction perpendicular to the paper surface). Is formed into an elongated shape
[0095] そして、偏光投影部 1は、強度分布均一化光学系 lcの瞳位置 Idにおけるスリット Id' の形状の光束断面力 被検面 3に投影されるように構成されている。 Then, the polarization projection unit 1 includes the slit Id ′ at the pupil position Id of the intensity distribution uniformizing optical system lc. The cross-sectional force of the light beam is configured to be projected onto the test surface 3.
[0096] また、偏光検出部 2は、検光子 2aと、受光装置 2bと、結像光学系 2cを有している。 Further, the polarization detection unit 2 includes an analyzer 2a, a light receiving device 2b, and an imaging optical system 2c.
[0097] 検光子 2aは、例えば、偏光ビームスプリッタゃ回転可能な検光板などで構成されて いる。 The analyzer 2a is composed of, for example, a polarizing beam splitter or a rotatable analyzer plate.
[0098] 受光装置 2bは、光検出器などで構成されており、受光された偏光の強度値から被検 面 3を反射したことによる偏光状態の変化を検出し、その変化に基づいて被検物の 諸物性を検出することが出来るように構成されている。なお、検光子 2a及び受光装 置 2bは、被検面 3で反射した光の偏光状態を検出することができるものであれば、従 来の偏光測定装置に採用されてレ、る!/、ずれのものを用いても良レ、。  [0098] The light receiving device 2b is configured by a photodetector or the like, detects a change in the polarization state due to reflection on the surface 3 to be detected from the intensity value of the received polarized light, and detects the detection based on the change. It is configured so that various physical properties of the object can be detected. If the analyzer 2a and the light receiving device 2b can detect the polarization state of the light reflected by the surface 3 to be detected, they are used in conventional polarization measuring devices! It is good even if you use a misaligned one.
[0099] 結像光学系 2cは、伝送光学系 4において偏光投影部 1から被検面 3へ照射する偏光 の光軸と被検面 3で反射して偏光受光部 2に導かれる光の光軸とが交差する位置 C Pの像を受光装置 2bに結像するように構成されている。  In the transmission optical system 4, the imaging optical system 2c is an optical axis of polarized light that is irradiated from the polarization projection unit 1 to the test surface 3, and the light that is reflected by the test surface 3 and guided to the polarization light receiving unit 2. An image of a position CP where the axis intersects is formed on the light receiving device 2b.
[0100] 伝送光学系 4は、偏光投影部 1からの平行光束を位置 CPに集光するレンズ 41と、レ ンズ 41からの光を平行光束にして被検面 3に投影するためのレンズ 42と、先端光学 系 43を有している。  [0100] The transmission optical system 4 includes a lens 41 that condenses the parallel light beam from the polarization projection unit 1 at the position CP, and a lens 42 that projects the light from the lens 41 into the test surface 3 as a parallel light beam. And a tip optical system 43.
[0101] また、伝送光学系 4は、偏光投影部 1から被検面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光軸とが同一の光学系の中心軸 Oに対称 に配置されるように構成されて!/、る。  [0101] The transmission optical system 4 includes an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3, and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. It is configured to be arranged symmetrically with respect to the central axis O of the same optical system!
[0102] さらに、伝送光学系 4は、偏光投影部 1から被検面 3へ照射する偏光の光軸と、被検 面 3で反射して偏光受光部 2に導かれる光の光軸とが、レンズ 41とレンズ 42とを介し て位置 CPで一回交差するように構成されて!/、る。  [0102] Further, the transmission optical system 4 includes an optical axis of polarized light radiated from the polarization projection unit 1 to the test surface 3, and an optical axis of light reflected by the test surface 3 and guided to the polarization light receiving unit 2. It is configured to cross once at the position CP via the lens 41 and the lens 42! /.
[0103] 図 14は図 13の偏光測定装置における伝送光学系 4の要部の構成を拡大して示す 概念図である。レンズ 42を出射して先端光学系 43に入射する偏光の光軸は、伝送 光学系 4の中心軸 Oに対して平行になっている。また、先端光学系 43を出射してレン ズ 42に入射する光の光軸も、伝送光学系 4の中心軸 Oに対して平行になっている。  FIG. 14 is a conceptual diagram showing an enlarged configuration of a main part of the transmission optical system 4 in the polarization measuring device of FIG. The optical axis of the polarized light that exits the lens 42 and enters the tip optical system 43 is parallel to the central axis O of the transmission optical system 4. Further, the optical axis of the light emitted from the tip optical system 43 and incident on the lens 42 is also parallel to the central axis O of the transmission optical system 4.
[0104] 先端光学系 43は、照射光入射面 43aと、照射光全反射面 43bと、照射光出射面 43 cと、反射光入射面 43dと、反射光全反射面 43eと、反射光出射面 43fを有するプリ ズムで構成されている。 [0105] 照射光入射面 43aは、伝送光学系 4の中心軸 Oに対して垂直に配置されている。そ して、偏光投影部 1から出射し、レンズ 41、レンズ 42を経た偏光を垂直に入射させる ように、構成されている。照射光全反射面 43bは、照射光入射面 43aから内部に入射 した光を被検面 3に向けて全反射するように、構成されている。照射光出射面 43cは 、照射光全反射面 43bで全反射した光を垂直に出射させるように、構成されている。 反射光入射面 43dは、被検面 3で反射した光を垂直に入射させるように、構成されて いる。反射光全反射面 43eは、反射光入射面 43dから内部に入射した光を全反射す るように、構成されている。反射光出射面 43fは、照射光入射面 43aと同一平面にお ける伝送光学系 4の中心軸 Oに対称な位置に設けられており、反射光全反射面 43e で全反射した光を垂直に出射させるように、構成されている。 The leading optical system 43 includes an irradiation light incident surface 43a, an irradiation light total reflection surface 43b, an irradiation light emission surface 43c, a reflected light incident surface 43d, a reflected light total reflection surface 43e, and a reflected light emission. It consists of a prism with face 43f. [0105] The irradiation light incident surface 43a is arranged perpendicular to the central axis O of the transmission optical system 4. The polarized light emitted from the polarization projection unit 1 and passed through the lenses 41 and 42 is vertically incident. The irradiation light total reflection surface 43b is configured to totally reflect the light incident inside from the irradiation light incident surface 43a toward the test surface 3. The irradiation light exit surface 43c is configured to emit vertically the light totally reflected by the irradiation light total reflection surface 43b. The reflected light incident surface 43d is configured so that the light reflected by the test surface 3 is incident vertically. The reflected light total reflection surface 43e is configured to totally reflect the light incident inside from the reflected light incident surface 43d. The reflected light exit surface 43f is provided at a position symmetrical to the central axis O of the transmission optical system 4 in the same plane as the irradiated light incident surface 43a, and vertically reflects the light totally reflected by the reflected light total reflection surface 43e. It is comprised so that it may radiate | emit.
[0106] このように構成された第 1実施形態の偏光測定装置によれば、偏光投影部 1におい て光源 laから出射した光は、強度分布均一化光学系 lcとしてのコンデンサーレンズ を介して平行光束に変換され、偏光子 lbを介して所定の直線偏光に変換された後、 スリット Id'を介して、紙面に対して垂直方向に延びた細長状の平光光束として出射 される。  According to the polarization measuring device of the first embodiment configured as described above, the light emitted from the light source la in the polarization projection unit 1 is parallel through the condenser lens as the intensity distribution uniformizing optical system lc. After being converted into a light beam and converted into a predetermined linearly polarized light through the polarizer lb, it is emitted as an elongated flat light beam extending in a direction perpendicular to the paper surface through the slit Id ′.
[0107] 偏光投影部 1からの偏光は、伝送光学系 4のレンズ 41を介して光路を曲げられて、レ ンズ 42に入射し、レンズ 42を介して、プリズム 43の照射光入射面 43aに垂直に入射 する。照射光入射面 43aに入射した偏光は、照射光全反射面 43bで被検面 3に向け て全反射される。照射光全反射面 43bで全反射した光は、照射光出射面 43cを介し て垂直に出射させられて被検面 3における伝送光学系 4 'の中心軸 Oと交わる位置に 所定の入射角で入射する。  [0107] The polarized light from the polarization projection unit 1 is bent in the optical path through the lens 41 of the transmission optical system 4 and enters the lens 42, and then enters the irradiation light incident surface 43a of the prism 43 through the lens 42. Incident vertically. The polarized light incident on the irradiation light incident surface 43a is totally reflected toward the test surface 3 by the irradiation light total reflection surface 43b. The light totally reflected by the irradiation light total reflection surface 43b is emitted vertically via the irradiation light emission surface 43c, and at a predetermined incident angle at a position intersecting the central axis O of the transmission optical system 4 ′ on the test surface 3. Incident.
[0108] 被検面 3で反射した光は、伝送光学系 4の中心軸 Oを対称として、照射光と逆向きの 光路を迪る。即ち、被検面 3で反射した光は、プリズム 43の反射光入射面 43dに垂 直に入射する。反射光入射面 43dから内部に入射した光は、反射光全反射面 43eで 全反射される。このとき、反射光全反射面 43eで全反射した光の光軸は、伝送光学 系 4の中心軸 Oに対して平行になる。さらに、反射光全反射面 43eで全反射した光は 、反射光出射面 43fを介して垂直に出射させられてレンズ 42に入射する。レンズ 42 に入射した光は、光路を曲げられて、レンズ 41に入射する。このとき、偏光投影部 1 力、ら被検面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に導かれ る光の光軸とが交差位置 CPで交差する。レンズ 41に入射した光は、平行光束の状 態で偏光受光部 2に入射する。 [0108] The light reflected by the surface to be inspected 3 travels along the optical path opposite to the irradiation light with the central axis O of the transmission optical system 4 as symmetric. That is, the light reflected by the test surface 3 enters the reflected light incident surface 43d of the prism 43 vertically. The light incident inside from the reflected light incident surface 43d is totally reflected by the reflected light total reflection surface 43e. At this time, the optical axis of the light totally reflected by the reflected light total reflection surface 43e is parallel to the central axis O of the transmission optical system 4. Further, the light totally reflected by the reflected light total reflection surface 43e is emitted vertically through the reflected light emission surface 43f and enters the lens 42. The light incident on the lens 42 is incident on the lens 41 with its optical path bent. At this time, the polarization projection unit 1 The optical axis of polarized light applied to the test surface 3 and the optical axis of the light reflected by the test surface 3 and guided to the polarized light receiving unit 2 intersect at the intersection position CP. The light incident on the lens 41 enters the polarized light receiving unit 2 in the form of a parallel light beam.
[0109] 偏光受光部 2に入射した光は、結像レンズ 2cを介して受光装置 2bに結像される。ま た、その途中で検光子 2aを介して所定の直線偏光のみが透過させられる。受光装置 2bは、受光された偏光の強度値から被検面 3を反射したことによる偏光状態の変化 を検出し、その変化に基づいて被検物の諸物性を検出する。  The light incident on the polarized light receiving unit 2 is imaged on the light receiving device 2b via the imaging lens 2c. In addition, only predetermined linearly polarized light is transmitted through the analyzer 2a in the middle. The light receiving device 2b detects changes in the polarization state due to reflection on the test surface 3 from the intensity value of the received polarized light, and detects various physical properties of the test object based on the changes.
[0110] このとき第 3実施形態の偏光測定装置によれば、偏光投影部 1が、光源 laから出射 した光の強度分布を均一化する強度分布均一化光学系 lcを有して構成され、また、 強度分布均一化光学系 lcの瞳位置 Idにおける所定範囲の光束断面力 S、被検面 3 に投影されるようにしたので、光源 laの発光面における強度分布が不均一であって も、被検面 3には均一な強度の光が照射され、照射面から得られる測定値の精度が 向上し安定した計測を行うことができるようになる。  [0110] At this time, according to the polarization measuring apparatus of the third embodiment, the polarization projection unit 1 is configured to have the intensity distribution uniformizing optical system lc that uniformizes the intensity distribution of the light emitted from the light source la, Further, since the light beam cross-sectional force S in the predetermined range at the pupil position Id of the intensity distribution uniformizing optical system lc is projected onto the test surface 3, even if the intensity distribution on the light emitting surface of the light source la is non-uniform The test surface 3 is irradiated with light of uniform intensity, and the accuracy of the measurement values obtained from the irradiated surface is improved, and stable measurement can be performed.
[0111] また、図 12に示したように、被検面 3における照射面積が拡大されるため、被検面 3 におけるよごれやゴミの相対的面積が小さくなつて安定した測定値が得られ、さらに、 被検面 3と発光部との相対的な位置ずれがあつたとしてもその影響を受け難くなり、 被検面 3と光源 laとの位置調整が簡単になる。  [0111] Further, as shown in FIG. 12, the irradiation area on the test surface 3 is enlarged, so that a stable measurement value can be obtained as the relative area of dirt and dust on the test surface 3 is reduced. Furthermore, even if there is a relative positional shift between the test surface 3 and the light emitting portion, it becomes difficult to be affected, and the position adjustment between the test surface 3 and the light source la becomes easy.
[0112] また、第 3実施形態の偏光測定装置によれば、強度分布均一化光学系 lcの瞳位置 Idに、伝送光学系 4の中心軸に対称に配置された偏光投影部 1から被検面 3へ照射 する偏光の光軸と被検面 3で反射して偏光受光部 2に導かれる光の光軸とを含む同 一仮想平面に対して垂直な方向(図 13においては紙面に対して垂直な方向)に延 びた、細長形状のスリット Id'を備えたので、偏光投影部 1から被検面 3へ照射する偏 光の光軸と被検面 3で反射して偏光受光部 2に導かれる光の光軸とを含む同一仮想 平面に沿い且つ中心軸 Oに対して垂直な方向には照明光が拡がらないので、被検 面 3に対する出射光(即ち、照明光)及び入射光(即ち、被検面 3からの反射光)の角 度に影響されることなぐ図 12に示したように、被検面 3に対する照明領域を極力拡 大し且つフレアやゴースト等のノイズの発生する部分をカットでき、少ない S/N比の 高い明るレ、偏光を検出することが可能となる。 [0113] また、第 3実施形態の偏光測定装置によれば、偏光投影部 1が、少なくとも出射側に テレセントリックな光学系として構成され、偏光受光部 2が、伝送光学系 4において偏 光投影部 1から被検面 3へ照射する偏光の光軸と被検面 3で反射して偏光受光部 2 に導かれる光の光軸とが交差する位置 CPの像を受光装置 2bに結像する結像光学 系 2cを有しているので、例えば図 15に示すように、測定毎に被検面 3との距離(作動 距離)が異なっても、被検面 3で反射したいずれの反射光も伝送光学系 4における位 置 CPに結像し、結像光学系 2cに平行に入射する。このとき、位置 CPは、受光装置 2 bの受光面と共役であり、位置 Pの像は、結像光学系 2cを介して受光装置 2bに結像 する。このため、作動距離が変わってもスリット Id'の像は動かないので、受光装置 2 bの受光面内での感度ムラがあってもその影響を受けることなく安定した偏光状態の 検出が可能となる。 In addition, according to the polarization measuring apparatus of the third embodiment, the polarization projection unit 1 arranged symmetrically with respect to the central axis of the transmission optical system 4 is examined at the pupil position Id of the intensity distribution uniformizing optical system lc. The direction perpendicular to the same virtual plane including the optical axis of the polarized light irradiating the surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving unit 2 (in FIG. (Elongated perpendicular direction) is provided with an elongated slit Id ', so that the polarization optical axis irradiates from the polarization projection unit 1 to the test surface 3 and the polarized light receiving unit reflected by the test surface 3 Since the illumination light does not spread in the direction perpendicular to the central axis O along the same virtual plane including the optical axis of the light guided to 2, the emitted light (that is, the illumination light) to the test surface 3 and As shown in Fig. 12, which is not affected by the angle of incident light (ie, reflected light from the test surface 3), the illumination area for the test surface 3 is expanded as much as possible. In addition, it is possible to cut out noise-generating parts such as flare and ghost, and it is possible to detect low brightness and polarization with high S / N ratio. [0113] Also, according to the polarization measuring apparatus of the third embodiment, the polarization projection unit 1 is configured as a telecentric optical system at least on the emission side, and the polarization light receiving unit 2 is a polarization projection unit in the transmission optical system 4. The image of the position CP where the optical axis of the polarized light radiated from 1 to the test surface 3 intersects the optical axis of the light reflected by the test surface 3 and guided to the polarization receiver 2 is formed on the light receiving device 2b. Since the image optical system 2c is included, for example, as shown in FIG. 15, even if the distance (working distance) from the test surface 3 differs for each measurement, any reflected light reflected by the test surface 3 An image is formed at the position CP in the transmission optical system 4 and enters the imaging optical system 2c in parallel. At this time, the position CP is conjugate with the light receiving surface of the light receiving device 2b, and the image at the position P is formed on the light receiving device 2b via the imaging optical system 2c. For this reason, even if the working distance changes, the image of the slit Id 'does not move, so even if there is uneven sensitivity within the light receiving surface of the light receiving device 2b, it is possible to detect a stable polarization state without being affected by it. Become.
[0114] また、上述したこれらの効果とともに、第 3実施形態の偏光測定装置によれば、第 1実 施形態の偏光測定装置に関連して記述した各種の作用及び効果を有する。  [0114] In addition to the above-described effects, the polarization measuring device of the third embodiment has various functions and effects described in relation to the polarization measuring device of the first embodiment.
[0115] 従って、第 3実施形態の偏光測定装置によれば、従来の偏光測定装置に比べて格 段に小型化でき、工業用以外の用途にも、例えば、歯の表面状態の検査など医療の 用途や、例えば、 DNAチップの検査などの分析装置としての用途などに、用途を拡 大させ易ぐしかも、測定精度を向上させて安定した計測を行うことができ、被検面と 照明光源との位置調整の煩雑化を解消することが可能な偏光測定装置が得られる。  Therefore, according to the polarization measuring device of the third embodiment, it can be remarkably miniaturized as compared with the conventional polarization measuring device, and for non-industrial uses, for example, medical examination such as inspection of tooth surface condition. For example, it can be easily expanded for use as an analytical device such as DNA chip inspection, and it is possible to perform stable measurement with improved measurement accuracy. Thus, a polarization measuring device that can eliminate the complication of the positional adjustment is obtained.
[0116] また、図 11及び図 13に示した第 3実施形態の偏光測定装置では、伝送光学系 4を、 用途に応じてさらに偏光投影部 1側及び偏光受光部 2側に、偏光投影部 1から被検 面 3へ照射する偏光の光軸と、被検面 3で反射して偏光受光部 2に導かれる光の光 軸とを交差させるリレー光学系を一個又は複数個設けて長い光学系を構成してもよ い。  Further, in the polarization measuring device of the third embodiment shown in FIGS. 11 and 13, the transmission optical system 4 is further provided on the polarization projection unit 1 side and the polarization light receiving unit 2 side according to the application. A long optical system is provided with one or more relay optical systems that cross the optical axis of polarized light radiated from 1 to the test surface 3 and the optical axis of the light reflected from the test surface 3 and guided to the polarized light receiving unit 2. You may configure the system.
産業上の利用可能性  Industrial applicability
[0117] 本発明の偏光測定装置は、物性の変化をリアルタイムで検出することが求められるェ 業分野や、例えば、歯の表面状態を検査することが求められる医療分野や、 DNAチ ップを検査することが求められる生物分野に有用である。 [0117] The polarization measuring device of the present invention can be used in an engineering field in which a change in physical properties is required in real time, a medical field in which, for example, a dental surface condition is required, or a DNA chip. This is useful in the biological field where testing is required.

Claims

請求の範囲 The scope of the claims
[1] 偏光投影部と、偏光受光部と、前記偏光投影部力 の偏光を集光して被検面に照 射するとともに該被検面で反射した光を集光して前記偏光受光部に導く伝送光学系 を有し、  [1] A polarized light projecting unit, a polarized light receiving unit, and the polarized light receiving unit condensing the polarized light of the polarized light projecting unit force to irradiate the test surface and collecting the light reflected by the test surface. A transmission optical system that leads to
前記伝送光学系は、前記偏光投影部から前記被検面へ照射する偏光の光軸と、 前記被検面で反射して前記偏光受光部に導かれる光の光軸とが、同一の光学系の 中心軸に対称に配置され、且つ、少なくとも一回交差するように、構成されていること を特徴とする偏光測定装置。  The transmission optical system has an optical system in which an optical axis of polarized light irradiating the test surface from the polarized light projection unit and an optical axis of light reflected by the test surface and guided to the polarized light receiving unit are the same. A polarization measuring device, characterized in that the polarization measuring device is arranged symmetrically with respect to the central axis, and is configured to intersect at least once.
[2] 光源と偏光子を有する偏光投影部と、検光子と受光装置を有する偏光受光部と、 前記偏光投影部からの偏光を集光して被検面に照射するとともに該被検面で反射し た光を集光して前記偏光受光部に導く伝送光学系とを有し、  [2] A polarization projection unit having a light source and a polarizer, a polarization light reception unit having an analyzer and a light receiving device, and condensing the polarized light from the polarization projection unit and irradiating the test surface, A transmission optical system that condenses the reflected light and guides it to the polarized light receiving unit,
前記伝送光学系が、前記偏光投影部から前記被検面へ照射する偏光の光軸と、 前記被検面で反射して前記偏光受光部に導かれる光の光軸とが、同一の光学系の 中心軸に対称に配置され、且つ、少なくとも一回交差するように構成され、 前記偏光投影部が、前記光源から出射した光の強度分布を均一化する強度分布 均一化光学系を有し、且つ、  The optical system in which the transmission optical system irradiates the test surface from the polarized light projection unit and the optical axis of the light reflected by the test surface and guided to the polarized light receiving unit are the same optical system The polarization projection unit has an intensity distribution homogenizing optical system that equalizes the intensity distribution of the light emitted from the light source, And
前記強度分布均一化光学系の瞳位置における所定範囲の光束断面が、前記被検 面に投影されるようにしたことを特徴とする偏光測定装置。  A polarization measuring apparatus characterized in that a light beam cross section within a predetermined range at a pupil position of the intensity distribution uniformizing optical system is projected onto the test surface.
[3] 前記強度分布均一化光学系の瞳位置に、前記伝送光学系の中心軸に対称に配 置された前記偏光投影部から前記被検面へ照射する偏光の光軸と前記被検面で反 射して前記偏光受光部に導かれる光の光軸とを含む同一仮想平面に対して垂直な 方向に延びた、細長形状のスリットを備えたことを特徴とする請求の範囲 2に記載の 偏光測定装置。 [3] The optical axis of polarized light irradiating the test surface from the polarization projection unit disposed symmetrically with the central axis of the transmission optical system at the pupil position of the intensity distribution uniformizing optical system and the test surface 3. An elongated slit extending in a direction perpendicular to the same imaginary plane including the optical axis of the light reflected and guided to the polarized light receiving unit. Polarization measuring device.
[4] 前記偏光投影部が、少なくとも出射側にテレセントリックな光学系として構成され、 前記偏光受光部が、前記伝送光学系において前記偏光投影部から前記被検面へ 照射する偏光の光軸と前記被検面で反射して前記偏光受光部に導かれる光の光軸 とが交差する位置の像を前記受光装置に結像する結像光学系を有することを特徴と する請求の範囲 2又は 3に記載の偏光測定装置。 [4] The polarization projection unit is configured as a telecentric optical system at least on the emission side, and the polarization light receiving unit includes an optical axis of polarized light that irradiates the test surface from the polarization projection unit in the transmission optical system, and The imaging optical system that forms an image on the light receiving device at a position where the optical axis of the light reflected by the test surface and guided to the polarized light receiving unit intersects the light receiving device. The polarization measuring device according to 1.
[5] 前記伝送光学系が、 [5] The transmission optical system is
前記偏光投影部からの偏光を被検面に対して斜めに照射するように出射させるととも に前記被検面で反射した光を内部に入射させるように構成された、先端光学系を有 することを特徴とする請求の範囲 1乃至 4の何れかに記載の偏光測定装置。  It has a tip optical system configured to emit the polarized light from the polarization projection unit so as to irradiate the test surface obliquely and to make the light reflected by the test surface enter inside. The polarization measuring device according to any one of claims 1 to 4, wherein
[6] 前記先端光学系が、  [6] The tip optical system is
内部に入射した光を被検面に向けて全反射する照射光全反射面と、  Irradiation light total reflection surface that totally reflects the light incident on the test surface toward the test surface;
前記被検面で反射し内部に入射した光を全反射する反射光全反射面と、 を有するプリズムで構成されていることを特徴とする請求の範囲 5に記載の偏光測定 装置。  6. The polarization measuring device according to claim 5, wherein the polarization measuring device comprises a prism having a reflected light total reflection surface that reflects the light reflected by the test surface and totally reflects the light incident on the test surface.
[7] 前記伝送光学系が、前記先端光学系よりも前記被検面から離れた位置において、 前記偏光投影部から前記被検面へ照射する偏光の光軸と、前記被検面で反射して 前記偏光受光部に導かれる光の光軸とを、少なくとも一回交差させた後に、該伝送 光学系の中心軸に対して平行になるように構成され、  [7] The transmission optical system is reflected by the test surface and an optical axis of polarized light irradiating the test surface from the polarization projection unit at a position farther from the test surface than the tip optical system. The optical axis of the light guided to the polarized light receiving unit is configured to be parallel to the central axis of the transmission optical system after intersecting at least once.
前記先端光学系が、  The tip optical system is
前記偏光投影部からの偏光を垂直に入射させる照射光入射面と、  An irradiation light incident surface on which polarized light from the polarization projection unit is vertically incident;
前記照射光入射面から内部に入射した光を被検面に向けて全反射する照射光全反 射面と、前記照射光全反射面で全反射した光を垂直に出射させる照射光出射面と、 前記被検面で反射した光を垂直に入射させる反射光入射面と、  An irradiation light total reflection surface that totally reflects light incident inside from the irradiation light incident surface toward the test surface; and an irradiation light emission surface that vertically emits the light totally reflected by the irradiation light total reflection surface; A reflected light incident surface on which the light reflected by the test surface is incident vertically;
前記反射光入射面から内部に入射した光を全反射する反射光全反射面と、 前記反射光全反射面で全反射した光を垂直に出射させる反射光出射面と、 を有するプリズムで構成されていることを特徴とする請求の範囲 5に記載の偏光測定 装置。  A reflected light total reflection surface that totally reflects light incident inside from the reflected light incident surface; and a reflected light output surface that vertically emits light totally reflected by the reflected light total reflection surface. The polarization measuring device according to claim 5, wherein
[8] 前記伝送光学系が、前記先端光学系よりも前記被検面から離れた位置において、 前記偏光投影部から前記被検面へ照射する偏光の光軸と、前記被検面で反射して 前記偏光受光部に導かれる光の光軸とを、該伝送光学系の中心軸に対して斜めに なるように構成され、  [8] The transmission optical system is reflected by the test surface and an optical axis of polarized light radiated from the polarization projection unit to the test surface at a position farther from the test surface than the tip optical system. The optical axis of the light guided to the polarized light receiving unit is inclined with respect to the central axis of the transmission optical system,
前記先端光学系が、  The tip optical system is
内部に入射した光を被検面に向けて全反射する照射光全反射面と、 前記被検面で反射し内部に入射した光を全反射する反射光全反射面と、 を有するプリズムで構成されていることを特徴とする請求の範囲 5に記載の偏光測定 装置。 Irradiation light total reflection surface that totally reflects the light incident on the test surface toward the test surface; 6. The polarization measuring device according to claim 5, wherein the polarization measuring device comprises a prism having a reflected light total reflection surface that reflects the light reflected by the test surface and totally reflects the light incident on the test surface.
[9] 前記伝送光学系が、前記先端光学系よりも前記被検面から離れた位置において、 前記偏光投影部から前記被検面へ照射する偏光の光軸と、前記被検面で反射して 前記偏光受光部に導かれる光の光軸とを、該伝送光学系の中心軸に対して斜めに なるように構成され、  [9] The transmission optical system is reflected by the test surface and an optical axis of polarized light radiated from the polarization projection unit to the test surface at a position farther from the test surface than the tip optical system. The optical axis of the light guided to the polarized light receiving unit is inclined with respect to the central axis of the transmission optical system,
前記先端光学系が、  The tip optical system is
前記照射光入射面から内部に入射した光を被検面に向けて全反射する照射光全反 射面と、前記照射光全反射面で全反射した光を垂直に出射させる照射光出射面と、 前記被検面で反射した光を垂直に入射させる反射光入射面と、  An irradiation light total reflection surface that totally reflects light incident inside from the irradiation light incident surface toward the test surface; and an irradiation light emission surface that emits light totally reflected by the irradiation light total reflection surface vertically. A reflected light incident surface on which the light reflected by the test surface is incident vertically;
前記反射光入射面から内部に入射した光を全反射する反射光全反射面と、 を有するプリズムで構成されていることを特徴とする請求項 5に記載の偏光測定装置  6. The polarization measuring device according to claim 5, comprising: a prism having: a reflected light total reflection surface that totally reflects light incident inside from the reflected light incident surface.
[10] 前記伝送光学系が、前記先端光学系よりも前記被検面から離れた位置において、 前記偏光投影部から前記被検面へ照射する偏光の光軸と、前記被検面で反射して 前記偏光受光部に導かれる光の光軸とを、該伝送光学系の中心軸に対して斜めに なるように構成され、 [10] The transmission optical system is reflected by the test surface and an optical axis of polarized light radiated from the polarization projection unit to the test surface at a position farther from the test surface than the tip optical system. The optical axis of the light guided to the polarized light receiving unit is inclined with respect to the central axis of the transmission optical system,
前記先端光学系が、  The tip optical system is
前記偏光投影部からの偏光を垂直に入射させる照射光入射面と、  An irradiation light incident surface on which polarized light from the polarization projection unit is vertically incident;
前記照射光入射面から内部に入射した光を被検面に向けて全反射する照射光全反 射面と、前記照射光全反射面で全反射した光を垂直に出射させる照射光出射面と、 前記被検面で反射した光を垂直に入射させる反射光入射面と、  An irradiation light total reflection surface that totally reflects light incident inside from the irradiation light incident surface toward the test surface; and an irradiation light emission surface that vertically emits the light totally reflected by the irradiation light total reflection surface; A reflected light incident surface on which the light reflected by the test surface is incident vertically;
前記反射光入射面から内部に入射した光を全反射する反射光全反射面と、 前記反射光全反射面で全反射した光を垂直に出射させる反射光出射面と、 を有するプリズムで構成されていることを特徴とする請求の範囲 5に記載の偏光測定 装置。  A reflected light total reflection surface that totally reflects light incident inside from the reflected light incident surface; and a reflected light output surface that vertically emits light totally reflected by the reflected light total reflection surface. The polarization measuring device according to claim 5, wherein
[11] 前記プリズムが、前記照射光全反射面と前記反射光全反射面を前記伝送光学系 の中心軸に対称な側面に有する側面全反射プリズムであることを特徴とする請求の 範囲 8乃至 10の何れかに記載の偏光測定装置。 [11] The prism includes the transmission light system including the irradiation light total reflection surface and the reflected light total reflection surface. 11. The polarization measuring device according to claim 8, wherein the polarization measuring device is a side total reflection prism having a side surface symmetrical to the central axis.
[12] 入射した照射光を全反射する照射光全反射面及び入射した反射光を全反射する 反射光全反射面を、夫々、前記伝送光学系の中心軸に対称な側面の複数箇所に有 することを特徴とする請求の範囲 11に記載の偏光測定装置。 [12] The irradiation light total reflection surface that totally reflects incident irradiation light and the reflection light total reflection surface that totally reflects incident reflection light are provided at a plurality of positions on side surfaces symmetrical to the central axis of the transmission optical system. 12. The polarization measuring device according to claim 11, wherein:
[13] 前記プリズムが結晶質で構成されていることを特徴とする請求の範囲 6乃至 12の何 れかに記載の偏光測定装置。 [13] The polarization measuring device according to any one of [6] to [12], wherein the prism is made of a crystalline material.
[14] 前記結晶質の C軸が前記伝送光学系の中心軸方向に対して平行となるように、前 記プリズムが配置されていることを特徴とする請求項 13に記載の偏光測定装置。 14. The polarization measuring apparatus according to claim 13, wherein the prism is arranged so that the crystalline C-axis is parallel to a central axis direction of the transmission optical system.
[15] 前記結晶質の C軸が前記伝送光学系の中心軸方向に対して垂直となるように、前 記プリズムが配置されていることを特徴とする請求の範囲 13に記載の偏光測定装置 15. The polarization measuring device according to claim 13, wherein the prism is arranged so that the crystalline C-axis is perpendicular to a central axis direction of the transmission optical system.
[16] さらに、前記伝送光学系が、前記偏光投影部側及び前記偏光受光部側に、前記偏 光投影部から前記被検面へ照射する偏光の光軸と、前記被検面で反射して前記偏 光受光部に導かれる光の光軸とを交差させるリレー光学系を有することを特徴とする 請求の範囲 1乃至 15の何れかに記載の偏光測定装置。 [16] Further, the transmission optical system reflects the optical axis of polarized light irradiating the test surface from the polarization projection unit to the polarization projection unit side and the polarization light receiving unit side, and the test surface. 16. The polarization measuring device according to claim 1, further comprising a relay optical system that intersects an optical axis of light guided to the polarization light receiving unit.
[17] 投影部と、受光部と、前記投影部からの光を集光して被検面に照射するとともに該 被検面で反射した光を集光して前記受光部に導く伝送光学系を有し、  [17] A projecting unit, a light receiving unit, and a transmission optical system that collects light from the projecting unit and irradiates the test surface and collects light reflected by the test surface and guides it to the light receiving unit Have
前記伝送光学系は、前記投影部から前記被検面へ照射する光の光軸と、前記被 検面で反射して前記受光部に導かれる光の光軸とが、同一の光学系の中心軸に対 称に配置され、且つ、少なくとも一回交差するように、構成されていることを特徴とす る偏光測定装置。  In the transmission optical system, the optical axis of the light irradiated from the projection unit to the test surface and the optical axis of the light reflected by the test surface and guided to the light receiving unit are the center of the same optical system. A polarization measuring device, characterized in that it is arranged symmetrically with an axis and is configured to intersect at least once.
[18] 光源を有する投影部と、検光子と受光装置を有する偏光受光部と、前記投影部か らの光を集光して被検面に照射するとともに該被検面で反射した光を集光して前記 偏光受光部に導く伝送光学系とを有し、  [18] A projection unit having a light source, a polarized light receiving unit having an analyzer and a light receiving device, and condensing the light from the projection unit to irradiate the test surface and reflecting the light reflected by the test surface A transmission optical system that focuses the light and guides it to the polarized light receiving unit;
前記伝送光学系が、前記投影部から前記被検面へ照射する光の光軸と、前記被 検面で反射して前記偏光受光部に導かれる光の光軸とが、同一の光学系の中心軸 に対称に配置され、且つ、少なくとも一回交差するように構成され、 前記投影部が、前記光源から出射した光の強度分布を均一化する強度分布均一 化光学系を有し、且つ、 The optical axis of the light that the transmission optical system irradiates from the projection unit onto the test surface and the optical axis of the light that is reflected by the test surface and guided to the polarized light receiving unit are the same optical system. Arranged symmetrically with respect to the central axis and configured to intersect at least once, The projection unit has an intensity distribution uniformizing optical system that uniformizes the intensity distribution of light emitted from the light source, and
前記強度分布均一化光学系の瞳位置における所定範囲の光束断面が、前記被検 面に投影されるようにしたことを特徴とする偏光測定装置。  A polarization measuring apparatus characterized in that a light beam cross section within a predetermined range at a pupil position of the intensity distribution uniformizing optical system is projected onto the test surface.
PCT/JP2007/068113 2006-09-19 2007-09-19 Polarization measuring device WO2008035685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535362A JP5011302B2 (en) 2006-09-19 2007-09-19 Polarimeter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006252649 2006-09-19
JP2006-252649 2006-09-19
JP2006-340951 2006-12-19
JP2006340951 2006-12-19

Publications (1)

Publication Number Publication Date
WO2008035685A1 true WO2008035685A1 (en) 2008-03-27

Family

ID=39200510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068113 WO2008035685A1 (en) 2006-09-19 2007-09-19 Polarization measuring device

Country Status (2)

Country Link
JP (1) JP5011302B2 (en)
WO (1) WO2008035685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093210A (en) * 2014-11-12 2016-05-26 ソニー株式会社 Image processing device, image processing method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030041B1 (en) * 2014-12-12 2017-12-22 Bertin Technologies Sa OPTICAL FILTERING DEVICE FOR DETECTING GAS

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307719A (en) * 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd Magnetic domain observation and magnetization measuring instrument
JPH0875414A (en) * 1994-09-02 1996-03-22 Hamamatsu Photonics Kk Infinitesimal position measuring device
JPH08210972A (en) * 1995-02-03 1996-08-20 Hitachi Ltd Ellipsometer
JP2002323304A (en) * 2001-04-25 2002-11-08 Horiba Ltd Spectroscopic ellipsometer
JP2003508772A (en) * 1999-07-27 2003-03-04 コロラド・スクール・オブ・マインズ Parallel detection spectroscopic ellipsometer / polarimeter
JP2004061286A (en) * 2002-07-29 2004-02-26 Nippon Laser & Electronics Lab Surface plasmon resonance angle sensor
WO2005029192A2 (en) * 2003-09-15 2005-03-31 Zygo Corporation Surface triangulation and profiling through a thin film coating
WO2005067651A2 (en) * 2004-01-08 2005-07-28 Cappo Anthony P Surface plasmon resonance based nanoliter tear osmometer
JP2006509219A (en) * 2002-12-05 2006-03-16 ケーエルエー−テンカー テクノロジィース コーポレイション Apparatus and method for detecting overlay error using scatterometry
JP2006071381A (en) * 2004-08-31 2006-03-16 Omron Corp Thin film measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198834A (en) * 1987-02-13 1988-08-17 Jeol Ltd Probe type ATR device
JPH09244221A (en) * 1996-03-07 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> Photomask optical property measuring device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307719A (en) * 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd Magnetic domain observation and magnetization measuring instrument
JPH0875414A (en) * 1994-09-02 1996-03-22 Hamamatsu Photonics Kk Infinitesimal position measuring device
JPH08210972A (en) * 1995-02-03 1996-08-20 Hitachi Ltd Ellipsometer
JP2003508772A (en) * 1999-07-27 2003-03-04 コロラド・スクール・オブ・マインズ Parallel detection spectroscopic ellipsometer / polarimeter
JP2002323304A (en) * 2001-04-25 2002-11-08 Horiba Ltd Spectroscopic ellipsometer
JP2004061286A (en) * 2002-07-29 2004-02-26 Nippon Laser & Electronics Lab Surface plasmon resonance angle sensor
JP2006509219A (en) * 2002-12-05 2006-03-16 ケーエルエー−テンカー テクノロジィース コーポレイション Apparatus and method for detecting overlay error using scatterometry
WO2005029192A2 (en) * 2003-09-15 2005-03-31 Zygo Corporation Surface triangulation and profiling through a thin film coating
WO2005067651A2 (en) * 2004-01-08 2005-07-28 Cappo Anthony P Surface plasmon resonance based nanoliter tear osmometer
JP2006071381A (en) * 2004-08-31 2006-03-16 Omron Corp Thin film measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINKE F. ET AL.: "Quantitative ellipsometric microscopy at the silicon-air interface", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 76, no. 6, June 2005 (2005-06-01), pages 063701.1 - 063701.10, XP012079480 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093210A (en) * 2014-11-12 2016-05-26 ソニー株式会社 Image processing device, image processing method, and program
US10799101B2 (en) 2014-11-12 2020-10-13 Sony Corporation Image processing apparatus, image processing method, and program
US11766167B2 (en) 2014-11-12 2023-09-26 Sony Corporation Image processing apparatus, image processing method, and program

Also Published As

Publication number Publication date
JPWO2008035685A1 (en) 2010-01-28
JP5011302B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US6382795B1 (en) Method and apparatus for measuring refractive errors of an eye
US7969560B2 (en) Optical property sensor
JP5988643B2 (en) Measuring device, measuring method, and optical component manufacturing method
WO2009101659A1 (en) Method and apparatus for remote measurement of gas concentration
JP2002031510A (en) Optical measuring device with ellipsometer
JP2001519026A (en) Optical surface inspection equipment
JP3406944B2 (en) Lens measuring device
JP2002071513A (en) Interferometer for immersion microscope objective lens and method of evaluating immersion microscope objective lens
CN106052596A (en) High-precision photoelectric auto-collimator based on far exit pupil and small diameter ratio design
JP2002034919A (en) Eye optical characteristics measuring device
JP2008026049A (en) Flange focal length measuring device
JP6385974B2 (en) Optical instrument and measuring device for measuring total reflection absorption spectrum
CN102175150B (en) Infrared interference detection device with point aligning and detecting double probe
JP2008128744A (en) Distance measurement apparatus and method
JP5011302B2 (en) Polarimeter
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2005062012A (en) Vibration-resistant interferometer device
CN105651733B (en) Material scattering characteristic measuring device and method
JP7486178B2 (en) Spectroscopic equipment
JPH10176906A (en) Measuring device
JP3795976B2 (en) Non-contact temperature measuring device
RU2202814C1 (en) Cat&#39;s eye index meter for optoelectronic devices
JP2007093339A (en) Inspection device
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
CN106773078A (en) A kind of beam propagation directional devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535362

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807501

Country of ref document: EP

Kind code of ref document: A1