WO2008103849A2 - Methods and compounds for lymphoma cell detection and isolation - Google Patents
Methods and compounds for lymphoma cell detection and isolation Download PDFInfo
- Publication number
- WO2008103849A2 WO2008103849A2 PCT/US2008/054613 US2008054613W WO2008103849A2 WO 2008103849 A2 WO2008103849 A2 WO 2008103849A2 US 2008054613 W US2008054613 W US 2008054613W WO 2008103849 A2 WO2008103849 A2 WO 2008103849A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ror
- cells
- antibody
- cll
- protein
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 206010025323 Lymphomas Diseases 0.000 title claims abstract description 41
- 238000001514 detection method Methods 0.000 title description 24
- 150000001875 compounds Chemical class 0.000 title description 8
- 238000002955 isolation Methods 0.000 title description 6
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 115
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 92
- 230000014509 gene expression Effects 0.000 claims abstract description 63
- 241000282414 Homo sapiens Species 0.000 claims abstract description 58
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 53
- 102000043366 Wnt-5a Human genes 0.000 claims abstract description 47
- 108700020483 Wnt-5a Proteins 0.000 claims abstract description 47
- 201000011510 cancer Diseases 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 21
- 229960005486 vaccine Drugs 0.000 claims abstract description 21
- 201000010099 disease Diseases 0.000 claims abstract description 19
- 230000004083 survival effect Effects 0.000 claims abstract description 16
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 207
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 203
- 238000011282 treatment Methods 0.000 claims description 51
- 210000002966 serum Anatomy 0.000 claims description 46
- 101150109862 WNT-5A gene Proteins 0.000 claims description 45
- 230000027455 binding Effects 0.000 claims description 41
- 239000002773 nucleotide Substances 0.000 claims description 31
- 125000003729 nucleotide group Chemical group 0.000 claims description 31
- 238000003556 assay Methods 0.000 claims description 21
- 150000007523 nucleic acids Chemical group 0.000 claims description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 14
- 239000013604 expression vector Substances 0.000 claims description 14
- 208000029742 colonic neoplasm Diseases 0.000 claims description 11
- 208000009956 adenocarcinoma Diseases 0.000 claims description 10
- 206010006187 Breast cancer Diseases 0.000 claims description 9
- 201000010897 colon adenocarcinoma Diseases 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 8
- 230000008901 benefit Effects 0.000 claims description 6
- 201000008274 breast adenocarcinoma Diseases 0.000 claims description 6
- 230000002265 prevention Effects 0.000 claims description 3
- 239000002464 receptor antagonist Substances 0.000 claims description 3
- 229940044551 receptor antagonist Drugs 0.000 claims description 3
- 238000010494 dissociation reaction Methods 0.000 claims 1
- 230000005593 dissociations Effects 0.000 claims 1
- 238000003259 recombinant expression Methods 0.000 claims 1
- 239000002244 precipitate Substances 0.000 abstract description 9
- 210000004027 cell Anatomy 0.000 description 322
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 207
- 235000018102 proteins Nutrition 0.000 description 81
- 108090000765 processed proteins & peptides Proteins 0.000 description 42
- 239000000427 antigen Substances 0.000 description 41
- 108091007433 antigens Proteins 0.000 description 41
- 102000036639 antigens Human genes 0.000 description 41
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 41
- 102000004196 processed proteins & peptides Human genes 0.000 description 37
- 239000012634 fragment Substances 0.000 description 32
- 210000003719 b-lymphocyte Anatomy 0.000 description 29
- 229920001184 polypeptide Polymers 0.000 description 29
- 238000010186 staining Methods 0.000 description 29
- 210000004698 lymphocyte Anatomy 0.000 description 28
- 238000003119 immunoblot Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 239000000523 sample Substances 0.000 description 24
- 238000002560 therapeutic procedure Methods 0.000 description 24
- 108020004459 Small interfering RNA Proteins 0.000 description 23
- 102000040430 polynucleotide Human genes 0.000 description 23
- 108091033319 polynucleotide Proteins 0.000 description 23
- 239000002157 polynucleotide Substances 0.000 description 23
- 210000004369 blood Anatomy 0.000 description 22
- 239000008280 blood Substances 0.000 description 22
- 239000002299 complementary DNA Substances 0.000 description 22
- 241000283973 Oryctolagus cuniculus Species 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 19
- 238000000684 flow cytometry Methods 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 239000013598 vector Substances 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 17
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 16
- 239000006166 lysate Substances 0.000 description 16
- 239000007790 solid phase Substances 0.000 description 16
- 230000035899 viability Effects 0.000 description 16
- 108060003951 Immunoglobulin Proteins 0.000 description 15
- 102000018358 immunoglobulin Human genes 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 14
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 14
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- 241000699670 Mus sp. Species 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 241000283707 Capra Species 0.000 description 11
- 208000032839 leukemia Diseases 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 239000000074 antisense oligonucleotide Substances 0.000 description 10
- 238000012230 antisense oligonucleotides Methods 0.000 description 10
- 239000013592 cell lysate Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 210000005087 mononuclear cell Anatomy 0.000 description 10
- 238000002203 pretreatment Methods 0.000 description 10
- 102000013814 Wnt Human genes 0.000 description 9
- 108050003627 Wnt Proteins 0.000 description 9
- 125000003275 alpha amino acid group Chemical group 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 238000003018 immunoassay Methods 0.000 description 9
- 125000005647 linker group Chemical group 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- 210000004988 splenocyte Anatomy 0.000 description 9
- 238000002965 ELISA Methods 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 102000003945 NF-kappa B Human genes 0.000 description 8
- 108010057466 NF-kappa B Proteins 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- 230000005875 antibody response Effects 0.000 description 8
- 229940098773 bovine serum albumin Drugs 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 210000004408 hybridoma Anatomy 0.000 description 8
- 230000028993 immune response Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000009257 reactivity Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 241000701161 unidentified adenovirus Species 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 239000005557 antagonist Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 6
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 6
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 230000003263 anti-adenoviral effect Effects 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 230000003053 immunization Effects 0.000 description 6
- 238000002649 immunization Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 108091000080 Phosphotransferase Proteins 0.000 description 5
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010004469 allophycocyanin Proteins 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 210000000481 breast Anatomy 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 230000009368 gene silencing by RNA Effects 0.000 description 5
- 229940127121 immunoconjugate Drugs 0.000 description 5
- 229940072221 immunoglobulins Drugs 0.000 description 5
- 238000009169 immunotherapy Methods 0.000 description 5
- 230000003834 intracellular effect Effects 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 102000020233 phosphotransferase Human genes 0.000 description 5
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 5
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000013207 serial dilution Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229960000814 tetanus toxoid Drugs 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 4
- 108010041986 DNA Vaccines Proteins 0.000 description 4
- 229940021995 DNA vaccine Drugs 0.000 description 4
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 4
- 108060001084 Luciferase Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- 108010004729 Phycoerythrin Proteins 0.000 description 4
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 4
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000000735 allogeneic effect Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- -1 dinitrophenyl Chemical group 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000004727 humoral immunity Effects 0.000 description 4
- 101150022325 ibpA gene Proteins 0.000 description 4
- 230000016784 immunoglobulin production Effects 0.000 description 4
- 238000001114 immunoprecipitation Methods 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 210000003563 lymphoid tissue Anatomy 0.000 description 4
- 238000002493 microarray Methods 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 210000005259 peripheral blood Anatomy 0.000 description 4
- 239000011886 peripheral blood Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 208000008190 Agammaglobulinemia Diseases 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 108060000903 Beta-catenin Proteins 0.000 description 3
- 102000015735 Beta-catenin Human genes 0.000 description 3
- 102100026189 Beta-galactosidase Human genes 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- 206010020983 Hypogammaglobulinaemia Diseases 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 101100455225 Oryza sativa subsp. japonica LPR5 gene Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 208000006265 Renal cell carcinoma Diseases 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 108090000848 Ubiquitin Proteins 0.000 description 3
- 102000044159 Ubiquitin Human genes 0.000 description 3
- 230000004156 Wnt signaling pathway Effects 0.000 description 3
- 230000002096 anti-tetanic effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 108010005774 beta-Galactosidase Proteins 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000005754 cellular signaling Effects 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 210000002741 palatine tonsil Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000013615 primer Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 230000003393 splenic effect Effects 0.000 description 3
- 229940118376 tetanus toxin Drugs 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UHFFFAOYSA-N 3-phosphoglyceric acid Chemical compound OC(=O)C(O)COP(O)(O)=O OSJPPGNTCRNQQC-UHFFFAOYSA-N 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101710192393 Attachment protein G3P Proteins 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 241000244203 Caenorhabditis elegans Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 238000011238 DNA vaccination Methods 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 2
- 101100453332 Human herpesvirus 8 type P (isolate GK18) K8.1 gene Proteins 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 239000012097 Lipofectamine 2000 Substances 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 102000002673 NFATC Transcription Factors Human genes 0.000 description 2
- 108010018525 NFATC Transcription Factors Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 2
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 2
- 229940079156 Proteasome inhibitor Drugs 0.000 description 2
- RADKZDMFGJYCBB-UHFFFAOYSA-N Pyridoxal Chemical compound CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 2
- 108091008680 RAR-related orphan receptors Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 102000006757 Wnt Receptors Human genes 0.000 description 2
- 108010047118 Wnt Receptors Proteins 0.000 description 2
- 102000052549 Wnt-3 Human genes 0.000 description 2
- 108700020985 Wnt-3 Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000000981 bystander Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 239000003636 conditioned culture medium Substances 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000368 destabilizing effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- XVLXYDXJEKLXHN-UHFFFAOYSA-M dioc6 Chemical compound [I-].O1C2=CC=CC=C2[N+](CCCCCC)=C1C=CC=C1N(CCCCCC)C2=CC=CC=C2O1 XVLXYDXJEKLXHN-UHFFFAOYSA-M 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000006028 immune-suppresssive effect Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000013198 immunometric assay Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 101150109249 lacI gene Proteins 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000003207 proteasome inhibitor Substances 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 101150094567 154 gene Proteins 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108010022579 ATP dependent 26S protease Proteins 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 241001492267 Alcelaphine gammaherpesvirus 1 Species 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 241000237967 Aplysia Species 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108050001427 Avidin/streptavidin Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 101000654316 Centruroides limpidus Beta-toxin Cll2 Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 108010093099 Endoribonucleases Proteins 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 102000005698 Frizzled receptors Human genes 0.000 description 1
- 108010045438 Frizzled receptors Proteins 0.000 description 1
- 102000027587 GPCRs class F Human genes 0.000 description 1
- 108091008884 GPCRs class F Proteins 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 206010071602 Genetic polymorphism Diseases 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 102100022057 Hepatocyte nuclear factor 1-alpha Human genes 0.000 description 1
- 229940124841 Herpesvirus vaccine Drugs 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001045751 Homo sapiens Hepatocyte nuclear factor 1-alpha Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000016978 Orphan receptors Human genes 0.000 description 1
- 108070000031 Orphan receptors Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000042839 ROR family Human genes 0.000 description 1
- 108091082331 ROR family Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 108010079723 Shiga Toxin Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000001567 anti-fibrinolytic effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 1
- 229940082620 antifibrinolytics Drugs 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 230000017047 asymmetric cell division Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000000649 b-lymphocyte subset Anatomy 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 231100000319 bleeding Toxicity 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000004640 cellular pathway Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 210000002451 diencephalon Anatomy 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 239000012133 immunoprecipitate Substances 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000010212 intracellular staining Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 201000006512 mast cell neoplasm Diseases 0.000 description 1
- 208000006971 mastocytoma Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000000933 neural crest Anatomy 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229960005030 other vaccine in atc Drugs 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 150000004633 phorbol derivatives Chemical class 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 108700028325 pokeweed antiviral Proteins 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229960003581 pyridoxal Drugs 0.000 description 1
- 235000008164 pyridoxal Nutrition 0.000 description 1
- 239000011674 pyridoxal Substances 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000024122 regulation of cell motility Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 125000000341 threoninyl group Chemical class [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/00118—Cancer antigens from embryonic or fetal origin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
Definitions
- the present invention generally relates to antibodies directed against antigens specific for chronic lymphocytic leukemia (CLL).
- CLL chronic lymphocytic leukemia
- the invention also relates to gene therapy for CLL.
- TAAs tumor-associated antigens
- CLL chronic lymphocytic leukemia
- LAA leukemia-associated antigens
- Implicated in the abnormal immune function are immune- suppressive factors and an acquired functional deficiency of CD 154. Furthermore, CLL cells are particularly poor at antigen presentation, which appears in part secondary to inadequate leukemia-cell expression of immune co-stimulatory/adhesion molecules.
- CLL cells transduced with an adenovirus encoding the ligand for CD40 can function as more effective antigen-presenting cells (APCs).
- APCs effective antigen-presenting cells
- they can effect ligation of CD40 on bystander leukemia B cells and stimulate autologous leukemia-reactive T cells both in vitro and in vivo.
- ROR-I is an embryonic protein that is expressed uniquely on certain cancer cells, including in CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, Burkett's Lymphoma, and other cancers (e.g., breast cancers), but not on normal adult tissues and cells.
- Anti-ROR-1 antibodies raised against ROR-I peptide are commercially available, but monoclonal anti-ROR-1 antibodies that react with the native ROR-I protein have not been made or isolated. In addition, no anti-ROR-1 antibodies capable of detecting cell-surface expression of ROR-I for flow cytometric analysis have been made or isolated. What is needed, therefore, is an antibody that can react with native ROR-I protein.
- an antibody directed to a surface receptor tyrosine kinase protein expressed on cells found in samples of subjects with a cancer including lymphomas, CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, Burkett's Lymphoma, renal cell carcinoma, colon cancer, colorectal cancer, and breast cancer, but not in blood or splenic lymphocytes of nonleukemic patients or normal adults.
- the present invention is directed to an antibody useful for differentiation between ROR-I expressing cancer cells ("ROR-I cancer”) and normal cells as well as immunotherapy against ROR-I cancers and determination of response to cancer therapy.
- compositions that include a purified, isolated antibody that binds specifically to ROR-I receptor protein.
- the present invention includes methods for an immunoassay that detects ROR-I in a sample from a subject by contacting the sample with a ROR-I -specific antibody and detecting immunoreactivity between the antibody and ROR-I in the sample.
- a ROR-I cancer is diagnosed in a subject by detecting the presence or quantity of ROR-I protein in a sample derived from the subject.
- a ROR-I cancer is treated in a subject by administering to the subject in need of such therapy a therapeutically effective amount of a ROR-I receptor antagonist.
- the appearance, status, course, or treatment of a ROR-I cancer in a subject is evaluated by contacting a biological sample obtained from the subject with an anti-ROR-1 antibody and detecting immunoreactivity between the antibody and ROR-I to determine presence or quantity of ROR-I in the sample.
- a vaccine composition comprising a polynucleotide encoding ROR-I protein or a fragment or variant thereof, and a pharmaceutically acceptable carrier or diluent.
- a vaccine composition comprising ROR-I protein or a fragment or variant thereof, and a pharmaceutically acceptable carrier or diluent.
- a method for protecting against the occurrence of diseases involving expression of ROR-I in a subject comprising administering to the subject in need thereof a polynucleotide encoding ROR-I protein or a fragment or variant thereof in an amount effective to induce a protective or therapeutic immune response against ROR-I, and a pharmaceutically acceptable carrier or diluent.
- a method for protecting against the occurrence of diseases involving expression of ROR-I in a subject comprising administering to the subject in need thereof ROR-I protein or a fragment or variant thereof in an amount effective to induce a protective or therapeutic immune response against ROR-I in the subject, and a pharmaceutically acceptable carrier or diluent.
- a humanized ROR-I antibody is provided.
- a precipitate comprising a ROR-I antibody bound with a ROR-I protein, fragment or variant is provided.
- the ROR-I antibody can be conjugated to a magnetic bead.
- the present invention is also directed toward a method for treating cancer in a subject by administering to the subject a therapeutically effective amount of a cell that expresses ROR-I protein, or a fragment thereof.
- the cancer is a lymphoma or adenocarcinoma.
- the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
- the cell transfected with the nucleic acid sequence of SEQ ID NO. 1 is administered by injection, inhalation, orally, liposome, or retroviral vector.
- the invention is directed toward a composition comprising a cell transfected with the nucleic acid sequence of SEQ ID NO. 1.
- the invention also provides a vaccine for the treatment or prevention of cancer in a subject which consists of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1.
- the cancer is a lymphoma or adenocarcinoma.
- the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
- the present invention also provides for amethod for treating cancer in a subject by administering to the subject a therapeutically effective amount of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1, or a fragment thereof.
- the cancer is a lymphoma or adenocarcinoma.
- the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
- the cell transfected with the nucleic acid sequence of SEQ ID NO. 1 is administered by injection, inhalation, orally, liposome, or retroviral vector.
- the present invention also provides a method of treating or preventing cancer in a subject by administering to the subject a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1.
- the nucleotide sequence is at least 12 nucleotides in length.
- the nucleotide sequence has at least 80% identity to SEQ ID NO: 1.
- the nucleotide sequence has at least 90% identity to SEQ ID NO: 1.
- the nucleotide sequence has at least 95% identity to SEQ ID NO: 1.
- the nucleotide sequence encodes an open reading frame.
- the open reading frame consisting of SEQ ID NO: 2.
- an isolated antibody that specifically binds to a protein encoded by a nucleotide sequence of SEQ ID NO.: 1.
- the antibody is a polyclonal antibody.
- the antibody is a monoclonal antibody.
- the present invention also contemplates purified serum containing anti-sera that specifically bind to a protein encoded by a nucleotide sequence of SEQ.ID.No. 1.
- a method for treating or preventing cancer in a subject by administering to the subject in need thereof a therapeutically effective amount of an antagonist to Wnt5a binding of ROR-I protein, or a fragment thereof is also contemplated in the invention.
- the cancer is a lymphoma or adenocarcinoma.
- the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
- the lymphoma is CLL in which ROR-I interaction with or binding of Wnt5a confers a survival advantage that is at least partially, if not wholly, negated by administration of a ROR-I antagonist according to the invention; in particular, isolated ROR- 1 antibodies, or purified serum containing anti-sera that prevent Wnt5a binding by a protein encoded by a nucleotide sequence of SEQ ID NO.: 1.
- Figure 1 shows change of serum antibody after Ad-CD 154 therapy.
- Figure IA is a series of scatter and line plots showing total levels of IgG, IgA, and IgM. IgG, IgA, IgM blood concentrations, measured just prior to initiating Ad-CD 154 therapy (PRE) and 2-4 week following the final treatment time point (POST). The dashed bar in each line graph indicates the minimum normal Ig concentration. The concentration range of normal Ig levels is shown to the left of the legend.
- Figure IB is a series of scatter and line plots showing antibody response to recombinant Ad-CD 154. Anti-adenovirus antibodies were analyzed by an ELISA assay.
- FIG. 1C is a series of bar graphs showing change of antibody response against Adenovirus in serial samples. Anti-adenovirus antibodies were analyzed by an ELISA using anti-isotype specific secondary antibodies conjugated AP. The bar graphs represent the mean increase in adenovirus-specif ⁇ c antibody over the baseline pre-treatment antibody levels.
- Figure ID is a series of scatter and line plots showing anti-tetanus-toxin antibody response before and after Ad-CD 154 treatment. ELISA assay was performed with purified tetanus toxin and sera from patients. Bound tetanus-specific antibody was detected using AP conjugated goat anti-human Ig antibody.
- Figure 2 is a series of histograms showing antibody production against surface molecules on CLL B cells by Ad-CD 154 therapy. Antibody bound on CD 19+ CD3- cells were detected by goat anti-human antibody.
- Figure 2 A is a series of histograms showing diluted serum from patient before (open histograms) or after (shaded histograms) treatment was incubated with PBMC from a CLL patient.
- Figure 2B is a series of histograms showing diluted serum from patient before (open histograms) or after (shaded histograms) treatment incubated with PBMC from a healthy donor.
- Figure 3 is an immunoblot of immune precipitates of lysates with 4A5 probed with rabbit anti-ROR-1 raised against ROR-I peptides.
- Figure 4 is a series of images depicting gels that show expression of ROR-I in CLL B cells.
- Figure 4A are gel images of an immunoblot analysis of ROR-I protein. Total cell lysates of PBMC from CLL patients or healthy donor and those of splenocytes from CLL patients or idiopathic thrombocytopenia purpura patient were analyzed by immunoblot using rabbit anti-ROR-1 antibody.
- Figure 4B are gel images showing ROR-I expression in B cell lines. Immunoblot analysis of total cell lysates of B cell lines was performed.
- Figure 4C shows production of mouse anti-ROR-1 sera.
- FIG. 4D is a series of histograms showing flow cytometric analysis of expression of ROR-I on cell surface of CLL. PBMC from CLL patients and healthy donor were incubated antisera before (open histograms) and after (shaded histograms) DNA immunization.
- Figure 5 is a series of histograms showing production of anti-ROR-1 antibody detected by flow cytometric analysis.
- Figure 5 A is a series of histograms where CHO (open histograms) or CHO-ROR-I (shaded histograms) was incubated with serum from patients before (pre) or after (post) therapy. Histograms indicated the bound human Ig detected by PE labeled goat anti-human Ig.
- Figure 5B shows results where CHO stained with PKH26 were mixed and incubated with serum from patient. APC conjugated anti-human Ig antibody was used for detection.
- Figure 6 shows production of anti-ROR-1 antibody detected by ELISA.
- Figure 6A is a series of gel images showing production of recombinant ROR-I protein.
- ROR-I extracellular region was fused with rabbit IgG Fc region in frame (ROR-IrIg).
- Fused cDNA were transfected into CHO cells and secreted recombinant protein was immunoabsorbed using protein A sepharose. Absorbed protein was immunoblotted with goat anti-ROR-1 antibody (R&D) or goat anti-rabbit Ig antibody.
- KSHV K8.1 protein fused with rabbit Fc region was also used for control.
- FIG. 6B is a series of line and scatter plots showing antibody reaction to ROR-I detected by ELISA. Diluted sera were reacted with coated ROR-IrIg and bound antibody was detected by goat anti -human Ig antibody conjugated with HRP.
- Figure 6C is a series of line and scatter plots showing antibody reaction to rabbit IgG detected by ELISA. Diluted sera were reacted with coated rabbit IgG and bound antibody was detected by goat anti-human Ig antibody conjugated with HRP.
- Figure 7 shows ROR-I and Wnt5a activated NF- ⁇ B reporter expression.
- Figure 7A is a series of bar graphs showing the effect of ROR-I on LEF/TCF1, NF-AT, and AP-I activity.
- HEK293 cells were transfected with indicated reporter construct and ⁇ -galactosidase vector along with expression vector of ROR-I and Wnt5a.
- Figure 7B is a series of bar graphs showing the effect of ROR-I on NF- ⁇ B activity.
- FIG. 7C is a series of gel images showing in vitro binding of ROR-I and Wnt5a.
- Conditioned medium of transfectant with Wnt5a tagged with HA was incubated with ROR-IrIg or rabbit IgG. Immunoprecipitation and immunoblotting were done with indicated materials.
- Figure 8 is a series of histograms showing gated CLL patients and CD 19+ and CD 19+CD5+ cells.
- Figure 9 is a series of histograms showing gated normal patients and CD 19+ and CD 19+CD5+ cells.
- Figure 10 is a series of histograms showing gated "exceptional" normal patients and CD19+ and CD19+CD5+ cells.
- Figure 11 is a series of histograms showing gated CLL patients and CD 19+ and CD19+CD5+ cells.
- Figure 12 depicts the expression of 4A5 versus normals versus CLLs and the gating effect.
- Figure 13 is a series of histograms showing different levels of 4A5 expression on titrated CLL cells.
- Figure 14 is a series of histograms showing different levels of 4A5 expression and that such cells can be purified using magnetic beads and methods provided herein.
- Figure 15A depicts histograns showing levels of ROR-I in cells from either a CLL patient pre and post-Ad-CD154 treatment or a healthy donor.
- Figure 15B depicts a immunoblot analyses using lysates of membrane proteins isolated from the blood lymphocytes of a healthy donor (lane 1) or the CLL cells of an untreated patient (lane 2), as indicated at the top of each immunoblot using sera from patient #7 obtained before (PRE, left panel) or after treatment with autologous Ad-CD 154-transduced CLL cells (POST, right panel).
- Figure 15C depicts an immunoblot analysis using lysates of membrane proteins isolated from CHO cells (lane 1) or CHO-ROR-I cells (lane 2) or the blood lymphocytes of a healthy donor (lane 3) or the CLL cells of an untreated patient (lane 4), as indicated at the top of each immunoblot using sera from patient #7 after treatment with autologous Ad-CD 154- transduced CLL cells.
- Figure 16A depicts histograms depicting the fluorescence of CLL cells stained with 4A5 or an IgG2b isotype control antibody of irrelevant specificity.
- FIG 16B shows staining of peripheral blood mononuclear cells (PBMC) of a normal healthy adult using 4A5 or the control IgG2b along with fluorochrome conjugated mAb specific for CD5, and CD 19.
- Fibure 16C depicts the PBMC of a patient with nascent stage 0 CLL.
- the left histogram depicts the fluorescence of the entire mononuclear cell population after staining with 4A5 or the isotype control IgG2b.
- the middle histogram provides the fluorescence of the gated CD19-negative cells when co-stained with the 4A5 or isotype control.
- the right histogram provides the fluorescence of the gated CD5+/CD19+ CLL cells when when co-stained with the 4A5 or isotype control.
- Figure 17A depicts total cell lysates of CHO cells ("CHO"), CHO-ROR- 1 cells (“CHO-ROR-I”), CLL blood mononuclear cells (CLL samples 1 through 4) or CLL splenocytes ("CLL spleen 1" and "CLL spleen 27, blood mononuclear cells of a healthy donor (“PBMC”), or non-neoplastic, normal human splenocytes (“Spleen”) were examined by immunoblot analysis using rabbit anti-ROR-1 anti-peptide antibody (top panel) or antibodies to p-actin to monitor for protein loading (bottom panel), as indicated to the left of each panel. The source of the tissue is indicated at the top of each lane.
- Figure 17B depicts an immunoblot of an immunoprecipitation of RORI using the 4A5 mAb.
- Cell lysates of normal donor PBMC, normal tonsil, CLL blood mononuclear cells ("CLLI” and "CLL2”) or CHO- RORI cells were incubated with the 4A5 mAb or an IgG isotype control mAb for immune precipitation using Staph protein A.
- the immune precipitate was evaluated via immunoblot analysis using anti-ROR-1 peptide antisera.
- FIG. 17C depicts an immunoblot of cells lysates were prepared as indicated at the top of each lane for immunoblot analyses using anti- ROR-1 antibodies (top panel) or antibodies specific for p-actin (middle panel) or GADPH (bottom panel).
- Figure 18A depicts a graph showing the effect of Wnt5a on the viability of CLL cells cultured in vitro.
- CLL cells from each of 4 unrelated patients were cultured alone (solid squares), or together with CHO cells (solid diamonds), or CHO-Wnt5a cells.
- the percent viability of the CD 19+ CLL cells, indicated on the ordinate, was assessed via flow cytometry on days 1, 2, and 3 of culture, as indicated on the abscissa. Each data point represents the mean value of quadruplicate samples cultured in parallel. The error bars represent the standard error about the mean.
- Figure 18B depicts a chart of the effect of patient sera on the viability of CLL cells in vitro.
- CLL cells were cultured for 2 days in RPMl media containing 20% human serum, either alone or together with CHO cells or CHO-Wnt5a cells and then assessed for viability by flow cytometry.
- the bars indicate the mean percent viability of the CD 19' CLL cells, as indicated on the ordinate, of quadrulicate wells for each culture condition, as defined on the abscissa. Except for condition 1 , all cultures had serum samples from patient #5 that were collected either before (pre-treatment) or two weeks after the last infusion of autologous Ad-CD 154-trasduced CLL cells (post-treatment).
- the CLL cells were cultured by themselves in media containing 1) normal human serum, 2) pre-treatment serum, or 3) post-treatment serum.
- Figure 19 depicts the nucleotide sequence of human ROR-I.
- Figure 20 depicts the protein sequence of human ROR- 1.
- the instant invention provides new and useful antibodies directed against ROR-I protein.
- Full length ROR-I a surface receptor tyrosine kinase, is found in samples of subjects with CLL, but not in blood or splenic lymphocytes of nonleukemic patients or normal adults.
- the invention also provides diagnostic and therapeutic antibodies, including monoclonal antibodies, and related compositions and methods for use in the diagnosis, management and treatment of disease.
- the ROR-I antibody described herein is more sensitive and more specific to ROR- 1 expressing cancer cells than using a combination of several cell surface markers that cannot exclude a small fraction of normal cells.
- the invention provides a vaccine for the treatment or prevention of cancer in a subject which consists of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1.
- the invention also provides for a method for treating cancer in a subject by administering to the subject a therapeutically effective amount of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1, or a fragment thereof.
- the present invention also provides a method of treating or preventing cancer in a subject by administering to the subject a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 1.
- an isolated antibody that specifically binds to a protein encoded by a nucleotide sequence of SEQ ID NO.: 1.
- the present invention also provides purified serum with anti-sera that specifically bind to a protein encoded by a nucleotide sequence of SEQ.ID.No. 1.
- anti-sera that specifically bind to a protein encoded by a nucleotide sequence of SEQ.ID.No. 1.
- Such human anti-sera were despoted on September 14, 2007 pursuant to the Budapest Treaty on the International Deposit of Microorganisms for the Purposes of Patent Procedure with the Patent Culture Depository of the American Type Culture Collection, Manassas, Virginia, as Accession No. PTA-8634.
- Applicants have discovered expression of full-length ROR-I in numerous cancer cell lines and samples, but not other tissues, including blood or splenic lymphocytes of non- leukemic patients or normal adult donors, and also generated mouse anti-sera against full- length human ROR-I. Fukuda et al., Blood: ASH Annual Meeting Abstracts 2004 104, Abstract 772 (2004) (incorporated herein by reference in its entirety).
- the polypeptide and coding sequences for ROR-I have been reported elsewhere and are also incorporated herein by this reference (see, e.g., Accession Nos. NP_005003.1 and NM O 05012.1).
- cancer cells which express the Wnt5a protein such as CLL cells, not only bind ROR-I but have a survival advantage conferred as a consequence.
- the invention therefore provides means to utilize the specificity of ROR-I expression in cancer cells, as well as knowledge of the interaction between Wnt5a and ROR-I, to treat or prevent cancer.
- patients with CLL typically develop disease-related hypogammaglobulinemia and respond poorly to vaccines.
- the progressive acquired immune deficiency associated with CLL accounts for much of the morbidity related to this disease.
- ROR-I encodes a type I membrane receptor tyrosine kinase that initially was identified using oligonucleotide primers targeting sequences encoding amino acid sequences common to tyrosine kinase domains of different proteins. This protein appears highly conserved throughout evolution. ROR-I is evolutionally conserved among Caenorhabditis elegans (C.elegans), Aplysia, Drosophila melanogaster, Xenopus, mice, and humans. In rodents, ROR-I is expressed primarily in developing cephalic neural crest in the dorsal part of the diencephalons and mid-hind brain boundary during embryogenesis. Work in Caenorhabditis elegans (C. elegans) indicated that the RORI-type kinases might be involved in the regulation of cell motility and in asymmetric cell division during embryogenesis.
- the ROR protein in C. elegans apparently has both kinase-dependent and kinase independent ROR-family receptor tyrosine kinases are characterized by the intracellular tyrosine kinase domains, highly related to those of the Trk- family receptor tyrosine kinases, and by the extracellular Frizzled-like cysteine-rich domains and kringle domains, which are common to receptors of the Wnt-family members.
- An ortholog to ROR- 1, namely R0R2 has been found interact physically with Wnt5a to activate non-canonical Wnt-signaling.
- ROR-I interacts physically with Wnt5a.
- the interaction of ROR-I with Wnt5a was implicated in studies demonstrating that co- transfection of expression vectors encoding NF- ⁇ reporter constructs, ROR-I, and Wnt5a, but not other Wnt factors, could induce activation of NF- ⁇ B in a mutually dose-dependent fashion (Figure 7B).
- This activity was independent of expression of LPR5/6, which ordinarily serves as a co-receptor for Wnt receptors.
- Physical interaction of ROR-I with Wnt5a was observed using recombinant proteins, demonstrating that ROR-I has binding activity for Wnt5a independent of LPR5/6 ( Figure 6B). Nonetheless, Wnt5a apparently could not activate the canonical Wnt-signaling pathway when co-expressed with ROR-I in 293 cells ( Figure 7A).
- the inability of ROR-I to activate the LEF/TCF-signaling may be secondary in part to its capacity to activate Ii ⁇ KP, leading to reduced stability of p-catenin and enhanced activity of NF- ⁇ B, which in itself could potentially play a role in cancer development.
- expression of ROR-I in CLL could contribute to the growth and/or survival of neoplastic cells induced by interaction with tissue stromal cells that might elaborate Wnt5a and other factors that activate NF-i ⁇ B.
- CLL cells derive a survival benefit from interactions with marrow stromal cells, nurse-like cells, or dendritic cells, which are found in the leukemia-infiltrated marrow or lymphoid tissues of patients with this disease. It is noteworthy in this regard that dendritic cells have been found to express high-levels of Wnt5a.
- ROR-I is at least in part responsible for the survival-signal triggered by co-culture with Wnt5a-expressing CHO cells. This is indicated by the finding that serum obtained after treatment with autologous Ad-CD 154-CLL cells could neutralize the capacity of CHO-Wnt5a cells to enhance the survival of CLL cells over that of CLL cells co-cultured with CHO cells or CLL cells cultured alone ( Figure 18B). Absorption of such antiserum with CHO-ROR-I cells abrogated the capacity of the post-treatment serum to neutralize the activity of CHO- Wnt5a cells. Conceivably, such anti-ROR-1 antibodies could be responsible for some of the size-reductions observed in the lymph nodes of patients who had received infusions of autologous Ad-CD 154-CLL cells.
- Certain embodiments comprise immunopeptides directed against ROR-I protein.
- the immunoglobulin peptides, or antibodies, described herein are shown to bind to the ROR- 1 protein.
- the ROR-I binding activity is specific; the observed binding of antibody to ROR- 1 is not substantially blocked by non-specific reagents.
- These ROR-I specific antibodies can be used to differentiate between ROR-I cells and normal cells.
- the ROR-I specific antibodies can also be used in immunotherapy against a ROR-I cancer and to determine the response after therapy for a ROR-I cancer.
- Such immunopeptides can be raised in a variety of means known to the art.
- Ad-CD 154 therapy induces humoral immunity against CLL, thus allowing the derivation of immunoglobulin peptides specific against ROR- 1.
- the inventors have discovered that tandem injections of Ad-CD 154 induces antibody production against a novel cell surface TAA of CLL B cells, orphan tyrosine kinase receptor ROR-I.
- the term antibody encompasses all types of antibodies, e.g., polyclonal, monoclonal, and those produced by the phage display methodology.
- Particularly preferred antibodies of the invention are antibodies which have a relatively high degree of affinity for ROR-I.
- the antibodies exhibit an affinity for ROR-I of about Kd ⁇ 10 ⁇ 8 M.
- Substantially purified generally refers to a composition which is essentially free of other cellular components with which the antibodies are associated in a non-purified, e.g., native state or environment.
- Purified antibody is generally in a homogeneous state, although it can be in either in a dry state or in an aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography.
- Substantially purified ROR- 1 -specific antibody will usually comprise more than 80% of all macromolecular species present in a preparation prior to admixture or formulation of the antibody with a pharmaceutical carrier, excipient, adjuvant, buffer, absorption enhancing agent, stabilizer, preservative, adjuvant or other co-ingredient. More typically, the antibody is purified to represent greater than 90% of all proteins present in a purified preparation. In specific embodiments, the antibody is purified to greater than 95% purity or may be essentially homogeneous wherein other macromolecular species are not detectable by conventional techniques.
- Immunoglobulin peptides include, for example, polyclonal antibodies, monoclonal antibodies, and antibody fragments. The following describes generation of immunoglobulin peptides, specifically ROR-I antibodies, via methods that can be used by those skilled in the art to make other suitable immunoglobulin peptides having similar affinity and specificity which are functionally equivalent to those used in the examples.
- Polyclonal antibodies may be readily generated by one of ordinary skill in the art from a variety of warm-blooded animals such as horses, cows, various fowl, rabbits, mice, or rats. Briefly, ROR-I antigen is utilized to immunize the animal through intraperitoneal, intramuscular, intraocular, or subcutaneous injections, with an adjuvant such as Freund's complete or incomplete adjuvant. Following several booster immunizations, samples of serum are collected and tested for reactivity to ROR-I. Particularly preferred polyclonal antisera will give a signal on one of these assays that is at least three times greater than background. Once the titer of the animal has reached a plateau in terms of its reactivity to ROR-I, larger quantities of antisera may be readily obtained either by weekly bleedings, or by exsanguinating the animal.
- Monoclonal antibody (mAb) technology can be used to obtain mAbs to ROR- 1.
- hybridomas are produced using spleen cells from mice immunized with ROR-I antigens.
- the spleen cells of each immunized mouse are fused with mouse myeloma Sp 2/0 cells, for example using the polyethylene glycol fusion method of Galfre, G. and Milstein, C, Methods Enzymol., 73:3-46 (1981).
- Growth of hybridomas, selection in HAT medium, cloning and screening of clones against antigens are carried out using standard methodology (Galfre, G. and Milstein, C, Methods Enzymol., 73:3-46 (1981)).
- HAT-selected clones are injected into mice to produce large quantities of mAb in ascites as described by Galfre, G. and Milstein, C, Methods EnzymoL, 73:3-46 (1981), which can be purified using protein A column chromatography (BioRad, Hercules, Calif.).
- mAbs are selected on the basis of their (a) specificity for ROR-I, (b) high binding affinity, (c) isotype, and (d) stability.
- mAbs can be screened or tested for ROR-I specificity using any of a variety of standard techniques, including Western Blotting (Koren, E. et al., Biochim. Biophys. Acta 876:91-100 (1986)) and enzyme-linked immunosorbent assay (ELISA) (Koren, E. et al., Biochim. Biophys. Acta 876:91-100 (1986)).
- Humanized forms of mouse antibodies can be generated by linking the CDR regions of non-human antibodies to human constant regions by recombinant DNA techniques (see, e.g., Queen et al., Proc. Natl. Acad. Sci. USA 86:10029-10033, 1989 and WO 90/07861, each incorporated by reference).
- Human antibodies can be obtained using phage-display methods (see, e.g., Dower et al., WO 91/17271; McCafferty et al., WO 92/01047). In these methods, libraries of phage are produced in which members display different antibodies on their outersurfaces. Antibodies are usually displayed as Fv or Fab fragments. Phage displaying antibodies with a desired specificity may be selected by affinity enrichment.
- Human antibodies may be selected by competitive binding experiments, or otherwise, to have the same epitope specificity as a particular mouse antibody. Using these techniques, a humanized ROR-I antibody having the human IgGl constant region domain and the human kappa light chain constant region domain with the mouse heavy and light chain variable regions. The humanized antibody has the binding specificity of a mouse ROR- 1 mAb, specifically the 45A mAb described in Example 9.
- the well-known basic structure of a typical IgG molecule is a symmetrical tetrameric Y-shaped molecule of approximately 150,000 to 200,000 daltons consisting of two identical light polypeptide chains (containing about 220 amino acids) and two identical heavy polypeptide chains (containing about 440 amino acids). Heavy chains are linked to one another through at least one disulfide bond. Each light chain is linked to a contiguous heavy chain by a disulfide linkage. An antigen-binding site or domain is located in each arm of the Y-shaped antibody molecule and is formed between the amino terminal regions of each pair of disulfide linked light and heavy chains.
- variable regions of the light and heavy chains consist of approximately their first 110 amino terminal amino acids and are known as the variable regions of the light and heavy chains.
- hypervariable regions which contain stretches of amino acid sequences, known as complementarity determining regions (CDRs).
- CDRs are responsible for the antibody's specificity for one particular site on an antigen molecule called an epitope.
- the typical IgG molecule is divalent in that it can bind two antigen molecules because each antigen-binding site is able to bind the specific epitope of each antigen molecule.
- the carboxy terminal regions of light and heavy chains are similar or identical to those of other antibody molecules and are called constant regions.
- the amino acid sequence of the constant region of the heavy chains of a particular antibody defines what class of antibody it is, for example, IgG, IgD, IgE, IgA or IgM.
- Some classes of antibodies contain two or more identical antibodies associated with each other in multivalent antigen-binding arrangements.
- Fab and F(ab') 2 fragments of mAbs that bind ROR-I can be used in place of whole mAbs. Because Fab and F(ab') 2 fragments are smaller than intact antibody molecules, more antigen-binding domains are available than when whole antibody molecules are used. Proteolytic cleavage of a typical IgG molecule with papain is known to produce two separate antigen binding fragments called Fab fragments which contain an intact light chain linked to an amino terminal portion of the contiguous heavy chain via by disulfide linkage. The remaining portion of the papain-digested immunoglobin molecule is known as the Fc fragment and consists of the carboxy terminal portions of the antibody left intact and linked together via disulfide bonds.
- an antibody is digested with pepsin, a fragment known as an F(ab') 2 fragment is produced which lacks the Fc region but contains both antigen-binding domains held together by disulfide bonds between contiguous light and heavy chains (as Fab fragments) and also disulfide linkages between the remaining portions of the contiguous heavy chains (Handbook of Experimental Immunology. VoI 1: Immunochemistry, Weir, D. M., Editor, Blackwell Scientific Publications, Oxford (1986)).
- ScFvs single chain antigen-binding polypeptides known as single chain Fv fragments (ScFvs or ScFv antibodies).
- ScFvs can be dimerized to produce a diabody.
- ScFvs bind a specific epitope of interest and can be produced using any of a variety of recombinant bacterial phage-based methods, for example as described in Lowman et al. (1991) Biochemistry, 30, 10832-10838; Clackson et al. (1991) Nature 352, 624-628; and Cwirla et al. (1990) Proc. Natl. Acad.
- recombinant M 13 or fd phages which display on the surface of the phage particle a recombinant fusion protein containing the antigen-binding ScFv antibody as the amino terminal region of the fusion protein and the minor phage coat protein g3p as the carboxy terminal region of the fusion protein.
- recombinant phages can be readily grown and isolated using well-known phage methods.
- the intact phage particles can usually be screened directly for the presence (display) of an antigen-binding ScFv on their surface without the necessity of isolating the ScFv away from the phage particle.
- cDNA molecules encoding the variable regions of the heavy and light chains of the mAb can then be amplified by standard polymerase chain reaction (PCR) methodology using a set of primers for mouse immunoglobulin heavy and light variable regions (Clackson (1991) Nature, 352, 624-628).
- PCR polymerase chain reaction
- the amplified cDNAs encoding mAb heavy and light chain variable regions are then linked together with a linker oligonucleotide in order to generate a recombinant ScFv DNA molecule.
- the ScFv DNA is ligated into a filamentous phage plasmid designed to fuse the amplified cDNA sequences into the 5' region of the phage gene encoding the minor coat protein called g3p.
- Escherichia coli bacterial cells are than transformed with the recombinant phage plasmids, and filamentous phage grown and harvested.
- the desired recombinant phages display antigen-binding domains fused to the amino terminal region of the minor coat protein.
- Such "display phages” can then be passed over immobilized antigen, for example, using the method known as "panning", see Parmley and Smith (1989) Adv. Exp. Med. Biol.
- the antigen-binding phage particles can then be amplified by standard phage infection methods, and the amplified recombinant phage population again selected for antigen-binding ability. Such successive rounds of selection for antigen-binding ability, followed by amplification, select for enhanced antigen-binding ability in the ScFvs displayed on recombinant phages. Selection for increased antigen- binding ability may be made by adjusting the conditions under which binding takes place to require a tighter binding activity.
- Another method to select for enhanced antigen-binding activity is to alter nucleotide sequences within the cDNA encoding the binding domain of the ScFv and subject recombinant phage populations to successive rounds of selection for antigen-binding activity and amplification (see Lowman et al. (1991) Biochemistry 30, 10832-10838; and Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87, 6378-6382).
- the recombinant ROR-I antibody can be produced in a free form using an appropriate vector in conjunction with E. coli strain HB2151. These bacteria actually secrete ScFv in a soluble form, free of phage components (Hoogenboom et al. (1991) Nucl. Acids Res. 19, 4133-4137).
- the purification of soluble ScFv from the HB2151 bacteria culture medium can be accomplished by affinity chromatography using antigen molecules immobilized on a solid support such as AFFIGELTM (BioRad, Hercules, Calif).
- ScFvs are even smaller molecules than Fab or F(ab') 2 fragments, they can be used to attain even higher densities of antigen binding sites per unit of surface area when immobilized on a solid support material than possible using whole antibodies, F(ab') 2 , or Fab fragments. Furthermore, recombinant antibody technology offers a more stable genetic source of antibodies, as compared with hybridomas. Recombinant antibodies can also be produced more quickly and economically using standard bacterial phage production methods.
- nucleic acids encoding light and heavy chain variable regions are inserted into expression vectors.
- the light and heavy chains can be cloned in the same or different expression vectors.
- the heavy and light chains of SEQ ID NOs: 1-5 can be used according to the present invention.
- the teachings of U.S. Patent No. 6,287,569 to Kipps et al., incorporated herein by reference in its entirety, and the methods provided herein can readily be adapted by those of skill in the art to create the vaccines of the present invention.
- the DNA segments encoding antibody chains are operably linked to control sequences in the expression vector(s) that ensure the expression of antibody chains.
- control sequences include a signal sequence, a promoter, an enhancer, and a transcription termination sequence.
- the control sequences include a signal sequence, a promoter, an enhancer, and a transcription termination sequence.
- Expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosome.
- E. coli is one procaryotic host particularly useful for expressing antibodies of the present invention.
- Other microbial hosts suitable for use include bacilli, such as Bacillus subtilus, and other enterobacteriaceae, such as Salmonella, Serratia, and various Pseudomonas species.
- expression vectors typically contain expression control sequences compatible with the host cell (e.g., an origin of replication) and regulatory sequences such as a lactose promoter system, a tryptophan (trp) promoter system, a beta-lactamase promoter system, or a promoter system from phage lambda.
- Other microbes such as yeast, may also be used for expression. Saccharomyces is a preferred host, with suitable vectors having expression control sequences, such as promoters, including 3-phosphoglycerate kinase or other glycolytic enzymes, and an origin of replication, termination sequences and the like as desired.
- Mammalian tissue cell culture can also be used to express and produce the antibodies of the present invention (see, e.g., Winnacker, From Genes to Clones VCH Publishers, N. Y., 1987).
- Eukaryotic cells are preferred, because a number of suitable host cell lines capable of secreting intact antibodies have been developed.
- Preferred suitable host cells for expressing nucleic acids encoding the immunoglobulins of the invention include: monkey kidney CVl line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line; baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary-cells (CHO); mouse Sertoli cells; monkey kidney cells (CVl ATCC CCL 70); african green monkey kidney cells (VERO-76, ATCC CRL 1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); and TRI cells.
- COS-7 monkey kidney CVl line transformed by SV40
- human embryonic kidney line BHK, ATCC CCL 10
- the vectors containing the polynucleotide sequences of interest can be transferred into the host cell.
- Calcium chloride transfection is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment or electroporation can be used for other cellular hosts (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, 2nd ed., 1989).
- heavy and light chains are cloned on separate expression vectors, the vectors are co-transfected to obtain expression and assembly of intact immunoglobulins.
- cell lines expressing immunoglobulin products are cell selected. Cell lines capable of stable expression are preferred (i.e., undiminished levels of expression after fifty passages of the cell line).
- the whole antibodies, their dimers, individual light and heavy chains, or other immunoglobulin forms of the present invention can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, e.g., Scopes, Protein Purification, Springer- Verlag, N. Y., 1982).
- Substantially pure immunoglobulins of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity most preferred.
- a labeled antibody or a detectably labeled antibody is generally an antibody (or antibody fragment which retains binding specificity), having an attached detectable label.
- the detectable label is normally attached by chemical conjugation, but where the label is a polypeptide, it could alternatively be attached by genetic engineering techniques. Methods for production of detectably labeled proteins are well known in the art.
- Detectable labels known in the art include radioisotopes, fluorophores, paramagnetic labels, enzymes (e.g., horseradish peroxidase), or other moieties or compounds which either emit a detectable signal (e.g., radioactivity, fluorescence, color) or emit a detectable signal after exposure of the label to its substrate.
- haptens can then be specifically detected by means of a second reaction.
- biotin which reacts with avidin, or dinitrophenyl, pyridoxal, and fluorescein, which can react with specific antihapten antibodies.
- ROR-I antibodies described herein can be used to differentiate between ROR- 1 expressing cells and normal cells and, thus, can be used to detect and/or diagnose disease in subjects.
- ROR-I expressing cancer cells include CLL and other lymphoma (e.g. Burkitt's), renal cell carcinoma, colon adenocarcinoma, colorectal (see, e.g., Figure 15).
- the methods for detecting such disease generally include contacting a sample from a subject having, or at risk of having, a lymphoma with a reagent that detects ROR-I, and detecting the reaction of the reagent.
- detection of a reaction is indicative of the presence and/or quantity of ROR-I in the sample.
- the reaction of the reagent with the sample is then compared to a control.
- Any biological sample which may contain a detectable amount of ROR-I can be used.
- biological samples of use with the invention are blood, serum, plasma, urine, mucous, feces, cerebrospinal fluid, pleural fluid, ascites, and sputum samples. Tissue or cell samples can also be used with the subject invention.
- samples can be obtained by many methods such as cellular aspiration, or by surgical removal of a biopsy sample.
- the level of ROR-I in the sample can be compared with the level in a sample not affected by the targeted disorder or condition.
- Control samples not affected by a targeted disease processes can be taken from the same subject, or can be from a normal control subject not affected by the disease process, or can be from a cell line.
- Contacting the sample and anti-ROR-1 antibody generally includes incubation under conditions which allow contact in solution and/or solid phase between the reagent and sample. Detection can be performed by any means suitable to identify the interaction of the reagent with ROR-I.
- the reagent when the reagent is an antibody, the antibody can be detectably labeled.
- Detectable labels are well known in the art, and include radioisotopes, fluorophores, paramagnetic labels, enzymes (e.g., horseradish peroxidase), or other moieties or compounds which either emit a detectable signal (e.g., radioactivity, fluorescence, color) or emit a detectable signal after exposure of the label to its substrate.
- the reagent when the reagent is an antibody, detection can be performed using a second antibody which is detectably labeled which recognizes the antibody that binds ROR-I .
- the antibody may also be biotinylated, and a second avidinated label used to determine the presence of the biotinylated reagent which detects ROR-I.
- the antibodies of the invention are suited for use, for example, in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier.
- the antibodies employed in these immunoassays can be detectably labeled in various ways. Examples of types of immunoassays which can effectively employ antibodies of the invention are, competitive and non-competitive immunoassays, in either a direct or indirect format. Examples of such immunoassays include a radioimmunoassay (RIA), and a sandwich (immunometric) assay. Those of skill in the art will readily discern additional immunoassay formats useful within the invention.
- RIA radioimmunoassay
- sandwich immunometric
- immunoassays for use within the invention include "forward" assays for the detection of a protein in which a first anti-protein antibody (e.g., an anti-ROR-1 antibody) bound to a solid phase support is contacted with the test sample. After a suitable incubation period, the solid phase support is washed to remove unbound protein. A second, distinct anti- protein antibody is then added which is specific for a portion of the specific protein not recognized by the first antibody. The second antibody is preferably detectable. After a second incubation period to permit the detectable antibody to complex with the specific protein bound to the solid phase support through the first antibody, the solid phase support is washed a second time to remove the unbound detectable antibody. Alternatively, the second antibody may not be detectable.
- a first anti-protein antibody e.g., an anti-ROR-1 antibody
- a second, distinct anti- protein antibody is then added which is specific for a portion of the specific protein not recognized by the first antibody.
- the second antibody is preferably detectable. After a
- a third detectable antibody which binds the second antibody is added to the system.
- This type of "forward sandwich” assay may be a simple yes/no assay to determine whether binding has occurred or may be made quantitative by comparing the amount of detectable antibody with that obtained in a control.
- a simultaneous assay involves a single incubation step wherein the first antibody bound to the solid phase support, the second, detectable antibody and the test sample are added at the same time. After the incubation is completed, the solid phase support is washed to remove unbound proteins. The presence of detectable antibody associated with the solid support is then determined as it would be in a conventional "forward sandwich” assay.
- the simultaneous assay may also be adapted in a similar manner for the detection of antibodies in a test sample.
- the "reverse” assay comprises the stepwise addition of a solution of detectable antibody to the test sample followed by an incubation period and the addition of antibody bound to a solid phase support after an additional incubation period.
- the solid phase support is washed in conventional fashion to remove unbound protein/antibody complexes and unreacted detectable antibody.
- the determination of detectable antibody associated with the solid phase support is then determined as in the "simultaneous" and "forward" assays.
- the reverse assay may also be adapted in a similar manner for the detection of antibodies in a test sample.
- solid phase support capable of immobilizing proteins.
- solid phase support or “support” is intended any material capable of binding proteins.
- solid phase supports include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses (including nitrocellulose sheets and filters), polyacrylamides, agaroses, and magnetite.
- the nature of the support can be either soluble to some extent or insoluble for the purposes of the present invention.
- the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube or the external surface of a rod.
- the surface may be flat such as a sheet, test strip, etc.
- suitable solid phase supports for binding proteins or will be able to ascertain the same by use of routine experimentation.
- a preferred solid phase support is a 96-well microtiter plate.
- the antibodies of the invention can be bound to many different carriers, both soluble and insoluble, and can be used to detect the presence of an antigen comprising ROR-I (or fragments, derivatives, conjugates, homologues, or variants thereof).
- ROR-I or fragments, derivatives, conjugates, homologues, or variants thereof.
- suitable carriers for binding antibodies useful within the invention.
- the detectably labeled antibody is provided in an amount which is diagnostically effective.
- an amount of detectably labeled antibody is contacted or administered in sufficient quantity to enable detection of ROR-I in the subject sample to be assayed.
- Fab 1 fragments of the antibodies provided herein comprising immunoglobulins of the IgGI fraction that have their Fc portions removed, are highly capable of targeting epitopes on proCPR, activated CPR, and/or inactivated CPR in a test sample or subject. Because these Fab' fragments have minimal antigenity, they cause neither human antimouse antibody response, nor any allergic reactions of unpredictable nature. The smaller molecular weight of Fab' fragments compared with intact antibody allows the fragment to leave the intravascular space and target a broader array of in vivo compartments for diagnostic purposes.
- an anti-ROR-1 radioactive monoclonal antibody is typically injected into a patient for identifying, measuring, and/or localizing ROR-I in the subject, (see, e.g., Delaloye et al., Seminars in Nuclear Medicine 25(2): 144-164, 1995).
- a chemically modified (chelate) form of the monoclonal antibody is typically prepared and stored as a relatively stable product.
- the monoclonal antibody sample must be mixed with a radioactive metal, such as 99 Tc, then purified to remove excess, unbound radioactive metal, and then administered to a patient within 6 hours, (see, e.g., Eckelman et al., Nuc. Med. Biol. 16: 171- 176, 1989).
- Radioisotopes for example 99 Tc, an isotope with a short physical half-life and high photon abundance, can be administered at high doses and allow early imaging with a gamma camera. This is very suitable for use in conjunction with Fab' fragments, the half-lives of which are also short.
- the anti-ROR-1 antibodies described herein can be used in vitro and in vivo to monitor the appearance, status, course, or treatment of a ror-1 cancer in a subject. For example, by measuring an increase or decrease in the amount of ROR-I in a subject (optionally in comparison to control levels in a normal subject or sample), the appearance, status, course, or treatment of the cancer or condition in the subject number can be observed or evaluated. Based on these and comparable diagnostic methods, it is further possible to determine whether a particular therapeutic regimen, such as a treatment regimen employing antibodies of the invention directed against the cancer is effective. Methods of detecting and/or quantifying levels of ROR-I and corresponding cancer disease state are as described above.
- ROR-I antagonists can be employed as therapeutic or prophylactic pharmacological agents in any subject in which it is desirable to administer, in vitro, ex vivo, or in vivo the subject antagonists that bind ROR-I.
- Typical subjects for treatment or management according to the methods herein are subjects presenting with a ROR-I cancer.
- the antagonists described herein specifically recognize ROR-I protein, found in lymphoma samples but not expressed in cells of normal adults, and therefore can be used for detecting and/or neutralizing these biomolecules, and/or blocking their interactions with other biomolecules, in vitro or in vivo. While under no obligation to provide a mechanism of action, it is thought that ROR-I can serve as a receptor for Wnt5a to trigger the NF-kappa B pathway, which pathway is implicated in oncogenesis. See e.g. Example 12.
- the ROR-I gene which plays a role in disease pathogenesis and/or progression, encodes a protein that can be targeted by immune therapy for patients with a ROR-I cancer.
- the selected antibody will typically be an aniti- ROR-I antibody, which may be administered alone, or in combination with, or conjugated to, one or more combinatorial therapeutic agents.
- the antibodies described herein may exert a beneficial effect in the subject by a variety of mechanisms.
- monoclonal antibodies that specifically bind ROR-I are purified and administered to a patient to neutralize one or more forms of ROR-I, to block one or more activities of ROR-I, or to block or inhibit an interaction of one or more forms of ROR-I with another biomolecule.
- the immunotherapeutic reagents of the invention may include humanized antibodies, and can be combined for therapeutic use with additional active or inert ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, e.g., immunogenic adjuvants, and optionally with adjunctive or combinatorially active agents such as anti-inflammatory ant anti-fibrinolytic drugs.
- additional active or inert ingredients e.g., in conventional pharmaceutically acceptable carriers or diluents, e.g., immunogenic adjuvants, and optionally with adjunctive or combinatorially active agents such as anti-inflammatory ant anti-fibrinolytic drugs.
- therapeutic antibodies described herein are coordinately administered with, co-formulated with, or coupled to (e.g., covalently bonded) a combinatorial therapeutic agent, for example a radionuclide, a differentiation inducer, a drug, or a toxin.
- a combinatorial therapeutic agent for example a radionuclide, a differentiation inducer, a drug, or a toxin.
- a radionuclide for example a radionuclide, a differentiation inducer, a drug, or a toxin.
- a combinatorial therapeutic agent for example a radionuclide, a differentiation inducer, a drug, or a toxin.
- a combinatorial therapeutic agent for example a radionuclide, a differentiation inducer, a drug, or a toxin.
- Suitable toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.
- These combinatorial therapeutic agents can be coupled to an anti-ROR-1 antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other.
- a nucleophilic group such as an amino or sulfhydryl group
- a carbonyl-containing group such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.
- a linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency.
- bifunctional or polyfunctional reagents both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, 111.), may be employed as a linker group. Coupling may be affected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues.
- a linker group which is cleavable during or upon internalization into a cell.
- a number of different cleavable linker groups have been described.
- the mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Pat. No.
- immunoconjugates with more than one agent may be prepared in a variety of ways.
- more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used.
- a carrier can be used.
- a variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration is intravenous, intramuscular, or subcutaneous.
- a safe and effective amount of an anti-ROR-1 agent is, for example, that amount that would cause the desired therapeutic effect in a patient while minimizing undesired side effects.
- a therapeutically effective amount is that sufficient to promote production of one or more cytokines and/or to cause complement- mediated or antibody-dependent cellular cytotoxicity.
- the dosage regimen will be determined by skilled clinicians, based on factors such as the exact nature of the condition being treated, the severity of the condition, the age and general physical condition of the patient, and so on.
- the ROR-I antagonist is siRNA.
- the levels of ROR-I can be down-regulated by RNA interference by administering to the patient a therapeutically effective amount of small interfering RNAs (siRNA) specific for ROR-I.
- siRNA specific for ROR-I can be produced commercially from a variety of sources, such as Ambion (Austin, TX).
- the siRNA can be administered to the subject by any means suitable for delivering the siRNA to the blood.
- the siRNA can be administered by gene gun, electroporation, or by other suitable parenteral or enteral administration routes, such as intravitreous injection.
- RNA interference is the process by which double stranded RNA (dsRNA) specifically suppresses the expression of a gene bearing its complementary sequence. Suppression of the ROR-I gene inhibits the production of the ROR-I protein.
- dsRNA double stranded RNA
- the long dsRNAs enter a cellular pathway that is commonly referred to as the RNA interference (RNAi) pathway.
- RNAi RNA interference pathway
- the dsRNAs get processed into 20-25 nucleotide (nt) small interfering RNAs (siRNAs) by an RNase Ill-like enzyme called Dicer (initiation step).
- the siRNAs assemble into endoribonuclease-containing complexes known as RNA-induced silencing complexes (RISCs), unwinding in the process.
- RISCs RNA-induced silencing complexes
- the siRNA strands subsequently guide the RISCs to complementary RNA molecules, where they cleave and destroy the cognate RNA (effecter step). Cleavage of cognate RNA takes place near the middle of the region bound by the siRNA strand.
- the siRNA comprises short double-stranded RNA from about 17 nucleotides to about 29 nucleotides in length, preferably from about 19 to about 25 nucleotides in length, that are targeted to the target mRNA.
- an effective amount of the siRNA can be an amount sufficient to cause RNAi-mediated degradation of the target ROR-I mRNA, or an amount sufficient to inhibit the progression of a lymphoma in a subject.
- an effective amount of the siRNA of the invention can be administered to a given subject by taking into account factors such as the size and weight of the subject; the extent of the neovascularization or disease penetration; the age, health and sex of the subject; the route of administration; and whether the administration is regional or systemic.
- an effective amount of siRNA comprises an intercellular concentration of from about 1 nanomolar (nM) to about 100 nM, preferably from about 2 nM to about 50 nM, more preferably from about 2.5 nM to about 10 nM. It is contemplated that greater or lesser amounts of siRNA can be administered.
- the siRNA can be targeted to any stretch of approximately 19-25 contiguous nucleotides in any of the ROR-I niRNA target sequences.
- Target sequences can be selected from, for example, the sequence of ROR-I, Genebank accession number: NM 005012. Searches of the human genome database (BLAST) can be carried out to ensure that selected siRNA sequence will not target other gene transcripts. Techniques for selecting target sequences for siRNA are given, for example, in Elbashir et al. ((2001) Nature 411, 494-498).
- the sense strand of the present siRNA comprises a nucleotide sequence identical to any contiguous stretch of about 19 to about 25 nucleotides in the target mRNA of ROR-I.
- a target sequence on the target mRNA can be selected from a given cDNA sequence corresponding to the target mRNA, preferably beginning 50 to 100 nt downstream (i.e., in the 3' direction) from the start codon.
- the target sequence can, however, be located in the 5' or 3' untranslated regions, or in the region nearby the start codon.
- the ROR-I antagonist is an antisense oligonucelotide.
- the levels of ROR-I can be down-regulated by administering to the patient a therapeutically effective amount of an antisense oligonucleotide specific for ROR-I mRNA.
- the antisense oligonucleotide specific for ROR-I mRNA may span the region adjacent to the initiation site of ROR-I translation.
- An effective amount of the antisense oligonucleotide specific for ROR-I mRNA as isolated in a purified form may is generally that amount capable of inhibiting the production of ROR-I or reducing the amount produced or the rate of production of ROR-I such that a reduction in symptoms of lymphoma occurs.
- Antisense oligonucleotides can be administered via intravitreous injection at a concentration of about 10 ⁇ g/day to about 3 mg/day.
- administered dosage can be about 30 ⁇ g/day to about 300 ⁇ g/day.
- ROR-I antisense oligonucleotide can be administered at about 100 ⁇ g/day.
- antisense oligonucleotides can occur as a single event or over a time course of treatment.
- ROR-I antisense oligonucleotides can be injected daily, weekly, bi-weekly, or monthly. Time course of treatment can be from about a week to about a year or more.
- ROR-I antisense oligonucleotides are injected daily for one month.
- antisense oligonucleotides are injected weekly for about 10 weeks.
- ROR-I antisense oligonucleotides are injected every 6 weeks for 48 weeks.
- the present invention also provides for use of ROR-I in vaccines against diseases, such as a lymphoma, e.g., CLL, that involve the expression of ROR-I.
- diseases such as a lymphoma, e.g., CLL
- ROR-I a lymphoma
- CLL a lymphoma
- the levels of ROR-I can be down-regulated by administering to the patient a therapeutically effective amount of a ROR-I polynucleotide or polypeptide that produces in animals a protective or therapeutic immune response against ROR-I and the effects of its expression.
- the vaccines can include polynucleotides or polypeptides.
- polynucleotides and/or polypeptides include use in vaccines and for generating antibodies against the polypeptides, such as those expressed by the polynucleotides.
- the polynucleotides can be a ROR-I gene, or a variant or fragment thereof.
- the polypeptides can be a ROR-I protein, or a variant or fragment thereof.
- the ROR-I polynucleotide fragment can be a fragment comprising a fragment of the ROR-I gene.
- Such polynucleotide fragments can be comprised by a vector.
- a cell can be transformed and/or transfected by such polynucleotides and vectors and in certain aspects, the polynucleotides and vectors can express polypeptides of the invention.
- the vaccine composition includes a pharmaceutically acceptable carrier or diluent.
- a "polynucleotide variant” refers to any degenerate nucleotide sequence. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence.
- a "polynucleotide fragment" of a ROR-I polynucleotide is a portion of a ROR-I polynucleotide that is less than full-length and comprises at least a minimum length capable of hybridizing specifically with a native ROR-I polynucleotide under stringent hybridization conditions.
- polypeptide variant refers to a polypeptide of differs in amino acid sequence from the ibpA polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical.
- a variant polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination.
- a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
- polypeptide fragment refers to any polypeptide of a portion of a ibpA polypeptide that is less than full-length ⁇ e.g., a polypeptide consisting of 5, 10, 15, 20, 30, 40, 50, 75, 100 or more amino acids of a native ROR-I protein), and preferably retains at least one functional activity of a native ROR-I protein.
- Polypeptides with Arg at their N-terminus have a shorter half-life in the cytosol than those with a Met residue, provided that the polypeptide has a lysine residue to function as an ubiquitin acceptor site, spaced within 20 amino acids of the N-terminus. Plasmids encoding antigens targeted for rapid degradation by the proteasome are more effective than plasmids encoding the native protein in inducing CTL responses against cells expressing the target antigen.
- Vectors have been constructed that encode a chimeric ROR-I protein with ubiquitin located at the amino terminus separated from ROR- 1 by an intervening codon for Met, and one with a codon for the destabilizing amino acid Arg and an in-frame insert of a segment of l ⁇ cl. This segment contains a lysine residue spaced optimally from the N- terminus.
- Both constructs contain a sequence from the ubiquitine gene (SEQ ID NO: 6), followed by methionine or arginine sequence, followed by a Lad sequence (SEQ ID NO 7), and finally followed by the ROR-I cDNA sequence (SEQ ID NO: 8).
- the constructs are useful in ROR-I DNA vaccines, with the arginine construct being expected to cause rapid degradation of the protein and thus a more predominant cellular immune response.
- Many embodiments of the invention are provided through well known protocols established in the art.
- the following references provide multiple protocols which may be adapted for use with anti-ROR-1 antibody: Vernon, S.K., Lawrence, W.C., Long, C.A., Cohen, G.H., and Rubin, B.A.
- Herpesvirus vaccine development Studies of virus morphological components. In New Trends and Developments in Vaccines, ed. by A. Voller and H. Friedman. Chapter 13, pp. 179-210.
- 20040253240 and 20030124141 are incorporated herein by reference in their entirety. These references also provide one of skill in the art instructions how to make and use the polynucleotides and polypeptides of the present invention for active and passive vaccines. Those of skill in the art will readily recognize how to adapt the disclosures of these references to the present polynucleotides and polypeptides of the present invention.
- kits of the invention may contain a monoclonal antibody that specifically binds ROR-I optionally linked to an appropriate carrier, a freeze-dried preparation or a solution of an enzyme-labeled monoclonal antibody which can bind to the same antigen together with the monoclonal antibody or of a polyclonal antibody labeled with the enzyme in the same manner, a standard solution of purified ROR-I, a buffer solution, a washing solution, pipettes, a reaction container and the like.
- kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods described herein in an assay environment.
- instructional materials typically comprise written or printed materials, they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.
- CLL Chronic lymphocytic leukemia
- Ad-CD 154 replication- defective adenovirus encoding CD 154
- the antibody response was measured against the recombinant adenovirus used to transduce the CLL cells.
- This response initially involved antibodies of the IgM class, and then subsequently antibodies of the IgG and IgA classes, but not IgE ( Figure 1C and not shown).
- the IgG response involved antibodies of IgGl and IgG3 isotypes ( Figure 1C), which primarily are observed in ThI -type immune responses.
- Example 2 Flow cytometry Analysis of Anti-CLL activities
- the cells were stained with serial dilutions of antisera for 30 minutes at 4 0 C in RPMI- 1640 supplemented with 0.5% bovine serum albumin (BSA) (Staining media, SM). The cells were washed twice in SM and then counterstained with phycoerythrin (PE) or allophycocyanin (APC)-labeled mouse anti-human IgG, fluorescein-conjugated anti-CD3, and/or PE or APC-conjugated anti-CD 19 or anti-CD5 for 30 minutes at 4 0 C.
- BSA bovine serum albumin
- CLL cells, CHO cells, and/or CHO-ROR-I cells were each stained with sera collected from treated patients or healthy adult donors, or antisera generated in mice that had been immunized against ROR-I via DNA immunization.
- Serial dilutions in SM were used to stain cells as noted for studies with human antisera, except that the cells were counterstained with fluorescein-conjugated goat-anti-mouse IgG or IgM (PharMingen).
- the washed cells were examined using a FACSCalibur (Becton Dickinson, Mountain View, CA) and the data analyzed with Flow Jo software (Tree Star, San Carlos, CA).
- CHO cells were stained with PKH26 (Sigma) prior to mixing them 1 :1 with CHO-RORI cells. This allowed for simultaneous to discriminatation of differences in antisera staining of non-transfected, PKH26-labeled CHO cells versus non-labeled CHO- ROR-I cells using flow cytometry.
- MFIR mean fluorescence intensity ratio
- Anti-CLL activities were determined by flow cytometry.
- Peripheral blood mononuclear cells (PBMC) from IgG negative CLL case or healthy donor were incubated with one-fifth diluted serum from the patient or healthy donor, and bound IgG was detected by mouse anti -human IgG antibody (Pharmingn).
- B cells (CD19+CD3-) were gated using anti-CD 19 antibodies conjugated APC and anti-CD3 antibody conjugated with FITC.
- Anti-ROR-1 mouse sera by means of DNA vaccination with ROR-I expression vector.
- Eight- week old Balb/c female mice were injected intradermally with lOO ⁇ g of ROR- IcDNA (Origene) with 50 ⁇ g of GM-CSF and CD 154 expression vector as adjuvants. After 3 courses of injection, sera was collected from the mice.
- Chinese hamster ovary cells (CHO) were obtained from the American-type Tissue Culture Collection (ATCC, Manassas, VA).
- CHO-ROR-I To generate CHO-ROR-I, CHO-ROR- 1-rIgG, or CH0-Wnt5a cells, the CHO cells were transfected with pROR-1, pROR-l-rlgG, or pWnt5a, respectively, using lipofectamine 2000 (Invitrogen).
- the cells transfected with pRORl or pROR-l-rlgG were cultured in Dulbecco Modified Eagle's Minimal Essential Medium (DMEM, Gibco, Rockville, MD) supplemented with 10% fetal calf serum (FCS) for 24 hours and then placed in media containing G418 (250 pg/ml) or ZeocinTM (300 pg/ml) (Invitrogen, Carlsbad, CA) for selection of stable transfectants that have acquired neomycin or ZeocinTM resistance, respectively. Following selection, the cells were cloned by limiting dilution and evaluated for expression of RORl or ROR-1-rlgG by immunoblot analysis.
- DMEM Dulbecco Modified Eagle's Minimal Essential Medium
- FCS fetal calf serum
- CHO- ROR-I -rig transfectant cells were adapted to suspension culture in IMGX II medium (HyClone, Logan, UT). Suspended CHO-ROR-I -rig cells were cultured in ProCHO-5 medium (Cambrex Bio Science, Baltimore, MD), and recombinant ROR-I -rig was purified from the culture supernatant using protein A sepharose (Pierce Biotechnology, Rockford, IL). The purity of the isolated protein was assessed by polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis.
- Stable CHO-ROR-I or CHO-Wnt5a transfectants were subcloned by limiting dilution and examined for expression of RORI or Wnt5a by immunoblot analysis (data not shown).
- mice immunized with pRORl and found to make high-titer anti- ROR- 1 antisera were used to generate mAb-producing hybridomas.
- the splenocytes were fused with P3-X63-Ag8 in polyethylene glycol and subsequently selected in media containing hypoxanthine, aminopterin, and thymine (HAT medium).
- CHO cells with or without transfection with ROR-I cDNA cloned into pcDNA3 vector by lipofectamine 2000 was used to determine the titer of anti-ROR-1 antibody in serum.
- Bound antibody from immunized mice was detected by flow cytometry using anti-mouse antibody with fluorescence (Pharmingen).
- PKH26 Sigma
- Anti-ROR-1 activity was determined by incubating CHO transfectants and serum from patient followed by detection with anti-human Ig labeled with fluorescence (Southern Biotech).
- the 4A5 mAb failed to react with non-leukemia marrow mononuclear cells, allowing for the single-color detection of CLL cells in the marrow of patients with minimal residual diesease after therapy (data not shown).
- Example 5 Analysis of microarray data
- Total cell lysates were made by incubation cells in a lysis buffer containing 1% Triton X-100, 50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 50 mM NaF, 5 mM EDTA, 40 mM glycerophosphate, 1 mM sodium orthovanadate, with complete protease inhibitor mix (Roche). Cell lysates were separated 7.5% or 5-15% gradient SDS-PAGE and blotted on Immobilon-P membrane (Millipore).
- Example 7 Reporter assay [0154] A reporter assay was performed as described in Lu et al. (2004) Proc Natl Acad Sci U S A 101, 3118-23. Briefly, HEK293 cells were transfected in 12-well plates by using FuGENE (Roche, Mannheim, Germany), and 0.5 ⁇ g of reporter plasmid, 0.1-0.2 ⁇ g of the control plasmid pCMX ⁇ -gal, 100-200 ng of the various expression plasmids, and carrier DNA pBluescriptKSII, for a total of 1 ⁇ g per well.
- the luciferase values were normalized for variations in transfection efficiency by using the ⁇ -galactosidase internal control, and are expressed as fold stimulation of luciferase activity, compared with the designated control cultures. All of the transfection results are representative of a minimum of three independent transfections.
- Example 8 Induction of Humoral Immunity Against CLL Cell
- Results showed that the sera from 3 patients after Ad-CDl 54 therapy had the reactivity against CLL B cells compared with the sera before therapy ( Figure 2a). The shift of the histograms were reproducible with another 3 CLL B cells, and it was not detectable against B cells from healthy donors ( Figure 2b). This data suggests a TAA(s) may exist on the surface of CLL cells in a hidden fashion from surveillance of immunity, becoming immunogenic after CLL received the immune-costimulatory molecules.
- CLL signature genes are candidates for TAAs of CLL.
- the expressions of these genes were examined in normal human tissues because where there is an abundant expression in normal tissue, antibody production against such a gene cannot occurr in vivo.
- the expression profiles of CLL signature genes in normal adult tissues wad determined (data not shown). Genes that had low expressions in all tissues were spotlighted.
- Cell lysates were prepared for immunoblot analyses using sera from patients before and after treatment. Total cell lysates were made by incubation cells in a RTP lysis buffer containing 1% Triton X-100, 50 niM Tris-HCl (pH 7.5), 100 mM NaCl, 50 mM NaF, 5 mM ethylenediaminetetraacetic acid with protease inhibitors (10 pg/mL aprotinin, 10 pg/mL leupeptin, 10 pg/mL pepstatin, and 1 mM phenylmethylsulfonyl fluoride), and phosphatase inhibitors (40 mM glycerophosphate and 1 mM sodium orthovanadate) (Roche, Basel, CH).
- Triton X-100 50 niM Tris-HCl (pH 7.5)
- 100 mM NaCl 50 mM NaF
- Cell lysates were separated on a 7.5% or 5-15% gradient SDS-PAGE and transferred onto Immobilon-P membranes (Millipore, Billerica, MA). Non-specific binding sites were blocked by incubating the membranes with 10% powdered milk for 2 hours at room temperature prior to treating the membranes with patient sera (diluted 1 : 10 in phosphate buffered saline (PBS) containing 5% fetal bovine serum (FBS)) or with rabbit (Cell Signaling Technology, Boston, MA) or goat (R&D Systems, Minneapolis, MN) anti-ROR-1 -peptide antibodies in 5% FBS for overnight incubation at 4 0 C.
- PBS phosphate buffered saline
- FBS fetal bovine serum
- Antibodies to human Wnt5a were used for detection of Wnt5a in stable CHO- Wnt5a transfectants.
- the washed membranes respectively were incubated with mouse anti-human IgG, anti-rabbit Ig, or anti-goat Ig that was conjugated to horseradish peroxidase (HRP) (Santa Cruz Biotechnology) for subsequent development with Super Signal West Femto Chemiluminescent Substrate (Pierce) for autoradiography with Super RX film (Fuji, Tokyo, Japan).
- HRP horseradish peroxidase
- Pierce Super Signal West Femto Chemiluminescent Substrate
- This protein was larger than the predicted molecular size of the non-glycosylated polypeptide encoded by ROR-I ( ⁇ 102 kD), suggesting that the mature polypeptide expressed in CLL and CHO-ROR-I was glycosylated at deduced N-glycosylation sites.
- Fig. 3 depicts an immunoblot demonstrating that the anti-ROR-1 mAb (designated 4A5) can immune precipitate the ROR-I protein from cells made to express human ROR-I (e.g. Chinese Hamster Ovary (CHO)) cells or chronic lymphocytic leukemia (CLL) cells.
- human ROR-I e.g. Chinese Hamster Ovary (CHO)
- CLL chronic lymphocytic leukemia
- Prior antibodies to ROR-I were not mAbs, were generated against peptides to ROR-I, are of low affinity, and cannot immune precipitate the ROR-I protein.
- the 4A5 mAb can be used to detect and/or isolate the ROR-I protein, which could have diagnostic, treatment, and/or investigative value.
- the 4A5 mAb could immunoprecipitate a protein of -125 kD in lysates of CLL cells or CHO-ROR-I cells that reacted specifically with the anti-ROR-1- peptide antisera (Figure 17B).
- 4A5 could not immune precipitate this protein from lysates prepared from blood mononuclear cells or tonsillar lymphocytes of subjects who did not have CLL ( Figure 17B).
- ROR-I was not detectable by immunoblot analyses in the cell lysates of any other adult tissue (e.g. brain, breast, colon, heart, kidney, lung, liver, pancreas, spleen, thymus, testis, tonsil, or vascular endothelium ( Figure 17C)).
- PCR cycling parameters were 98 0 C for 2 min., followed by 35 cycles of 98 0 C for 15 sec, 59 0 C for 30 sec, and 72 0 C for 1 min.
- PCR products were size selected by electrophoresis in 0.8% agarose containing 0.5 pg/ml of ethidium bromide (Invitrogen), and the expected products were excised and purified using QlAquik purification columns (Qiagen). PCR products were sequenced directly using the fluorescence-dideoxy-chain-termination method and an Applied Biosystems 3730 automated nucleic acid sequence analyzer (ABI, Foster City, CA). Nucleotide sequences were analyzed using DNASTAR (Madison, WI) and compared with nucleotide and protein sequences deposited in the GenBank sequence databases using BLAST
- the sequence of the ROR-I cDNA generated from the CLL cells of each of four unrelated patients was determined.
- the ROR-I cDNA of one patient (A50) was identical to that of the published ROR-I cDNA sequence (NM 05012).
- Two other cases (A364 and A377) had ROR-I cDNA sequences that were identical to each other, but had two nucleotide differences from NM 005012 at positions 1353 and 1553. While the substitution at position 1353 was conservative, the difference at position 1553 resulted in the substitution of threonine for methionine at amino acid 518 of the ROR-I polypeptide sequence.
- Example 14 ROR-I Activation of Intracellular Machinery Associated with Development and Progression of CLL
- ROR-I can activate intracellular machinery associated with development or progression of CLL
- the influence of exogenous ROR-I expression on the reporter gene regulating various transcription factors in HEK293 cells was examined.
- Various Wnt family members were co-transfected, as ROR-I has a cystein-rich domain, which is shared between frizzled receptors and can bind with Wnt family members.
- CLL cells expressed high-levels of Wnt3, Wnt5b, Wnt6, WntlOa, Wntl4, and Wnt 16, but lacked expression of Wnt5a.
- ROR-I is a receptor for Wnt5a
- CLL cells were cultured alone or together with CHO cells or CHO-Wnt5a cells and the viability of the CD19-positive CLL cells were examined over time.
- the post- treatment serum from this patient could neutralize the capacity of CHO-Wnt5a to promote CLL-cell survival relative to that of CHO cells or media alone, even when the post-treatment serum previously had been absorbed on CHO cells ( Figure 18B, culture condition 7 relative to 6 or 3).
- the CH0-Wnt5a cells again provided a significant survival advantage to the CLL cells relative to that provided by CHO cells ( Figure 18B, culture condition 9 relative to 8 or 3).
- Example 15 Lymphoma Cell Isolation and Purification
- the number of the CLL patient is indicated at the left-hand margin.
- Each panel depicts the staining of CLL with Alexa-647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms).
- In the first column is the staining of total peripheral blood mononuclear cells
- in the middle column is the staining of the CD 19+ (total B cells)
- the far right column is the staining of cells that express both CD 19 and CD5 (CLL cells), indicated at the columns' bottoms.
- FIG. 10 it is shown that anti-ROR-1 mAb 4A5 can detect an occasional normal donor with ROR-I positive cells.
- Each panel depicts the staining of cells with Alexa- 647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms).
- the first column is the staining of total peripheral blood mononuclear cells
- the middle column is the staining of the CD 19+ (total B cells)
- the far right column is the staining of cells that express both CD 19 and CD5, as indicated at the bottom of each column.
- the ROR-I positive cells co- express CD5 and CD 19, a phenotype common with CLL cells.
- Fig. 11 numbers corresponding to a CLL patient are provided at the left-hand margin.
- Each panel depicts the staining of cells with Alexa-647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms).
- In the first column is the staining of total marrow mononuclear cells
- in the middle column is the staining of the CD 19+ (total B cells)
- CD 19+ total B cells
- CD 5 total B cells
- the proportion of cells that express ROR-I, as detected by the mAb 4A5, are indicated in Fig. 12. Each dot represents the proportion of cells from a single donor. The percent of cells scoring positive is indicated by the y-axis.
- the left hand panel provides the percent lymphocytes (as per light scatter) that stain with 4A5 mAb.
- the right panel provides the percent of CD5+CD19+ B cells that stain with 4A5.
- the left panel provides the percent of lymphocytes that stain with 4A5 in samples obtained from the blood normal donors (far left), the marrow of patients with CLL (middle), or blood of patients with CLL (far right).
- Example 16 Magnetic Bead Detection and Isolation of Lymphoma Cells
- Lymphoma cells can be isolated and purified using the following procedure:
- CLL cells admixed with the lymphocytes from normal donors are shown in Fig. 13.
- CLL cells were first stained with PKH67, which labeled them bright green (as observed on the x axis), allowing for their detection after being admixed with normal lymphocytes.
- the stained CLL cells were mixed with the lymphocytes of a normal donor and then the mixture was stained with an Alexa-647-conjugated isotype control niAb (ISO) Alexa-647-conjugated 4A5, allowing for detection of the red fluorescence seen on the y-axis.
- ISO Alexa-647-conjugated isotype control niAb
- Each panel represents a different mixture of cells stained with either the isotype control mAb or 4A5, as indicated in the key, which refers to the number in each panel of the figure. Those samples stained with the isotype control mAb are indicated by the term "Iso", those samples stained with 4A5 are indicated. The percent preceding the CLL is the percent at which the CLL cells are represented in the mixture. As seen from this figure, the 4A5 mAb does not stain normal lymphocytes, allowing for detection of minute proportions of CLL cells that are labeled green.
- Isolated 4A5+ CLL cells admixed with the lymphocytes from normal donors are indicated in Fig. 14.
- CLL cells were stained, mixed with normal lymphocytes at various ratios, and then stained with fluorochrome-conjugated 4A5 mAb, as in Slide #6.
- Each panel represents analyses of cells isolated from different mixtures of CLL cells with normal lymphocytes, as indicated in the key, which refers to the number in each panel of the figure.
- the percent preceding the CLL is the percent at which the CLL cells are represented in the mixture.
- the 4A5 mAb does not stain normal lymphocytes, allowing for detection of minute proportions of CLL cells that are labeled green.
- this method can isolate fairly pure populations of CLL cells from mixtures of CLL cells with normal lymphocytes in which the CLL cells constitute only a small fraction of the total cells.
- Example 17 Detection of ROR-I antibody in cancer but not normal cells
- CHO cells were used as a negative control and CHO-ROR-I cells as a positive control for flow cytometry.
- the ROR-I antibody was the 4A5 mAb.
- the control mAb was a conjugated isotype lgG2b mAb.
- CHO-ROR- 1 CHO cells transfected to express human ROR- 1
- EW36 Endemic African Burkitt's lymphoma (a B cell lymphoma)
- HCT 116 Human colon adenocarcinoma cell line
- MDA-MB-231 Highly aggressive human, Caucasian, breast, adenocarcinoma
- MDA-MB-431 Highly aggressive human, Caucasian, breast, adenocarcinoma
- MDA-MB-468 Highly aggressive human, Caucasian, breast, adenocarcinoma
- Vectors were constructed to encode the chimeric ROR-I protein with ubiquitin located at the amino terminus separated from ROR-I by an intervening codon for Met, and a separate vector with a codon for the destabilizing amino acid Arg and an in-frame insert of a segment of lad. This segment contains a lysine residue spaced optimally from the N- terminus.
- ROR-I was PCR amplified from the pCMV6-XL- ROR-I vector (Origene) using primers that encoded for Notl and Xbal.
- the PCR product was gel-purified, cut with those restriction enzymes and ligated into a pcDNA3 subclone that contained the chimeric Ub-M-(lacI) or Ub-R-(lacI).
- the final construct contains ROR-I 3' of these sequences: Ub-M-ROR-I and Ub-R-ROR-I.
- P815 cells were transfected with Ub-M-ROR-I or Ub-R-ROR-I using the Amaxa transfection system according to manufacturer's instructions using program L 13. The generation of such cells is described below.
- the cells were subsequently cultured under selection pressure in the presence of 400 ⁇ g/ml G418. G418-resistant cells were cloned by limiting dilution.
- G418-resistant cells were cloned by limiting dilution.
- cells were cultured in the presence of a 26S proteasome inhibitor.
- P815 cells, and P815 cells stably transfected with the Ub-M-ROR-I or Ub-R-ROR-I constructs were incubated in 100 ⁇ M of the proteasome inhibitor LLnL (N-acetyl-L-leucinyl- L-leucinal-L-norleucinal) for 18 h. Lysates were prepared from the transfected cells and evaluated by Immunoblot for ROR-I expression.
- LLnL N-acetyl-L-leucinyl- L-leucinal-L-norleucinal
- constructs can be reasonably expected to induce antibody responses or anti- ROR-I CTL responses.
- cell based assays are useful to confirm the activity of candidate ROR-I vaccines, to compare and contrast activity among candidates and with ROR-I constructs that are not targeted for degradation.
- CTL activity is measurable using ROR-I expressing target cells and target cells without ROR-I as controls; e.g., in the P815 cells described.
- CHO cells or CH0-Wnt5a cells were cultured in DMEM supplemented with 10% FBS. These cells were plated into separate wells of 24- well culture plates in 500 pi media at 5 x 10 5 cells/well.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Reproductive Health (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Compositions comprising a purified and/or isolated antibody, humanized antibodies, precipitates and anti-sera that specifically bind to or are otherwise directed against ROR-1 protein. The compositions may be used for detecting ROR-1 in a sample from a subject that is suspected or known to contain cancer cells. The ROR-1 antibodies are especially useful in identifying and treating lymphomas and ademocarcinomas. Vaccines and related methods for protecting a subject against diseases that involve expression of ROR-1 are also provided, as are human anti-sera effective in abrogating interactions between Wnt5a protein and ROR-1 that contribute to the survival of certain cancer cells, such as CLL cells.
Description
METHODS AND COMPOUNDS FOR LYMPHOMA CELL DETECTION AND
ISOLATION
FIELD OF THE INVENTION
[0001] The present invention generally relates to antibodies directed against antigens specific for chronic lymphocytic leukemia (CLL). The invention also relates to gene therapy for CLL.
BACKGROUND
[0002] Patients with cancer can develop immune responses against tumor-associated antigens (TAAs) and potentially reject autologous tumor. Many such TAAs represent developmental or differentiation antigens that have restricted expression. Conceivably, chronic lymphocytic leukemia (CLL) also might have such leukemia-associated antigens (LAA). Microarray analyses revealed that there are genes expressed by CLL cells that are not expressed in other lymphoid tissues. Coupled with the observation that CLL cells also express a highly restricted immunoglobulin repertoire, cells likely express distinctive antigens that also could be targeted for immunotherapy. However, CLL patients typically develop hypogammmaglobulinemia and worsening immune deficiency, which impairs their immune response to vaccines. Implicated in the abnormal immune function are immune- suppressive factors and an acquired functional deficiency of CD 154. Furthermore, CLL cells are particularly poor at antigen presentation, which appears in part secondary to inadequate leukemia-cell expression of immune co-stimulatory/adhesion molecules.
[0003] Activation of CLL cells via CD40-ligation can reverse its immune-suppressive phenotype. Furthermore, CLL cells transduced with an adenovirus encoding the ligand for CD40 (Ad-CD 154) can function as more effective antigen-presenting cells (APCs). In addition, they can effect ligation of CD40 on bystander leukemia B cells and stimulate autologous leukemia-reactive T cells both in vitro and in vivo.
[0004] ROR-I is an embryonic protein that is expressed uniquely on certain cancer cells, including in CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, Burkett's Lymphoma, and other cancers (e.g., breast cancers), but not on normal adult tissues and cells. Anti-ROR-1 antibodies raised against ROR-I peptide are commercially available, but
monoclonal anti-ROR-1 antibodies that react with the native ROR-I protein have not been made or isolated. In addition, no anti-ROR-1 antibodies capable of detecting cell-surface expression of ROR-I for flow cytometric analysis have been made or isolated. What is needed, therefore, is an antibody that can react with native ROR-I protein.
SUMMARY OF THE INVENTION
[0005] Among the various aspects of the present invention is the provision of an antibody directed to a surface receptor tyrosine kinase protein expressed on cells found in samples of subjects with a cancer, including lymphomas, CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, Burkett's Lymphoma, renal cell carcinoma, colon cancer, colorectal cancer, and breast cancer, but not in blood or splenic lymphocytes of nonleukemic patients or normal adults.
[0006] Briefly, therefore, the present invention is directed to an antibody useful for differentiation between ROR-I expressing cancer cells ("ROR-I cancer") and normal cells as well as immunotherapy against ROR-I cancers and determination of response to cancer therapy.
[0007] The present invention includes compositions that include a purified, isolated antibody that binds specifically to ROR-I receptor protein.
[0008] The present invention includes methods for an immunoassay that detects ROR-I in a sample from a subject by contacting the sample with a ROR-I -specific antibody and detecting immunoreactivity between the antibody and ROR-I in the sample.
[0009] In accordance with a further aspect of the invention, a ROR-I cancer is diagnosed in a subject by detecting the presence or quantity of ROR-I protein in a sample derived from the subject.
[0010] In accordance with yet another aspect of the invention, a ROR-I cancer is treated in a subject by administering to the subject in need of such therapy a therapeutically effective amount of a ROR-I receptor antagonist.
[0011] In accordance with yet another aspect, the appearance, status, course, or treatment of a ROR-I cancer in a subject is evaluated by contacting a biological sample obtained from
the subject with an anti-ROR-1 antibody and detecting immunoreactivity between the antibody and ROR-I to determine presence or quantity of ROR-I in the sample.
[0012] In accordance with yet another aspect, also provided is a vaccine composition comprising a polynucleotide encoding ROR-I protein or a fragment or variant thereof, and a pharmaceutically acceptable carrier or diluent.
[0013] In accordance with yet another aspect, also provided is a vaccine composition comprising ROR-I protein or a fragment or variant thereof, and a pharmaceutically acceptable carrier or diluent.
[0014] In accordance with yet another aspect, also provided is a method for protecting against the occurrence of diseases involving expression of ROR-I in a subject, the method comprising administering to the subject in need thereof a polynucleotide encoding ROR-I protein or a fragment or variant thereof in an amount effective to induce a protective or therapeutic immune response against ROR-I, and a pharmaceutically acceptable carrier or diluent.
[0015] In accordance with yet another aspect, also provided is a method for protecting against the occurrence of diseases involving expression of ROR-I in a subject, the method comprising administering to the subject in need thereof ROR-I protein or a fragment or variant thereof in an amount effective to induce a protective or therapeutic immune response against ROR-I in the subject, and a pharmaceutically acceptable carrier or diluent.
[0016] In accordance with yet another aspect, a humanized ROR-I antibody is provided. In another aspect, a precipitate comprising a ROR-I antibody bound with a ROR-I protein, fragment or variant is provided. The ROR-I antibody can be conjugated to a magnetic bead.
[0017] The present invention is also directed toward a method for treating cancer in a subject by administering to the subject a therapeutically effective amount of a cell that expresses ROR-I protein, or a fragment thereof. In one aspect, the cancer is a lymphoma or adenocarcinoma. In another aspect, the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
[0018] In another aspect, the cell transfected with the nucleic acid sequence of SEQ ID NO. 1 is administered by injection, inhalation, orally, liposome, or retroviral vector. In yet another aspect, the invention is directed toward a composition comprising a cell transfected with the nucleic acid sequence of SEQ ID NO. 1.
[0019] The invention also provides a vaccine for the treatment or prevention of cancer in a subject which consists of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1. In one aspect, the cancer is a lymphoma or adenocarcinoma. In another aspect, the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
[0020] The present invention also provides for amethod for treating cancer in a subject by administering to the subject a therapeutically effective amount of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1, or a fragment thereof. In one aspect, the cancer is a lymphoma or adenocarcinoma. In another aspect, the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma. In one aspect, the cell transfected with the nucleic acid sequence of SEQ ID NO. 1 is administered in an amount of (i) about 0.05 mg to about 2.5 mg; (ii) about 0.1 mg to about 1 mg; or (iii) about 0.3 mg to about 0.5 mg. In onother aspect, the cell transfected with the nucleic acid sequence of SEQ ID NO. 1 is administered by injection, inhalation, orally, liposome, or retroviral vector.
[0021] The present invention also provides a method of treating or preventing cancer in a subject by administering to the subject a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1. In one aspect, the nucleotide sequence is at least 12 nucleotides in length. In another aspect, the nucleotide sequence has at least 80% identity to SEQ ID NO: 1. In yet another aspect, the nucleotide sequence has at least 90% identity to SEQ ID NO: 1. In another aspect, the nucleotide sequence has at least 95% identity to SEQ ID NO: 1. In yet another aspect, the nucleotide sequence encodes an open reading frame. In another aspect, the open reading frame consisting of SEQ ID NO: 2.
[0022] Also provided in the present invention is an isolated antibody that specifically binds to a protein encoded by a nucleotide sequence of SEQ ID NO.: 1. In one aspect, the antibody is a polyclonal antibody. In another aspect, the antibody is a monoclonal antibody.
[0023] The present invention also contemplates purified serum containing anti-sera that specifically bind to a protein encoded by a nucleotide sequence of SEQ.ID.No. 1.
[0024] A method for treating or preventing cancer in a subject by administering to the subject in need thereof a therapeutically effective amount of an antagonist to Wnt5a binding of ROR-I protein, or a fragment thereof is also contemplated in the invention. In one aspect, the cancer is a lymphoma or adenocarcinoma. In another aspect, the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma. In yet a further aspect, the lymphoma is CLL in which ROR-I interaction with or binding of Wnt5a confers a survival advantage that is at least partially, if not wholly, negated by administration of a ROR-I antagonist according to the invention; in particular, isolated ROR- 1 antibodies, or purified serum containing anti-sera that prevent Wnt5a binding by a protein encoded by a nucleotide sequence of SEQ ID NO.: 1.
[0025] Other objects and features will be in part apparent and in part pointed out hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] Those of skill in the art will understand that the drawings, described below, are for illustrative purposes only. The drawings are not intended to limit the scope of the present teachings in any way.
[0027] Figure 1 shows change of serum antibody after Ad-CD 154 therapy. Figure IA is a series of scatter and line plots showing total levels of IgG, IgA, and IgM. IgG, IgA, IgM blood concentrations, measured just prior to initiating Ad-CD 154 therapy (PRE) and 2-4 week following the final treatment time point (POST). The dashed bar in each line graph indicates the minimum normal Ig concentration. The concentration range of normal Ig levels is shown to the left of the legend. Figure IB is a series of scatter and line plots showing antibody response to recombinant Ad-CD 154. Anti-adenovirus antibodies were analyzed by
an ELISA assay. Serial dilutions of patient serum before (dotted line) and after (filled line) treatment were incubated in 96 well plates coated with Ad-CDl 54. Bound adenovirus- specific antibody was then detected using AP-conjugated antibody specific for human Ig. Figure 1C is a series of bar graphs showing change of antibody response against Adenovirus in serial samples. Anti-adenovirus antibodies were analyzed by an ELISA using anti-isotype specific secondary antibodies conjugated AP. The bar graphs represent the mean increase in adenovirus-specifϊc antibody over the baseline pre-treatment antibody levels. Figure ID is a series of scatter and line plots showing anti-tetanus-toxin antibody response before and after Ad-CD 154 treatment. ELISA assay was performed with purified tetanus toxin and sera from patients. Bound tetanus-specific antibody was detected using AP conjugated goat anti-human Ig antibody.
[0028] Figure 2 is a series of histograms showing antibody production against surface molecules on CLL B cells by Ad-CD 154 therapy. Antibody bound on CD 19+ CD3- cells were detected by goat anti-human antibody. Figure 2 A is a series of histograms showing diluted serum from patient before (open histograms) or after (shaded histograms) treatment was incubated with PBMC from a CLL patient. Figure 2B is a series of histograms showing diluted serum from patient before (open histograms) or after (shaded histograms) treatment incubated with PBMC from a healthy donor.
[0029] Figure 3 is an immunoblot of immune precipitates of lysates with 4A5 probed with rabbit anti-ROR-1 raised against ROR-I peptides.
[0030] Figure 4 is a series of images depicting gels that show expression of ROR-I in CLL B cells. Figure 4A are gel images of an immunoblot analysis of ROR-I protein. Total cell lysates of PBMC from CLL patients or healthy donor and those of splenocytes from CLL patients or idiopathic thrombocytopenia purpura patient were analyzed by immunoblot using rabbit anti-ROR-1 antibody. Figure 4B are gel images showing ROR-I expression in B cell lines. Immunoblot analysis of total cell lysates of B cell lines was performed. Figure 4C shows production of mouse anti-ROR-1 sera. CHO cells stained with PKH26 and were mixed with CHO transfected ROR-I cDNA (CHO-ROR-I). Sera collected from mice before and after immunization with ROR-I cDNA were incubated with mixed CHO cells. Bound antibodies were detected by flow cytometry. Figure 4D is a series of histograms showing flow cytometric analysis of expression of ROR-I on cell surface of CLL. PBMC from CLL
patients and healthy donor were incubated antisera before (open histograms) and after (shaded histograms) DNA immunization.
[0031] Figure 5 is a series of histograms showing production of anti-ROR-1 antibody detected by flow cytometric analysis. Figure 5 A is a series of histograms where CHO (open histograms) or CHO-ROR-I (shaded histograms) was incubated with serum from patients before (pre) or after (post) therapy. Histograms indicated the bound human Ig detected by PE labeled goat anti-human Ig. Figure 5B shows results where CHO stained with PKH26 were mixed and incubated with serum from patient. APC conjugated anti-human Ig antibody was used for detection.
[0032] Figure 6 shows production of anti-ROR-1 antibody detected by ELISA. Figure 6A is a series of gel images showing production of recombinant ROR-I protein. ROR-I extracellular region was fused with rabbit IgG Fc region in frame (ROR-IrIg). Fused cDNA were transfected into CHO cells and secreted recombinant protein was immunoabsorbed using protein A sepharose. Absorbed protein was immunoblotted with goat anti-ROR-1 antibody (R&D) or goat anti-rabbit Ig antibody. KSHV K8.1 protein fused with rabbit Fc region was also used for control. The purified recombinant ROR-I was visualized with GelCode blue stain reagent (Pierce) staining after SDS-PAGE. Figure 6B is a series of line and scatter plots showing antibody reaction to ROR-I detected by ELISA. Diluted sera were reacted with coated ROR-IrIg and bound antibody was detected by goat anti -human Ig antibody conjugated with HRP. Figure 6C is a series of line and scatter plots showing antibody reaction to rabbit IgG detected by ELISA. Diluted sera were reacted with coated rabbit IgG and bound antibody was detected by goat anti-human Ig antibody conjugated with HRP.
[0033] Figure 7 shows ROR-I and Wnt5a activated NF-κB reporter expression. Figure 7A is a series of bar graphs showing the effect of ROR-I on LEF/TCF1, NF-AT, and AP-I activity. HEK293 cells were transfected with indicated reporter construct and β-galactosidase vector along with expression vector of ROR-I and Wnt5a. Figure 7B is a series of bar graphs showing the effect of ROR-I on NF-κB activity. HEK293 cells were transfected with NF-κB reporter construct and β-galactosidase vector along with expression vector of ROR, Wnt5a, Wnt3, Wnt5b and Wntlό. Figure 7C is a series of gel images showing in vitro binding of ROR-I and Wnt5a. Conditioned medium of transfectant with Wnt5a tagged with HA was
incubated with ROR-IrIg or rabbit IgG. Immunoprecipitation and immunoblotting were done with indicated materials.
[0034] Figure 8 is a series of histograms showing gated CLL patients and CD 19+ and CD 19+CD5+ cells.
[0035] Figure 9 is a series of histograms showing gated normal patients and CD 19+ and CD 19+CD5+ cells.
[0036] Figure 10 is a series of histograms showing gated "exceptional" normal patients and CD19+ and CD19+CD5+ cells.
[0037] Figure 11 is a series of histograms showing gated CLL patients and CD 19+ and CD19+CD5+ cells.
[0038] Figure 12 depicts the expression of 4A5 versus normals versus CLLs and the gating effect.
[0039] Figure 13 is a series of histograms showing different levels of 4A5 expression on titrated CLL cells.
[0040] Figure 14 is a series of histograms showing different levels of 4A5 expression and that such cells can be purified using magnetic beads and methods provided herein.
[0041] Figure 15A depicts histograns showing levels of ROR-I in cells from either a CLL patient pre and post-Ad-CD154 treatment or a healthy donor. Figure 15B depicts a immunoblot analyses using lysates of membrane proteins isolated from the blood lymphocytes of a healthy donor (lane 1) or the CLL cells of an untreated patient (lane 2), as indicated at the top of each immunoblot using sera from patient #7 obtained before (PRE, left panel) or after treatment with autologous Ad-CD 154-transduced CLL cells (POST, right panel). Figure 15C depicts an immunoblot analysis using lysates of membrane proteins isolated from CHO cells (lane 1) or CHO-ROR-I cells (lane 2) or the blood lymphocytes of a healthy donor (lane 3) or the CLL cells of an untreated patient (lane 4), as indicated at the top of each immunoblot using sera from patient #7 after treatment with autologous Ad-CD 154- transduced CLL cells.
[0042] Figure 16A depicts histograms depicting the fluorescence of CLL cells stained with 4A5 or an IgG2b isotype control antibody of irrelevant specificity. Figure 16B shows staining of peripheral blood mononuclear cells (PBMC) of a normal healthy adult using 4A5 or the control IgG2b along with fluorochrome conjugated mAb specific for CD5, and CD 19. Fibure 16C depicts the PBMC of a patient with nascent stage 0 CLL. The left histogram (labeled "PBMC") depicts the fluorescence of the entire mononuclear cell population after staining with 4A5 or the isotype control IgG2b. The middle histogram provides the fluorescence of the gated CD19-negative cells when co-stained with the 4A5 or isotype control. The right histogram provides the fluorescence of the gated CD5+/CD19+ CLL cells when when co-stained with the 4A5 or isotype control.
[0043] Figure 17A depicts total cell lysates of CHO cells ("CHO"), CHO-ROR- 1 cells ("CHO-ROR-I"), CLL blood mononuclear cells (CLL samples 1 through 4) or CLL splenocytes ("CLL spleen 1" and "CLL spleen 27, blood mononuclear cells of a healthy donor ("PBMC"), or non-neoplastic, normal human splenocytes ("Spleen") were examined by immunoblot analysis using rabbit anti-ROR-1 anti-peptide antibody (top panel) or antibodies to p-actin to monitor for protein loading (bottom panel), as indicated to the left of each panel. The source of the tissue is indicated at the top of each lane. Figure 17B depicts an immunoblot of an immunoprecipitation of RORI using the 4A5 mAb. Cell lysates of normal donor PBMC, normal tonsil, CLL blood mononuclear cells ("CLLI" and "CLL2") or CHO- RORI cells were incubated with the 4A5 mAb or an IgG isotype control mAb for immune precipitation using Staph protein A. The immune precipitate was evaluated via immunoblot analysis using anti-ROR-1 peptide antisera. This detected protein of 4 2 5 kD in 4A5 immune precipitates prepared from CLL cell samples or CHO-ROR-I cells, but not from blood or tonsillar lymphocytes of normal donors, or the isotype control immune precipitates from any source, as indicated at the top of each lane. Figure 17C depicts an immunoblot of cells lysates were prepared as indicated at the top of each lane for immunoblot analyses using anti- ROR-1 antibodies (top panel) or antibodies specific for p-actin (middle panel) or GADPH (bottom panel).
[0044] Figure 18A depicts a graph showing the effect of Wnt5a on the viability of CLL cells cultured in vitro. CLL cells from each of 4 unrelated patients were cultured alone (solid squares), or together with CHO cells (solid diamonds), or CHO-Wnt5a cells. The percent
viability of the CD 19+ CLL cells, indicated on the ordinate, was assessed via flow cytometry on days 1, 2, and 3 of culture, as indicated on the abscissa. Each data point represents the mean value of quadruplicate samples cultured in parallel. The error bars represent the standard error about the mean. Figure 18B depicts a chart of the effect of patient sera on the viability of CLL cells in vitro. CLL cells were cultured for 2 days in RPMl media containing 20% human serum, either alone or together with CHO cells or CHO-Wnt5a cells and then assessed for viability by flow cytometry. The bars indicate the mean percent viability of the CD 19' CLL cells, as indicated on the ordinate, of quadrulicate wells for each culture condition, as defined on the abscissa. Except for condition 1 , all cultures had serum samples from patient #5 that were collected either before (pre-treatment) or two weeks after the last infusion of autologous Ad-CD 154-trasduced CLL cells (post-treatment). For culture conditions 1, 2, and 3 the CLL cells were cultured by themselves in media containing 1) normal human serum, 2) pre-treatment serum, or 3) post-treatment serum. For culture conditions 4, 6, and 8 the CLL cells were co-cultured with CHO cells and for culture conditions 5, 7, and 9 the CLL cells were co-cultured with CHO-Wnt5a cells. Cultures 4 and 5 used media with pre-treatment serum, cultures 6 and 7 used media with post-treatment serum that previously had been absorbed on CHO cells, and cultures 8 and 9 used media with post-treatment serum that previously had been absorbed on CHO-RORI cells to remove its anti-ROR-1 binding activity. The error bars depict the standard error about the mean of quadruplicate wells cultured in parallel. The asterisks above bars for culture conditions 5 and 9 indicate that the CLL cells in those culture conditions had significantly greater percent viability than that of CLL cells in the other culture conditions by Bonferroni t test (PC 0.05).
[0045] Figure 19 depicts the nucleotide sequence of human ROR-I.
[0046] Figure 20 depicts the protein sequence of human ROR- 1.
DETAILED DESCRIPTION OF THE INVENTION
[0047] As noted above, the instant invention provides new and useful antibodies directed against ROR-I protein. Full length ROR-I, a surface receptor tyrosine kinase, is found in samples of subjects with CLL, but not in blood or splenic lymphocytes of nonleukemic patients or normal adults. The invention also provides diagnostic and therapeutic antibodies, including monoclonal antibodies, and related compositions and methods for use in the
diagnosis, management and treatment of disease. The ROR-I antibody described herein is more sensitive and more specific to ROR- 1 expressing cancer cells than using a combination of several cell surface markers that cannot exclude a small fraction of normal cells.
[0048] Additionally, the invention provides a vaccine for the treatment or prevention of cancer in a subject which consists of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1. The invention also provides for a method for treating cancer in a subject by administering to the subject a therapeutically effective amount of a cell transfected with the nucleic acid sequence of SEQ ID NO. 1, or a fragment thereof. The present invention also provides a method of treating or preventing cancer in a subject by administering to the subject a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 1. Also provided in the present invention is an isolated antibody that specifically binds to a protein encoded by a nucleotide sequence of SEQ ID NO.: 1.
[0049] The present invention also provides purified serum with anti-sera that specifically bind to a protein encoded by a nucleotide sequence of SEQ.ID.No. 1. Such human anti-sera were despoted on September 14, 2007 pursuant to the Budapest Treaty on the International Deposit of Microorganisms for the Purposes of Patent Procedure with the Patent Culture Depository of the American Type Culture Collection, Manassas, Virginia, as Accession No. PTA-8634.
[0050] Applicants have discovered expression of full-length ROR-I in numerous cancer cell lines and samples, but not other tissues, including blood or splenic lymphocytes of non- leukemic patients or normal adult donors, and also generated mouse anti-sera against full- length human ROR-I. Fukuda et al., Blood: ASH Annual Meeting Abstracts 2004 104, Abstract 772 (2004) (incorporated herein by reference in its entirety). The polypeptide and coding sequences for ROR-I have been reported elsewhere and are also incorporated herein by this reference (see, e.g., Accession Nos. NP_005003.1 and NM O 05012.1). Surprisingly, it has also been discovered that cancer cells which express the Wnt5a protein, such as CLL cells, not only bind ROR-I but have a survival advantage conferred as a consequence. The invention therefore provides means to utilize the specificity of ROR-I expression in cancer cells, as well as knowledge of the interaction between Wnt5a and ROR-I, to treat or prevent cancer.
[0051] In the latter respect, patients with CLL typically develop disease-related hypogammaglobulinemia and respond poorly to vaccines. The progressive acquired immune deficiency associated with CLL accounts for much of the morbidity related to this disease. However, as shown in the Examples, following treatment with autologous Ad-CD 154- transduced CLL cells, most patients had increased serum IgM and IgG and developed a specific antibody response against adenovirus and some developed anti-CLL autoantibodies. Although virus infections occasionally can induce autoantibodies, autoantibodies were not detected against other blood cells or human CD 154. Likewise, there were no increases in the titer of antibodies to a recall antigen, tentanus toxoid, except in one patient (#5) who was immunized with tetanus toxoid following the second infusion of autologous Ad-CD 154-CLL cells. Conceivably, CLL patients could respond well against other vaccines administered during the course of such treatment, potentially allowing for generation of protective immunity against infectious agents that commonly afflict patients with this disease.
[0052] As shown in the examples, that some patients developed IgG anti-CLL autoantibodies, which reacted with ROR-I . These post-treatment antisera reacted with a protein of -125 kD found in lysates of CLL cells or CHO-ROR-I cells, but not in lysates prepared from human blood lymphocytes of normal donors or non-transfected CHO cells. That these antisera reacted with ROR-I was corroborated via ELlSA using a recombinant RORI fusion-protein. Because these antisera appeared specific for CLL cells, the expression of ROR-I on other adult tissues was studied. These studies revealed that expression of the ROR-I protein was restricted to CLL B-cells and was not found on the non-leukemic blood or marrow mononuclear cells of patients with CLL, potentially allowing for detection of CLL cells in the blood or marrow of patients with early-stage disease or minimal residual disease after therapy. Furthermore, ROR-I was not found on normal adult tissues or lymphoid cells, including CD5-positive B cells. As such, ROR-I appears to represent a specific leukemia- associated antigen. Tthe selective expression of ROR-I in CLL suggests that ROR-I factors in the pathogenesis of this disease.
[0053] ROR-I encodes a type I membrane receptor tyrosine kinase that initially was identified using oligonucleotide primers targeting sequences encoding amino acid sequences common to tyrosine kinase domains of different proteins. This protein appears highly conserved throughout evolution. ROR-I is evolutionally conserved among Caenorhabditis
elegans (C.elegans), Aplysia, Drosophila melanogaster, Xenopus, mice, and humans. In rodents, ROR-I is expressed primarily in developing cephalic neural crest in the dorsal part of the diencephalons and mid-hind brain boundary during embryogenesis. Work in Caenorhabditis elegans (C. elegans) indicated that the RORI-type kinases might be involved in the regulation of cell motility and in asymmetric cell division during embryogenesis.
[0054] Furthermore, the ROR protein in C. elegans, apparently has both kinase-dependent and kinase independent ROR-family receptor tyrosine kinases are characterized by the intracellular tyrosine kinase domains, highly related to those of the Trk- family receptor tyrosine kinases, and by the extracellular Frizzled-like cysteine-rich domains and kringle domains, which are common to receptors of the Wnt-family members. An ortholog to ROR- 1, namely R0R2, has been found interact physically with Wnt5a to activate non-canonical Wnt-signaling.
[0055] As described in the Examples, ROR-I interacts physically with Wnt5a. The interaction of ROR-I with Wnt5a was implicated in studies demonstrating that co- transfection of expression vectors encoding NF-κβ reporter constructs, ROR-I, and Wnt5a, but not other Wnt factors, could induce activation of NF-κB in a mutually dose-dependent fashion (Figure 7B). This activity was independent of expression of LPR5/6, which ordinarily serves as a co-receptor for Wnt receptors. Physical interaction of ROR-I with Wnt5a was observed using recombinant proteins, demonstrating that ROR-I has binding activity for Wnt5a independent of LPR5/6 (Figure 6B). Nonetheless, Wnt5a apparently could not activate the canonical Wnt-signaling pathway when co-expressed with ROR-I in 293 cells (Figure 7A).
[0056] Prior studies suggested that there is crosstalk between the Wnt-signaling pathway and the NF-κB-signaling pathway, β-catenin apparently can physically complex with NF-κB, resulting in reduction of NF-KB DNA binding, transactivation activity, and target gene expression. Whereas IKB kinase-alpha (IiςKa), involved in the phosphorylation of NF- KjE^/plOO, can phosphorylate and stabilize β-catenin, the kinase involved in activation of the canonical p50/p65 NF-iςB pathway, namely IiςKB, can enhance β-catenin degradation. Conceivably, the inability of ROR-I to activate the LEF/TCF-signaling may be secondary in part to its capacity to activate IiςKP, leading to reduced stability of p-catenin and enhanced activity of NF-κB, which in itself could potentially play a role in cancer development.
Furthermore, expression of ROR-I in CLL could contribute to the growth and/or survival of neoplastic cells induced by interaction with tissue stromal cells that might elaborate Wnt5a and other factors that activate NF-iςB. Even though found circulating in the blood, CLL cells derive a survival benefit from interactions with marrow stromal cells, nurse-like cells, or dendritic cells, which are found in the leukemia-infiltrated marrow or lymphoid tissues of patients with this disease. It is noteworthy in this regard that dendritic cells have been found to express high-levels of Wnt5a.
[0057] To investigate whether Wnt5a could enhance the survival of CLL cells, artificial stromal cells, namely CHO cells, were engineered to express human Wnt5a, as described in the examples. The studies revealed that co-culture of CLL cells with CHO-Wnt5a cells maintained significantly higher viability over time in vitro than the same CLL cells co- cultured with CHO cells, which serves to control for other factors that might influence CLL- cell survival. These studies provide the first evidence that the survival of CLL cells can be enhanced in vitro by such Wnt factors, which presumably also might function to enhance the survival of CLL cells in lymphoid-tissue microenvironments containing cells that express Wnt5a.
[0058] Although there are other receptors for Wnt5a, the data described herein indicates ROR-I is at least in part responsible for the survival-signal triggered by co-culture with Wnt5a-expressing CHO cells. This is indicated by the finding that serum obtained after treatment with autologous Ad-CD 154-CLL cells could neutralize the capacity of CHO-Wnt5a cells to enhance the survival of CLL cells over that of CLL cells co-cultured with CHO cells or CLL cells cultured alone (Figure 18B). Absorption of such antiserum with CHO-ROR-I cells abrogated the capacity of the post-treatment serum to neutralize the activity of CHO- Wnt5a cells. Conceivably, such anti-ROR-1 antibodies could be responsible for some of the size-reductions observed in the lymph nodes of patients who had received infusions of autologous Ad-CD 154-CLL cells.
[0059] ROR-I Antibody
[0060] Certain embodiments comprise immunopeptides directed against ROR-I protein. The immunoglobulin peptides, or antibodies, described herein are shown to bind to the ROR- 1 protein. The ROR-I binding activity is specific; the observed binding of antibody to ROR-
1 is not substantially blocked by non-specific reagents. These ROR-I specific antibodies can be used to differentiate between ROR-I cells and normal cells. The ROR-I specific antibodies can also be used in immunotherapy against a ROR-I cancer and to determine the response after therapy for a ROR-I cancer.
[0061] Such immunopeptides can be raised in a variety of means known to the art. For example, and as shown in the examples, Ad-CD 154 therapy induces humoral immunity against CLL, thus allowing the derivation of immunoglobulin peptides specific against ROR- 1. The inventors have discovered that tandem injections of Ad-CD 154 induces antibody production against a novel cell surface TAA of CLL B cells, orphan tyrosine kinase receptor ROR-I.
[0062] As used herein, the term antibody encompasses all types of antibodies, e.g., polyclonal, monoclonal, and those produced by the phage display methodology. Particularly preferred antibodies of the invention are antibodies which have a relatively high degree of affinity for ROR-I. In certain embodiments, the antibodies exhibit an affinity for ROR-I of about Kd<10~8 M.
[0063] Substantially purified generally refers to a composition which is essentially free of other cellular components with which the antibodies are associated in a non-purified, e.g., native state or environment. Purified antibody is generally in a homogeneous state, although it can be in either in a dry state or in an aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography.
[0064] Substantially purified ROR- 1 -specific antibody will usually comprise more than 80% of all macromolecular species present in a preparation prior to admixture or formulation of the antibody with a pharmaceutical carrier, excipient, adjuvant, buffer, absorption enhancing agent, stabilizer, preservative, adjuvant or other co-ingredient. More typically, the antibody is purified to represent greater than 90% of all proteins present in a purified preparation. In specific embodiments, the antibody is purified to greater than 95% purity or may be essentially homogeneous wherein other macromolecular species are not detectable by conventional techniques.
[0065] Immunoglobulin peptides include, for example, polyclonal antibodies, monoclonal antibodies, and antibody fragments. The following describes generation of immunoglobulin peptides, specifically ROR-I antibodies, via methods that can be used by those skilled in the art to make other suitable immunoglobulin peptides having similar affinity and specificity which are functionally equivalent to those used in the examples.
[0066] Polyclonal Antibodies
[0067] Polyclonal antibodies may be readily generated by one of ordinary skill in the art from a variety of warm-blooded animals such as horses, cows, various fowl, rabbits, mice, or rats. Briefly, ROR-I antigen is utilized to immunize the animal through intraperitoneal, intramuscular, intraocular, or subcutaneous injections, with an adjuvant such as Freund's complete or incomplete adjuvant. Following several booster immunizations, samples of serum are collected and tested for reactivity to ROR-I. Particularly preferred polyclonal antisera will give a signal on one of these assays that is at least three times greater than background. Once the titer of the animal has reached a plateau in terms of its reactivity to ROR-I, larger quantities of antisera may be readily obtained either by weekly bleedings, or by exsanguinating the animal.
[0068] As discussed, it has been found that human subjects treated with Ad-CD 154 therapy developed anti-sera that abrogated Wnt5a/ ROR-I binding. Such purified human sera include those on deposit with the American Type Culture Collection as Accession No. PTA-8634.
[0069] Monoclonal Antibodies
[0070] Monoclonal antibody (mAb) technology can be used to obtain mAbs to ROR- 1. Briefly, hybridomas are produced using spleen cells from mice immunized with ROR-I antigens. The spleen cells of each immunized mouse are fused with mouse myeloma Sp 2/0 cells, for example using the polyethylene glycol fusion method of Galfre, G. and Milstein, C, Methods Enzymol., 73:3-46 (1981). Growth of hybridomas, selection in HAT medium, cloning and screening of clones against antigens are carried out using standard methodology (Galfre, G. and Milstein, C, Methods Enzymol., 73:3-46 (1981)).
[0071] HAT-selected clones are injected into mice to produce large quantities of mAb in ascites as described by Galfre, G. and Milstein, C, Methods EnzymoL, 73:3-46 (1981), which can be purified using protein A column chromatography (BioRad, Hercules, Calif.). mAbs are selected on the basis of their (a) specificity for ROR-I, (b) high binding affinity, (c) isotype, and (d) stability.
[0072] mAbs can be screened or tested for ROR-I specificity using any of a variety of standard techniques, including Western Blotting (Koren, E. et al., Biochim. Biophys. Acta 876:91-100 (1986)) and enzyme-linked immunosorbent assay (ELISA) (Koren, E. et al., Biochim. Biophys. Acta 876:91-100 (1986)).
[0073] Humanized Antibodies
[0074] Humanized forms of mouse antibodies can be generated by linking the CDR regions of non-human antibodies to human constant regions by recombinant DNA techniques (see, e.g., Queen et al., Proc. Natl. Acad. Sci. USA 86:10029-10033, 1989 and WO 90/07861, each incorporated by reference). Human antibodies can be obtained using phage-display methods (see, e.g., Dower et al., WO 91/17271; McCafferty et al., WO 92/01047). In these methods, libraries of phage are produced in which members display different antibodies on their outersurfaces. Antibodies are usually displayed as Fv or Fab fragments. Phage displaying antibodies with a desired specificity may be selected by affinity enrichment.
[0075] Human antibodies may be selected by competitive binding experiments, or otherwise, to have the same epitope specificity as a particular mouse antibody. Using these techniques, a humanized ROR-I antibody having the human IgGl constant region domain and the human kappa light chain constant region domain with the mouse heavy and light chain variable regions. The humanized antibody has the binding specificity of a mouse ROR- 1 mAb, specifically the 45A mAb described in Example 9.
[0076] Antibody Fragments
[0077] It may be desirable to produce and use functional fragments of a mAb for a particular application. The well-known basic structure of a typical IgG molecule is a symmetrical tetrameric Y-shaped molecule of approximately 150,000 to 200,000 daltons consisting of two identical light polypeptide chains (containing about 220 amino acids) and
two identical heavy polypeptide chains (containing about 440 amino acids). Heavy chains are linked to one another through at least one disulfide bond. Each light chain is linked to a contiguous heavy chain by a disulfide linkage. An antigen-binding site or domain is located in each arm of the Y-shaped antibody molecule and is formed between the amino terminal regions of each pair of disulfide linked light and heavy chains. These amino terminal regions of the light and heavy chains consist of approximately their first 110 amino terminal amino acids and are known as the variable regions of the light and heavy chains. In addition, within the variable regions of the light and heavy chains there are hypervariable regions which contain stretches of amino acid sequences, known as complementarity determining regions (CDRs). CDRs are responsible for the antibody's specificity for one particular site on an antigen molecule called an epitope. Thus, the typical IgG molecule is divalent in that it can bind two antigen molecules because each antigen-binding site is able to bind the specific epitope of each antigen molecule. The carboxy terminal regions of light and heavy chains are similar or identical to those of other antibody molecules and are called constant regions. The amino acid sequence of the constant region of the heavy chains of a particular antibody defines what class of antibody it is, for example, IgG, IgD, IgE, IgA or IgM. Some classes of antibodies contain two or more identical antibodies associated with each other in multivalent antigen-binding arrangements.
[0078] Fab and F(ab')2 fragments of mAbs that bind ROR-I can be used in place of whole mAbs. Because Fab and F(ab')2 fragments are smaller than intact antibody molecules, more antigen-binding domains are available than when whole antibody molecules are used. Proteolytic cleavage of a typical IgG molecule with papain is known to produce two separate antigen binding fragments called Fab fragments which contain an intact light chain linked to an amino terminal portion of the contiguous heavy chain via by disulfide linkage. The remaining portion of the papain-digested immunoglobin molecule is known as the Fc fragment and consists of the carboxy terminal portions of the antibody left intact and linked together via disulfide bonds. If an antibody is digested with pepsin, a fragment known as an F(ab')2 fragment is produced which lacks the Fc region but contains both antigen-binding domains held together by disulfide bonds between contiguous light and heavy chains (as Fab fragments) and also disulfide linkages between the remaining portions of the contiguous heavy chains (Handbook of Experimental Immunology. VoI 1: Immunochemistry, Weir, D. M., Editor, Blackwell Scientific Publications, Oxford (1986)).
[0079] Recombinant DNA methods have been developed which permit the production and selection of recombinant immunoglobulin peptides which are single chain antigen-binding polypeptides known as single chain Fv fragments (ScFvs or ScFv antibodies). Further, ScFvs can be dimerized to produce a diabody. ScFvs bind a specific epitope of interest and can be produced using any of a variety of recombinant bacterial phage-based methods, for example as described in Lowman et al. (1991) Biochemistry, 30, 10832-10838; Clackson et al. (1991) Nature 352, 624-628; and Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87, 6378-6382. These methods are usually based on producing genetically altered filamentous phage, such as recombinant M 13 or fd phages, which display on the surface of the phage particle a recombinant fusion protein containing the antigen-binding ScFv antibody as the amino terminal region of the fusion protein and the minor phage coat protein g3p as the carboxy terminal region of the fusion protein. Such recombinant phages can be readily grown and isolated using well-known phage methods. Furthermore, the intact phage particles can usually be screened directly for the presence (display) of an antigen-binding ScFv on their surface without the necessity of isolating the ScFv away from the phage particle.
[0080] To produce an ScFv, standard reverse transcriptase protocols are used to first produce cDNA from mRNA isolated from a hybridoma that produces an mAb for ROR-I antigen. The cDNA molecules encoding the variable regions of the heavy and light chains of the mAb can then be amplified by standard polymerase chain reaction (PCR) methodology using a set of primers for mouse immunoglobulin heavy and light variable regions (Clackson (1991) Nature, 352, 624-628). The amplified cDNAs encoding mAb heavy and light chain variable regions are then linked together with a linker oligonucleotide in order to generate a recombinant ScFv DNA molecule. The ScFv DNA is ligated into a filamentous phage plasmid designed to fuse the amplified cDNA sequences into the 5' region of the phage gene encoding the minor coat protein called g3p. Escherichia coli bacterial cells are than transformed with the recombinant phage plasmids, and filamentous phage grown and harvested. The desired recombinant phages display antigen-binding domains fused to the amino terminal region of the minor coat protein. Such "display phages" can then be passed over immobilized antigen, for example, using the method known as "panning", see Parmley and Smith (1989) Adv. Exp. Med. Biol. 251, 215-218; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87, 6378-6382, to adsorb those phage particles containing ScFv antibody proteins that are capable of binding antigen. The antigen-binding phage particles can then be
amplified by standard phage infection methods, and the amplified recombinant phage population again selected for antigen-binding ability. Such successive rounds of selection for antigen-binding ability, followed by amplification, select for enhanced antigen-binding ability in the ScFvs displayed on recombinant phages. Selection for increased antigen- binding ability may be made by adjusting the conditions under which binding takes place to require a tighter binding activity. Another method to select for enhanced antigen-binding activity is to alter nucleotide sequences within the cDNA encoding the binding domain of the ScFv and subject recombinant phage populations to successive rounds of selection for antigen-binding activity and amplification (see Lowman et al. (1991) Biochemistry 30, 10832-10838; and Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87, 6378-6382).
[0081] Once an ScFv is selected, the recombinant ROR-I antibody can be produced in a free form using an appropriate vector in conjunction with E. coli strain HB2151. These bacteria actually secrete ScFv in a soluble form, free of phage components (Hoogenboom et al. (1991) Nucl. Acids Res. 19, 4133-4137). The purification of soluble ScFv from the HB2151 bacteria culture medium can be accomplished by affinity chromatography using antigen molecules immobilized on a solid support such as AFFIGEL™ (BioRad, Hercules, Calif).
[0082] Other developments in the recombinant antibody technology demonstrate possibilities for further improvements such as increased avidity of binding by polymerization of ScFvs into dimers and tetramers {see Holliger et al. (1993) Proc. Natl. Acad. Sci. USA 90, 6444-6448).
[0083] Because ScFvs are even smaller molecules than Fab or F(ab')2 fragments, they can be used to attain even higher densities of antigen binding sites per unit of surface area when immobilized on a solid support material than possible using whole antibodies, F(ab')2, or Fab fragments. Furthermore, recombinant antibody technology offers a more stable genetic source of antibodies, as compared with hybridomas. Recombinant antibodies can also be produced more quickly and economically using standard bacterial phage production methods.
[0084] Recombinant Antibody Production
[0085] To produce antibodies described herein recombinantly, nucleic acids encoding light and heavy chain variable regions, optionally linked to constant regions, are inserted into
expression vectors. The light and heavy chains can be cloned in the same or different expression vectors. For example, the heavy and light chains of SEQ ID NOs: 1-5 can be used according to the present invention. The teachings of U.S. Patent No. 6,287,569 to Kipps et al., incorporated herein by reference in its entirety, and the methods provided herein can readily be adapted by those of skill in the art to create the vaccines of the present invention. The DNA segments encoding antibody chains are operably linked to control sequences in the expression vector(s) that ensure the expression of antibody chains. Such control sequences include a signal sequence, a promoter, an enhancer, and a transcription termination sequence. In one embodiment, the
[0086] Expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosome. E. coli is one procaryotic host particularly useful for expressing antibodies of the present invention. Other microbial hosts suitable for use include bacilli, such as Bacillus subtilus, and other enterobacteriaceae, such as Salmonella, Serratia, and various Pseudomonas species. In these prokaryotic hosts, one can also make expression vectors, which typically contain expression control sequences compatible with the host cell (e.g., an origin of replication) and regulatory sequences such as a lactose promoter system, a tryptophan (trp) promoter system, a beta-lactamase promoter system, or a promoter system from phage lambda. Other microbes, such as yeast, may also be used for expression. Saccharomyces is a preferred host, with suitable vectors having expression control sequences, such as promoters, including 3-phosphoglycerate kinase or other glycolytic enzymes, and an origin of replication, termination sequences and the like as desired. Mammalian tissue cell culture can also be used to express and produce the antibodies of the present invention (see, e.g., Winnacker, From Genes to Clones VCH Publishers, N. Y., 1987). Eukaryotic cells are preferred, because a number of suitable host cell lines capable of secreting intact antibodies have been developed. Preferred suitable host cells for expressing nucleic acids encoding the immunoglobulins of the invention include: monkey kidney CVl line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line; baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary-cells (CHO); mouse Sertoli cells; monkey kidney cells (CVl ATCC CCL 70); african green monkey kidney cells (VERO-76, ATCC CRL 1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL
1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); and TRI cells.
[0087] The vectors containing the polynucleotide sequences of interest (e.g., the heavy and light chain encoding sequences and expression control sequences) can be transferred into the host cell. Calcium chloride transfection is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment or electroporation can be used for other cellular hosts (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, 2nd ed., 1989). When heavy and light chains are cloned on separate expression vectors, the vectors are co-transfected to obtain expression and assembly of intact immunoglobulins. After introduction of recombinant DNA, cell lines expressing immunoglobulin products are cell selected. Cell lines capable of stable expression are preferred (i.e., undiminished levels of expression after fifty passages of the cell line).
[0088] Once expressed, the whole antibodies, their dimers, individual light and heavy chains, or other immunoglobulin forms of the present invention can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, e.g., Scopes, Protein Purification, Springer- Verlag, N. Y., 1982). Substantially pure immunoglobulins of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity most preferred.
[0089] Labeled Antibody
[0090] A labeled antibody or a detectably labeled antibody is generally an antibody (or antibody fragment which retains binding specificity), having an attached detectable label. The detectable label is normally attached by chemical conjugation, but where the label is a polypeptide, it could alternatively be attached by genetic engineering techniques. Methods for production of detectably labeled proteins are well known in the art. Detectable labels known in the art include radioisotopes, fluorophores, paramagnetic labels, enzymes (e.g., horseradish peroxidase), or other moieties or compounds which either emit a detectable signal (e.g., radioactivity, fluorescence, color) or emit a detectable signal after exposure of the label to its substrate. Various detectable label/substrate pairs (e.g., horseradish peroxidase/diaminobenzidine, avidin/streptavidin, luciferase/luciferin), methods for labeling
antibodies, and methods for using labeled antibodies are well known in the art (see, for example, Harlow and Lane, eds., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) Another technique which may also result in greater sensitivity consists of coupling the antibodies to low molecular weight haptens. These haptens can then be specifically detected by means of a second reaction. For example, it is common to use such haptens as biotin, which reacts with avidin, or dinitrophenyl, pyridoxal, and fluorescein, which can react with specific antihapten antibodies.
[0091] Diagnosis of ROR-I Cancer
[0092] The ROR-I antibodies described herein can be used to differentiate between ROR- 1 expressing cells and normal cells and, thus, can be used to detect and/or diagnose disease in subjects. ROR-I expressing cancer cells include CLL and other lymphoma (e.g. Burkitt's), renal cell carcinoma, colon adenocarcinoma, colorectal (see, e.g., Figure 15).
[0093] The methods for detecting such disease generally include contacting a sample from a subject having, or at risk of having, a lymphoma with a reagent that detects ROR-I, and detecting the reaction of the reagent. Within these methods, detection of a reaction is indicative of the presence and/or quantity of ROR-I in the sample. The reaction of the reagent with the sample is then compared to a control. Any biological sample which may contain a detectable amount of ROR-I can be used. Examples of biological samples of use with the invention are blood, serum, plasma, urine, mucous, feces, cerebrospinal fluid, pleural fluid, ascites, and sputum samples. Tissue or cell samples can also be used with the subject invention. These samples can be obtained by many methods such as cellular aspiration, or by surgical removal of a biopsy sample. The level of ROR-I in the sample can be compared with the level in a sample not affected by the targeted disorder or condition. Control samples not affected by a targeted disease processes can be taken from the same subject, or can be from a normal control subject not affected by the disease process, or can be from a cell line.
[0094] Contacting the sample and anti-ROR-1 antibody generally includes incubation under conditions which allow contact in solution and/or solid phase between the reagent and sample. Detection can be performed by any means suitable to identify the interaction of the reagent with ROR-I. In one embodiment, when the reagent is an antibody, the antibody can be detectably labeled. Detectable labels are well known in the art, and include radioisotopes,
fluorophores, paramagnetic labels, enzymes (e.g., horseradish peroxidase), or other moieties or compounds which either emit a detectable signal (e.g., radioactivity, fluorescence, color) or emit a detectable signal after exposure of the label to its substrate. Alternatively, when the reagent is an antibody, detection can be performed using a second antibody which is detectably labeled which recognizes the antibody that binds ROR-I . The antibody may also be biotinylated, and a second avidinated label used to determine the presence of the biotinylated reagent which detects ROR-I.
[0095] The antibodies of the invention are suited for use, for example, in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier. The antibodies employed in these immunoassays can be detectably labeled in various ways. Examples of types of immunoassays which can effectively employ antibodies of the invention are, competitive and non-competitive immunoassays, in either a direct or indirect format. Examples of such immunoassays include a radioimmunoassay (RIA), and a sandwich (immunometric) assay. Those of skill in the art will readily discern additional immunoassay formats useful within the invention.
[0096] Other immunoassays for use within the invention include "forward" assays for the detection of a protein in which a first anti-protein antibody (e.g., an anti-ROR-1 antibody) bound to a solid phase support is contacted with the test sample. After a suitable incubation period, the solid phase support is washed to remove unbound protein. A second, distinct anti- protein antibody is then added which is specific for a portion of the specific protein not recognized by the first antibody. The second antibody is preferably detectable. After a second incubation period to permit the detectable antibody to complex with the specific protein bound to the solid phase support through the first antibody, the solid phase support is washed a second time to remove the unbound detectable antibody. Alternatively, the second antibody may not be detectable. In this case, a third detectable antibody, which binds the second antibody is added to the system. This type of "forward sandwich" assay may be a simple yes/no assay to determine whether binding has occurred or may be made quantitative by comparing the amount of detectable antibody with that obtained in a control.
[0097] Other types of immunometric assays are the so-called "simultaneous" and "reverse" assays. A simultaneous assay involves a single incubation step wherein the first antibody bound to the solid phase support, the second, detectable antibody and the test
sample are added at the same time. After the incubation is completed, the solid phase support is washed to remove unbound proteins. The presence of detectable antibody associated with the solid support is then determined as it would be in a conventional "forward sandwich" assay. The simultaneous assay may also be adapted in a similar manner for the detection of antibodies in a test sample. The "reverse" assay comprises the stepwise addition of a solution of detectable antibody to the test sample followed by an incubation period and the addition of antibody bound to a solid phase support after an additional incubation period. The solid phase support is washed in conventional fashion to remove unbound protein/antibody complexes and unreacted detectable antibody. The determination of detectable antibody associated with the solid phase support is then determined as in the "simultaneous" and "forward" assays. The reverse assay may also be adapted in a similar manner for the detection of antibodies in a test sample.
[0098] The antibody component of immunometric assays described herein may be added to a solid phase support capable of immobilizing proteins. By "solid phase support" or "support" is intended any material capable of binding proteins. Well-known solid phase supports include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses (including nitrocellulose sheets and filters), polyacrylamides, agaroses, and magnetite. The nature of the support can be either soluble to some extent or insoluble for the purposes of the present invention. The support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Those skilled in the art will know many other suitable "solid phase supports" for binding proteins or will be able to ascertain the same by use of routine experimentation. A preferred solid phase support is a 96-well microtiter plate. For immunoassay and immunodiagnostic purposes, the antibodies of the invention can be bound to many different carriers, both soluble and insoluble, and can be used to detect the presence of an antigen comprising ROR-I (or fragments, derivatives, conjugates, homologues, or variants thereof). Those skilled in the art will discern other suitable carriers for binding antibodies useful within the invention. In addition, there are many different labels and methods of labeling known to those of ordinary skill in the art. Examples of the types of labels which can be used in the present invention include enzymes, radioisotopes, fluorescent compounds, colloidal metals, chemiluminescent
compounds, phosphorescent compounds, and bioluminescent compounds, as described above.
[0099] In using the antibodies described herein for the in vitro or in vivo detection of ROR-I, the detectably labeled antibody is provided in an amount which is diagnostically effective. Thus, an amount of detectably labeled antibody is contacted or administered in sufficient quantity to enable detection of ROR-I in the subject sample to be assayed.
[0100] Within more detailed diagnostic methods of the invention, in vivo immunodiagnostic tools are provided, as exemplified by immunoscintigraphic methods and compositions. Immunoscintigraphy (IS) is discussed in detail in P. Lechner et al., Dis Colon Rectum 1993;36:930-935 and F. L. Moffet et al., J Clin Oncol 14:2295-2305 (1966). IS (or radioscintigraphy) employs radioactive-labeled antibody, typically Fab' fragments (Goldenberg et al.; Eur J Nucl Med 1989;15:426), to recognize defined epitopes of targeted proteins. Fab1 fragments of the antibodies provided herein, comprising immunoglobulins of the IgGI fraction that have their Fc portions removed, are highly capable of targeting epitopes on proCPR, activated CPR, and/or inactivated CPR in a test sample or subject. Because these Fab' fragments have minimal antigenity, they cause neither human antimouse antibody response, nor any allergic reactions of unpredictable nature. The smaller molecular weight of Fab' fragments compared with intact antibody allows the fragment to leave the intravascular space and target a broader array of in vivo compartments for diagnostic purposes.
[0101] For radioscintigraphy, an anti-ROR-1 radioactive monoclonal antibody is typically injected into a patient for identifying, measuring, and/or localizing ROR-I in the subject, (see, e.g., Delaloye et al., Seminars in Nuclear Medicine 25(2): 144-164, 1995). In radioimaging with monoclonal antibodies, a chemically modified (chelate) form of the monoclonal antibody is typically prepared and stored as a relatively stable product. To be used clinically, however, the monoclonal antibody sample must be mixed with a radioactive metal, such as 99Tc, then purified to remove excess, unbound radioactive metal, and then administered to a patient within 6 hours, (see, e.g., Eckelman et al., Nuc. Med. Biol. 16: 171- 176, 1989). Radioisotopes, for example 99Tc, an isotope with a short physical half-life and high photon abundance, can be administered at high doses and allow early imaging with a gamma camera. This is very suitable for use in conjunction with Fab' fragments, the half-lives of which are also short.
[0102] Monitoring of a ROR- 1 Cancer and Cancer Therapy
[0103] Further, the anti-ROR-1 antibodies described herein can be used in vitro and in vivo to monitor the appearance, status, course, or treatment of a ror-1 cancer in a subject. For example, by measuring an increase or decrease in the amount of ROR-I in a subject (optionally in comparison to control levels in a normal subject or sample), the appearance, status, course, or treatment of the cancer or condition in the subject number can be observed or evaluated. Based on these and comparable diagnostic methods, it is further possible to determine whether a particular therapeutic regimen, such as a treatment regimen employing antibodies of the invention directed against the cancer is effective. Methods of detecting and/or quantifying levels of ROR-I and corresponding cancer disease state are as described above.
[0104] Therapeutic Treatment of Lymphoma
[0105] ROR-I antagonists (including ROR-I antibodies, anti-sera that abrogate Wnt5a/ ROR-I interactions, small molecule inhibitors, antisense RNA, and siRNA) can be employed as therapeutic or prophylactic pharmacological agents in any subject in which it is desirable to administer, in vitro, ex vivo, or in vivo the subject antagonists that bind ROR-I. Typical subjects for treatment or management according to the methods herein are subjects presenting with a ROR-I cancer. The antagonists described herein specifically recognize ROR-I protein, found in lymphoma samples but not expressed in cells of normal adults, and therefore can be used for detecting and/or neutralizing these biomolecules, and/or blocking their interactions with other biomolecules, in vitro or in vivo. While under no obligation to provide a mechanism of action, it is thought that ROR-I can serve as a receptor for Wnt5a to trigger the NF-kappa B pathway, which pathway is implicated in oncogenesis. See e.g. Example 12. Thus, the ROR-I gene, which plays a role in disease pathogenesis and/or progression, encodes a protein that can be targeted by immune therapy for patients with a ROR-I cancer.
[0106] Antibodies
[0107] In certain therapeutic embodiments, the selected antibody will typically be an aniti- ROR-I antibody, which may be administered alone, or in combination with, or conjugated to, one or more combinatorial therapeutic agents. When the antibodies described herein are
administered alone as therapeutic agents, they may exert a beneficial effect in the subject by a variety of mechanisms. In certain embodiments, monoclonal antibodies that specifically bind ROR-I are purified and administered to a patient to neutralize one or more forms of ROR-I, to block one or more activities of ROR-I, or to block or inhibit an interaction of one or more forms of ROR-I with another biomolecule.
[0108] The immunotherapeutic reagents of the invention may include humanized antibodies, and can be combined for therapeutic use with additional active or inert ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, e.g., immunogenic adjuvants, and optionally with adjunctive or combinatorially active agents such as anti-inflammatory ant anti-fibrinolytic drugs.
[0109] In other embodiments, therapeutic antibodies described herein are coordinately administered with, co-formulated with, or coupled to (e.g., covalently bonded) a combinatorial therapeutic agent, for example a radionuclide, a differentiation inducer, a drug, or a toxin. Various known radionuclides can be employed, including Y, I, I, I, Re, 188Re, and 211At. Useful drugs for use in such combinatorial treatment formulations and methods include methotrexate, and pyrimidine and purine analogs. Suitable differentiation inducers include phorbol esters and butyric acid. Suitable toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein. These combinatorial therapeutic agents can be coupled to an anti-ROR-1 antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other. Alternatively, it may be desirable to couple a combinatorial therapeutic agent and an antibody via a linker group as a spacer to distance an antibody from the combinatorial therapeutic agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. It will be further evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, 111.), may be employed as a
linker group. Coupling may be affected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues.
[0110] Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates described herein, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Pat. No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Pat. No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Pat. No. 4,569,789, to Blattler et al.) It may also be desirable to couple more than one agent to an anti-ROR-1 antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.
[0111] A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration is intravenous, intramuscular, or subcutaneous.
[0112] It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon such factors as the antibody used, the antigen density, and the rate of clearance of the antibody. A safe and effective amount of an anti-ROR-1 agent is, for example, that amount that would cause the desired therapeutic effect in a patient while minimizing undesired side effects. Generally, a therapeutically effective amount is that sufficient to promote production of one or more cytokines and/or to cause complement- mediated or antibody-dependent cellular cytotoxicity. The dosage regimen will be determined by skilled clinicians, based on factors such as the exact nature of the condition being treated, the severity of the condition, the age and general physical condition of the patient, and so on.
[0113] siRNA
[0114] In certain therapeutic embodiments, the ROR-I antagonist is siRNA. The levels of ROR-I can be down-regulated by RNA interference by administering to the patient a therapeutically effective amount of small interfering RNAs (siRNA) specific for ROR-I. siRNA specific for ROR-I can be produced commercially from a variety of sources, such as Ambion (Austin, TX). The siRNA can be administered to the subject by any means suitable for delivering the siRNA to the blood. For example, the siRNA can be administered by gene gun, electroporation, or by other suitable parenteral or enteral administration routes, such as intravitreous injection.
[0115] RNA interference is the process by which double stranded RNA (dsRNA) specifically suppresses the expression of a gene bearing its complementary sequence. Suppression of the ROR-I gene inhibits the production of the ROR-I protein. Upon introduction, the long dsRNAs enter a cellular pathway that is commonly referred to as the RNA interference (RNAi) pathway. First, the dsRNAs get processed into 20-25 nucleotide (nt) small interfering RNAs (siRNAs) by an RNase Ill-like enzyme called Dicer (initiation step). Then, the siRNAs assemble into endoribonuclease-containing complexes known as RNA-induced silencing complexes (RISCs), unwinding in the process. The siRNA strands subsequently guide the RISCs to complementary RNA molecules, where they cleave and destroy the cognate RNA (effecter step). Cleavage of cognate RNA takes place near the middle of the region bound by the siRNA strand. Preferably, the siRNA comprises short double-stranded RNA from about 17 nucleotides to about 29 nucleotides in length, preferably from about 19 to about 25 nucleotides in length, that are targeted to the target mRNA.
[0116] As an example, an effective amount of the siRNA can be an amount sufficient to cause RNAi-mediated degradation of the target ROR-I mRNA, or an amount sufficient to inhibit the progression of a lymphoma in a subject. One skilled in the art can readily determine an effective amount of the siRNA of the invention to be administered to a given subject by taking into account factors such as the size and weight of the subject; the extent of the neovascularization or disease penetration; the age, health and sex of the subject; the route of administration; and whether the administration is regional or systemic. Generally, an effective amount of siRNA comprises an intercellular concentration of from about 1 nanomolar (nM) to about 100 nM, preferably from about 2 nM to about 50 nM, more
preferably from about 2.5 nM to about 10 nM. It is contemplated that greater or lesser amounts of siRNA can be administered.
[0117] The siRNA can be targeted to any stretch of approximately 19-25 contiguous nucleotides in any of the ROR-I niRNA target sequences. Target sequences can be selected from, for example, the sequence of ROR-I, Genebank accession number: NM 005012. Searches of the human genome database (BLAST) can be carried out to ensure that selected siRNA sequence will not target other gene transcripts. Techniques for selecting target sequences for siRNA are given, for example, in Elbashir et al. ((2001) Nature 411, 494-498). Thus, the sense strand of the present siRNA comprises a nucleotide sequence identical to any contiguous stretch of about 19 to about 25 nucleotides in the target mRNA of ROR-I. Generally, a target sequence on the target mRNA can be selected from a given cDNA sequence corresponding to the target mRNA, preferably beginning 50 to 100 nt downstream (i.e., in the 3' direction) from the start codon. The target sequence can, however, be located in the 5' or 3' untranslated regions, or in the region nearby the start codon.
[0118] Antisense
[0119] In certain therapeutic embodiments, the ROR-I antagonist is an antisense oligonucelotide. The levels of ROR-I can be down-regulated by administering to the patient a therapeutically effective amount of an antisense oligonucleotide specific for ROR-I mRNA. The antisense oligonucleotide specific for ROR-I mRNA may span the region adjacent to the initiation site of ROR-I translation.
[0120] An effective amount of the antisense oligonucleotide specific for ROR-I mRNA as isolated in a purified form may is generally that amount capable of inhibiting the production of ROR-I or reducing the amount produced or the rate of production of ROR-I such that a reduction in symptoms of lymphoma occurs. Antisense oligonucleotides can be administered via intravitreous injection at a concentration of about 10 μg/day to about 3 mg/day. For example, administered dosage can be about 30 μg/day to about 300 μg/day. As another example, ROR-I antisense oligonucleotide can be administered at about 100 μg/day. Administration of antisense oligonucleotides can occur as a single event or over a time course of treatment. For example, ROR-I antisense oligonucleotides can be injected daily, weekly, bi-weekly, or monthly. Time course of treatment can be from about a week to about a year or
more. In one example, ROR-I antisense oligonucleotides are injected daily for one month. In another example, antisense oligonucleotides are injected weekly for about 10 weeks. In a further example, ROR-I antisense oligonucleotides are injected every 6 weeks for 48 weeks.
[0121] Vaccines
[0122] As will be clear from the description herein of anti-ROR-1 antibody, the present invention also provides for use of ROR-I in vaccines against diseases, such as a lymphoma, e.g., CLL, that involve the expression of ROR-I. Because normal adult tissues do not appear to express ROR-I, it represents a tumor-specific antigen that can be targeted in active immune therapy. For example, the levels of ROR-I can be down-regulated by administering to the patient a therapeutically effective amount of a ROR-I polynucleotide or polypeptide that produces in animals a protective or therapeutic immune response against ROR-I and the effects of its expression. The vaccines can include polynucleotides or polypeptides. Methods of using such polynucleotides and/or polypeptides include use in vaccines and for generating antibodies against the polypeptides, such as those expressed by the polynucleotides. The polynucleotides can be a ROR-I gene, or a variant or fragment thereof. The polypeptides can be a ROR-I protein, or a variant or fragment thereof. In certain aspects, the ROR-I polynucleotide fragment can be a fragment comprising a fragment of the ROR-I gene. Such polynucleotide fragments can be comprised by a vector. A cell can be transformed and/or transfected by such polynucleotides and vectors and in certain aspects, the polynucleotides and vectors can express polypeptides of the invention. Typically the vaccine composition includes a pharmaceutically acceptable carrier or diluent. The teachings of U.S. Patent No. 6,287,569 to Kipps et al., incorporated herein by reference in its entirety, can readily be adapted by those of skill in the art to create the vaccines of the present invention.
[0123] When describing a vaccine, a "polynucleotide variant" refers to any degenerate nucleotide sequence. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence. For example, a variant polynucleotide consisting of 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, and 99% to the polynucleotide consisting of ibpA. A "polynucleotide fragment" of a ROR-I polynucleotide is a portion of a ROR-I polynucleotide that is less than full-length and
comprises at least a minimum length capable of hybridizing specifically with a native ROR-I polynucleotide under stringent hybridization conditions. The length of such a fragment is preferably at least 15 nucleotides, more preferably at least 20 nucleotides, and most preferably at least 30 nucleotides of a native ibpA polynucleotide sequence. A "polypeptide variant" refers to a polypeptide of differs in amino acid sequence from the ibpA polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Finally, a "polypeptide fragment" refers to any polypeptide of a portion of a ibpA polypeptide that is less than full-length {e.g., a polypeptide consisting of 5, 10, 15, 20, 30, 40, 50, 75, 100 or more amino acids of a native ROR-I protein), and preferably retains at least one functional activity of a native ROR-I protein.
[0124] DNA vaccines for ROR- 1
[0125] Polypeptides with Arg at their N-terminus have a shorter half-life in the cytosol than those with a Met residue, provided that the polypeptide has a lysine residue to function as an ubiquitin acceptor site, spaced within 20 amino acids of the N-terminus. Plasmids encoding antigens targeted for rapid degradation by the proteasome are more effective than plasmids encoding the native protein in inducing CTL responses against cells expressing the target antigen.
[0126] Vectors have been constructed that encode a chimeric ROR-I protein with ubiquitin located at the amino terminus separated from ROR- 1 by an intervening codon for Met, and one with a codon for the destabilizing amino acid Arg and an in-frame insert of a segment of lαcl. This segment contains a lysine residue spaced optimally from the N- terminus. Both constructs contain a sequence from the ubiquitine gene (SEQ ID NO: 6), followed by methionine or arginine sequence, followed by a Lad sequence (SEQ ID NO 7), and finally followed by the ROR-I cDNA sequence (SEQ ID NO: 8). As detailed further in Example 16, the constructs are useful in ROR-I DNA vaccines, with the arginine construct being expected to cause rapid degradation of the protein and thus a more predominant cellular immune response.
[0127] Many embodiments of the invention are provided through well known protocols established in the art. For example, the following references provide multiple protocols which may be adapted for use with anti-ROR-1 antibody: Vernon, S.K., Lawrence, W.C., Long, C.A., Cohen, G.H., and Rubin, B.A. Herpesvirus vaccine development: Studies of virus morphological components. In New Trends and Developments in Vaccines, ed. by A. Voller and H. Friedman. Chapter 13, pp. 179-210. MTP Press, Ltd., Lancaster (1978); Sambrook et al. (1989) Molecular Cloning—A Laboratory Manual (2nd ed.) Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, N. Y., ("Sambrook"); and Current Protocols in Molecular Biology, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (e.g., current through 1999, e.g., at least through supplement 37) ("Ausubel")), each of which are incorporated herein by reference in its entirety. With respect to vaccine technologies, U.S. Patent Application Nos. 20040253240 and 20030124141, are incorporated herein by reference in their entirety. These references also provide one of skill in the art instructions how to make and use the polynucleotides and polypeptides of the present invention for active and passive vaccines. Those of skill in the art will readily recognize how to adapt the disclosures of these references to the present polynucleotides and polypeptides of the present invention.
[0128] Kits
[0129] In carrying out various assay, diagnostic, and therapeutic methods of the invention, it is desirable to prepare in advance kits comprises a combination of an anti-ROR-1 antibody or purified anti-sera as described herein with other materials. For example, in the case of sandwich enzyme immunoassays, kits of the invention may contain a monoclonal antibody that specifically binds ROR-I optionally linked to an appropriate carrier, a freeze-dried preparation or a solution of an enzyme-labeled monoclonal antibody which can bind to the same antigen together with the monoclonal antibody or of a polyclonal antibody labeled with the enzyme in the same manner, a standard solution of purified ROR-I, a buffer solution, a washing solution, pipettes, a reaction container and the like. In addition, the kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods described herein in an assay environment. While the instructional materials typically comprise written or printed materials, they are not limited to such. Any
medium capable of storing such instructions and communicating them to an end user is contemplated. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.
[0130] Having described the invention in detail, it will be apparent that modifications, variations, and equivalent embodiments are possible without departing the scope of the invention defined in the appended claims. Furthermore, it should be appreciated that all examples in the present disclosure are provided as non-limiting examples.
EXAMPLES
[0131] The following non-limiting examples are provided to further illustrate the present invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice of the invention, and thus can be considered to constitute examples of modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
[0132] Example 1: Demonstration of Production of Anti- Adenovirus Antibody
[0133] Chronic lymphocytic leukemia (CLL) CLL cells were transduced with replication- defective adenovirus encoding CD 154 (Ad-CD 154). The seven patients of the study all had progressive intermediate or high-risk CLL by the modified Rai criteria. All patients had performance status of 0 to 2, life expectancy of more than 3 months, and normal renal, hepatic, and pulmonary function on study entry. Ad-CD 154 were prepared and transduced into CLL cells as described in Wierda et al. (2000) Blood 96, 2917-24; and Cantwell et al. (1996) Blood 88, 4676-83. Six patients received five intravenous infusions of 3-6 x 10' autologous CLL cells that had been transduced ex vivo with a replication-defective, serotype- 5 adenovirus encoding murine CD 154. Sera, collected sequentially during the studies from these 6 patients, was examined. Before treatment 4 out of 6 patients had hypogammaglobulinemia and residual 2 patients also have relatively low titers of immunoglobulins. After completion of therapy total IgG and IgM were slightly increased,
whereas serum levels of IgA were not detectably changed. (IgG; 656 ± 297 to 940 ± 487 p=0.04, IgA; 72 ± 63 to 69 ± 61 p=0.4, IgM; 38 ± 21 to 74 ± 48 p=0.07) (Figure Ia).
[0134] The antibody response was measured against the recombinant adenovirus used to transduce the CLL cells. Five of six patients had a vigorous polyclonal antibody response to adenovirus antigens following treatment (Figure IB). This response initially involved antibodies of the IgM class, and then subsequently antibodies of the IgG and IgA classes, but not IgE (Figure 1C and not shown). On average, 50-fold, 60-fold, or nearly 1, 000-fold increases in the titers of IgM, IgA, or IgG anti-adenovirus antibodies were observed, respectively. The IgG response involved antibodies of IgGl and IgG3 isotypes (Figure 1C), which primarily are observed in ThI -type immune responses. Moreover, no significant increases were observed in anti-adenovirus antibodies of the IgG4 isotype (data not shown), which typically are observed in Th2-type immune responses. Compared with this vigorous response, the increases in the titers of anti-tetanus toxin antibodies were not obvious unless patients received subsequent booster immunizations with tetanus toxoid. Patient #5 received tetanus toxoid after the second infusion of Ad-Ol 54-transduced cells and had a greater than ten- fold increase in the serum titer of anti-tetanus toxoid Ig following infusions of Ad- CD 154-transduced cells (Figure ID). All other patients failed to increase their serum titers of anti-tetanus toxoid Ig by more than three-fold following treatment. None of the treated patients developed detectable autoantibodies against autologous red cells or platelets or allogeneic blood lymphocytes or human CD 154 (data not shown). In addition, development of autoantibodies to red cells, platelets, or the human CD 154 molecule following treatment was not observed.
[0135] Example 2: Flow cytometry Analysis of Anti-CLL activities
[0136] To analyze sera for IgG anti-CLL antibodies, the cells were stained with serial dilutions of antisera for 30 minutes at 40C in RPMI- 1640 supplemented with 0.5% bovine serum albumin (BSA) (Staining media, SM). The cells were washed twice in SM and then counterstained with phycoerythrin (PE) or allophycocyanin (APC)-labeled mouse anti-human IgG, fluorescein-conjugated anti-CD3, and/or PE or APC-conjugated anti-CD 19 or anti-CD5 for 30 minutes at 40C. In others studies, CLL cells, CHO cells, and/or CHO-ROR-I cells were each stained with sera collected from treated patients or healthy adult donors, or antisera generated in mice that had been immunized against ROR-I via DNA immunization. Serial
dilutions in SM were used to stain cells as noted for studies with human antisera, except that the cells were counterstained with fluorescein-conjugated goat-anti-mouse IgG or IgM (PharMingen). The washed cells were examined using a FACSCalibur (Becton Dickinson, Mountain View, CA) and the data analyzed with Flow Jo software (Tree Star, San Carlos, CA). In most studies, CHO cells were stained with PKH26 (Sigma) prior to mixing them 1 :1 with CHO-RORI cells. This allowed for simultaneous to discriminatation of differences in antisera staining of non-transfected, PKH26-labeled CHO cells versus non-labeled CHO- ROR-I cells using flow cytometry.
[0137] To examine the capacity of the 4A5 anti-RORI mAb to bind human cells, the isolated mAb and an IgG2b isotype control mAb of irrelevant specificity were conjugated with with Alexa Fluor 647 (Molecular Probes, Invitrogen). The mean fluorescence intensity ratio (MFIR) was assessed to define the specific staining intensity of 4A5 each sample. The MFIR is the mean fluorescence intensity of cells stained with 4A5 divided by the mean fluorescence intensity of the same cell population stained with fluorochrome-coηjugated IgG2b mAb of irrelevant specificity. Intracellular staining for the zeta-associated protein of 70 kDa (ZAP-70) was also preformed.
[0138] Anti-CLL activities were determined by flow cytometry. Peripheral blood mononuclear cells (PBMC) from IgG negative CLL case or healthy donor were incubated with one-fifth diluted serum from the patient or healthy donor, and bound IgG was detected by mouse anti -human IgG antibody (Pharmingn). B cells (CD19+CD3-) were gated using anti-CD 19 antibodies conjugated APC and anti-CD3 antibody conjugated with FITC.
[0139] Example 3: ROR-I Anti-Sera Production
[0140] Anti-ROR-1 mouse sera by means of DNA vaccination with ROR-I expression vector. Eight- week old Balb/c female mice were injected intradermally with lOOμg of ROR- IcDNA (Origene) with 50μg of GM-CSF and CD 154 expression vector as adjuvants. After 3 courses of injection, sera was collected from the mice. Chinese hamster ovary cells (CHO) were obtained from the American-type Tissue Culture Collection (ATCC, Manassas, VA).
[0141] To generate CHO-ROR-I, CHO-ROR- 1-rIgG, or CH0-Wnt5a cells, the CHO cells were transfected with pROR-1, pROR-l-rlgG, or pWnt5a, respectively, using lipofectamine 2000 (Invitrogen). The cells transfected with pRORl or pROR-l-rlgG were cultured in
Dulbecco Modified Eagle's Minimal Essential Medium (DMEM, Gibco, Rockville, MD) supplemented with 10% fetal calf serum (FCS) for 24 hours and then placed in media containing G418 (250 pg/ml) or Zeocin™ (300 pg/ml) (Invitrogen, Carlsbad, CA) for selection of stable transfectants that have acquired neomycin or Zeocin™ resistance, respectively. Following selection, the cells were cloned by limiting dilution and evaluated for expression of RORl or ROR-1-rlgG by immunoblot analysis. Stable, subcloned CHO- ROR-I -rig transfectant cells were adapted to suspension culture in IMGX II medium (HyClone, Logan, UT). Suspended CHO-ROR-I -rig cells were cultured in ProCHO-5 medium (Cambrex Bio Science, Baltimore, MD), and recombinant ROR-I -rig was purified from the culture supernatant using protein A sepharose (Pierce Biotechnology, Rockford, IL). The purity of the isolated protein was assessed by polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis. The K8.1 glycoprotein of Kaposi sarcoma-associated herpes virus protein fused with the rabbit Ig (rig) Fc recombinant protein (K8.1A-rIg), was used as a control recombinant rig protein. Stable CHO-ROR-I or CHO-Wnt5a transfectants were subcloned by limiting dilution and examined for expression of RORI or Wnt5a by immunoblot analysis (data not shown).
[0142] The spleen cells of mice immunized with pRORl and found to make high-titer anti- ROR- 1 antisera were used to generate mAb-producing hybridomas. For this the splenocytes were fused with P3-X63-Ag8 in polyethylene glycol and subsequently selected in media containing hypoxanthine, aminopterin, and thymine (HAT medium). One hybridoma, designated 4A5, produced IgG2b anti-ROR-1 mAb.
[0143] CHO cells with or without transfection with ROR-I cDNA cloned into pcDNA3 vector by lipofectamine 2000 (Invitrogen) was used to determine the titer of anti-ROR-1 antibody in serum. Bound antibody from immunized mice was detected by flow cytometry using anti-mouse antibody with fluorescence (Pharmingen). To distinguish the untransfected CHO from transfectants in the mixture, it was stained with PKH26 (Sigma) according to the manufacture's protocol. Anti-ROR-1 activity was determined by incubating CHO transfectants and serum from patient followed by detection with anti-human Ig labeled with fluorescence (Southern Biotech).
[0144] The generated antisera reacted specifically with the human ROR-I -rig recombinant protein but not control K8.1A-rlg recombinant rig by ELlSA (data not shown). These anti-
ROR-1-antisera, but not the pre-immunization sera, reacted with the CLL cells from each of 8 patients tested, but not with the lymphocytes of healthy donors (N = 3) (data not shown). Splenocytes from mice with high-titer anti-ROR-1 antisera were used to generate hybridomas with P3-X63-Ag8. One hybridoma, designated 4A5, produced mouse IgG2b mAb specific for the extracellular domain of ROR-I.
[0145] The Alexa-647-conjugated 4A5 mAb specifically stained CLL cells, but not non- leukemic leukocytes (Figure 16). The fluorochrome-conjugated 4A5 mAb reacted with the CD5+/CD19+ CLL cells of each patient tested (N = 69), allowing for resolution of leukemia versus non-leukemia cells by flow cytometry (Figure 16A). The 4A5 mAb reacted with ZAP-70-positive CLL samples with similar intensity as with ZAP-70-negative CLL samples. For 4A5-stained ZAP-70-positive cases (N = 33), the average mean fluorescence intensity ratio (MFIR) was 12.0 ± 4.4 (S.D.) and the median MFIR was 12.2, with MFlR values ranging from 2.6 to 21.2. For 4A5-stained ZAP-70-negative CLL cases (N = 36), the average MFIR was 12.4 ± 5.5 (S.D.) and the median MFIR was 12.0, with MFIR values ranging from 2.4 to 25.8. In contrast, the 4A5 mAb failed to react with the blood lymphocytes of healthy donors, including normal blood B cells or CD5+/CD19+ blood B cells (Figure 16B). For 4A5-stained normal blood B cells of unrelated donors (N = 10) the average MFIR was 0.9 ± 0.1 (S.D.) and the median MFIR was 0.9, with MFIR values ranging from 0.8 to 1.3. The 4A5 mAb also did not react with non- leukemic blood mononuclear cells of patients with CLL, allowing for the single-color detection of CD5+/CD23+/CD19+, light-chain restricted leukemia cell subpopulations in the blood of patients with early-stage disease (Figure 16C). imilarly, the 4A5 mAb failed to react with non-leukemia marrow mononuclear cells, allowing for the single-color detection of CLL cells in the marrow of patients with minimal residual diesease after therapy (data not shown).
[0146] Example 4: ELISA
[0147] To produce recombinant ROR-I protein, its extracellular region was cloned into the pcDNA3-zeocin vector encoding rabbit IgG Fc region in frame. Stable CHO transfectant (CHO-ROR-IrIg) was made with this vector, and was adapted to suspension culture using IMGX II medium (HyClone). Suspended CHO-ROR-IrIg was cultured in ProCHO-5 medium, and rROR-lrlg was purified using protein A sepharose (Pierce).
[0148] For ELISA, 5 μg/ml ROR-I -rig (at 5 pglml in phosphate buffered saline, pH 7.4, (PBS)), rabbit Ig (rig) (at 5 pg/ml in PBS), or 108/ml adenovirus that had previously been heated to 650C for 15 minutes was absorbed in a 96 well plate overnight at 4°C. After washing and blocking with 2% BSA/PBS, serum dilutions of antisera were added and incubated for 1 hour at room temperature. Goat anti-human Ig, IgG, IgA, IgM, IgGl, IgG2, IgG3 and IgG4 conjugated with horseradish peroxidase (HRP) or alkaline phosphatase (AP) (Southern Biotechnology, Birmingham, AL) were used as secondary antibody. TMB (KPL, Gaithersburg, MD) or pNPP (Sigma) was used for substrate for HRP and AP respectively. All experiments were done duplicate and were shown the average.
[0149] Example 5: Analysis of microarray data
[0150] Gene expression profiles of normal human tissues were obtained from the data series GSE803 of Gene Expression Omnibus (GEO) database. The gene set of CLL signature genes were made according to the published papers Klein et al. (2001) J Exp Med 194, 1625- 38; Rosenwald et al. (2001) J Exp Med 194, 1639-47. The data were clustered and visualized with GeneSpring software (Silicon Genetics).
[0151] Example 6: Immunoblotting
[0152] Total cell lysates were made by incubation cells in a lysis buffer containing 1% Triton X-100, 50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 50 mM NaF, 5 mM EDTA, 40 mM glycerophosphate, 1 mM sodium orthovanadate, with complete protease inhibitor mix (Roche). Cell lysates were separated 7.5% or 5-15% gradient SDS-PAGE and blotted on Immobilon-P membrane (Millipore). For immunoblot, rabbit (Cell signaling) or goat (R&D) anti-ROR-1 antibodies were used followed with anti-rabbit or anti-goat antibodies conjugated with HRP (Santa Cruz). Conditioned medium of culture with CHO with or without transfection with HA-tagged Wnt5a cDNA (Upstate) was incubated with lμg of ROR-IrIg or rabbit IgG followed by immunoprecipitation with anti-HA matrix (Roche) or protein A/G agarose (SantaCruz). Bound proteins were immunoblotted with anti-HA (Roche) or anti- rabbit Ig antibody.
[0153] Example 7: Reporter assay
[0154] A reporter assay was performed as described in Lu et al. (2004) Proc Natl Acad Sci U S A 101, 3118-23. Briefly, HEK293 cells were transfected in 12-well plates by using FuGENE (Roche, Mannheim, Germany), and 0.5 μg of reporter plasmid, 0.1-0.2 μg of the control plasmid pCMXβ-gal, 100-200 ng of the various expression plasmids, and carrier DNA pBluescriptKSII, for a total of 1 μg per well. The luciferase values were normalized for variations in transfection efficiency by using the β-galactosidase internal control, and are expressed as fold stimulation of luciferase activity, compared with the designated control cultures. All of the transfection results are representative of a minimum of three independent transfections.
[0155] Example 8: Induction of Humoral Immunity Against CLL Cell
[0156] The production of anti-adenovirus antibody suggests the induction of humoral immunity against the CLL cell itself. Allogeneic CLL cells were incubated with serum from patient before and after treatment. Antibody binding was checked by flow cytometry.
[0157] Results showed that the sera from 3 patients after Ad-CDl 54 therapy had the reactivity against CLL B cells compared with the sera before therapy (Figure 2a). The shift of the histograms were reproducible with another 3 CLL B cells, and it was not detectable against B cells from healthy donors (Figure 2b). This data suggests a TAA(s) may exist on the surface of CLL cells in a hidden fashion from surveillance of immunity, becoming immunogenic after CLL received the immune-costimulatory molecules.
[0158] However, when we incubated allogeneic, IgG-negative CLL cells with serial dilutions of each sera we found that three patients (#5, #6, and #7) had IgG reactive with CLL cells after treatment that were detectable at serum dilutions of up to 1/32. This reactivity was not detected in the pre-treatment sera of any patient or the sera of healthy control donors (n = 6) (Figure 15 A, and data not shown).
[0159] The microarray analyses of CLL samples identified the relatively small number of genes that are differentially expressed in CLL cells in compared with normal B cell subsets and another types of B cell malignancies. Klein et al. (2001) J Exp Med 194, 1625-38; Rosenwald et al. (2001) J Exp Med 194, 1639-47. These CLL signature genes are candidates for TAAs of CLL. The expressions of these genes were examined in normal human tissues because where there is an abundant expression in normal tissue, antibody production against
such a gene cannot occurr in vivo. The expression profiles of CLL signature genes in normal adult tissues wad determined (data not shown). Genes that had low expressions in all tissues were spotlighted. Attention was directed to receptor tyrosine kinase ROR-I gene, because it is a probable cell surface molecule and is expressed mainly in developing cells. Yoda et al. (2003) J Recept Signal Transduct Res 23, 1-15; Al-Shawi et al. (2001) Dev Genes Evol 211, 161-71; Matsuda et al.(2001) Mech Dev 105, 153-6 (2001).
[0160] Example 9: Immunoblot
[0161] Cell lysates were prepared for immunoblot analyses using sera from patients before and after treatment. Total cell lysates were made by incubation cells in a RTP lysis buffer containing 1% Triton X-100, 50 niM Tris-HCl (pH 7.5), 100 mM NaCl, 50 mM NaF, 5 mM ethylenediaminetetraacetic acid with protease inhibitors (10 pg/mL aprotinin, 10 pg/mL leupeptin, 10 pg/mL pepstatin, and 1 mM phenylmethylsulfonyl fluoride), and phosphatase inhibitors (40 mM glycerophosphate and 1 mM sodium orthovanadate) (Roche, Basel, CH). Cell lysates were separated on a 7.5% or 5-15% gradient SDS-PAGE and transferred onto Immobilon-P membranes (Millipore, Billerica, MA). Non-specific binding sites were blocked by incubating the membranes with 10% powdered milk for 2 hours at room temperature prior to treating the membranes with patient sera (diluted 1 : 10 in phosphate buffered saline (PBS) containing 5% fetal bovine serum (FBS)) or with rabbit (Cell Signaling Technology, Boston, MA) or goat (R&D Systems, Minneapolis, MN) anti-ROR-1 -peptide antibodies in 5% FBS for overnight incubation at 40C. Antibodies to human Wnt5a (Cell Signaling Technologies, Danvers, MA) were used for detection of Wnt5a in stable CHO- Wnt5a transfectants. For detection of membrane-bound human, rabbit, or goat IgG, the washed membranes respectively were incubated with mouse anti-human IgG, anti-rabbit Ig, or anti-goat Ig that was conjugated to horseradish peroxidase (HRP) (Santa Cruz Biotechnology) for subsequent development with Super Signal West Femto Chemiluminescent Substrate (Pierce) for autoradiography with Super RX film (Fuji, Tokyo, Japan).
[0162] None of the pre-treatment sera reacted selectively with lysates prepared from CLL cells (Figure 15B, and data not shown). However, the post-treatment sera that reacted with CLL cells in the flow cytometry assay also reacted with a protein of -125 kD in lysates of CLL cells that was not apparent in lysates of normal blood lymphocytes (Figure 15B).
[0163] Consistent with the assumption that patients #5, #6, and #7 developed IgG antibodies against ROR-I, we found that their post-treatment sera, but not pre-treatment sera or sera from control donors (N = 3), reacted with Chinese hamster ovary (CHO) cells transfected with a human ROR-I expression vector (CHO-ROR-I), but not non-transfected CHO cells (Figure 15 A, and data not shown). Moreover, the positive post-treatment antisera reacted with a ~I25 kD protein in lysates of CLL cells or CHO-ROR-I cells that was not detected in lysates from normal blood lymphocytes or CHO cells (Figure 15C, and data not shown). This protein was larger than the predicted molecular size of the non-glycosylated polypeptide encoded by ROR-I (~102 kD), suggesting that the mature polypeptide expressed in CLL and CHO-ROR-I was glycosylated at deduced N-glycosylation sites.
[0164] Fig. 3 depicts an immunoblot demonstrating that the anti-ROR-1 mAb (designated 4A5) can immune precipitate the ROR-I protein from cells made to express human ROR-I (e.g. Chinese Hamster Ovary (CHO)) cells or chronic lymphocytic leukemia (CLL) cells. Prior antibodies to ROR-I were not mAbs, were generated against peptides to ROR-I, are of low affinity, and cannot immune precipitate the ROR-I protein. As such, the 4A5 mAb can be used to detect and/or isolate the ROR-I protein, which could have diagnostic, treatment, and/or investigative value.
[0165] Example 10: ROR-I Expression in CLL B Cells
[0166] The data from microarray gene-expression studies for a gene(s) used by CLL cells but not non-leukemia lymphocytes that could encode a cell surface protein that had a molecular size of -125 kD were evaluated. Among these, attention was focused on on ROR- 1, a gene that encodes a cell-surface, orphan-receptor type I tyrosine kinase of greater than 10O kD.
[0167] To confirm the ROR-I protein expression in CLL B cells, immunoblot analysis, as described above, using anti-ROR-1 antibody was performed. Results showed that the bands at the level of 128 kD were detected in peripheral blood or splenocytes from CLL patients (Figure 4a). The size is compatible with the reported murine ROR-I and bigger than deduced size of 10 IkD from amino acid sequence without putative leader sequence probably due to the glycosylation29. This band could be detected neither in samples of peripheral blood from healthy donor nor splenocytes from idiopathic thrombocytopenia purpura patient. ROR-I
protein was detectable also in some Burkitt's B cell lines at the same molecular weight (Figure 4B).
[0168] Normal lymphoid tissues and isolated CLL cells of several patients were evaluated for expression of ROR-I by immunoblot analyses using anti-ROR-1 antibodies generated against an N-terminal-region synthetic peptide corresponding to human ROR-I. This analysis revealed a protein of ~125 kD in lysates from CLL cells or CHO-ROR-I cells, but not in lysates of non-transfected CHO cells, blood mononuclear cells of healthy donors, normal blood B lymphocytes, or splenocytes of patients who did not have CLL (Figure 4 A, 17 A, and data not shown). Furthermore, the 4A5 mAb could immunoprecipitate a protein of -125 kD in lysates of CLL cells or CHO-ROR-I cells that reacted specifically with the anti-ROR-1- peptide antisera (Figure 17B). However, 4A5 could not immune precipitate this protein from lysates prepared from blood mononuclear cells or tonsillar lymphocytes of subjects who did not have CLL (Figure 17B). Moreover, ROR-I was not detectable by immunoblot analyses in the cell lysates of any other adult tissue (e.g. brain, breast, colon, heart, kidney, lung, liver, pancreas, spleen, thymus, testis, tonsil, or vascular endothelium (Figure 17C)).
[0169] Example 11: ROR-I cDNA Sequence
[0170] To isolate and sequencing of ROR-I cDNA, total cellular RNA was isolated from 1 x 107 CLL B cells using RNeasy reagents (Qiagen, Valencia, CA), per the manufacturer's instructions. First strand cDNA was synthesized from one-third of the total purified RNA using an oligo-dT primer and Superscript II RT (Invitrogen, Carlsbad CA). The remaining RNA was removed with RNase H and the cDNA purified using QlAquik purification columns (Qiagen). Three μl of cDNA was used for PCR amplification of ROR-I with 200 pM dNTPs, 3% DMSO, Phusion Hot Start DNA polymerase (New England Biolabs, Beverly, MA), IX Phusion GC Buffer (New England Biolabs), and 250 pM each of oligonucleotide primers ROR-I-F (5'-CGAGAGGAGGAATGCAC-S') and ROR-I-R (5?- ATACCACATTTACAAAAGTTGTG-3'). PCR cycling parameters were 980C for 2 min., followed by 35 cycles of 980C for 15 sec, 590C for 30 sec, and 720C for 1 min. The PCRproducts were size selected by electrophoresis in 0.8% agarose containing 0.5 pg/ml of ethidium bromide (Invitrogen), and the expected products were excised and purified using QlAquik purification columns (Qiagen). PCR products were sequenced directly using the fluorescence-dideoxy-chain-termination method and an Applied Biosystems 3730 automated
nucleic acid sequence analyzer (ABI, Foster City, CA). Nucleotide sequences were analyzed using DNASTAR (Madison, WI) and compared with nucleotide and protein sequences deposited in the GenBank sequence databases using BLAST
(http://www.ncbi.nlm.nih.qov/BLAST), and the cDNA reference sequence (accession # NM- 005012).
[0171] The sequence of the ROR-I cDNA generated from the CLL cells of each of four unrelated patients was determined. The ROR-I cDNA of one patient (A50) was identical to that of the published ROR-I cDNA sequence (NM 05012). Two other cases (A364 and A377) had ROR-I cDNA sequences that were identical to each other, but had two nucleotide differences from NM 005012 at positions 1353 and 1553. While the substitution at position 1353 was conservative, the difference at position 1553 resulted in the substitution of threonine for methionine at amino acid 518 of the ROR-I polypeptide sequence. This appears to represent a genetic polymorphism, as the ROR-I cDNA of these two cases matched the annotated genomic DNA contigs identified in the human genome project. This assumption is supported by the ROR-I sequences of the fourth CLL sample (A332), which appeared to be heterozygous, as the CLL cells expressed equal amounts of both types of ROR-I mRNA.
[0172] Example 12: Cell Surface Localization of ROR-I Protein in CLL B Cells
[0173] Cell surface localization of ROR-I protein in CLL B cells was confirmed via flow cytometry. Anti -ROR-I mouse sera, produced by means of DNA vaccination with ROR-I expression vector, as described above, was reacted with CHO transfected with ROR-I (CHO- ROR-I) but not with CHO parental cell (Figure 4c). Using this anti-serum, ROR-I expression was detected on cell surface of all CLL samples examined (n=8) but not on PBMC from healthy donors (n=3) (Figure 4d).
[Ol 74] Example 13 : Induction of Anti-ROR- 1 Antibody by Ad-CD 154 Therapy
[0175] To confirm that the antibody against ROR-I is included in the antibodies against CLL cells induced by Ad-CD 154 therapy, the sera from patients was reacted with CHO and CHO-ROR-I shown as Figure 4c. Results showed that although serum from healthy donor or patient before treatment contained same reactivity against CHO and CHO-ROR-I, sera from
patient after Ad-CD 154 therapy contained more Ig reacted with CHO-ROR-I than with CHO (Figure 5 A and B).
[0176] A recombinant ROR- 1 -rabbit Ig protein that had the extracellular domain of human ROR-I conjoined with the constant region of rabbit IgG was generated, allowing for its isolation via protein A column chromatography (Figure 6A). Serial dilutions of sera obtained from patients before (dotted line) or after (solid line) treatment were applied to plates coated with the recombinant ROR-I -rig protein, which subsequently were developed with horse- raddish peroxidase (HRP) anti-human IgG. The pre-treatment sera from each patient or from each of 3 healthy adult donors failed to react with ROR-I -rig or rig coated plates (Figure 6B and data not shown). However, the sera of patients that reacted with allogeneic CLL cells (e.g. patients #5, #6, and #7) each reacted with plates coated with ROR-I -rig (Figure 6B) even when saturating amounts of rabbit Ig were added to the sera prior to the assay. The post- treatment sera of patients #2 and #3 had low-level binding for ROR-I -rig by this ELlSA at low serum dilutions (Figure 3B). However, the post-treatment sera of patient #4 failed to react specifically with RORI-rlg, even at the lowest serum dilution (e.g. 1/10).
[0177] Further verification of the induction of anti-ROR-1 antibody by Ad-CD154 therapy was established with an ELISA assay using the recombinant extracellular domain of ROR-I fused with rabbit IgG Fc (Figure 6A). Results showed that anti-ROR-1 antibody was clearly identified in 4 patients (#2, 5, 6, 7) after Ad-CD 154 therapy. The remaining one patient (#3) also had a weak anti-ROR-1 reaction although one patient (#4) did not get anti-ROR-1 antibody by this therapy. This #4 patient was profound hypogammaglobulinemia and was totally unresponsive to this therapy with no decrease of white blood cell count (data not shown). Thus, all responsive patient to Ad-CD 154 had induction of anti-ROR-1 antibody after completion of therapy. In these patients, anti-ROR-1 antibody was not obvious before Ad-CD 154 therapy. Although three patients (#5, 6, 7) had some reactivity also against rabbit IgG, this reactivity was also detected before therapy (Figure 6C). Collectively ROR-I was expressed on CLL B cells restrictedly and could induce humoral immunity by means of immune-gene therapy.
[0178] Example 14: ROR-I Activation of Intracellular Machinery Associated with Development and Progression of CLL
[0179] To demonstrate that ROR-I can activate intracellular machinery associated with development or progression of CLL, the influence of exogenous ROR-I expression on the reporter gene regulating various transcription factors in HEK293 cells was examined. Various Wnt family members were co-transfected, as ROR-I has a cystein-rich domain, which is shared between frizzled receptors and can bind with Wnt family members.
[0180] In prior studies, it was found that CLL cells expressed high-levels of Wnt3, Wnt5b, Wnt6, WntlOa, Wntl4, and Wnt 16, but lacked expression of Wnt5a. Because ROR-I is a receptor for Wnt5a, we examined the effect of Wnt5a on CLL cells in vitro. For this CHO cells were transfected with pWnt5a and selected stable transfectants that expressed high levels of human Wnt5a, which we designated as CHO-Wnt5a. CLL cells were cultured alone or together with CHO cells or CHO-Wnt5a cells and the viability of the CD19-positive CLL cells were examined over time.
[0181] Representative studies of three experiments using CLL cells from each of 4 different patients are presented in Figure 18B. The viability of CLL cells co-cultured with CHO cells or CHO-Wnt5a cells was significantly greater than that of CLL cells cultured alone, particularly after 1 day in culture. However, in each case, the viability of CLL cells co-cultured with CHO-Wnt5a cells was significantly greater than that of CLL cells co- cultured with CHO cells, particularly at later time points. These studies revealed a previously unrecognized survival advantage for CLL cells when co-cultured with Wnt5a-expressing bystander cells.
[0182] The survival of CLL cells in vitro in the presence of anti-sera from the patients was evaluated. None of the pre- or post-treatment sera from either of the patients who developed anti-ROR-1 antibodies enhanced or reduced the viability of CLL cells relative to that of CLL cell cultured in media with normal human serum or FBS, even at serum concentrations of 20% (Figure 18B, culture conditions 1, 2, or 3, and data not shown). Because no direct effects on CLL cells of the anti-ROR-1 antisera were observed, the question of whether the sera of a treated patient could effect the survival of CLL cells co-cultured with CHO cells or CHO- Wnt5a cells in vitro was examined. For this, the pre-treatment and post-treatment sera of one patient (#5) who developed IgG anti-ROR antibodies and who also experienced a durable partial response to Ad-CD 154 gene therapy, as per NCI- working group criteria, were examined. CLL cells co-cultured with CHO-Wnt5a had significantly higher viability than
CLL cells co-cultured with CHO cells or CLL cells cultured alone in media containing 20% pre-treatment serum (Figure 18B, culture condition 5 relative to 4 or 2). However, the post- treatment serum from this patient could neutralize the capacity of CHO-Wnt5a to promote CLL-cell survival relative to that of CHO cells or media alone, even when the post-treatment serum previously had been absorbed on CHO cells (Figure 18B, culture condition 7 relative to 6 or 3). On the other hand, in the presence of post- treatment serum that previously had been absorbed on CHO-ROR-I cells, the CH0-Wnt5a cells again provided a significant survival advantage to the CLL cells relative to that provided by CHO cells (Figure 18B, culture condition 9 relative to 8 or 3).
[0183] Results showed that the expression of ROR-I with any Wnt factor did not activate T-cell transcription factor (TCF) (Figure 7a, data not shown), suggesting that ROR-I does not signal via the canonical Wnt-signaling pathway. ROR-I could not activate nuclear factors of activated T cells (NFAT), or AP-I dependent gene expression (Figure 7a). However, it was observed that co-expression of ROR-I in HEK293 cells with Wnt5a, but not with any other Wnt factor, induced activation of NF-κB (Figure 7b). Induction of NF-κB was dose dependent on expression of ROR-I and Wnt5a, but independent of expression of LPR5/6 that ordinarily serve as co-receptors for the frizzled family of Wnt receptors (data not shown). Recombinant extracellular region of ROR-I could bind with Wnt5a in vitro (Figure 7c). This data suggests non-canonical Wnt member, Wnt5a may be the ligand of ROR-I and induce the activation signaling in cells.
[0184] Example 15: Lymphoma Cell Isolation and Purification
[0185] Staining of CLL cells from patients #1 , 2, or 3 with 4A5 mAb
[0186] As depicted in Fig. 8, the number of the CLL patient is indicated at the left-hand margin. Each panel depicts the staining of CLL with Alexa-647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms). In the first column is the staining of total peripheral blood mononuclear cells, in the middle column is the staining of the CD 19+ (total B cells), and in the far right column is the staining of cells that express both CD 19 and CD5 (CLL cells), indicated at the columns' bottoms.
[0187] Staining of cells from normal donors #1, 2, or 3 with 4A5 mAb
[0188] As depicted in Fig. 9, the number of the normal donor (NORM) is indicated at the left-hand margin. Each panel depicts the staining of cells with Alexa-647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms). In the first column is the staining of total peripheral blood mononuclear cells, in the middle column is the staining of the CD 19+ (total B cells), and in the far right column is the staining of cells that express both CD 19 and CD5, as indicated at the bottom of each column.
[0189] Staining of cells from an exceptional normal donors
[0190] Recent studies indicate that close to 4% of adults over the age of 40 might have low numbers of cells similar to CLL cells in the peripheral blood. Moreover, over 11% of normal donors who have first degree relatives with CLL might have such cells in the peripheral blood. In Fig. 10, it is shown that anti-ROR-1 mAb 4A5 can detect an occasional normal donor with ROR-I positive cells. Each panel depicts the staining of cells with Alexa- 647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms). In the first column is the staining of total peripheral blood mononuclear cells, in the middle column is the staining of the CD 19+ (total B cells), and in the far right column is the staining of cells that express both CD 19 and CD5, as indicated at the bottom of each column. As can be noted from this figure, the ROR-I positive cells co- express CD5 and CD 19, a phenotype common with CLL cells.
[0191 ] Staining of CLL cells in the Marrow
[0192] In Fig. 11 , numbers corresponding to a CLL patient are provided at the left-hand margin. Each panel depicts the staining of cells with Alexa-647-conjugated 4A5 mAb (blue histogram) versus an Alexa-647-conjugated isotype control mAb (red histograms). In the first column is the staining of total marrow mononuclear cells, in the middle column is the staining of the CD 19+ (total B cells), and in the far right column is the staining of cells that express both CD 19 and CD5 (CLL cells), as indicated at the bottom of each column.
[0193] Staining of CLL cells in the Marrow
[0194] The proportion of cells that express ROR-I, as detected by the mAb 4A5, are indicated in Fig. 12. Each dot represents the proportion of cells from a single donor. The
percent of cells scoring positive is indicated by the y-axis. The left hand panel provides the percent lymphocytes (as per light scatter) that stain with 4A5 mAb. The right panel provides the percent of CD5+CD19+ B cells that stain with 4A5. The left panel provides the percent of lymphocytes that stain with 4A5 in samples obtained from the blood normal donors (far left), the marrow of patients with CLL (middle), or blood of patients with CLL (far right).
[0195] Example 16: Magnetic Bead Detection and Isolation of Lymphoma Cells
[0196] Lymphoma cells can be isolated and purified using the following procedure:
1. Stain CLL cells with PKH67
2. Titrate CLL cells in normal PBMCs (10% to 0.1%)
3. Stain cells with:
a.Iso-Alexa647 , CD5,CD19
b.4A5-Alexa647, CD5,CD19
4. Incubate for 20 min on ice followed by a wash 2X with PBS-0.5%BSA
5. Add magnetic beads(Miltenyi)to cells; Incubate 15 min on ice; Wash IX with PBS- 0.5%BSA)
6. Add column to magnet; Wash IX with 3ml PBS-0.5%BSA
7. Add this mixture to pre washed column; Wash unbound cells 3X with 3ml PBS-0.5%BSA; (unbound fraction=4A5 NEG)
8. Remove column from magnet; Add 5ml PBS-0.5%BSA; ( bound fraction=4A5 POS)
[0197] Detection of CLL cells admixed with normal lymphocytes
[0198] 4A5+ CLL cells admixed with the lymphocytes from normal donors are shown in Fig. 13. CLL cells were first stained with PKH67, which labeled them bright green (as observed on the x axis), allowing for their detection after being admixed with normal lymphocytes. The stained CLL cells were mixed with the lymphocytes of a normal donor
and then the mixture was stained with an Alexa-647-conjugated isotype control niAb (ISO) Alexa-647-conjugated 4A5, allowing for detection of the red fluorescence seen on the y-axis.
[0199] Each panel represents a different mixture of cells stained with either the isotype control mAb or 4A5, as indicated in the key, which refers to the number in each panel of the figure. Those samples stained with the isotype control mAb are indicated by the term "Iso", those samples stained with 4A5 are indicated. The percent preceding the CLL is the percent at which the CLL cells are represented in the mixture. As seen from this figure, the 4A5 mAb does not stain normal lymphocytes, allowing for detection of minute proportions of CLL cells that are labeled green.
[0200] Isolation of CLL cells admixed with normal lymphocytes
[0201] Isolated 4A5+ CLL cells admixed with the lymphocytes from normal donors are indicated in Fig. 14. CLL cells were stained, mixed with normal lymphocytes at various ratios, and then stained with fluorochrome-conjugated 4A5 mAb, as in Slide #6. Each panel represents analyses of cells isolated from different mixtures of CLL cells with normal lymphocytes, as indicated in the key, which refers to the number in each panel of the figure. The percent preceding the CLL is the percent at which the CLL cells are represented in the mixture.
[0202] As seen from this figure, the 4A5 mAb does not stain normal lymphocytes, allowing for detection of minute proportions of CLL cells that are labeled green. As can be seen in these panels, this method can isolate fairly pure populations of CLL cells from mixtures of CLL cells with normal lymphocytes in which the CLL cells constitute only a small fraction of the total cells.
[0203] Example 17: Detection of ROR-I antibody in cancer but not normal cells
[0204] To evaluate ROR-I surface expression in the human cell lines listed in the Table below (Table 1), CHO cells were used as a negative control and CHO-ROR-I cells as a positive control for flow cytometry. The ROR-I antibody was the 4A5 mAb. The control mAb was a conjugated isotype lgG2b mAb.
[0205] The following cell lines stained brightly with the 4A5 mAb, confirming ROR-I expression: EW536, CLL, 786-0, HCTl 16, HT29, SW620, MDA-MB-231, MDA-MB-431,
and MDA-MB-468. CHO, MOLT-4, SW948, MCF-7, and SKBR3 were negative for ROR-I expression, indicating preferential ROR-I expression in this population among adenocarcinoma and lymphoma.
[0206] In immunoblot studies of the same adult cancer tissues (using a ROR-I antibody raised against ROR-I peptide), the same cancer tissues reacted to indicate ROR-I expression. Using the A5A mAb, immunoprecipitation studies confirmed that ROR-I was not found on normal tonsil cells of CHO, but is strongly expressed in CLL, B cell lymphoma, and breast adenocarcinomas, less so in colon adenocarcinoma (data not shown).
Table 1: Descriptions Of The Various Cell Lines Used In Example 17
Name Source of Cells
CHO Chinese hamster ovary cells
CHO-ROR- 1 CHO cells transfected to express human ROR- 1
EW36 Endemic African Burkitt's lymphoma (a B cell lymphoma)
M0LT4 Human T cell lymphoma
CLL Human chronic lymphocytic leukemia
786-0 Human renal cell carcinoma cell line
HCT 116 Human colon adenocarcinoma cell line
HT-29 Human colorectal adenocarcinoma cell line
SW620 Human colon adenocarcinoma cell line
SW948 Human colon cancer cell line
MCF-7 Human, Caucasian, breast, adenocarcinoma
MDA-MB-231 Highly aggressive human, Caucasian, breast, adenocarcinoma
MDA-MB-431 Highly aggressive human, Caucasian, breast, adenocarcinoma
MDA-MB-468 Highly aggressive human, Caucasian, breast, adenocarcinoma
SKBR3 Human mammary carcinoma
[0207] Example 18: ROR- 1 DNA Vaccine Constructs
[0208] Vectors were constructed to encode the chimeric ROR-I protein with ubiquitin located at the amino terminus separated from ROR-I by an intervening codon for Met, and a separate vector with a codon for the destabilizing amino acid Arg and an in-frame insert of a segment of lad. This segment contains a lysine residue spaced optimally from the N- terminus. To generate the constructs, ROR-I was PCR amplified from the pCMV6-XL- ROR-I vector (Origene) using primers that encoded for Notl and Xbal. The PCR product was gel-purified, cut with those restriction enzymes and ligated into a pcDNA3 subclone that contained the chimeric Ub-M-(lacI) or Ub-R-(lacI). The final construct contains ROR-I 3' of these sequences: Ub-M-ROR-I and Ub-R-ROR-I.
[0209] Confirmation of ROR-I protein expression by cell-free assay
[0210] The constructs were evaluated for their capacity to direct synthesis of the ROR-I protein. For this in vitro transcription and translation was performed using the TNT Quick coupled Transcription/Translation System from Promega in the presence of biotinylated lysine-specific tRNA. A luciferase plasmid served as positive control for the reaction. Both constructs allowed for the expression of one predominant protein at the size of ROR-I.
[0211] To demonstrate ROR-I protein expression in mammalian cells, P815 cells were transfected with Ub-M-ROR-I or Ub-R-ROR-I using the Amaxa transfection system according to manufacturer's instructions using program L 13. The generation of such cells is described below.
[0212] Generation of P815 cells expressing ROR- 1
[0213] To examine the magnitude of the immune response generated by the Ub-M-ROR-I and Ub-R-ROR-I DNA vaccine, CTL activity of splenocytes harvested from immunized mice will be assessed against the H-2d mastocytoma, P815, and P815 cells transfected to express human ROR-I. To generate P815 cells that stably expressed ROR-I, P815 cells were transfected with pcDNA3 -ROR-I, generated using the Amaxa transfection system. To select ROR-I expressing cells, the cells were grown in G418 (400 μg/ml). Subsequently the cells were sub-cloned by limited dilation and analyzed for ROR-I expression by flow cytometry. A stable Pl 85 clone was generated that expresses ROR-I (Figure 17; P815-ROR-1). This cell line will serve as target for CTL assays.
[0214] To generate stable transfectants, the cells were subsequently cultured under selection pressure in the presence of 400 μg/ml G418. G418-resistant cells were cloned by limiting dilution. To evaluate the relative intracellular stability of the transgene products in the transfected P815 cells, cells were cultured in the presence of a 26S proteasome inhibitor. P815 cells, and P815 cells stably transfected with the Ub-M-ROR-I or Ub-R-ROR-I constructs were incubated in 100 μM of the proteasome inhibitor LLnL (N-acetyl-L-leucinyl- L-leucinal-L-norleucinal) for 18 h. Lysates were prepared from the transfected cells and evaluated by Immunoblot for ROR-I expression.
[0215] As expected, in the absence of LLnL, only P815 cells transfected with the Ub-M- ROR-I, but not with Ub-R-ROR-I expressed detectable ROR-I protein. Non- transfected P815 cells did not express ROR-I. When both transfectants were cultured in the presence of
LLnL a strong increase in ROR-I expression was observed. These results show that ROR-I expressed from the Ub-M-ROR-I and more so from the Ub-R-ROR-I constructs was degraded in the proteasome.
[0216] These constructs can be reasonably expected to induce antibody responses or anti- ROR-I CTL responses. To this end, cell based assays are useful to confirm the activity of candidate ROR-I vaccines, to compare and contrast activity among candidates and with ROR-I constructs that are not targeted for degradation. CTL activity is measurable using ROR-I expressing target cells and target cells without ROR-I as controls; e.g., in the P815 cells described.
[0217] Example 19 : CLL Cell Culture Assays
[0218] CHO cells or CH0-Wnt5a cells were cultured in DMEM supplemented with 10% FBS. These cells were plated into separate wells of 24- well culture plates in 500 pi media at 5 x 105 cells/well.
[0219] Primary CLL cells from different patients that were viably frozen in 10% DMSO/50% FBS for storage in liquid nitrogen were rapidly thawed, suspended in cold RPMl media (40C), washed thrice, and then suspended in RPMl media at 1 x 107 cells/ml. The viability of each CLL cell population exceeded 85%. CLL cells at 5x106 cells/well were seeded onto wells containing media alone or CHO cells or CHO-Wnt5a cells. The viability of the CD19+ CLL cells in each of quadruplicate wells for each condition and time point was examined by flow cytometry after staining the cells with PI and DiOC6.
[0220] Patient sera collected before (pre) or two weeks after (post) treatment with autologous Ad-CD 154-transduced CLL cells were examined for their capacity to alter the viability of primary CLL cells cultured alone or together with CHO cells or CHO-Wnt5a cells. For studies using absorbed serum samples, 20% human serum in RPMI was used to suspend cell pellets of CHO cells or CHO-ROR-I cells to a final cell concentration of 2 x 108 ml. The samples were incubated for 30 minutes at 40C and then spun at 200 x g for 4 minutes. The supernatant from each was removed and used as culture media. For this, 2.5 x 106 CLL cells in 250 μl of media were added to each well of a 48-well culture plate that contained 250 μl of culture media alone or 250 μl of culture media with 2.5 x 105 CHO cells or CHO-Wnt5a cells. Quadruplicate wells for each condition were harvested after 48 hours and the viability
of the cultured CD19+ CLL cells measured by flow cytometry after staining the cells with PI and DiOC6.
Claims
1. An isolated antibody that specifically binds ROR- 1 protein with a dissociation constant of below a Kd value selected from the group consisting of 10~6 mol/1, 10~7 mo 1/1, and l(T8 mol/l.
2. The antibody according to claim 1, wherein the ROR-I protein is encoded by the nucleotide sequence of SEQ ID No. 1.
3. The antibody according to claim 1, wherein the antibody is a polyclonal antibody, a monoclonal antibody, or is humanized.
4. A pharmaceutically acceptable anti-ROR-1 antibody composition comprising the antibody according to claim 1 and a pharmaceutically acceptable carrier.
5. Purified serum comprising anti-sera that abrogate interaction between Wnt5a and ROR-I.
6. Purified serum accorded Accession No. PTA-8634 by the American Type Culture Collection.
7. A vaccine for the treatment or prevention of a ROR-I cancer in a subject, comprising a cell transfected with a nucleic acid sequence having at least 85% identity with SEQ ID No. 1, a recombinant expression vector containing a nucleic acid sequence having at least 85% identity with SEQ ID No. 1 for expression thereof, or an ROR-I protein encoded by a nucleic acid sequence having at least 85% identity with SEQ ID No. 1.
8. A method for detecting ROR-I protein in a subject sample, the method comprising:
(a) contacting the subject sample with a detectably labeled anti-ROR-1 antibody of claim 1; and
(b) detecting immunoreactivity between the anti-ROR-1 antibody and ROR-I in the sample.
9. The method according to claim 8, further comprising (c) determining whether an increase or decrease in an amount of ROR-I protein has occurred in the subject in comparison to a control level of ROR-I.
10. The method according to claim 9, wherein the sample is from a subject that is suspected or known to contain cancer cells.
11. A kit to detect the presence of ROR-I protein in a sample from a subject that is known or suspected to contain cancer cells, comprising the antibody of claim 1 and instructions for its use in an assay environment.
12. A method for treating a ROR-I cancer in a human subject, the method comprising administering to the subject in need thereof a therapeutically effective amount of a ROR-I receptor antagonist.
13. The method according to claim 12, wherein the ROR-I cancer is a lymphoma or adenocarcinoma.
14. The method according to claim 13, wherein the lymphoma is selected from the group consisting of CLL, small lymphocytic lymphoma, marginal cell B-CeIl lymphoma, and Burkett's Lymphoma, colon adenocarcinoma, and breast adenocarcinoma.
15. The method according to claim 14, wherein the lymphoma is CLL.
16. The method according to claim 12, wherein the ROR-I receptor antagonist is the anti -ROR-I antibody of claim 1.
17. A method according to claim 16, wherein the antibody is administered in an amount of (i) about 0.05 mg to about 2.5 mg; (ii) about 0.1 mg to about 1 mg; or (iii) about 0.3 mg to about 0.5 mg.
18. A method for treating or preventing CLL in which ROR- 1 binding of Wnt5a on CLL cells confers a survival advantage thereon, comprising administering isolated ROR-I antibodies or purified serum containing anti-sera that binds to a protein encoded by a nucleotide sequence of SEQ ID NO. 1.
19. A method for protecting against the occurrence of diseases involving expression of ROR-I in a human subject, the method comprising administering to the subject in need thereof a vaccine according to claim 7 in an amount effective to elicit antibodies against ROR-I in the subject.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/545,731 US8212009B2 (en) | 2005-10-28 | 2009-08-21 | Methods and compounds for lymphoma cell detection and isolation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/709,917 US20070207510A1 (en) | 2005-10-28 | 2007-02-21 | Methods and compounds for lymphoma cell detection and isolation |
US11/709,917 | 2007-02-21 | ||
US97181807P | 2007-09-12 | 2007-09-12 | |
US60/971,818 | 2007-09-12 |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/042689 Continuation-In-Part WO2007051077A2 (en) | 2005-10-28 | 2006-10-30 | Methods and compounds for lymphoma cell detection and isolation |
US11/709,917 Continuation US20070207510A1 (en) | 2005-10-28 | 2007-02-21 | Methods and compounds for lymphoma cell detection and isolation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/545,731 Continuation-In-Part US8212009B2 (en) | 2005-10-28 | 2009-08-21 | Methods and compounds for lymphoma cell detection and isolation |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2008103849A2 true WO2008103849A2 (en) | 2008-08-28 |
WO2008103849A3 WO2008103849A3 (en) | 2008-10-23 |
WO2008103849A4 WO2008103849A4 (en) | 2009-01-22 |
Family
ID=39710749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/054613 WO2008103849A2 (en) | 2005-10-28 | 2008-02-21 | Methods and compounds for lymphoma cell detection and isolation |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008103849A2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011054007A1 (en) * | 2009-11-02 | 2011-05-05 | Oxford Biotherapeutics Ltd. | Ror1 as therapeutic and diagnostic target |
GB2476293A (en) * | 2009-12-18 | 2011-06-22 | Biolnvent Internat Ab | Therapeutic inhibition of ROR-1 |
WO2012045085A1 (en) * | 2010-10-01 | 2012-04-05 | Oxford Biotherapeutics Ltd. | Anti-rori antibodies |
WO2011159847A3 (en) * | 2010-06-15 | 2012-05-18 | The Regents Of The University Of California | Receptor tyrosine kinase-like orphan receptor 1 (ror1) single chain fv antibody fragment conjugates and methods of use thereof |
EP2789630A1 (en) | 2013-04-09 | 2014-10-15 | EngMab AG | Bispecific antibodies against CD3e and ROR1 |
US8877199B2 (en) | 2009-05-15 | 2014-11-04 | The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | B cell surface reactive antibodies |
US20150232569A1 (en) * | 2012-08-24 | 2015-08-20 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis |
WO2016055592A1 (en) | 2014-10-09 | 2016-04-14 | Engmab Ag | Bispecific antibodies against cd3epsilon and ror1 |
US9316646B2 (en) | 2009-04-23 | 2016-04-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-human ROR1 antibodies |
US9523695B2 (en) | 2011-01-14 | 2016-12-20 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
EP2513146B1 (en) | 2009-12-18 | 2017-05-03 | Kancera AB | Antibodies against ror1 capable of inducing cell death of cll |
WO2018014001A1 (en) | 2016-07-14 | 2018-01-18 | Fred Hutchinson Cancer Research Center | Multiple bi-specific binding domain constructs with different epitope binding to treat cancer |
US10618959B2 (en) | 2016-01-20 | 2020-04-14 | Nbe-Therapeutics Ag | ROR1 antibody compositions and related methods |
US10688181B2 (en) | 2016-06-27 | 2020-06-23 | The Regents Of The University Of California | Cancer treatment combinations |
US10758556B2 (en) | 2017-08-07 | 2020-09-01 | Nbe-Therapeutics Ag | Anthracycline-based antibody drug conjugates having high in vivo tolerability |
US11845793B2 (en) | 2015-10-30 | 2023-12-19 | Nbe-Therapeutics Ag | Anti-ROR1 antibodies |
-
2008
- 2008-02-21 WO PCT/US2008/054613 patent/WO2008103849A2/en active Application Filing
Non-Patent Citations (5)
Title |
---|
BASKAR S. ET AL.: 'Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia' CLINICAL CANCER RESEARCH vol. 14, no. 2, 15 January 2008, pages 396 - 404 * |
FUKUDA T. ET AL.: 'Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a' PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE, USA vol. 105, no. 8, 19 February 2008, pages 3047 - 3052 * |
KATOH M.: 'WNT/PCP signaling pathway and human cancer (review)' ONCOLOGY REPORTS vol. 14, no. 6, December 2005, pages 1583 - 1588, XP009104214 * |
MASIAKOWSKI P. AND CARROLL R.D.: 'A novel family of cell surface receptors with tyrosine kinase-like domain' JOURNAL OF BIOLOGICAL CHEMISTRY vol. 267, no. 36, 25 December 1992, pages 26181 - 26190, XP002266720 * |
PAGANONI S. AND FERREIRA A.: 'Expression and subcellular localization of Ror tyrosine kinase receptors are developmentially regulated in cultured hippocampal neurons' JOURNAL OF NEUROSCIENCE RESEARCH vol. 73, 15 August 2003, pages 429 - 440 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9316646B2 (en) | 2009-04-23 | 2016-04-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-human ROR1 antibodies |
US8877199B2 (en) | 2009-05-15 | 2014-11-04 | The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | B cell surface reactive antibodies |
WO2011054007A1 (en) * | 2009-11-02 | 2011-05-05 | Oxford Biotherapeutics Ltd. | Ror1 as therapeutic and diagnostic target |
GB2476293A (en) * | 2009-12-18 | 2011-06-22 | Biolnvent Internat Ab | Therapeutic inhibition of ROR-1 |
EP2513146B1 (en) | 2009-12-18 | 2017-05-03 | Kancera AB | Antibodies against ror1 capable of inducing cell death of cll |
US9242014B2 (en) | 2010-06-15 | 2016-01-26 | The Regents Of The University Of California | Receptor tyrosine kinase-like orphan receptor 1 (ROR1) single chain Fv antibody fragment conjugates and methods of use thereof |
WO2011159847A3 (en) * | 2010-06-15 | 2012-05-18 | The Regents Of The University Of California | Receptor tyrosine kinase-like orphan receptor 1 (ror1) single chain fv antibody fragment conjugates and methods of use thereof |
US9938350B2 (en) | 2010-06-15 | 2018-04-10 | The Regents Of The University Of California | Receptor tyrosine kinase-like orphan receptor 1 (ROR1) single chain Fv antibody fragment conjugates and methods of use thereof |
US11548953B2 (en) | 2010-06-15 | 2023-01-10 | The Regents Of The University Of California | Receptor tyrosine kinase-like orphan receptor 1 (ROR1) single chain Fv antibody fragment conjugates and methods of use thereof |
EP3828205A1 (en) * | 2010-10-01 | 2021-06-02 | Oxford BioTherapeutics Ltd | Anti-ror1 antibodies |
WO2012045085A1 (en) * | 2010-10-01 | 2012-04-05 | Oxford Biotherapeutics Ltd. | Anti-rori antibodies |
EP3219731A1 (en) * | 2010-10-01 | 2017-09-20 | Oxford BioTherapeutics Ltd | Anti-ror1 antibodies |
US9228023B2 (en) | 2010-10-01 | 2016-01-05 | Oxford Biotherapeutics Ltd. | Anti-ROR1 antibodies and methods of use for treatment of cancer |
US12222355B2 (en) | 2011-01-14 | 2025-02-11 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
US9523695B2 (en) | 2011-01-14 | 2016-12-20 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
US11536727B2 (en) | 2011-01-14 | 2022-12-27 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
US10627409B2 (en) | 2011-01-14 | 2020-04-21 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
US9933434B2 (en) | 2011-01-14 | 2018-04-03 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
US10900973B2 (en) | 2011-01-14 | 2021-01-26 | The Regents Of The University Of California | Therapeutic antibodies against ROR-1 protein and methods for use of same |
US11312787B2 (en) | 2012-08-24 | 2022-04-26 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ROR1 cancers and inhibiting metastasis |
US9758591B2 (en) * | 2012-08-24 | 2017-09-12 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ROR1 cancers and inhibiting metastasis |
US10344096B2 (en) | 2012-08-24 | 2019-07-09 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ROR1 cancers and inhibiting metastasis |
US12162950B2 (en) | 2012-08-24 | 2024-12-10 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ROR1 cancers and inhibiting metastasis |
AU2013306390B2 (en) * | 2012-08-24 | 2018-07-05 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ROR1 cancers and inhibiting metastasis |
US20150232569A1 (en) * | 2012-08-24 | 2015-08-20 | The Regents Of The University Of California | Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis |
EP2789630A1 (en) | 2013-04-09 | 2014-10-15 | EngMab AG | Bispecific antibodies against CD3e and ROR1 |
WO2016055592A1 (en) | 2014-10-09 | 2016-04-14 | Engmab Ag | Bispecific antibodies against cd3epsilon and ror1 |
US11952421B2 (en) | 2014-10-09 | 2024-04-09 | Bristol-Myers Squibb Company | Bispecific antibodies against CD3EPSILON and ROR1 |
US11845793B2 (en) | 2015-10-30 | 2023-12-19 | Nbe-Therapeutics Ag | Anti-ROR1 antibodies |
US11242388B2 (en) | 2016-01-20 | 2022-02-08 | Nbe-Therapeutics Ag | ROR1 antibody compositions and related methods |
US10618959B2 (en) | 2016-01-20 | 2020-04-14 | Nbe-Therapeutics Ag | ROR1 antibody compositions and related methods |
US11654193B2 (en) | 2016-06-27 | 2023-05-23 | The Regents Of The University Of California | Cancer treatment combinations |
US10688181B2 (en) | 2016-06-27 | 2020-06-23 | The Regents Of The University Of California | Cancer treatment combinations |
WO2018014001A1 (en) | 2016-07-14 | 2018-01-18 | Fred Hutchinson Cancer Research Center | Multiple bi-specific binding domain constructs with different epitope binding to treat cancer |
US12121527B2 (en) | 2017-08-07 | 2024-10-22 | Nbe-Therapeutics Ag | Anthracycline-based antibody drug conjugates having high in vivo tolerability |
US10758556B2 (en) | 2017-08-07 | 2020-09-01 | Nbe-Therapeutics Ag | Anthracycline-based antibody drug conjugates having high in vivo tolerability |
Also Published As
Publication number | Publication date |
---|---|
WO2008103849A3 (en) | 2008-10-23 |
WO2008103849A4 (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8212009B2 (en) | Methods and compounds for lymphoma cell detection and isolation | |
WO2008103849A2 (en) | Methods and compounds for lymphoma cell detection and isolation | |
US20230110249A1 (en) | Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis | |
US8367356B2 (en) | Gelsolin binding agent compositions and uses of same | |
JP2018197236A (en) | Anti-tumor immune response to modified self-epitope | |
CN101820910B (en) | Antibodies that bind intracellular PRL-1 polypeptides or PRL-3 polypeptides | |
KR20080059449A (en) | Therapeutic Agents | |
JP2009526020A (en) | Secreted frizzled-related protein 4 (SFRP-4) protein binding agent | |
US20250084159A1 (en) | Mct11 antibodies to treat t cell functional exhaustion and enhance cancer immunotherapy | |
HK40055783A (en) | Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis | |
HK40005045A (en) | Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08730419 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08730419 Country of ref document: EP Kind code of ref document: A2 |