[go: up one dir, main page]

WO2008153199A1 - Ionization analysis method and device - Google Patents

Ionization analysis method and device Download PDF

Info

Publication number
WO2008153199A1
WO2008153199A1 PCT/JP2008/061169 JP2008061169W WO2008153199A1 WO 2008153199 A1 WO2008153199 A1 WO 2008153199A1 JP 2008061169 W JP2008061169 W JP 2008061169W WO 2008153199 A1 WO2008153199 A1 WO 2008153199A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
dielectric
tube
barrier discharge
electrodes
Prior art date
Application number
PCT/JP2008/061169
Other languages
French (fr)
Japanese (ja)
Inventor
Kenzo Hiraoka
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Publication of WO2008153199A1 publication Critical patent/WO2008153199A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission

Definitions

  • the present invention relates to a method and apparatus for ionization analysis under atmospheric pressure of a sample.
  • heated rare gas such as helium gas is excited by DC corona discharge, and the generated ions and excited species are ejected from a nozzle and sprayed onto the sample.
  • the molecular ions derived from the sample ionized are blown away by the sprayed gas. Only a part of the blown ions are introduced into the mass spectrometer through the orifice. Therefore, it comes at the expense of great detection sensitivity. In addition, a large amount of helium gas is consumed, so it is not economical.
  • the present invention provides an ionization analysis method and apparatus capable of analyzing even a very small amount of sample with high sensitivity.
  • the ionization method according to the present invention applies an alternating voltage between at least two electrodes to generate a barrier discharge in a space including the surface of the dielectric disposed across the discharge current path, and the generated variability. This includes supplying the target sample to the position exposed to the discharge.
  • an AC voltage is applied between at least two electrodes, and a barrier discharge is generated in the space including the surface of the dielectric disposed across the discharge current path.
  • This includes supplying the sample to be analyzed to a position where it is exposed to the barrier discharge, and guiding ions of the sample generated by exposure to the barrier discharge to the analyzer.
  • the ionization apparatus comprises a dielectric and at least two electrodes to which an AC voltage is applied between them, and the surface of the dielectric faces in or near the space where the sample to be analyzed is supplied.
  • the dielectric is disposed across the discharge current path of the barrier discharge so that a barrier discharge is generated in a space including the surface of the dielectric by applying an AC voltage between the electrodes. Is.
  • an ion introduction path is provided that guides the sample ions generated when the sample to be analyzed is exposed to a barrier discharge to the analyzer.
  • an ionization analyzer can be realized by providing a mass analyzer that can guide ions.
  • the barrier discharge becomes larger and more stable.
  • the sample may be placed on, or pasted on, or near the surface of the dielectric. If the sample is a gas, it can be supplied through the sample supply tube.
  • the portion of the sample exposed to the barrier discharge becomes a high-energy state and is desorbed and ionized without undergoing thermal decomposition.
  • the ion production mechanism by the Parry discharge is not necessarily analyzed clearly, but ions are generated directly in the discharge plasma or by metastable excited species (such as He *) generated by rare gas discharge such as helium. It is thought to be ionized.
  • the barrier discharge is characterized by a low plasma gas temperature (estimated to be around 100 ° C), and the holding member such as the sample or the substrate holding the sample is not heated.
  • the substrate does not thermally decompose to generate impurity ions.
  • the barrier discharge is an AC discharge, it generates not only positive ions but also negative ions that are difficult to observe normally. This is because a large amount of electrons are generated by the barrier discharge. In barrier discharge, a large amount of electrons are generated by plasma, so if an appropriate mass spectrometer is used, a compound with a high electron affinity (ie, a positive electron affinity) can be easily converted into a negative ion. Can be detected.
  • Sample molecules are ionized as described above by barrier discharge plasma.
  • the barrier discharge occurs on the solid surface (creeping discharge) and the space above it, so the ion generation area is wide. For this reason, although the amount of current is small, the amount of ion generation is large and the detection sensitivity is high.
  • noble gas helium When noble gas helium is used, it is also ionized (penning ionization) by metastable excited species (such as He *) of noble gas atoms generated in the discharge plasma, so it is extremely efficient and highly sensitive. Ionization method.
  • one of the two electrodes as an electrode with a sharp tip, ionization and analysis of a small region of the sample becomes possible.
  • Two-dimensional imaging is also possible by scanning the electrode or sample.
  • This invention can be applied to all solid, liquid, and gas samples. In other words, it can be applied to all specimens such as banknotes, cloth, soil, dry biological tissue samples, pigments, powders, plastics, wood, and inorganic materials.
  • the sample tube that guides the sample ion to the analyzer and the gas supply tube that supplies the discharge gas have a double structure, and one end of each of them faces the space where barrier discharge occurs. Arrange them.
  • the sample tube that guides the sample ions to the analyzer and the sample supply tube that supplies the sample gas have a double structure, and they are arranged so that one end of them faces the space where barrier discharge occurs. .
  • either the sample tube, the gas supply tube, or the sample supply tube, which is arranged so that one end faces the space where the Parry discharge occurs, is used as the first electrode, and the dielectric It is desirable to place a flat plate-like second electrode on the opposite side of the surface, and apply an AC voltage between these first and second electrodes.
  • the two electrodes may be arranged so as to sandwich the dielectric, or the two electrodes may be arranged on the opposite side of the surface of the dielectric.
  • the configuration of the ionizer is embedded in an electrode support made of an insulator provided with an ion introduction path, and the ion support is embedded with the ion introduction path in between. 2 electrodes and placed to cover the above electrodes And a dielectric with a hole leading to the ion introduction path.
  • the present invention can also be applied to a material chemical processing method and apparatus using barrier discharge.
  • the chemical treatment method according to the present invention applies an alternating voltage between at least two electrodes to cause a barrier discharge in a space including the surface of the dielectric disposed across the discharge current path. Including supplying a material to be processed to a position exposed to the generated barrier discharge.
  • a chemical processing apparatus includes a dielectric on which a material to be processed is placed, at least two electrodes arranged with the dielectric interposed therebetween, and a power supply device that supplies an AC voltage to the two electrodes.
  • Fig. 1 shows the configuration of the ionizer according to the first embodiment.
  • Figure 2 shows a variation of the ionizer.
  • Figure 3 shows a modification of the double pipe section.
  • Figure 4 shows an example of the detection target applied to the ionizer and its arrangement.
  • Figure 5 shows examples of other detection objects applied to the ionizer and their arrangement.
  • Figure 6 shows another variation of the ionizer.
  • Section 7 shows another variation of the ionizer.
  • Figure 8 shows another variation of the ionizer.
  • Figure 9 shows a modification of the tip of the double pipe.
  • Fig. 10 shows that the ionizer is a chemical treatment device (including a surface processing device). Shows how to apply.
  • Fig. 11 shows the configuration of the ionizer according to the second embodiment. .
  • Figure 12 shows how a gas sample is collected.
  • Figure 13 shows how a gas sample is collected.
  • Figure 14 shows how a gas sample is collected.
  • FIG. 15 is a plan view showing the configuration of the ionization apparatus according to the third embodiment.
  • FIG. 16 is an assembled perspective view of the ionization apparatus shown in FIG.
  • FIGS. 17 to 19 show data demonstrating that various substances can be detected using the ionization analyzer according to the above-mentioned embodiment.
  • FIG. 17 uses the apparatus shown in FIG. Fig. 18 shows the analysis result of hexane vapor using the apparatus shown in Fig. 11, and Fig. 19 shows the apparatus shown in Fig. 4. It is a graph which shows the analysis result of the ethyl acetate solution of metafidophos used.
  • FIG. 1 shows an ionization apparatus (or ionization analysis apparatus) according to a first embodiment of the present invention.
  • the ion introduction part of mass spectrometer 60 (any mass spectrometer of the type that introduces ION such as time-of-flight mass spectrometer, ion trap mass spectrometer, quadrupole mass spectrometer, etc.) can be used in a conical shape.
  • This skimmer (or sampling 'orifice) 61 is provided, and a thin sample tube connection 61A extends outward from the center of the skimmer 61 that protrudes outward.
  • a sample tube (ion's sampling tube, ion introduction tube) (capillary) 11 is connected to the connection 61 A by a joint (force puller) 62 made of an insulator such as ceramic. .
  • the sample tube 11 Extends straight from the skimmer 61 of the mass spectrometer 60 through the connection 61A and the fitting 62, but at least one of the connection 61A, the fitting 62 and the sample tube 11 has a flexible structure or can be expanded and contracted. As a simple structure, the tip of the sample tube 11 can be placed at an arbitrary position at an arbitrary angle. This also applies to the modified examples and other examples described later.
  • the sample tube 11 is inserted into the outer tube 12 from the tip to the middle. In comparison with the outer tube 12, the sample tube 11 may be called an inner tube. There is a gap (space) between the inner tube 11 and the outer tube 12. In this embodiment, since the discharge gas (or carrier gas) is supplied through the space between the inner tube 11 and the outer tube 12, the outer tube 12 may be called a discharge gas supply tube or a gas supply tube. .
  • the end of the sample tube 11 on the joint 62 side protrudes outward from the tube wall of the gas supply tube 12.
  • the portion where the sample tube 11 and the gas supply tube 12 are doubled is called a double tube or double tube 10.
  • the sample tube 11 and the gas supply tube 12 are both made of metal, and at least one of them serves as an electrode for barrier discharge as described later.
  • the tip of the sample tube 11 protrudes slightly outward (for example, several millimeters) from the gas supply tube 12.
  • the tip end of the sample tube 11 and the gas supply tube 12 may be substantially the same position, or the tip of the gas supply tube 12 may protrude beyond the tip of the sample tube 11. May be. More preferably, either one or both of the sample tube 11 and the gas supply tube 12 are configured to be extendable.
  • a dielectric (insulator) glass, quartz, alumina, etc. is provided to generate the barrier discharge.
  • a dielectric plate 9 (for example, a thickness of about 1 mm) is used.
  • the dielectric plate 9 is also used as a table on which a sample to be analyzed (for example, cloth, banknote, mud, dried biological tissue sample or other specimen, solid sample, etc.) S is placed, applied or adhered. Sample solution with dielectric plate 9 It can be dropped onto the sample as it is, or it can be dried and used as a sample.
  • the tip of the double tube 10 is slightly spaced from the surface of the dielectric plate 9 on which the sample S is placed (for example, the tip of the sample tube 11 is separated from the sample S by several dragons or less).
  • the plate electrode 21 and the dielectric plate 9 are fixed on a support base, and the sample tube 11 extending from the mass spectrometer 60 is brought together with the gas supply tube 12 to one side of the dielectric plate 9.
  • the sample tube 11 is arranged perpendicular to one surface of the dielectric plate 9.
  • the above support (or the plate electrode 21 and the dielectric plate 9) can be moved up and down (in the direction of approaching and moving away from the sample tube 11) or two-dimensionally by using an XY table. It may be movable in the direction (surface direction perpendicular to the sample tube 11).
  • a support column having an arm can be erected on the support base, and the double pipe portion 10 can be supported by the arm.
  • the output terminal of the power supply device 30 is connected between the gas supply pipe 12 and the plate electrode 21 via a current limiting resistor 31 (for example, about 50 to 100 ⁇ ).
  • An AC voltage (for example, a voltage) is provided between the gas supply pipe (electrode) 12 and the sample pipe 11 (in this embodiment, both pipes 1 1 and 12 are in electrical contact) and the plate electrode 21 by the power supply 30.
  • the AC (high frequency) voltage is preferably a rectangular wave, but may be a sine wave or other waveform.
  • the end of the gas supply pipe 12 is connected to the gas output port of a discharge gas supply apparatus (eg, gas cylinder) 40.
  • the gas supply pipe 12 is connected to a discharge gas (rare gas such as helium (He), nitrogen , Oxygen, etc.).
  • the discharge gas is blown from the tip of the gas supply tube 12 to the sample S or the dielectric plate 9.
  • the tips of the gas supply pipe 12 and the sample pipe 11 function as electrodes.
  • the tip of the sample tube 1 is more protruding than the gas supply tube 12, so that the tip of the sample tube 11 and the dielectric plate 9 or the tip of the sample tube 11 and the sample S is In the meantime, a barrier discharge occurs.
  • sample S is exposed to local plasma by barrier discharge. Only the part of the sample that is exposed to the barrier discharge is in a high-energy state and is desorbed and ionized without thermal decomposition. Ions are considered to be ionized directly in the discharge plasma or by metastable excited species (such as He *) generated by rare gas discharges such as helium.
  • the mass spectrometer 60 is kept in a high vacuum, and the tip of the sample tube 11 is in or near the space where the barrier discharge occurs, so that the local plasma generated by the barrier discharge is in the local plasma. Most of the ions are attracted directly to the mass spectrometer 60 through the sample tube 11 without being diffused into the outside air, and are subjected to mass analysis. This achieves ultra-sensitive ion detection.
  • a barrier discharge is characterized by a low plasma gas temperature (estimated to be around 100 ° C) while the electron temperature is as high as tens of thousands of degrees. Since the dielectric plate 9 is not heated, these materials do not thermally decompose to generate impurity ions. Since the barrier discharge is an AC discharge, it generates not only positive ions but also negative ions that are usually difficult to observe. This is because a large amount of electrons are generated by the barrier discharge. In barrier discharge, a large amount of electrons are generated by plasma, so if an appropriate mass spectrometer 60 is used, a compound with a high electron affinity (ie, a positive electron affinity) can be easily converted to a negative ion. Can be detected.
  • a barrier discharge may be generated at atmospheric pressure without supplying a discharge gas.
  • a barrier discharge is generated between the tip of the sample tube 11 and the sample S or the dielectric plate 9.
  • the sample tube 11 and the gas supply tube 12 are electrically insulated, no barrier discharge will occur at the tip of the sample tube 11.
  • the sample pipe 1 1 and the gas supply pipe 12 may be insulated, and the sample pipe 11 may be connected to the power supply 30 as indicated by the broken line. It is also possible to apply AC voltage only to sample tube 11 without applying AC voltage.
  • a surrounding tube (cylindrical or other shaped tubular body) 16 is arranged outside the double tube portion 10 with a space therebetween to surround the double tube portion 10.
  • the lower end of the enclosure 16 is in contact with the sample S or the surface of the dielectric plate 9 with a very small distance or contact. 'This prevents the discharge gas ejected from the lower end of the gas supply pipe 12 from being mixed with the atmosphere. If the flow rate of the discharge gas to be supplied is high, the enclosure 16 is not necessarily required.
  • the surrounding cylinder 16 can be supported by a support arm provided on the above-mentioned support base or other appropriate support member, and can be fixed to the dielectric plate 9, or by the arm 16a.
  • the gas supply pipe 12 may be fixed at a plurality of locations.
  • the current limiting resistor 31 is used to prevent an excessive current from flowing accidentally, thereby ensuring safety and preventing the power supply device 30 from being damaged. Current control The limiting resistor 31 is not necessarily provided.
  • the analysis device 60 (skimmer 61) and the sample tube 1 1 are connected by an insulating joint 62 in order to reduce the adverse effects on the analysis device 60 due to the high-frequency voltage applied to the electrodes 12, 21 and the high-frequency noise generated by the barrier discharge.
  • an insulating joint 62 is not necessarily provided.
  • any mass spectrometer can be used as the analyzer 60 as long as it is a mass spectrometer equipped with an atmospheric pressure ion source. Ions can be measured simply by bringing a barrier-discharge ion source close to the ion, sampling, and orifices on the atmosphere side of the mass spectrometer.
  • mass spectrometers that can be used include time-of-flight mass spectrometers (orthogonal), ion trap mass spectrometers, and quadrupole mass spectrometers (also known as mass filters).
  • barrier discharge is an AC discharge
  • positive ions and negative ions are generated alternately in the discharge section.
  • it is generated in a swarm form of positive ions and negative ions.
  • ions become swarms (a gaseous mass)
  • the phenomenon that positive ions and negative ions are lost by their recombination reaction is unlikely to occur.
  • Barrier discharge Ion generation using is an excellent source of ions.
  • Such positive ion swarms and negative ion swarms are continuously supplied to the quadrupole mass spectrometer.
  • the quadrupole mass spectrometer Since the quadrupole mass spectrometer has exactly the same mass spectrometry function for positive and negative ions, it is sufficient to reverse the polarity of the ion focusing electrode alternately (positive and negative potentials). A single quadrupole mass spectrometer can measure positive and negative ions.
  • Figure 2 shows the deformation.
  • an insulating sample pipe 1 1 A is used as the inner pipe (sample pipe) of the double pipe section 10.
  • Sample tube 1 1 A is a quartz tube, for example, and is connected to connection 61 A of clearance 61 by joint 63. In this way, either the inner tube or the outer tube of the double pipe portion 10 can be formed of an insulator.
  • FIG. 3 shows still another modified example, and shows only the tip of the double tube 10.
  • an enclosure (cap) 17 made of an insulator (eg glass, ceramic, etc.)
  • the detection object S is the paper soaked with the sample, cloth, plastic, banknotes, etc. used for wiping inspection. These objects are the tip of the double tube 10 and the dielectric plate 9 In other words, it can be placed in a space where a barrier discharge occurs. This simplicity is a feature of ionization analyzers using barrier discharge.
  • FIG. 6 shows a modification in which an AC voltage is not applied to the inner tube and the outer tube of the double tube section 10.
  • These inner tube 11 and outer tube 12 are preferably formed of an insulator.
  • a small electrode 22 is placed (fixed) on the opposite side of the plate electrode 21 across the dielectric plate 9.
  • the double tube portion 10 is located directly above the electrode 22.
  • the shape of the electrode 22 may be circular, square, or other shapes.
  • discharge gas is supplied from the inner tube 11 B of the double tube section 10 and ions are sucked into the analyzer 60 by the outer tube 12 B.
  • the upper end of the outer pipe (sample pipe) 12 B is formed thin, and is connected to the connection 61 A of the skimmer 61 by a joint 64.
  • Inner pipe (gas supply pipe) 1 1 B is led to the outside from the middle of outer pipe 12 B, connected to a discharge gas supply device (not shown), and discharge gas such as helium gas is supplied.
  • the barrier discharge tends to occur near the tip of the inner tube 11 B, that is, within a fairly narrow range (local In particular, it has the feature that it can cause barrier discharge.
  • a voltage is applied between the inner tube 11 B and the dielectric plate 9 so that the tip of the inner tube 11 B protrudes beyond the tip of the outer tube 12 B.
  • the tip of the outer tube 12B may be made to protrude from the tip of the inner tube 11B (the outer tube 12B may be formed of an insulator), or as shown in FIG.
  • the tube 17 may be attached to the tip of the outer tube 12B.
  • the tip of the inner tube (sample tube) 11C of the double tube 10 may be cut diagonally to have a sharp tip. Since a barrier discharge occurs at the tip of the inner tube 11C (an AC voltage is applied to the inner tube 11C), ion analysis of a small region of the sample S can be performed. Therefore, by scanning the dielectric plate 9 and the plate electrode 21 on which the sample S is placed in a plane parallel to the plane (plane perpendicular to the inner tube 11C) (XY plane), a spatial resolution of less than mm is obtained.
  • XY plane a spatial resolution of less than mm is obtained.
  • Can perform two-dimensional imaging of samples for example, molecular imaging of biological tissues with cancer cells). In this case, it is preferable to intermittently scan the sample two-dimensionally and apply an alternating voltage in pulses at each position.
  • Fig. 9 shows a further modification.
  • the tip of the inner tube 11D is cut shorter than the outer tube 12, and a needle-like electrode 13 extending on the extension of the inner tube 11D is provided at the tip of the inner tube 11D.
  • a thin insulating capillary (capillary) li d is connected to the inner tube 11D.
  • the tip of the thin tube lid is arranged so as to face the needle electrode 13. Since the needle electrode 13 is used, the range of barrier discharge can be further narrowed. The generated ions are sucked from the tip of the insulating tube lid.
  • Fig. 10 shows the configuration shown in Fig. 8, in which the material M to be processed is placed on the dielectric plate 9 instead of the sample S to be analyzed, and the surface processing of the material M is performed. .
  • the surface of the synthetic polymer is etched by plasma.
  • this phenomenon does not occur at all.
  • the barrier discharge does not increase the temperature enough to melt or scorch the polymer film.
  • the surface is plasma-treated and can be chemically etched.
  • the hydrophilicity of the exposed part of the plasma improves and only the plasma-treated part gets wet.
  • the Parrier discharge can be chemically modified only on its surface without destroying the material.
  • the area of the film to be chemically modified can be freely changed.
  • the tip is pointed as shown, only the local area of the organic molecular material can be selectively chemically modified.
  • helium is mixed with hydrogen and discharged, the local area can be reduced.
  • Helium / oxygen can be oxidized, and helium / nitrogen can be nitrided.
  • the chemical composition of the material surface can be freely treated.
  • This method is extremely simple and efficient. According to this method, the etching process of polymer materials can be controlled while observing the generated ions with an analyzer.
  • Barrier discharge can be used for chemical processing without raising the temperature of the material. Therefore, a new functional material can be synthesized on the surface by placing various chemically reactive substances on the material surface and subjecting it to barrier discharge treatment. You can also For example, in the manufacture of fuel cell catalysts, it is possible to synthesize thin film catalysts with new functions by mixing various reactants on the surface to make them thin and then subjecting them to barrier discharge. Techniques such as applying a metal catalyst on the graph item are also possible.
  • the ion analyzer 60 is not necessary for the purpose of material processing, processing, synthesis, etc., and the inner tube 11 C does not need to be a tube. .
  • the second embodiment is particularly suitable for ion analysis of a gaseous sample.
  • the basic configuration is shown in Fig. 11.
  • the difference from the first embodiment shown in Fig. 1 is that the outer tube 12E is basically used as the sample supply tube.
  • the same cylinder 17 as shown in FIG. 3 is provided at the tip of the sample supply pipe 12E. You can make a hole in this cylinder 17 to escape the helium gas described later.
  • a sample suction tube (including a sample suction tube, which may be called a sample supply tube) 14 is connected to the proximal end side of the sample supply tube 12E.
  • the sample suction tube 14 is provided with a suction pump 41, a dust removal filter 42, and a water vapor removal filter (which may be replaced with a desiccant) 43.
  • the sample suction tube 14 is supplied with helium gas from the branch tube 14A as the discharge gas in order to enhance and promote the stability of the barrier discharge. Nitrogen and oxygen in the atmosphere sucked together with the sample gas can also become discharge gases, so it is not always necessary to supply helium gas.
  • the tip 14 a (14 b, 14 c) of the sample suction tube 14 (the suction nozzle part ahead of the suction pump 41) is inserted into the subject package 44, for example, as shown in FIG. .
  • the tip 14a By making the tip 14a into an elongated tube (suction nozzle), the packed gas can be sucked and analyzed by inserting the tube into the interior without unpacking.
  • the outflow gas from the gas chromatograph It can also be used as a highly sensitive ion detector for gas chromatography. As shown in Fig. 13, exhalation may be aspirated at the tip 14b, or air can be aspirated at the tip 14c as shown in Fig. 14 for atmospheric monitoring.
  • the sucked gas sample is guided to the tip of the sample supply tube 12 E, ionized by the Parrier discharge generated here, and guided to the analyzer 60 by the sample tube 11 to be ionized. Be analyzed.
  • the inside of the mass spectrometer 60 is kept in a vacuum, and the sample tube 11 also has a negative pressure. Therefore, using this negative pressure, the sample gas is supplied to the sample suction tube 14, the sample supply tube 12E. Can also be sucked through. In this case, the suction pump 41 is not necessary. Filters 42 and 43 can also be omitted in some cases.
  • the inner pipe of the double pipe section 10 may be the sample supply pipe and the outer pipe may be the sample pipe.
  • the electrode support 8 is formed of a dielectric or insulator. Since this electrode support 8 is cylindrical (or may be prismatic), a thin (eg 0.5 rara) ion sampling pore 8 A penetrates the support 8 at the center of the circle. Is formed.
  • the lower surface 8 B of the support 8 (the-side, the lower side in the figure) is formed into a conical concavity that matches the shape of the sampling orifice 65 of the mass spectrometer 60. Yes.
  • the central pore 8A coincides with the ion introduction hole 65a of the orifice 65.
  • the upper surface (the other surface) of the electrode support 8 is flat, and two electrodes (metal) 23 are sandwiched between the pores 8 A on this surface (slightly spaced than the thickness of the dielectric plate 9 A described later). It is buried with a large gap). These electrodes 23 are supported by the support Connected to the power supply 30 by a conductor pattern or via 24 formed (provided) (or provided inside or provided) on the upper surface of 8 and AC voltage between the two electrodes 23 Is applied.
  • a circular dielectric plate (for example, 0.5 ⁇ ) 9 A is placed (fixed, attached) on the upper surface of the electrode support 8.
  • This dielectric plate 9 A also has pores
  • a pore 9 a corresponding to 8 A is opened.
  • a cylindrical sample mounting table (mounting cylinder or mounting wall) and surrounding cylinder (wall) (hereinafter referred to as mounting cylinder) 7 are pores centered on the pore 9 a.
  • the sample mounting cylinder 7 is not limited to a cylindrical shape, but may be a rectangular tube shape or other shapes.
  • discharge gas inlets 7 a and 7 b are opened at positions facing each other.
  • a discharge gas such as helium is introduced into the cylinder 7 from the inlet 7a and discharged from the outlet 7b.
  • a discharge current flows through the dielectric plate 9A in the thickness direction, and a Parrier discharge is generated in the mounting cylinder 7, that is, the dielectric plate 9A. Creeping discharge occurs on the surface of the surface. Placing or holding the sample or object over the top opening of the mounting cylinder 7 desorbs and ionizes the trace components from the sample or object. The generated ions are introduced into the analyzer 60 ⁇ through the pores 9a and 8A and the ion introduction hole 65a and analyzed. In this way, it is possible to directly analyze biological tissues such as animal skin, other samples, and objects. This modified example is versatile because it does not matter what the sample is. By supplying the discharge gas into the mounting cylinder 7, a barrier discharge is generated efficiently and stably.
  • the surface where the AC voltage is applied to the dielectric plate and the surface where the barrier one discharge is generated are separated on the opposite side, so that a space for generating ions (barrier one discharge space) is provided. Without being exposed to high voltage Safe operation is possible in the collection.
  • the distance between the two electrodes and the size of the electrodes are reduced, creeping discharge can be generated locally on the opposite side of the dielectric plate, so that it is possible to obtain an imaging image of the sample. .
  • Fig. 17 shows the result of analyzing the vapor component of a solution of 3, 4-dinitrotoluene 1 rag / ral dropped onto a cotton swab as an example of explosives using the apparatus shown in Fig. 1. Is shown. Helium (flow rate 1 L / rain) was used as the discharge gas.
  • Figure 18 shows the results of analysis of hexane vapor as an example of a nonpolar compound using the apparatus shown in Fig. 11. Argon was used as the discharge gas.
  • Fig. 19 shows the results of analysis using an apparatus shown in Fig. 4 as an example of agrochemicals by dropping a solution of methamidophos in ethyl acetate (lOngZpl) onto filter paper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

It is possible to easily perform analysis with a high sensitivity. An ion sample tube (11) and a discharge gas supply tube (12) constitute a double tube unit (10) to serve as one electrode. The other electrode is a flat electrode (21), on which a dielectric plate (9) is arranged. A sample (S) is placed on the dielectric plate (9). When AC voltage is applied between the two electrodes (10, 21), barrier discharge occurs and ionizes molecules of the sample (S). The ions are introduced through the sample tube (11) to an analysis device (60).

Description

ィオン化分析方法おょぴ装置  Ionization analysis method
技術分野 Technical field
この発明は試料の大気圧下におけるイオン化分析方法おょぴ装置に関 明  The present invention relates to a method and apparatus for ionization analysis under atmospheric pressure of a sample.
する。 To do.
田 背景技術  Background art
大気圧下での実時間直接分析 (D A R T : Direct Analysis in Real Time) のためのイオン化分析方法および装置が既に提案されている。 た と は, Robert B. Cody, James A. Laramee, and H. Dupont Durst "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions" Analytical Chemistry, Vol. 77, No. 8, April 15, 2005 2297。 '  An ionization analysis method and apparatus for direct analysis in real time (DART) under atmospheric pressure has already been proposed. Robert B. Cody, James A. Laramee, and H. Dupont Durst "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions" Analytical Chemistry, Vol. 77, No. 8, April 15, 2005 2297. '
この方法は, 加熱したヘリ ゥム · ガスなどの希ガスを直流コロナ放電 で励起し, 生成したイオンや励起種をノズルから噴出させて試料に吹き 付けるものである。 これによつてイオン化された試料由来の分子イオン は吹き付けられたガスによって周囲に吹き飛ばされる。 この吹き飛ばさ れたイオンのほんの一部がオリ フィスを通して質量分析計に導入される。 したがって大きな検出感度の犠牲を伴う。 また, 多量のヘリ ウムガスを 消費するので経済性に乏しい。  In this method, heated rare gas such as helium gas is excited by DC corona discharge, and the generated ions and excited species are ejected from a nozzle and sprayed onto the sample. As a result, the molecular ions derived from the sample ionized are blown away by the sprayed gas. Only a part of the blown ions are introduced into the mass spectrometer through the orifice. Therefore, it comes at the expense of great detection sensitivity. In addition, a large amount of helium gas is consumed, so it is not economical.
発明の開示 Disclosure of the invention
この発明は, 微量の試料でも高い感度で分析が可能となるイオン化分 析方法および装置を提供するものである。 この発明によるイオン化方法は, 少なく とも 2つの電極間に交流電圧 を印加し, 放電電流路を横切って配置された誘電体の表面を含む空間に バリヤ一放電を生起させること, および生起されたバリ ヤ一放電に晒さ れる位置に対象試料を供給することを含むものである。 The present invention provides an ionization analysis method and apparatus capable of analyzing even a very small amount of sample with high sensitivity. The ionization method according to the present invention applies an alternating voltage between at least two electrodes to generate a barrier discharge in a space including the surface of the dielectric disposed across the discharge current path, and the generated variability. This includes supplying the target sample to the position exposed to the discharge.
この発明によるイオン化分析方法は, 少なく とも 2つの電極間に交流 電圧を印加し, 放電電流路を横切って配置された誘電体の表面を含む空 間にバリヤ一放電を生起させること, 生起されたバリヤ一放電に晒され る位置に分析対象試料を供給すること, およびバリヤー放電に晒される ことによって生じる試料のイオンを分析装置に導く ことを含むものであ る。  In the ionization analysis method according to the present invention, an AC voltage is applied between at least two electrodes, and a barrier discharge is generated in the space including the surface of the dielectric disposed across the discharge current path. This includes supplying the sample to be analyzed to a position where it is exposed to the barrier discharge, and guiding ions of the sample generated by exposure to the barrier discharge to the analyzer.
この発明によるイオン化装置は, 誘電体と, それらの間に交流電圧が 印加される少なく とも 2つの電極を備え, 分析対象試料が供給される空 間またはその近傍に上記誘電体の表面が臨み, 上記電極間に交流電圧を 印加することによつて上記誘電体の上記表面を含む空間にバリヤー放電 が生起されるよ うに上記誘電体は上記バリヤー放電の放電電流路を横切 つて配置されているものである。 加えて, 分析対象試料がバリヤ一放電 に晒されることによって生じる試料のイオンを分析装置に導くイオン導 入路が設けられる。 さらにイオンが導かれる質量分析装置を設ければィ オン化分析装置が実現する。  The ionization apparatus according to the present invention comprises a dielectric and at least two electrodes to which an AC voltage is applied between them, and the surface of the dielectric faces in or near the space where the sample to be analyzed is supplied. The dielectric is disposed across the discharge current path of the barrier discharge so that a barrier discharge is generated in a space including the surface of the dielectric by applying an AC voltage between the electrodes. Is. In addition, an ion introduction path is provided that guides the sample ions generated when the sample to be analyzed is exposed to a barrier discharge to the analyzer. Furthermore, an ionization analyzer can be realized by providing a mass analyzer that can guide ions.
ヘリ ゥム · ガス等の希ガス, その他の放電用ガスを供給することによ り, バリヤ一放電がより大きくなり, かつよ り安定化する。  By supplying rare gas such as helium gas and other discharge gas, the barrier discharge becomes larger and more stable.
試料が固体または液体の場合には, 試料を上記誘電体の上記表面上ま たはその近傍に置く, 貼る, 塗る等によ り配置すればよい。 試料が気体 の場合には試料供給管により供給することができる。  If the sample is solid or liquid, the sample may be placed on, or pasted on, or near the surface of the dielectric. If the sample is a gas, it can be supplied through the sample supply tube.
この発明によると, バリヤ一放電に晒された試料の部分のみが, 高工 ネルギー状態になり,熱分解を受けることなく,脱離しイオン化される。 パリヤー放電によるィオンの生成機構は必ずしも明確に解析されてはい ないが, イオンは放電プラズマ内で直接的に, またはヘリ ウムなどの希 ガス放電で生じた準安定励起種 (H e *など) によってイオン化される と考えられる。 According to the present invention, only the portion of the sample exposed to the barrier discharge becomes a high-energy state and is desorbed and ionized without undergoing thermal decomposition. The ion production mechanism by the Parry discharge is not necessarily analyzed clearly, but ions are generated directly in the discharge plasma or by metastable excited species (such as He *) generated by rare gas discharge such as helium. It is thought to be ionized.
バリ ヤ一放電は, プラズマ ' ガス温度が低いという特徴があり (100°C 程度と見積もられている) , 試料または試料を保持している基板等の保 持部材が加熱されないので, これらの基質が熱分解して不純物イオンを 発生させることがない。  The barrier discharge is characterized by a low plasma gas temperature (estimated to be around 100 ° C), and the holding member such as the sample or the substrate holding the sample is not heated. The substrate does not thermally decompose to generate impurity ions.
バリ ヤ一放電は交流放電であるから, 正イオンはもちろん, 通常観測 されにくい負イオンも生成する。 これは, バリヤ一放電で多量に電子が 生成されるからである。 バリ ヤ一放電では, プラズマによって電子が多 量に生成されるので, 適切な質量分析計を用いれば, 電子親和性の高い (すなわち, 電子親和力が正の) 化合物を容易に負イオンと して検出で きる。  Since the barrier discharge is an AC discharge, it generates not only positive ions but also negative ions that are difficult to observe normally. This is because a large amount of electrons are generated by the barrier discharge. In barrier discharge, a large amount of electrons are generated by plasma, so if an appropriate mass spectrometer is used, a compound with a high electron affinity (ie, a positive electron affinity) can be easily converted into a negative ion. Can be detected.
試料分子は, バリヤ一放電プラズマによって上述のよ うにイオン化さ れる。 バリヤ一放電は, 固体表面 (沿面放電) とその上部の空間に発生 するので, イオン生成領域が広い。 このため, 電流量が少ないにも拘わ らず, イオン生成量が多く, 検出感度が高く なる。 希ガスのヘリ ウムな どを用いると, 放電プラズマで生成する希ガス原子の準安定励起種 (H e *など) によってもイオン化される (ぺニングイオン化) ので' 極め て高効率, 高感度なイオン化法である。  Sample molecules are ionized as described above by barrier discharge plasma. The barrier discharge occurs on the solid surface (creeping discharge) and the space above it, so the ion generation area is wide. For this reason, although the amount of current is small, the amount of ion generation is large and the detection sensitivity is high. When noble gas helium is used, it is also ionized (penning ionization) by metastable excited species (such as He *) of noble gas atoms generated in the discharge plasma, so it is extremely efficient and highly sensitive. Ionization method.
このよ うにして, 生成したイオンのほぼすベて, ないしは多く を直接 吸引して質量分析装置 (質量分析計) に導き, 分析することができる。  In this way, almost all or many of the generated ions can be directly aspirated and directed to a mass spectrometer (mass spectrometer) for analysis.
2つの電極のうちの一方を, 先端の尖った電極とすることによ り, 試 料の微小領域のイオン化, 分析が可能となる。 電極または試料を走査す ることにより 2次元イ メージングも可能となる。 このよ うにしてこの発明によると, 大気圧下で, きわめて簡便に, 試 料のイオン化と分析が可能となる。 この発明は, 固体, 液体, 気体のす ベての試料に適用できる。 すなわち, 紙幣, 布, 土壌, 乾燥生体組織試 料, 顔料, 粉体, プラスチック, 木材, 無機材料などあらゆる検体に適 用可能である。 By using one of the two electrodes as an electrode with a sharp tip, ionization and analysis of a small region of the sample becomes possible. Two-dimensional imaging is also possible by scanning the electrode or sample. In this way, according to the present invention, it is possible to ionize and analyze samples very easily at atmospheric pressure. This invention can be applied to all solid, liquid, and gas samples. In other words, it can be applied to all specimens such as banknotes, cloth, soil, dry biological tissue samples, pigments, powders, plastics, wood, and inorganic materials.
この発明には, さまざまな実施態様があり う る。 たとえば, 試料のィ オンを分析装置に導くサンプル管と放電用ガスを供給するガス供給管と を二重構造と して, それらをそれらの一端がバリヤ一放電が生起する空 間近傍に臨むよ うに配置する。 または, 試料のイオンを分析装置に導く サンプル管と試料ガスを供給する試料供給管とを二重構造と し, それら をそれらの一端がバリヤ一放電が生起する空間近傍に臨むように配置す る。 これらの場合には, パリヤー放電を生起させる空間の近傍に一端が 臨むよ うに配置されたサンプル管, ガス供給管または試料供給管のいず れかを第 1の電極と し, 上記誘電体の上記表面とは反対側に平板状の第 2の電極を配置し, これらの第 1の電極と第 2の電極の間に交流電圧を 印加することが望ましい。  There are various embodiments of this invention. For example, the sample tube that guides the sample ion to the analyzer and the gas supply tube that supplies the discharge gas have a double structure, and one end of each of them faces the space where barrier discharge occurs. Arrange them. Alternatively, the sample tube that guides the sample ions to the analyzer and the sample supply tube that supplies the sample gas have a double structure, and they are arranged so that one end of them faces the space where barrier discharge occurs. . In these cases, either the sample tube, the gas supply tube, or the sample supply tube, which is arranged so that one end faces the space where the Parry discharge occurs, is used as the first electrode, and the dielectric It is desirable to place a flat plate-like second electrode on the opposite side of the surface, and apply an AC voltage between these first and second electrodes.
上述の二重管構造を用いると装置構成がきわめて簡素となる。  When the above-described double tube structure is used, the apparatus configuration becomes very simple.
また, バリヤ一放電が生起する空間を筒状体, 壁, 管, キャップ, ガ イ ド等により囲むことによ り,生成したイオンの効果的なサンプリ ング, 放電用ガスの発散の防止等を図ることができる。  In addition, by surrounding the space where the barrier discharge occurs with a cylindrical body, wall, tube, cap, guide, etc., it is possible to sample the generated ions effectively and prevent discharge gas from divergence. Can be planned.
上記誘電体を挟むよ うに上記の 2つの電極を配置してもよいし, 上記 誘電体の上記表面の側とは反対側に上記の 2つの電極を配置する構成と することもできる。  The two electrodes may be arranged so as to sandwich the dielectric, or the two electrodes may be arranged on the opposite side of the surface of the dielectric.
後者の場合には, 一例と して, 'イオン化装置の構成を, イオン導入路 が設けられた絶縁体よりなる電極支持体と, 上記電極支持体に上記ィォ ン導入路を挟んで埋設された 2つの電極と, 上記電極を覆う ように配置 され, 上記イオン導入路に通じる孔があけられた誘電体とを備えるよ う にすることができる。 この場合に, 上記誘電体上に上記孔を'囲むように 配置される囲繞筒状体をさらに備えるとよい。 In the latter case, for example, the configuration of the ionizer is embedded in an electrode support made of an insulator provided with an ion introduction path, and the ion support is embedded with the ion introduction path in between. 2 electrodes and placed to cover the above electrodes And a dielectric with a hole leading to the ion introduction path. In this case, it is preferable to further include an encircling tubular body disposed on the dielectric so as to enclose the hole.
この発明はバリヤ一放電を用いた材料の化学処理方法および装置にも 適用できる。  The present invention can also be applied to a material chemical processing method and apparatus using barrier discharge.
この発明による化学処理方法は, 少なく とも 2つの電極間に交流電圧 を印加し, 放電電流路を横切って配置された誘電体の表面を含む空間に バリヤ一放電を生起させること, およぴ生起されたバリヤ一放電に晒さ れる位置に処理対象材料を供給することを含むものである。  The chemical treatment method according to the present invention applies an alternating voltage between at least two electrodes to cause a barrier discharge in a space including the surface of the dielectric disposed across the discharge current path. Including supplying a material to be processed to a position exposed to the generated barrier discharge.
この発明による化学処理装置は, 処理対象材料が置かれる誘電体と, この誘電体を挟んで配置された少なく とも 2つの電極と, 上記の 2つの 電極に交流電圧を供給する電源装置とを備えるものである。 図面の簡単な説明  A chemical processing apparatus according to the present invention includes a dielectric on which a material to be processed is placed, at least two electrodes arranged with the dielectric interposed therebetween, and a power supply device that supplies an AC voltage to the two electrodes. Is. Brief Description of Drawings
第 1図は, 第 1実施例によるイオン化装置の構成を示す。  Fig. 1 shows the configuration of the ionizer according to the first embodiment.
第 2図は, イオン化装置の変形例を示す。  Figure 2 shows a variation of the ionizer.
第 3図は, 二重管部の変形例を示す。  Figure 3 shows a modification of the double pipe section.
第 4図は, イオン化装置に適用される検出対象物の例とその配置を示 す。  Figure 4 shows an example of the detection target applied to the ionizer and its arrangement.
第 5図は, イオン化装置に適用される他の検出対象物の例とその配置 を示す。  Figure 5 shows examples of other detection objects applied to the ionizer and their arrangement.
第 6図は, イオン化装置の他の変形例を示す。  Figure 6 shows another variation of the ionizer.
第 7囪は, イオン化装置のさ らに他の変形例を示す。  Section 7 shows another variation of the ionizer.
第 8図は, イオン化装置のさ らに他の変形例を示す。  Figure 8 shows another variation of the ionizer.
第 9図は, 二重管部の先端部の変形例を示す。  Figure 9 shows a modification of the tip of the double pipe.
第 10図は, イオン化装置を化学処理装置 (表面加工装置を含む) と し て適用する様子を示す。 Fig. 10 shows that the ionizer is a chemical treatment device (including a surface processing device). Shows how to apply.
第 11図は, 第 2実施例によるイオン化装置の構成を示す。.  Fig. 11 shows the configuration of the ionizer according to the second embodiment. .
第 12図は, 気体試料を採取する様子を示す。  Figure 12 shows how a gas sample is collected.
第 13図は, 気体試料を採取する様子を示す。  Figure 13 shows how a gas sample is collected.
第 14図は, 気体試料を採取する様子を示す。  Figure 14 shows how a gas sample is collected.
第 15図は,第 3実施例によるイオン化装置の構成を示す平面図である。 第 16図は, 第 15図に示すイオン化装置の組立斜視図である。  FIG. 15 is a plan view showing the configuration of the ionization apparatus according to the third embodiment. FIG. 16 is an assembled perspective view of the ionization apparatus shown in FIG.
第 17図ないし第 19図は上記実施例によるィオン化分析装置おょぴ方法 を用いて各種物質が検出できることを実証するデータを示すものであり, 第 17図は第 1図に示す装置を用いて 3, 4—ジニ トロ トルエンを分析した 結果を示すダラフ, 第 18図は第 11図に示す装置を用いたへキサン蒸気の 分析結果を示すグラフ, 第 19図は第 4図に示す装置を用いてメタミ ドフ ォスの酢酸ェチル溶液の分析結果を示すグラフである。 発明を実施するためめ最良の形態 .  FIGS. 17 to 19 show data demonstrating that various substances can be detected using the ionization analyzer according to the above-mentioned embodiment. FIG. 17 uses the apparatus shown in FIG. Fig. 18 shows the analysis result of hexane vapor using the apparatus shown in Fig. 11, and Fig. 19 shows the apparatus shown in Fig. 4. It is a graph which shows the analysis result of the ethyl acetate solution of metafidophos used. BEST MODE FOR CARRYING OUT THE INVENTION
第 1実施例 Example 1
第 1図はこの発明の第 1実施例によるイオン化装置 (またはイオン化 分析装置) を示している。  FIG. 1 shows an ionization apparatus (or ionization analysis apparatus) according to a first embodiment of the present invention.
質量分析装置 60 (飛行時間型質量分析計, イオントラップ型質量分析 計, 四重極質量分析計などィオンを導入するタイプのあらゆる質量分析 計を用いることができる) のイオン導入部分には円錐状のスキマー (ま たは, サンプリ ング ' オリ フィス) 61が設けられ, このスキマー 61の最 も外方に突出した中央部から細いサンプル管接続部 61 Aが外方に延びて いる。 この接続部 61 Aには, セラミ ックなどの絶縁体よ りなる継手 (力 プラー) 62によ りサンプル管 (イオン ' サンプリ ング管, イオン導入管) (キヤピラ リー) 11が接続されている。 この実施例では, サンプル管 11 は質量分析装置 60のスキマ ー 61から接続部 61 A , 継手 62を経て真直ぐに 延びているが, 接続部 61 A , 継手 62およびサンプル管 1 1の少なく とも一 つをフレキシブルな構造または伸縮自在な構造と して, サンプル管 11の 先端部を任意の位置に任意の角度で配置できるようにすることができる。 このことは後述する変形例, 他の実施例においても同様である。 The ion introduction part of mass spectrometer 60 (any mass spectrometer of the type that introduces ION such as time-of-flight mass spectrometer, ion trap mass spectrometer, quadrupole mass spectrometer, etc.) can be used in a conical shape. This skimmer (or sampling 'orifice) 61 is provided, and a thin sample tube connection 61A extends outward from the center of the skimmer 61 that protrudes outward. A sample tube (ion's sampling tube, ion introduction tube) (capillary) 11 is connected to the connection 61 A by a joint (force puller) 62 made of an insulator such as ceramic. . In this example, the sample tube 11 Extends straight from the skimmer 61 of the mass spectrometer 60 through the connection 61A and the fitting 62, but at least one of the connection 61A, the fitting 62 and the sample tube 11 has a flexible structure or can be expanded and contracted. As a simple structure, the tip of the sample tube 11 can be placed at an arbitrary position at an arbitrary angle. This also applies to the modified examples and other examples described later.
サンプル管 1 1には, その先端部から途中まで外管 12内に挿入されてい る。 外管 12との対比の上でサンプル管 1 1を内管と呼ぶことがある。 内管 11と外管 12との間には間隔 (間隙) (空間) がある。 この実施例では, 内管 11と外管 12との間の空間を通して放電用ガス(またはキャリアガス) を供給するので, 外管 12を放電用ガス供給管またはガス供給管と呼ぶこ とがある。  The sample tube 11 is inserted into the outer tube 12 from the tip to the middle. In comparison with the outer tube 12, the sample tube 11 may be called an inner tube. There is a gap (space) between the inner tube 11 and the outer tube 12. In this embodiment, since the discharge gas (or carrier gas) is supplied through the space between the inner tube 11 and the outer tube 12, the outer tube 12 may be called a discharge gas supply tube or a gas supply tube. .
サンプル管 1 1の継手 62側の端部はガス供給管 12の管壁から外方に突き 出ている。 サンプル管 11とガス供給管 12が二重になっている部分を, 二 重管または二重管部 10と呼ぶ。 この実施例では, サンプル管 1 1とガス供 給管 12はいずれも金属製であり, 後述するよ うに少なく ともいずれか一 方がバリヤ一放電の電極と して働く。 また, サンプル管 1 1の方がガス供 給管 12より も先端が若干 (たとえば数 mm程度) 外方に突出している。 実 施の態様によっては, サンプル管 11とガス供給管 12の先'端をほぼ同じ位 置と してもよいし, ガス供給管 12の先端の方をサンプル管 1 1の先端より も突出させてもよい。 サンプル管 11およびガス供給管 12のいずれか一方 または両方を伸縮自在な構成とすると一層好ましい。  The end of the sample tube 11 on the joint 62 side protrudes outward from the tube wall of the gas supply tube 12. The portion where the sample tube 11 and the gas supply tube 12 are doubled is called a double tube or double tube 10. In this embodiment, the sample tube 11 and the gas supply tube 12 are both made of metal, and at least one of them serves as an electrode for barrier discharge as described later. In addition, the tip of the sample tube 11 protrudes slightly outward (for example, several millimeters) from the gas supply tube 12. Depending on the implementation, the tip end of the sample tube 11 and the gas supply tube 12 may be substantially the same position, or the tip of the gas supply tube 12 may protrude beyond the tip of the sample tube 11. May be. More preferably, either one or both of the sample tube 11 and the gas supply tube 12 are configured to be extendable.
バリ ヤ一放電を生起させるために誘電体 (絶縁体) (ガラス, 石英, アルミナ等) を設ける。 この実施例では誘電体板 9 (たとえば厚さ約 1 mm) が用いられる。 誘電体板 9は分析の対象となる試料 (たとえば布, 紙幣, 泥, 乾燥生体組織試料その他の検体, 固体試料など) Sを載置, 塗布ないしは付着させる台と しても利用される。 試料溶液を誘電体板 9 上に滴下してそのまま分析対象と してもよいし, 乾燥させて試料とする こともできる。 A dielectric (insulator) (glass, quartz, alumina, etc.) is provided to generate the barrier discharge. In this embodiment, a dielectric plate 9 (for example, a thickness of about 1 mm) is used. The dielectric plate 9 is also used as a table on which a sample to be analyzed (for example, cloth, banknote, mud, dried biological tissue sample or other specimen, solid sample, etc.) S is placed, applied or adhered. Sample solution with dielectric plate 9 It can be dropped onto the sample as it is, or it can be dried and used as a sample.
誘電体板 9の試料 Sが置かれた一面側に二重管部 10の先端が若干の間 隔をあけて (たとえばサンプル管 11の先端を試料 Sから数龍程度または それ以下の間隔で離して) 臨むよ うに二重管部 10と誘電体板 9の位置を 決め, 誘電体板 9の他面には平板電極 21 (銅などの金属または導電体) を誘電体板 9に接触させて配置する。 たとえば, 平板電極 21と誘電体板 9を支持台上に固定し, 質量分析装置 60から延びるサンプル管 11をガス 供給管 12とともに誘電体板 9の一面側にもたらす。 好ましくは, 誘電体 板 9 の一面に対してサンプル管 11を垂直に配置する。 上記支持台 (また は平板電極 21と誘電体板 9 ) を昇降装置によ ^)昇降自在 (サンプル管 11 に接近, 離間する方向) と してもよいし, X Yテーブルによ り二次元方 向 (サンプル管 11と垂直な面方向) に移動自在と してもよい。 上記支持 台に腕を有する支柱を立設し, 上記腕により二重管部 10を支持するよう にすることもできる。  The tip of the double tube 10 is slightly spaced from the surface of the dielectric plate 9 on which the sample S is placed (for example, the tip of the sample tube 11 is separated from the sample S by several dragons or less). Position the double tube 10 and the dielectric plate 9 so that they face each other, and place a flat plate electrode 21 (metal or conductor such as copper) on the other side of the dielectric plate 9 in contact with the dielectric plate 9 Deploy. For example, the plate electrode 21 and the dielectric plate 9 are fixed on a support base, and the sample tube 11 extending from the mass spectrometer 60 is brought together with the gas supply tube 12 to one side of the dielectric plate 9. Preferably, the sample tube 11 is arranged perpendicular to one surface of the dielectric plate 9. The above support (or the plate electrode 21 and the dielectric plate 9) can be moved up and down (in the direction of approaching and moving away from the sample tube 11) or two-dimensionally by using an XY table. It may be movable in the direction (surface direction perpendicular to the sample tube 11). A support column having an arm can be erected on the support base, and the double pipe portion 10 can be supported by the arm.
ガス供給管 12と平板電極 21との間には, 電流制限抵抗 31 (たとえば 50 〜100Μ Ω程度) を介して電源装置 30の出力端子が接続される。 電源装置 30によってガス供給管 (電極) 12およびサンプル管 11 (この実施例では 両管 1 1ど 12は電気的に接触している)と平板電極 21との間に交流電圧(た とえば電圧は数百 Vないし数 k V,周波数は数 k H zないし数十 k H z ) が印加される。 交流 (高周波) 電圧は矩形波が好ましいが, 正弦波, そ の他の波形でもよい。 また, ガス供給管 12の末端部は放電用ガス供給装 置 (たとえばガスボンベ) 40のガス出力口に接続され, ガス供給管 12に 放電用ガス (ヘリ ウム (H e ) などの希ガス, 窒素, 酸素など) を供給 する。 放電用ガスはガス供給管 12の先端から試料 Sまたは誘電体板 9に 吹きつけられる。 ガス供給管 12およびサンプル管 1 1と平板電極 21との間に交流電圧が印 加されることにより, ガス供給管 12およぴサンプル管 11の先端部が電極 と して働く。 この実施例ではガス供給管 12よ り もサンプル管 1 ίの先端の 方が突出しているので, サンプル管 1 1の先端と誘電体板 9 との間または サンプル管 11の先端と試料 S との間にバリヤー放電が生起される。 試料 Sの一部または全部はバリ ヤ一放電による局所プラズマに晒される。 バ リヤー放電に晒された試料の部分のみが, 高エネルギー状態になり, 熱 分解を受けることなく, 脱離しイオン化される。 イオンは放電プラズマ 内で直接的に, またはヘリ ゥムなどの希ガス放電で生じた準安定励起種 ( H e *など) によってイオン化されると考えられる。 一方, 質量分析 装置 60内は高真空に保たれており, サンプル管 1 1の先端はバリヤ一放電 が生起している空間内またはその近傍にあるから, バリ ヤ一放電で生起 した局所プラズマ中の大部分のイオンは, 外気に拡散することなくサン プル管 1 1を通して質量分析装置 60に直接的に吸引され,質量分析される。 これによ り超高感度なイオン検出が達成される。 The output terminal of the power supply device 30 is connected between the gas supply pipe 12 and the plate electrode 21 via a current limiting resistor 31 (for example, about 50 to 100 Ω). An AC voltage (for example, a voltage) is provided between the gas supply pipe (electrode) 12 and the sample pipe 11 (in this embodiment, both pipes 1 1 and 12 are in electrical contact) and the plate electrode 21 by the power supply 30. Hundreds of volts to several kilovolts and a frequency of several kilohertz to several tens of kilohertz). The AC (high frequency) voltage is preferably a rectangular wave, but may be a sine wave or other waveform. The end of the gas supply pipe 12 is connected to the gas output port of a discharge gas supply apparatus (eg, gas cylinder) 40. The gas supply pipe 12 is connected to a discharge gas (rare gas such as helium (He), nitrogen , Oxygen, etc.). The discharge gas is blown from the tip of the gas supply tube 12 to the sample S or the dielectric plate 9. By applying an AC voltage between the gas supply pipe 12 and the sample pipe 11 and the flat plate electrode 21, the tips of the gas supply pipe 12 and the sample pipe 11 function as electrodes. In this embodiment, the tip of the sample tube 1 is more protruding than the gas supply tube 12, so that the tip of the sample tube 11 and the dielectric plate 9 or the tip of the sample tube 11 and the sample S is In the meantime, a barrier discharge occurs. Part or all of sample S is exposed to local plasma by barrier discharge. Only the part of the sample that is exposed to the barrier discharge is in a high-energy state and is desorbed and ionized without thermal decomposition. Ions are considered to be ionized directly in the discharge plasma or by metastable excited species (such as He *) generated by rare gas discharges such as helium. On the other hand, the mass spectrometer 60 is kept in a high vacuum, and the tip of the sample tube 11 is in or near the space where the barrier discharge occurs, so that the local plasma generated by the barrier discharge is in the local plasma. Most of the ions are attracted directly to the mass spectrometer 60 through the sample tube 11 without being diffused into the outside air, and are subjected to mass analysis. This achieves ultra-sensitive ion detection.
バリ ヤ一放電は, 電子温度が数万度と高いのに対して, プラズマ · ガ ス温度が低いという特徴があり (100°C程度と見積もられている) , 試料 Sまたは試料 Sを保持している誘電体板 9が加熱されないので, これら の材料が熱分解して不純物イオンを発生させることがない。 バリヤ一放 電は交流放電であるから, 正イオンはもちろん, 通常観測されにく い負 イオンも生成する。 これは, バリヤ一放電で多量に電子が生成されるか らである。 バリ ヤ一放電では, プラズマによって電子が多量に生成され るので, 適切な質量分析装置 60を用いれば, 電子親和性の高い (すなわ ち, 電子親和力が正の) 化合物を容易に負イオンと して検出できる。 放電用ガスないしはキャ リ ア · ガスと してヘリ ゥム · ガスを使用する と放電が極めて安定に発生するという利点がある。 また, 希ガスを用い ると, 長寿命の準安定励起状態希ガス原子が多量に生成し, 試料のィォ ン化を促進させることができる。 この過程をぺニング (Penn ing) イオン 化とレ、う。 A barrier discharge is characterized by a low plasma gas temperature (estimated to be around 100 ° C) while the electron temperature is as high as tens of thousands of degrees. Since the dielectric plate 9 is not heated, these materials do not thermally decompose to generate impurity ions. Since the barrier discharge is an AC discharge, it generates not only positive ions but also negative ions that are usually difficult to observe. This is because a large amount of electrons are generated by the barrier discharge. In barrier discharge, a large amount of electrons are generated by plasma, so if an appropriate mass spectrometer 60 is used, a compound with a high electron affinity (ie, a positive electron affinity) can be easily converted to a negative ion. Can be detected. When helium gas is used as the discharge gas or carrier gas, there is an advantage that the discharge occurs extremely stably. Also, using noble gas As a result, a large amount of long-lived metastable excited state rare gas atoms are generated, and ionization of the sample can be promoted. This process is called Penning ionization.
H e * (準安定励起種) + M → H e + M + + e (ぺニング イオン化) しかしながら, 放電用ガスを供給せずに, 大気圧下でバリヤ一放電を生 じさせてもよい。 - 上記の実施例ではサンプル管 11とガス供給管 12とが電気的に接続され ているので, サンプル管 1 1の先端と試料 Sまたは誘電体板 9 との間にバ リヤー放電が生起されるが, サンプル管 1 1とガス供給管 12とが電気的に 絶縁されていればサンプル管 1 1の先端にはバリヤー放電は生じない。 サ ンプル管 1 1とガス供給管 12と絶縁状態と しておいてもよい.し, 破線で示 すよ うにサンプル管 11も電源装置 30に接続してもよいし, ガス供給管 12 には交流電圧は印加せずにサンプル管 1 1にのみ交流電圧を印加するよ う にしてもよレ、。  He * (metastable excited species) + M → He + M + + e (Penning ionization) However, a barrier discharge may be generated at atmospheric pressure without supplying a discharge gas. -In the above example, since the sample tube 11 and the gas supply tube 12 are electrically connected, a barrier discharge is generated between the tip of the sample tube 11 and the sample S or the dielectric plate 9. However, if the sample tube 11 and the gas supply tube 12 are electrically insulated, no barrier discharge will occur at the tip of the sample tube 11. The sample pipe 1 1 and the gas supply pipe 12 may be insulated, and the sample pipe 11 may be connected to the power supply 30 as indicated by the broken line. It is also possible to apply AC voltage only to sample tube 11 without applying AC voltage.
好ましく は, 二重管部 10の外側に間隔をあけて囲繞筒 (円筒, または その他の形状の筒状体) 16を配置し, 二重管部 10を囲む。 この囲繞筒 16 の下端は試料 Sまたは誘電体板 9の上面との間にきわめてわずかの間隔 をあける力 , または接触した状態とする。 'これによ り, ガス供給管 12の 下端から噴出する放電用ガスが大気と混合されるのを防ぐことができる。 供給される放電用ガスの流速が大きい場合には, 囲繞筒 16は必ずしも必 要ではない。 囲繞筒 16は上記の支持台上に設けた支柱の腕または他の適. 当な支持部材によ り支持することができるし, 誘電体板 9に固定しても よいし, 腕 16 a により複数箇所でガス供給管 12に固定してもよい。  Preferably, a surrounding tube (cylindrical or other shaped tubular body) 16 is arranged outside the double tube portion 10 with a space therebetween to surround the double tube portion 10. The lower end of the enclosure 16 is in contact with the sample S or the surface of the dielectric plate 9 with a very small distance or contact. 'This prevents the discharge gas ejected from the lower end of the gas supply pipe 12 from being mixed with the atmosphere. If the flow rate of the discharge gas to be supplied is high, the enclosure 16 is not necessarily required. The surrounding cylinder 16 can be supported by a support arm provided on the above-mentioned support base or other appropriate support member, and can be fixed to the dielectric plate 9, or by the arm 16a. The gas supply pipe 12 may be fixed at a plurality of locations.
電流制限抵抗 31は誤って過大電流が流れるのを防止するためのもので, これにより-安全性の確保, 電源装置 30の破損の防止が図られる。 電流制 限抵抗 31を必ずしも設けなくてもよい。 The current limiting resistor 31 is used to prevent an excessive current from flowing accidentally, thereby ensuring safety and preventing the power supply device 30 from being damaged. Current control The limiting resistor 31 is not necessarily provided.
電極 12 , 21に印加する高周波電圧, バリヤ一放電によ り生じる高周波 ノィズ等による分析装置 60への悪影響を軽減する目的で絶縁性継手 62に より分析装置 60 (スキマー 61 ) とサンプル管 1 1とを電気的に絶縁してい るが, 実験によると, 絶縁性継手 62を設けることなくサンプル管 11を直 接に分析装置 60 (スキマー S I ) に接続してもノイズによる悪影響はなか つた。 絶縁性継手 62は必ずしも設けなくてもよい。  The analysis device 60 (skimmer 61) and the sample tube 1 1 are connected by an insulating joint 62 in order to reduce the adverse effects on the analysis device 60 due to the high-frequency voltage applied to the electrodes 12, 21 and the high-frequency noise generated by the barrier discharge. However, in experiments, there was no negative effect of noise even when the sample tube 11 was connected directly to the analyzer 60 (skimmer SI) without the insulating joint 62 being provided. The insulating joint 62 is not necessarily provided.
これらの電流制限抵抗 31や絶縁部材 (絶縁性継手 62 ) は必要に応じて 設ければよいので, 以下の変形例, 他の実施例では特に図示したり説明 したりするのを省略すること とする。 また, 放電用ガス供給装置 40, 囲 繞筒 16, 場合によっては電源装置 30の図示と説明も, 煩雑さを避けるた めに, 以下の変形例や他の実施例では省略する。 さらに, 以下の変形例, 他の実施例において, 第 1図に示すものと同一物には同一符号を付し重 複説明を避ける。  Since these current limiting resistors 31 and insulating members (insulating joints 62) may be provided as necessary, the following modifications and other examples will not be shown or described. To do. Also, the illustration and explanation of the discharge gas supply device 40, the surrounding tube 16, and in some cases the power supply device 30 are omitted in the following modifications and other embodiments in order to avoid complexity. Furthermore, in the following modifications and other embodiments, the same components as those shown in FIG.
分析装置 60と しては, 大気圧イオン源を備えている質量分析計であれ ば, すべての質量分析計を用いることができる。 質量分析計の大気側の イオン · サンプリ ング · オリ フィス近く にバリヤ一放電イオン源を近づ けるだけで, イオンの測定が可能となる。 使用可能な質量分析計の例と しては, 飛行時間型質量分析計 (直交型) , イオントラップ型質量分析 計, 四重極質量分析計 (別名マスフィルター) などがある。  Any mass spectrometer can be used as the analyzer 60 as long as it is a mass spectrometer equipped with an atmospheric pressure ion source. Ions can be measured simply by bringing a barrier-discharge ion source close to the ion, sampling, and orifices on the atmosphere side of the mass spectrometer. Examples of mass spectrometers that can be used include time-of-flight mass spectrometers (orthogonal), ion trap mass spectrometers, and quadrupole mass spectrometers (also known as mass filters).
特に四重極質量分析計を用いた場合には次のような利点がある。  In particular, when a quadrupole mass spectrometer is used, there are the following advantages.
バリヤ一放電は, 交流放電なので, 放電部において, 正イオンと負ィ オンが交互に生成される。 すなわち, 放電の電極に応じ.て, 正イオンの かたまり, 負イオンのかたまり というスウォーム状で発生する。 イオン はスウォーム (気体状のかたまり) となるので正イオンと負イオンがそ れらの再結合反応で失われるという現象が起こ りにくレ、。 バリ ヤ一放電 を利用したイオン生成はイオン発生源と して, 極めて優れている。 このような正イオンのスウォームと負イオンのスウォームが連続的に 四重極質量分析計に供給されていく。 四重極質量分析計は, 正, 負ィォ ンについては質量分析機能が全く 同じであるから, イオン収束電極の極 性を交互に (正負電位を) 逆転させればよい。 一台の四重極質量分析計 で正, 負イオンの計測が可能となる。 Since the barrier discharge is an AC discharge, positive ions and negative ions are generated alternately in the discharge section. In other words, depending on the electrode of the discharge, it is generated in a swarm form of positive ions and negative ions. Since ions become swarms (a gaseous mass), the phenomenon that positive ions and negative ions are lost by their recombination reaction is unlikely to occur. Barrier discharge Ion generation using is an excellent source of ions. Such positive ion swarms and negative ion swarms are continuously supplied to the quadrupole mass spectrometer. Since the quadrupole mass spectrometer has exactly the same mass spectrometry function for positive and negative ions, it is sufficient to reverse the polarity of the ion focusing electrode alternately (positive and negative potentials). A single quadrupole mass spectrometer can measure positive and negative ions.
第 2図は変形 を示すものである。 二重管部 10の内管 (サンプル管) と して絶縁体製のサンプル管 1 1 Aが用いられている。 サンプル管 1 1 Aは たとえば石英管であり, 継手 63によりスキマ一 61の接続部 61 Aに接続さ れている。 このよ うに二重管部 10の内管または外管のいずれか一方を絶 縁体で形成することができる。  Figure 2 shows the deformation. As the inner pipe (sample pipe) of the double pipe section 10, an insulating sample pipe 1 1 A is used. Sample tube 1 1 A is a quartz tube, for example, and is connected to connection 61 A of clearance 61 by joint 63. In this way, either the inner tube or the outer tube of the double pipe portion 10 can be formed of an insulator.
第 3図はさらに他の変形例を示すもので二重管部 10の先端部のみを示 している。 二重管部 10の外管 12の先端部に絶縁体による (たとえばガラ ス製, セラミ ック製など) 囲繞筒 (キャ ップ) 17を嵌め合わせる。 囲繞 筒 17の先端を誘電体板 9の表面に当接させるよ うにすれば, 内管 1 1, 外 管 12の先端と誘電体板 9の表面との距離を常に一定 (最適値) に保つこ とができる。 この例では, 試料 Sの大きさは囲繞筒 17の内部に入る程度 が好ましい。  FIG. 3 shows still another modified example, and shows only the tip of the double tube 10. Fit an enclosure (cap) 17 made of an insulator (eg glass, ceramic, etc.) to the tip of the outer tube 12 of the double tube 10. If the tip of the surrounding cylinder 17 is brought into contact with the surface of the dielectric plate 9, the distance between the tip of the inner tube 11 and the outer tube 12 and the surface of the dielectric plate 9 is always kept constant (optimum value). be able to. In this example, it is preferable that the size of the sample S is within the enclosure 17.
第 4図および第 5図は検出対象物の例とその配置を示している。  4 and 5 show examples of detection objects and their arrangements.
第 4図において, 検出対象物 Sは試料をしみ込ませた紙や, 拭き取り 検査などに用いた布, プラスチック, 紙幣などであり, これらの対象物 を二重管部 10の先端と誘電体板 9 との間, すなわちバリ ヤ一放電が生起 する空間に置けばよく, きわめて簡便に分析ができる。 この簡便性がバ リヤー放電を用いたイオン化分析装置の特徴である。  In Fig. 4, the detection object S is the paper soaked with the sample, cloth, plastic, banknotes, etc. used for wiping inspection. These objects are the tip of the double tube 10 and the dielectric plate 9 In other words, it can be placed in a space where a barrier discharge occurs. This simplicity is a feature of ionization analyzers using barrier discharge.
また, 第 5図に示すよ うに, 指などの動物皮膚からの分泌物を検出対 象とすることが可能である。 この場合は, 指などを直接にバリヤ一放電 の空間に置けばよい。 パリヤー放電によ り流れる電流は極微小なので人 畜無害である。 しかしながら, 印加電圧を徐々に慎重に上げること, で きるだけ低い電圧にすること, 先に説明した電流制限抵抗を用いること などを考慮することが好ましい。 In addition, as shown in Fig. 5, secretions from animal skin such as fingers can be detected. In this case, the finger or the like directly discharges the barrier. Just place it in the space. The current flowing by the Parrier discharge is extremely small and is harmless to humans. However, it is preferable to consider increasing the applied voltage gradually and carefully, making it as low as possible, and using the current limiting resistor described above.
第 6図は二重管部 10の内管にも外管にも交流電圧を印加しない変形例 を示している。 これらの内管 1 1と外管 12は絶縁体で形成することが好ま しい。誘電体板 9を挟んで平板電極 21と反対側に小さな電極 22を配置(固 定) する。 電極 22の真上に二重管部 10が位置する。 電極 22の形状は円形 でも正方形でも, 他の形状でもよい。  FIG. 6 shows a modification in which an AC voltage is not applied to the inner tube and the outer tube of the double tube section 10. These inner tube 11 and outer tube 12 are preferably formed of an insulator. A small electrode 22 is placed (fixed) on the opposite side of the plate electrode 21 across the dielectric plate 9. The double tube portion 10 is located directly above the electrode 22. The shape of the electrode 22 may be circular, square, or other shapes.
2つの電極 21と 22との間に交流電圧を印加すると, 小さな電極 22のま わり (近傍) にバリヤ一放電が発生する。 このバリヤ一放電に晒される ように, 試料をしみ込ませた布等の対象物 Sを置く。 バリ ヤ一放電によ り発生する試料のイオンは, 内管 11を通って分析装置 60に導かれる。 外 管 12を通してヘリ ゥム等の放電用ガスを供給すればバリヤー放電が大き くなり, かつ安定する。 この変形例のものは, 二重管部 10に交流電圧を 印加しないので構成が簡便である。  When an AC voltage is applied between the two electrodes 21 and 22, a barrier discharge is generated around (near) the small electrode 22. Place an object S such as cloth soaked with the sample so that it is exposed to this barrier discharge. The sample ions generated by the barrier discharge are guided to the analyzer 60 through the inner tube 11. If discharge gas such as helium is supplied through the outer tube 12, the barrier discharge becomes larger and stable. This modification has a simple configuration because no AC voltage is applied to the double tube 10.
第 7図に示す変形例は, 二重管部 10の内管 1 1 Bから放電用ガスを供給 し, 外管 12 Bによりイオンを分析装置 60に吸引するものである。外管(サ ンプル管) 12 Bの上端部は細く形成され, 継手 64によりスキマー 61の接 続部 61 Aに接続されている。 内管 (ガス供給管) 1 1 Bは外管 12 Bの途中 から外部に導かれ, 放電用ガス供給装置 (図示略) に接続され, へリ ウ ム ' ガスなどの放電用ガスが供給される。 この構成は, 放電用ガスが細 い内管 1 1 Bの先端から噴出するので, バリヤ一放電が内管 1 1 Bの先端付 近に集中して生起しやすい, すなわちかなり狭い範囲に (局所的に) バ リヤー放電を起こせるという特徴がある。 内管 1 1 Bと誘電体板 9 との間 に電圧を印加し, 内管 1 1 Bの先端を外管 12 Bの先端よ り も突出させてい るが, 外管 12 Bの先端を内管 11Bの先端より も突出させるよ うにしても よいし (外管 12Bを絶縁体で形成してもよい) , 第 3図に示すよ うな囲 繞筒 17を外管 12 Bの先端に取付けてもよい。 In the modified example shown in Fig. 7, discharge gas is supplied from the inner tube 11 B of the double tube section 10 and ions are sucked into the analyzer 60 by the outer tube 12 B. The upper end of the outer pipe (sample pipe) 12 B is formed thin, and is connected to the connection 61 A of the skimmer 61 by a joint 64. Inner pipe (gas supply pipe) 1 1 B is led to the outside from the middle of outer pipe 12 B, connected to a discharge gas supply device (not shown), and discharge gas such as helium gas is supplied. The In this configuration, since the discharge gas is ejected from the tip of the thin inner tube 11 B, the barrier discharge tends to occur near the tip of the inner tube 11 B, that is, within a fairly narrow range (local In particular, it has the feature that it can cause barrier discharge. A voltage is applied between the inner tube 11 B and the dielectric plate 9 so that the tip of the inner tube 11 B protrudes beyond the tip of the outer tube 12 B. However, the tip of the outer tube 12B may be made to protrude from the tip of the inner tube 11B (the outer tube 12B may be formed of an insulator), or as shown in FIG. The tube 17 may be attached to the tip of the outer tube 12B.
第 8図に示すよ うに, 二重管部 10の内管 (サンプル管) 11Cの先端部 を斜めにカッ トし, 尖らした先端を持つようにしてもよい。 内管 11Cの 尖端にバリ ヤ一放電が生起するので(内管 11Cに交流電圧を印加する), 試料 Sの微小領域のイオン分析を行う こ とができる。 したがって, 試料 Sを載せた誘電体板 9および平板電極 21をその面に平行な面 (内管 11C に垂直な面) (X— Y平面) 内で走査することにより, mm以下の空間分 解能で試料の 2次元イメージング (たとえば, がん細胞を有する生体組 織の分子イメージングなど) を行なえる。 この場合, 試料を' 2次元的に 間欠的に走査し, 各位置でパルス状に交流電圧を印加することが好まし い。  As shown in Fig. 8, the tip of the inner tube (sample tube) 11C of the double tube 10 may be cut diagonally to have a sharp tip. Since a barrier discharge occurs at the tip of the inner tube 11C (an AC voltage is applied to the inner tube 11C), ion analysis of a small region of the sample S can be performed. Therefore, by scanning the dielectric plate 9 and the plate electrode 21 on which the sample S is placed in a plane parallel to the plane (plane perpendicular to the inner tube 11C) (XY plane), a spatial resolution of less than mm is obtained. Can perform two-dimensional imaging of samples (for example, molecular imaging of biological tissues with cancer cells). In this case, it is preferable to intermittently scan the sample two-dimensionally and apply an alternating voltage in pulses at each position.
第 9図はさらなる変形例を示し, 内管 11Dの先端部を外管 12よ り も短 く切断し, 内管 11Dの先端に, 内管 11Dの延長上にのびる針状の電極 13 を設けると ともに, 内管 11Dに細い絶縁性の細管 (キヤピラ リー) li d を接続したものである。 細管 li dの先端は針状電極 13の近く に臨むよ う に配置される。 針状電極 13を用いているのでバリヤ一放電の範囲をさら に狭くすることができる。 生成されたィオンは絶縁性細管 li dの先端か ら吸引される。  Fig. 9 shows a further modification. The tip of the inner tube 11D is cut shorter than the outer tube 12, and a needle-like electrode 13 extending on the extension of the inner tube 11D is provided at the tip of the inner tube 11D. In addition, a thin insulating capillary (capillary) li d is connected to the inner tube 11D. The tip of the thin tube lid is arranged so as to face the needle electrode 13. Since the needle electrode 13 is used, the range of barrier discharge can be further narrowed. The generated ions are sucked from the tip of the insulating tube lid.
第 10図は第 8図に示す構成において,分析対象である試料 Sに代えて, 誘電体板 9上に被処理材料 Mを置き, 材料 Mの表面加工を行なおう とす るものである。  Fig. 10 shows the configuration shown in Fig. 8, in which the material M to be processed is placed on the dielectric plate 9 instead of the sample S to be analyzed, and the surface processing of the material M is performed. .
たとえば, 内管 (電極 11C ) と誘電体板 9 との間に合成高分子のシー ト Mを挿入すると, 合成高分子の表面がプラズマでエッチングされる。 このバリヤー放電を用いるェツチングでは, 高分子や紙などが焦げると いう現象が全く起こらない。 すなわち, バリ ヤ一放電は高分子膜などを 融解させたり, 焦がしたりするほど温度が高くならない。 高分子フィル ムなどをパリヤー放電に晒すと, 表面がプラズマ処理され, 化学エッチ ングを施すことができる。 たとえば, 撥水性の高分子フィルムをバリヤ 一放電に晒すと, プラズマに晒された部分の親水性が良く なり, プラズ マ処理された部分だけが水に濡れるよ うになる。 For example, if a synthetic polymer sheet M is inserted between the inner tube (electrode 11C) and the dielectric plate 9, the surface of the synthetic polymer is etched by plasma. In etching using this barrier discharge, if polymer or paper is burnt, This phenomenon does not occur at all. In other words, the barrier discharge does not increase the temperature enough to melt or scorch the polymer film. When a polymer film or the like is exposed to a barrier discharge, the surface is plasma-treated and can be chemically etched. For example, when a water-repellent polymer film is exposed to a barrier discharge, the hydrophilicity of the exposed part of the plasma improves and only the plasma-treated part gets wet.
このように, パリヤー放電は, 素材を破壊せずに, その表面のみを化 学修飾できる。 誘電体板 9に対向する電極 (内管) 形状を適宜調整する ことによ り,化学修飾するフィルムの面積を自在に変えることができる。 図示のように先端を尖らせば, 有機分子素材の局所のみを選択的に化学 修飾できる。 たとえば, ヘリ ウムに水素を混ぜて放電させれば, 局所を 還元処理できる。 また, ヘリ ウム/酸素では酸化処理, ヘリ ウム/窒素 では窒化処理ができる。 このほカ ヘリ ウムに混合するガスを種々替え て, 材料表面の化学組成を自在に化学処理できる。 この方法は, 極めて 簡便かつ効率のよい方法である。 この方法によると, 高分子材料などの エッチング . プロセスを, 生成ィオンを分析装置で観測しながら制御す ることもできる。  In this way, the Parrier discharge can be chemically modified only on its surface without destroying the material. By appropriately adjusting the shape of the electrode (inner tube) facing the dielectric plate 9, the area of the film to be chemically modified can be freely changed. If the tip is pointed as shown, only the local area of the organic molecular material can be selectively chemically modified. For example, if helium is mixed with hydrogen and discharged, the local area can be reduced. Helium / oxygen can be oxidized, and helium / nitrogen can be nitrided. By changing the gas mixed with this potassium, the chemical composition of the material surface can be freely treated. This method is extremely simple and efficient. According to this method, the etching process of polymer materials can be controlled while observing the generated ions with an analyzer.
バリヤー放電は,材料の温度を上げずに,化学処¾に利用できるので, 材料表面に種々の化学反応物質を載せ, これをバリヤ一放電処理するこ とによって, 表面に新しい機能性材料を合成することもできる。 たとえ ば, 燃料電池の触媒製造において, 表面に種々の反応物質を混合して薄 膜化しておき, これにバリヤ一放電を施すことで新しい機能をもつ薄膜 触媒の合成が可能となる。 グラフアイ ト上に金属触媒を塗布するなどの 技法も可能である。  Barrier discharge can be used for chemical processing without raising the temperature of the material. Therefore, a new functional material can be synthesized on the surface by placing various chemically reactive substances on the material surface and subjecting it to barrier discharge treatment. You can also For example, in the manufacture of fuel cell catalysts, it is possible to synthesize thin film catalysts with new functions by mixing various reactants on the surface to make them thin and then subjecting them to barrier discharge. Techniques such as applying a metal catalyst on the graph item are also possible.
このように, 材料の局所化学修飾が可能であり (有機ナノ材料の局所 エッチングや化学修飾など。 希ガス放電による有機ナノ材料表面エッチ ング, 酸素プラズマによる酸素付加や局部酸化, 窒素プラズマによる表 面窒化など) , またプラズマ処理中の化学反応をイオン観測しながら質 量分析計で直接追跡ができる。 In this way, local chemical modification of materials is possible (such as local etching and chemical modification of organic nanomaterials. Surface etching of organic nanomaterials by rare gas discharge) , Oxygen addition by oxygen plasma, local oxidation, surface nitridation by nitrogen plasma, etc.), and chemical reaction during plasma treatment can be traced directly with a mass spectrometer while observing ions.
もっとも, 材料の処理, 加工, 合成等の目的のみならばイオン分析装 置 60は不要であり, 内管 11 Cも管である必要はなく, 処理, 加工, 合成 に適した形状の電極で良い。  However, the ion analyzer 60 is not necessary for the purpose of material processing, processing, synthesis, etc., and the inner tube 11 C does not need to be a tube. .
第 2実施例 Second embodiment
第 2実施例は特に気体の試料のイオン分析に適したものである。 その基本的構成を第 11図に示す。 第 1図に示す第 1実施例と異なる点 は, 基本的に, 外管 12 Eを試料供給管と して使用するこ とである。 試料 供給管 12 Eの先端には第 3図に示すものと同じ囲繞筒 17が設けられてい る。 この囲繞筒 17には後述するヘリ ゥム · ガスを逃すために穴をあけて おいてもよレヽ。  The second embodiment is particularly suitable for ion analysis of a gaseous sample. The basic configuration is shown in Fig. 11. The difference from the first embodiment shown in Fig. 1 is that the outer tube 12E is basically used as the sample supply tube. The same cylinder 17 as shown in FIG. 3 is provided at the tip of the sample supply pipe 12E. You can make a hole in this cylinder 17 to escape the helium gas described later.
試料供給管 12 Eの基端側には試料吸引管 (試料吸引管も含めて試料供 給管といってもよい) 14が接続されている。 この試料吸引管 14には吸引 ポンプ 41, 塵埃除去用フィルタ 42および水蒸気除去用フィルタ (乾燥剤 に代えてもよい) 43が設けられている。 また, 試料吸引管 14には, 分岐 管 14 Aから, バリヤー放電の安定性を高めると ともに促進するために放 電用ガスと してヘリ ゥム · ガスが供給される。 試料ガスと ともに吸引さ れる大気中の窒素, 酸素も放電用ガスとなり う るので, 必ずしもへリ ウ ム . ガス等を供給しなくてもよい。  A sample suction tube (including a sample suction tube, which may be called a sample supply tube) 14 is connected to the proximal end side of the sample supply tube 12E. The sample suction tube 14 is provided with a suction pump 41, a dust removal filter 42, and a water vapor removal filter (which may be replaced with a desiccant) 43. The sample suction tube 14 is supplied with helium gas from the branch tube 14A as the discharge gas in order to enhance and promote the stability of the barrier discharge. Nitrogen and oxygen in the atmosphere sucked together with the sample gas can also become discharge gases, so it is not always necessary to supply helium gas.
試料吸引管 14の先端部 14 a ( 14 b , 14 c ) (吸引ポンプ 41よ り も先の 吸引ノズル部分) は, たとえば第 12図に示すよ うに被検体捆包物 44内に 差込まれる。 この.先端部 14 a を細長いチューブ状 (吸引ノズル) とする ことで, 梱包された中身の気体を, 捆包を解かずにチューブを内部に差 し込んで, 吸引し分析できる。 また, ガスクロマ トグラフからの流出ガ スを吸引するこ とで, ガスク ロマ トグラフの高感度イオン検出器と して 利用することもできる。 第 13図に示すよ うに, 呼気を先端部 14 bで吸引 してもよいし, 第 14図に示すように大気を先端部 14 cで吸引し大気モニ タ リ ングをすることもできる。 The tip 14 a (14 b, 14 c) of the sample suction tube 14 (the suction nozzle part ahead of the suction pump 41) is inserted into the subject package 44, for example, as shown in FIG. . By making the tip 14a into an elongated tube (suction nozzle), the packed gas can be sucked and analyzed by inserting the tube into the interior without unpacking. In addition, the outflow gas from the gas chromatograph It can also be used as a highly sensitive ion detector for gas chromatography. As shown in Fig. 13, exhalation may be aspirated at the tip 14b, or air can be aspirated at the tip 14c as shown in Fig. 14 for atmospheric monitoring.
いずれにしても吸引された気体試料は試料供給管 12 Eの先端部まで導 かれ, ここに生起しているパリヤー放電によ りイオン化され, サンプル 管 11によ り分析装置 60に導かれてイオン分析される。  In any case, the sucked gas sample is guided to the tip of the sample supply tube 12 E, ionized by the Parrier discharge generated here, and guided to the analyzer 60 by the sample tube 11 to be ionized. Be analyzed.
上述のよ うに質量分析装置 60の内部は真空に保たれ, サンプル管 1 1内 も負圧となっているので,この負圧を利用して試料気体を試料吸引管 14, 試料供給管 12 Eを通して吸引することもできる。 この場合には吸引ボン プ 41は不要となる。 フィルタ 42 , 43も場合によっては省略することがで きる。 第 7図に示すように, 二重管部 10の内管を試料供給管と し, 外管 をサンプル管とする構成でもよい。  As described above, the inside of the mass spectrometer 60 is kept in a vacuum, and the sample tube 11 also has a negative pressure. Therefore, using this negative pressure, the sample gas is supplied to the sample suction tube 14, the sample supply tube 12E. Can also be sucked through. In this case, the suction pump 41 is not necessary. Filters 42 and 43 can also be omitted in some cases. As shown in Fig. 7, the inner pipe of the double pipe section 10 may be the sample supply pipe and the outer pipe may be the sample pipe.
第 3実施例 Example 3
第 3実施例は,誘電体板の一方側に 2つの電極を配置するものである。 第 15図および第 16図を参照して, 誘電体または絶縁体により電極支持 体 8が形成される。 この電極支持体 8は円柱状 (角柱状でもよい) のも ので, 円形の中心に, 細い (たとえば直径 0. 5rara) のイオン ' サンプリ ング用の細孔 8 Aが支持体 8を貫通して形成されている。 支持体 8の下 面 8 B (—方の面。 図において下側) は, 質量分析装置 60のサンプリ ン グ · オリ フィ ス 65の形状に合致して円錐状にへこんだ形状につく られて いる。 支持体 8がサンプリ ング . オリ フィ ス 65に取付けられたとき, 中 央の細孔 8 Aはオリ フィス 65のイオン導入孔 65 aに一致する。  In the third embodiment, two electrodes are arranged on one side of a dielectric plate. Referring to Figs. 15 and 16, the electrode support 8 is formed of a dielectric or insulator. Since this electrode support 8 is cylindrical (or may be prismatic), a thin (eg 0.5 rara) ion sampling pore 8 A penetrates the support 8 at the center of the circle. Is formed. The lower surface 8 B of the support 8 (the-side, the lower side in the figure) is formed into a conical concavity that matches the shape of the sampling orifice 65 of the mass spectrometer 60. Yes. When the support 8 is attached to the sampling orifice 65, the central pore 8A coincides with the ion introduction hole 65a of the orifice 65.
電極支持体 8の上面 (他方の面) は平坦で, この面に 2つの電極 (金 属) 23が細孔 8 Aを挟んで若干の間隔 (後述する誘電体板 9 Aの厚さよ り も大きい間隔) をあけて埋設されている。 これらの電極 23は, 支持体 8の上面に形成された (設けられた) (または内部に形成され, もしく は設けられた) 導体パターンまたはヮィャ 24によ り電源装置 30に接続さ れ, 2つの電極 23間に交流電圧が印加される。 The upper surface (the other surface) of the electrode support 8 is flat, and two electrodes (metal) 23 are sandwiched between the pores 8 A on this surface (slightly spaced than the thickness of the dielectric plate 9 A described later). It is buried with a large gap). These electrodes 23 are supported by the support Connected to the power supply 30 by a conductor pattern or via 24 formed (provided) (or provided inside or provided) on the upper surface of 8 and AC voltage between the two electrodes 23 Is applied.
電極支持体 8 の上面には円形の誘電体板 (たとえば厚さ 0. 5πιηι) 9 A が置かれる (固定される, 取付けられる) 。 この誘電体板 9 Aにも細孔 A circular dielectric plate (for example, 0.5πιηι) 9 A is placed (fixed, attached) on the upper surface of the electrode support 8. This dielectric plate 9 A also has pores
8 Aに一致する細孔 9 aがあけられている。 A pore 9 a corresponding to 8 A is opened.
さらに誘電体板 9 A上には円筒状の試料载置台(載置筒または载置壁) 兼囲繞筒 (壁) (以下, 载置筒という) 7が細孔 9 aを中心にして細孔 Further, on the dielectric plate 9 A, a cylindrical sample mounting table (mounting cylinder or mounting wall) and surrounding cylinder (wall) (hereinafter referred to as mounting cylinder) 7 are pores centered on the pore 9 a.
9 a を囲むよ うに置かれる (固定される, 取付けられる) 。 この試料载 置筒 7 も円筒状に限らず角筒状, その他の形状のものでよい。 試料載置 筒 7 の周壁には, 互いに対向する位置に放電用ガスの入口 7 aおよぴ出 口 7 bがあけられている。 ヘリ ゥム等の放電用ガスは入口 7 aから筒 7 内に導入され, 出口 7 bから排出される。 9 Placed around (fixed, mounted). The sample mounting cylinder 7 is not limited to a cylindrical shape, but may be a rectangular tube shape or other shapes. On the peripheral wall of the sample tube 7, discharge gas inlets 7 a and 7 b are opened at positions facing each other. A discharge gas such as helium is introduced into the cylinder 7 from the inlet 7a and discharged from the outlet 7b.
2つの電極 23間に交流電圧を印加すると, 誘電体板 9 A内をその厚さ 方向に放電電流が横切って流れ, 載置筒 7内にパリヤー放電が生起され る, すなわち誘電体板 9 Aの表面に沿面放電が発生する。 载置筒 7の上 面開口に試料または対象物を置く, またはかざせば, 試料または対象物 から微量成分が脱離, イオン化する。生成したイオンは細孔 9 a , 8 A , イオン導入孔 65 a を通って分析装置 60內に導かれ, 分析される。 このよ う にして, 動物の皮膚等の生体組織, その他の試料, 対象物の直接分析 が可能となる。 この変形例のものは試料の形態を殆ど問わないので汎用 性に富むものである。 載置筒 7内に放電用ガスを供給することによ り, バリヤ一放電が効率よく, かつ安定に発生する。  When an AC voltage is applied between the two electrodes 23, a discharge current flows through the dielectric plate 9A in the thickness direction, and a Parrier discharge is generated in the mounting cylinder 7, that is, the dielectric plate 9A. Creeping discharge occurs on the surface of the surface. Placing or holding the sample or object over the top opening of the mounting cylinder 7 desorbs and ionizes the trace components from the sample or object. The generated ions are introduced into the analyzer 60 內 through the pores 9a and 8A and the ion introduction hole 65a and analyzed. In this way, it is possible to directly analyze biological tissues such as animal skin, other samples, and objects. This modified example is versatile because it does not matter what the sample is. By supplying the discharge gas into the mounting cylinder 7, a barrier discharge is generated efficiently and stably.
この実施例の構造においては,誘電体板の交流電圧が印加される面と, バリヤ一放電が発生する面とが反対側に分離されるので, イオンを発生 させる空間 (バリヤ一放電空間) が高電圧に晒されることがなく, ィォ ン捕集において安全な操作が可能となる。 また, 2つの電極の間の間隔 と電極のサイズを小さくすれば, 誘電体板の反対側に局所的に沿面放電 を生起させることができるので, 試料のイメージング像を得ることも可 能である。 In the structure of this embodiment, the surface where the AC voltage is applied to the dielectric plate and the surface where the barrier one discharge is generated are separated on the opposite side, so that a space for generating ions (barrier one discharge space) is provided. Without being exposed to high voltage Safe operation is possible in the collection. In addition, if the distance between the two electrodes and the size of the electrodes are reduced, creeping discharge can be generated locally on the opposite side of the dielectric plate, so that it is possible to obtain an imaging image of the sample. .
最後に, 上述した実施例のイオン化分析装置および方法を用いて各種 物質を検出できることを示す実証データを第 17図ないし第 19図を用いて 説明する。  Finally, demonstration data showing that various substances can be detected using the ionization analyzer and method of the above-described embodiment will be described with reference to FIGS.
第 17図は第 1図に示す装置を用いて,爆発物の例と して 3, 4—ジニ トロ トルエン (Dinitrotoluene) 1 rag/ralの溶液を綿棒に滴下してその蒸気 成分を分析した結果を示すものである。放電用ガスと してはヘリ ゥム(流 量 1 L /rain) を用いた。  Fig. 17 shows the result of analyzing the vapor component of a solution of 3, 4-dinitrotoluene 1 rag / ral dropped onto a cotton swab as an example of explosives using the apparatus shown in Fig. 1. Is shown. Helium (flow rate 1 L / rain) was used as the discharge gas.
第 18図は第 11図に示す装置を用いて, 無極性化合物の例と してへキサ ン蒸気を分析した結果を示すものである。 放電ガスと してはアルゴンを 用いた。  Figure 18 shows the results of analysis of hexane vapor as an example of a nonpolar compound using the apparatus shown in Fig. 11. Argon was used as the discharge gas.
第 19図は農薬の例と して第 4図に示す装置を用いてメ タ ミ ドフォス (Methamidophos) の酢酸ェチル溶液 (lOngZpl) をろ紙に滴下して分 析した結果を示すものである。  Fig. 19 shows the results of analysis using an apparatus shown in Fig. 4 as an example of agrochemicals by dropping a solution of methamidophos in ethyl acetate (lOngZpl) onto filter paper.
このよ う に, 種々の物質を高感度で分析できることが分る。  Thus, it can be seen that various substances can be analyzed with high sensitivity.

Claims

請求の範囲 The scope of the claims
1 . 少なく とも 2つの電極間に交流電圧を印加し, 放電電流路を横切つ て配置された誘電体の表面を含む空間にバリヤー放電を生起させること, 生起されたバリヤー放電に晒される位置に分析対象試料を供給するこ と, および 1. An AC voltage is applied between at least two electrodes, causing a barrier discharge to occur in the space including the surface of the dielectric placed across the discharge current path, and the position exposed to the generated barrier discharge. Supplying the sample to be analyzed to
バリヤ一放電に晒されることによって生じる試料のィオンを分析装置 に導く こと,  Introducing the sample ion resulting from exposure to the barrier discharge to the analyzer,
を含むイオン化分析方法。  An ionization analysis method comprising:
2 . バリヤー放電が生起する空間近傍に一端が臨むよ うに配置されたサ ンプル管によ り , 試料のイオンを分析装置に導く, 請求の範囲第 1項に 記載のイオン化分析方法。  2. The ionization analysis method according to claim 1, wherein the sample ion is guided to the analyzer by a sample tube arranged so that one end faces the space where the barrier discharge occurs.
3 . バリヤ一放電が生起する空間近傍に一端が臨むよ うに配置されたガ ス供給管により, 放電用ガスを供給する, 請求の範囲第 1項に記載のィ オン化分析方法。  3. The ionization analysis method according to claim 1, wherein the gas for discharge is supplied by a gas supply pipe arranged so that one end faces the space where the barrier discharge occurs.
4 . バリヤ一放電が生起する空間近傍に一端が臨むように配置された試 料供給管により, 試料ガスを供給する, 請求の範囲第 1項に記載のィォ ン化分析方法。  4. The ionization analysis method according to claim 1, wherein the sample gas is supplied by a sample supply pipe arranged so that one end faces the vicinity of the space where the barrier discharge occurs.
5 . 上記誘電体の上記表面を含む, バリヤ一放電を生起させる空間の近 傍に一端が臨むよ うに配置されたサンプル管, 放電用ガス供給管または 試料供給管のいずれかを第 1の電極と し, 上記誘電体の上記表面とは反 対側に平板状の第 2の電極を配置し, これらの第 1の電極と第 2の電極 の間に交流電圧を印加する, 請求の範囲第 1項に記載のィオン化分析方 法。  5. Either the sample tube, the discharge gas supply tube, or the sample supply tube arranged so that one end faces the space where the barrier discharge is generated, including the surface of the dielectric, is connected to the first electrode. And a flat plate-like second electrode is disposed on the opposite side of the surface of the dielectric, and an AC voltage is applied between the first electrode and the second electrode. The ionization analysis method described in item 1.
6 . 上記誘電体を挟むよ うに上記の 2つの電極を配置する, または上記 誘電体の上記表面の側とは反対側に上記の 2つの電極を配置する, 請求 の範囲第 1項に記載のィオン化分析方法。 6. Arranging the two electrodes so as to sandwich the dielectric, or arranging the two electrodes on the opposite side of the surface of the dielectric. The ionization analysis method according to paragraph 1 of the above.
7 . 上記誘電体の上記表面の側とは反対側に上記 2つの電極を配置し, 上記誘電体の上記表面の上記 2つの電極に対向する位置に試料載置台ま たは囲繞筒状体を配置する, 請求の範囲第 1項に記載のイオン化分析方 法。  7. The two electrodes are arranged on the opposite side of the surface of the dielectric, and a sample mounting table or a surrounding cylindrical body is placed at a position facing the two electrodes on the surface of the dielectric. The ionization analysis method according to claim 1, which is arranged.
8 . 少なく とも 2つの電極間に交流電圧を印加し, 放電電流路を横切つ て配置された誘電体の表面を含む空間にパリヤー放電を生起させること, およぴ  8. Apply an alternating voltage between at least two electrodes to generate a Parrier discharge in the space containing the surface of the dielectric placed across the discharge current path, and
生起されたバリヤ一放電に晒される位置に対象試料を供給すること, を含むィオン化方法。  Supplying the target sample to a position exposed to the generated barrier discharge.
9 . 少なく とも 2つの電極間に交流電圧を印加し, 放電電流路を横切つ て配置された誘電体の表面を含む空間にバリヤ一放電を生起させること, およぴ  9. Apply an alternating voltage between at least two electrodes to create a barrier discharge in the space containing the surface of the dielectric placed across the discharge current path, and
生起されたバリヤ一放電に晒される位置に処理対象材料を供給するこ と,  Supplying the material to be processed to the position exposed to the generated barrier discharge,
を含む化学処理方法。  A chemical treatment method comprising:
10. 誘電体と, それらの間に交流電圧が印加される少なく とも 2つの電 極を備え, 分析対象試料が供給される空間またはその近傍に上記誘電体 の表面が臨み, 上記電極間に交流電圧を印加することによって上記誘電 体の上記表面を含む空間にバリヤー放電が生起されるよ うに上記誘電体 は上記バリヤ一放電の放電電流路を横切って配置されており,  10. A dielectric and at least two electrodes to which an AC voltage is applied are provided, and the surface of the dielectric faces in or near the space to which the sample to be analyzed is supplied. The dielectric is disposed across the discharge current path of the barrier discharge so that a barrier discharge is generated in a space including the surface of the dielectric by applying a voltage.
さらに, 分析対象試料がバリヤー放電に晒されることによって生じる 試料のイオンを分析装置に導くイオン導入路を備えた,  In addition, it has an ion introduction path that guides the sample ions generated when the sample to be analyzed is exposed to barrier discharge to the analyzer.
イオン化装置。  Ionizer.
11 . 上記イオン導入路が, バリヤ一放電が生起する空間近傍に一端が臨 むよ うに配置されたサンプル管である, 請求の範囲第 10項に記載のィォ ン化装置。 11. The ion introduction path according to claim 10, wherein the ion introduction path is a sample tube disposed so that one end thereof faces a space where a barrier discharge occurs. Device.
12. バリヤ一放電が生起する空間近傍に一端が臨むよ うに配置され, 放 電用ガスを供給するガス供給管をさ らに備えた, 請求の範囲第 10項に記 載のイオン化装置。  12. The ionization apparatus according to claim 10, further comprising a gas supply pipe that is arranged so that one end faces a space where a barrier discharge occurs, and supplies a discharge gas.
13. バリヤ一放電が生起する空間近傍に一端が臨むように配置され, 試 料ガスを供給する試料供給管をさらに備えた, 請求の範囲第 10項に記載 のィオン化装置。  13. The ionization apparatus according to claim 10, further comprising a sample supply pipe that is arranged so that one end faces the space where the barrier discharge occurs, and supplies a sample gas.
14. 試料のイオンを分析装置に導く上記イオン導入路と してのサンプル 管と放電用ガスを供給するガス供給管とを備え, これらのサンプル管と ガス供給管が二重構造に形成され, これらの管の一端がバリヤ一放電が 生起する空間近傍に臨むよ うに配置されている, 請求の範囲第 10項に記 載のィオン化装置。  14. Equipped with a sample tube as the ion introduction path that guides the ions of the sample to the analyzer and a gas supply tube that supplies the discharge gas. These sample tube and gas supply tube are formed in a double structure. The ionization device according to claim 10, wherein one end of each of these tubes is arranged so as to face a space near where a barrier discharge occurs.
15. 試料のィオンを分析装置に導く上記ィオン導入路と してのサンプル 管と試料ガスを供給する試料供給管とを備え, これらのサンプル管と試 料供給管が二重構造に形成され, それらの管の一端がバリ ヤ一放電が生 起する空間近傍に臨むように配置されている, 請求の範囲第 10項に記载 のイオン化装置。  15. It has a sample tube as the above-mentioned ion introduction path that guides the sample ion to the analyzer and a sample supply tube that supplies the sample gas. These sample tube and sample supply tube are formed in a double structure, The ionization apparatus according to claim 10, wherein one end of each of the tubes is arranged so as to face the vicinity of a space where a barrier discharge occurs.
16. バリヤ一放電が生起する空間おょぴその近傍を囲繞する筒, 壁, 管 またはガイ ドが設けられる, 請求の範囲第 10項に記載のイオン化装置。 16. The ionization apparatus according to claim 10, wherein a cylinder, a wall, a pipe, or a guide is provided to surround a space where a barrier discharge occurs and its vicinity.
17. 上記の 2つの電極のうちの第 1の電極が, 上記誘電体の上記表面を 含む, バリヤー放電を生起させる空間の近傍に一端が臨むように配置さ れたサンプル管,放電用ガス供給管または試料供給管のいずれかであり, 第 2の電極が上記誘電体の上記表面とは反対側に配置された平板状電極 であり,これらの第 1の電極と第 2の電極の間に交流電圧が印加される, 請求の範囲第 10項に記载のィオン化装置。 17. Sample tube in which the first electrode of the above two electrodes is arranged so that one end faces the vicinity of the space that generates the barrier discharge, including the surface of the dielectric, and the discharge gas supply Either a tube or a sample supply tube, and the second electrode is a flat electrode disposed on the opposite side of the surface of the dielectric, and between the first electrode and the second electrode The ionization device according to claim 10, wherein an AC voltage is applied.
18. 上記の 2つの電極が上記誘電体を挟むよ うに配置される, または上 記の 2つの電極が上記誘電体の上記表面の側とは反対側に配置される, 請求の範囲第 10項に記載のイオン化装置。 18. The above two electrodes are placed so as to sandwich the dielectric. The ionization apparatus according to claim 10, wherein the two electrodes are arranged on a side opposite to the surface side of the dielectric.
19. 上記の 2つの電極が上記誘電体の上記表面の側とは反対側に配置さ れ, 上記誘電体の上記表面の上記 2つの電極に対向する位置に試料載置 台または囲繞筒状体が配置される, 請求の範囲第 10項に記載のィオン化 装置。  19. The two electrodes are arranged on the side opposite to the surface side of the dielectric, and the sample mounting table or the surrounding cylindrical body is located at a position facing the two electrodes on the surface of the dielectric. The ionization device according to claim 10, wherein:
20. イオン導入路が設けられた絶縁体よりなる電極支持体と,  20. an electrode support made of an insulator provided with an ion introduction path;
上記電極支持体に上記ィオン導入路を挟んで埋設された 2つの電極と 上記電極を覆う よ うに配置され, 上記イオン導入路に通じる孔があけ られた誘電体と,  Two electrodes embedded in the electrode support across the ion introduction path, a dielectric disposed so as to cover the electrode, and a hole leading to the ion introduction path;
を備えたィオン化装置。  An ionization device comprising:
21. 請求の範囲第 10項または第 20項に記載のイオン化装置と, イオンが 導かれる質量分析装置とを備えたイオン化分析装置。  21. An ionization analyzer comprising the ionizer according to claim 10 or 20 and a mass spectrometer to which ions are introduced.
PCT/JP2008/061169 2007-06-15 2008-06-12 Ionization analysis method and device WO2008153199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007158846 2007-06-15
JP2007-158846 2007-06-15

Publications (1)

Publication Number Publication Date
WO2008153199A1 true WO2008153199A1 (en) 2008-12-18

Family

ID=40129795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061169 WO2008153199A1 (en) 2007-06-15 2008-06-12 Ionization analysis method and device

Country Status (1)

Country Link
WO (1) WO2008153199A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157312A1 (en) * 2008-06-27 2009-12-30 国立大学法人山梨大学 Ionization analysis method and device
WO2011089912A1 (en) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ Mass spectrometry device
WO2011099642A1 (en) * 2010-02-12 2011-08-18 国立大学法人山梨大学 Ionization device and ionization analysis device
US8853626B2 (en) 2010-02-12 2014-10-07 University Of Yamanashi Ionization apparatus and ionization analysis apparatus
JP2016538691A (en) * 2013-11-15 2016-12-08 スミスズ ディテクション モントリオール インコーポレイティド Concentric APCI surface ionization ion source, ion guide and method of use
CN115210562A (en) * 2020-03-06 2022-10-18 浜松光子学株式会社 Sample support, ionization method, and mass analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147790A (en) * 1995-11-21 1997-06-06 Res Dev Corp Of Japan Microwave induction plasma ion source
JP2001351569A (en) * 2000-06-02 2001-12-21 Hitachi Ltd Online monitoring device for gas measurement
JP2005512274A (en) * 2001-08-08 2005-04-28 シオネックス・コーポレーション Capacity discharge plasma ion source
WO2006048649A1 (en) * 2004-11-05 2006-05-11 Dow Corning Ireland Limited Plasma system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147790A (en) * 1995-11-21 1997-06-06 Res Dev Corp Of Japan Microwave induction plasma ion source
JP2001351569A (en) * 2000-06-02 2001-12-21 Hitachi Ltd Online monitoring device for gas measurement
JP2005512274A (en) * 2001-08-08 2005-04-28 シオネックス・コーポレーション Capacity discharge plasma ion source
WO2006048649A1 (en) * 2004-11-05 2006-05-11 Dow Corning Ireland Limited Plasma system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157312A1 (en) * 2008-06-27 2009-12-30 国立大学法人山梨大学 Ionization analysis method and device
US8253098B2 (en) 2008-06-27 2012-08-28 University Of Yamanashi Ionization analysis method and apparatus
WO2011089912A1 (en) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ Mass spectrometry device
JP5622751B2 (en) * 2010-01-25 2014-11-12 株式会社日立ハイテクノロジーズ Mass spectrometer
US9390900B2 (en) 2010-01-25 2016-07-12 Hitachi High-Technologies Corporation Mass spectrometer
WO2011099642A1 (en) * 2010-02-12 2011-08-18 国立大学法人山梨大学 Ionization device and ionization analysis device
JP5239102B2 (en) * 2010-02-12 2013-07-17 国立大学法人山梨大学 Ionizer and ionization analyzer
US8853626B2 (en) 2010-02-12 2014-10-07 University Of Yamanashi Ionization apparatus and ionization analysis apparatus
JP2016538691A (en) * 2013-11-15 2016-12-08 スミスズ ディテクション モントリオール インコーポレイティド Concentric APCI surface ionization ion source, ion guide and method of use
CN115210562A (en) * 2020-03-06 2022-10-18 浜松光子学株式会社 Sample support, ionization method, and mass analysis method

Similar Documents

Publication Publication Date Title
JP7183346B2 (en) Synchronization of ion production with the periodicity of the discontinuous atmospheric interface
JP5098079B2 (en) Ionization analysis method and apparatus
CN101770924B (en) Desorbing ionization device
Guo et al. Development of dielectric-barrier-discharge ionization
US7968842B2 (en) Apparatus and systems for processing samples for analysis via ion mobility spectrometry
US7576322B2 (en) Non-contact detector system with plasma ion source
CN101946300B (en) Low temperature plasma probe and method of use thereof
JP4673841B2 (en) Atmospheric pressure ion source
JP5034092B2 (en) Ionization method and apparatus using probe, and analysis method and apparatus
WO2008153199A1 (en) Ionization analysis method and device
JP4366508B2 (en) Ionization method and apparatus for mass spectrometry
CN108604529B (en) Ionization mass spectrometry and mass spectrometer using the same
CN102762022A (en) Method for generating glow discharge plasma and special device for method
US8835838B2 (en) Method and apparatus for analysis and ion source
Dumlao Portable, Solid-Phase Microextraction Low Temperature Plasma Ionization Source for Mass Spectrometry
Rahman Development of Novel Ionization Methods for Mass Spectrometry Using the High Pressure Ion Source and Their Applications to Biological Molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP