[go: up one dir, main page]

WO2008138175A1 - Procédé d'utilisation d'eau de mer concentrée, très dure et très salée, en tant qu'eau de refroidissement industrielle en circulation - Google Patents

Procédé d'utilisation d'eau de mer concentrée, très dure et très salée, en tant qu'eau de refroidissement industrielle en circulation Download PDF

Info

Publication number
WO2008138175A1
WO2008138175A1 PCT/CN2007/001699 CN2007001699W WO2008138175A1 WO 2008138175 A1 WO2008138175 A1 WO 2008138175A1 CN 2007001699 W CN2007001699 W CN 2007001699W WO 2008138175 A1 WO2008138175 A1 WO 2008138175A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hardness
cooling
cooling tower
seawater
Prior art date
Application number
PCT/CN2007/001699
Other languages
English (en)
French (fr)
Inventor
Dezhi Shao
Yanxin Wang
Jianguo Bao
Wanli Hu
Xuelv Zheng
Yingying Zhang
Shucheng Mi
Original Assignee
China University Of Geosciences (Wuhan City)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University Of Geosciences (Wuhan City) filed Critical China University Of Geosciences (Wuhan City)
Publication of WO2008138175A1 publication Critical patent/WO2008138175A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the invention provides a method for utilizing high hardness and high salinity concentrated seawater as industrial circulating cooling water, which is an ozone corrosion instead of adding a corrosion inhibitor, a scale inhibitor and a bactericidal algicide to solve the corrosion protection and knot of the system. Water-saving and environmental protection technology for scale, sterilization and algae killing. Background technique
  • the conductivity of seawater is only two orders of magnitude higher than that of ordinary fresh water. This determines that the resistive retardation of seawater is much smaller than that of freshwater, and seawater is more corrosive than freshwater. And the proportion of chloride in the salt content of seawater is very large, and the chlorine content of seawater is as high as 19%, so most metals such as iron, steel, cast iron, etc. cannot be in seawater.
  • T/CN2007/001699 establishes a passive state. At the same time, there are many kinds of microorganisms and large organisms in seawater, and the content is high, which is prone to biofouling, which leads to the corrosion of microbes or the corrosion of scales.
  • the concentration of scale ions such as Ca 2+ and Mg 2+ in seawater is much higher than that of ordinary fresh water, and the concentration tends to increase with the concentration factor.
  • the ordinary scale inhibitor and dispersant cannot effectively control the deposition of chemical scale.
  • the use of concentrated seawater as circulating cooling water has more serious problems of corrosion, scaling and fouling. Seawater circulating cooling water treatment is more difficult than freshwater circulation; concentrated seawater for circulating cooling water treatment is more difficult than seawater circulation cooling.
  • the object of the present invention is to provide a method for using industrial water circulating cooling water with high hardness and high salinity to achieve high hardness and high salinity seawater, high hardness and high salinity.
  • the wastewater is treated with three additives such as corrosion inhibitor, scale inhibitor and bactericidal algicide to save water and protect the environment.
  • the technical solution of the present invention is to provide a method for utilizing high hardness and high salinity concentrated seawater for industrial circulating cooling water, the method comprising the following steps: equipment for corrosion and scaling in a cooling system Washed with a cleaning agent and passivated with a passivating agent;
  • the storage tank under the cooling tower is equipped with a layer of activated carbon loaded with nanometer Ti0 2 with a thickness of 600mm. It is equipped with an ozone aeration system or a mixed jet system to catalyze the oxidation of ozone to make C0D 60mg/L in water. ; 0 3 0. 05-0. 20 mg/L; D0 ⁇ 2. 0 mg/L; d.
  • the water in the step c is filtered into the filter, and the concentration of the ozone in the filtered water is maintained at 0. 05-0. 2mg / L, when less than 0. 05mg / L additional ozone; e. heat Exchange
  • the treated water enters the heat exchange system, and the water from the heat exchange system enters the cooling tower for cooling and returns to the reservoir below the cooling tower.
  • the above water needs to supplement the water evaporated in the cooling process, and the added amount is balanced with the evaporation amount.
  • the effect of the invention is that the treatment method is used without rust inhibitor, corrosion inhibitor and bactericidal algaecide, and the total hardness of the treated water is as high as 4000-40000 mg/L, and the chloride is as high as
  • FIG. 1 is a process flow diagram of the present invention.
  • the present invention utilizes high hardness and high salinity concentrated seawater working with the present invention in conjunction with the accompanying drawings and embodiments.
  • the method of circulating cooling water is explained.
  • the reaction mechanism of the method for using the high hardness and high salinity concentrated seawater as the industrial circulating cooling water according to the invention is generally considered according to the role of ozone in the industrial circulating water of fresh water:
  • Ozone is a kind of oxidizing agent with strong oxidizing ability. It can directly oxidize unsaturated fatty acids, enzymes and proteins that make up cells, and oxidize macromolecular organic substances into small inorganic molecules, thus playing a good role in bactericidal and algae-killing;
  • Ozone can form a layer of Y-Fe 2 0 3 oxide film on the metal surface, which increases the corrosion resistance of the metal and reduces the corrosion rate.
  • the application of nano-scale Ti0 2 activated carbon is to reduce the energy consumption of ozone, in order to better play the role of sterilization and algae reduction and reduce COD.
  • the method for treating industrial circulating cooling water using high hardness and high salinity concentrated seawater comprises the following steps:
  • the equipment and pipelines that have been corroded and scaled in the cooling system are cleaned with a cleaning agent, and passivated with tap water containing a passivating agent for 24 hours to passivate.
  • the passivating agent used is a commercially available prepreg agent such as a tungsten type, a phosphorus type or a molybdenum type.
  • Collecting water and sinking T/CN2007/001699 will be concentrated seawater after seawater desalination or other concentrated high salinity high hardness brackish water, industrial wastewater (Pomeranian has reached about 10, hardness is 20000-70000mg / L, its hardness to include Calcium carbonate meter 100-250mg/L)
  • the suspended matter is removed and collected in a reservoir under the cooling tower.
  • microfiltration equipment such as ceramic stainless steel, fiber bundle or membrane filtration is used.
  • the high-hardness and high-salinity seawater described in this step includes high-hardness and high-salt concentrated seawater and high-hardness and high-salt industrial wastewater after desalination.
  • the storage tank under the cooling tower is filled with a nanometer-sized Ti0 2 activated carbon with a thickness of about 600 mm, and is equipped with an ozone aeration system for catalytic ozonation to make C0D 60rag/L in water; 0 3 0. 05-0. 20 rag/L; D0 ⁇ 2. 0 mg/l, the nano-sized Ti0 2 activated carbon in this step accelerates ozone and photocatalytic oxidation, sterilizes algae, decomposes aquatic organisms and other organic substances, which is beneficial to increase ozone oxidation.
  • Ability energy saving.
  • step c The water treated in step c is filtered into the filter, and the fiber bundle filter is used to backflush every 8 hours, and the recoil is simultaneously compressed air, and the recoil time is about ten minutes.
  • the concentration of ozone in the filtered water is maintained at 0. 05-0. 2rag / L, when less than 0. 05mg / L, add ozone to 0. 05-0, 2mg / L.
  • the treated water enters the heat exchange system, the water from the heat exchange system is then cooled into the cooling tower and returned to the reservoir under the cooling tower.
  • the cooling tower there will be A part of the water is evaporated, and the treated domestic water (middle water) can be replenished into the volatilized portion, and the added amount is balanced with the evaporation amount.
  • the salt content of industrial wastewater in a plant is as high as 10-20Be ', and the content of main components is as follows: Collected in the reservoir under the cooling tower;
  • a storage tank containing nano-scale Ti0 2 (thickness about 600mm) is installed in the reservoir under the cooling tower, and an ozone aeration system is installed; catalytic ozone oxidation reaction is carried out to make C0D 60mg/L in water; 0 3 0. 05-0. 20mg/L ; D0 2. 0mg/L.
  • step 4 The water treated in step 3 is filtered into a fiber bundle filter
  • the water from the heat exchange system is cooled by the cooling tower and returned to the reservoir below the cooling tower.
  • the treated water will volatilize part of the cooling tower during the cooling process, adding “middle water after domestic sewage treatment”, the amount of addition is controlled by the water level of the reservoir; Water" (usually fresh water) sprayed from the top of the cooling tower;
  • the fiber bundle filter used in the filtration is backflushed once every 8 hours, and the recoil is simultaneously compressed air, and the recoil time is about ten minutes;
  • the recoil water enters the sludge concentration tank of the domestic sewage treatment facility and is treated regularly;
  • passivation cycle depending on the concentration of ferrous ions in the water (generally stable at 0. 03mg / L) is higher than 0. 04mg / L when the operation is stopped, the domestic water used (middle water) is added to the volatilized part, rinse
  • the hot swap system can be restarted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

利用高硬度高盐度浓缩海水作工业循环冷却水,的方法 技术领域
本发明提供一种利用高硬度高盐度浓缩海水作工业循环 冷却水的方法, 该方法是一种用臭氧代替添加缓蚀剂、 阻垢剂和杀 菌灭藻剂, 解决系统的防腐蚀与结垢、 杀菌、 灭藻的节水环保技术。 背景技术
随海水淡化技术利用而产生的大量高盐度高硬度浓缩海水, 对 这部分资源的利用途径有很多: 如制盐、 作氯碱化工原料、 提取有 经济价值的元素, 如钾提取溴、 镁、 硼、 铀、 金或排放等等。 但是, 以目前大规模应用的淡化海水的浓水浓度来看, 这些方法还不为经 济合理的处理方法。 由于我国制盐工业产量处于过饱和状态; 海水 淡化时向水中加的各种药剂很难除去,很多还具有一定的毒害作用; 而且我国镁和钙的陆生矿属相当丰富; 对于少量元素, 除了钾、溴、 碘可以工业化之外, 提取其它微量元素还不具备经济提取的价值。 而工业冷却水占总工业用水量的 70%左右, 若将高盐度高硬度浓缩 海水作工业循环冷却水, 由于盐度高硬度高, 存在对各种金属的腐 蚀性极大的问题, 同时还有尚待解决的技术问题。 海水含盐量高且成分复杂, 仅海水的电导率就比一般淡水高两 个数量级, 这就决定了海水腐蚀时电阻性阻滞比淡水小得多, 海水 较淡水有更强的腐蚀性; 且海水所含盐分中氯化物比例很大, 海水 的氯度高达 19%, 因此大多数金属如铁、 钢、 铸铁等在海水中不能 T/CN2007/001699 建立钝态。 同时, 海水中微生物和大生物的种类多、含量高,易产生 生物污损, 进而导致危害较大的微生物腐蚀或垢下腐蚀。 另外, 海 水中的成垢离子如 Ca2+、 Mg2+等的浓度远高于一般淡水, 随浓缩倍数 提高, 结垢倾向加大,普通阻垢分散剂不能有效控制化学污垢沉积。 而采用浓缩海水作循环冷却水, 存在着更严重的腐蚀、 结垢和污损 生物附着问题。海水循环冷却水处理较之淡水循环具有更大的难度; 浓缩海水作循环冷却水处理又较之海水循环冷却更困难。
发明内容
为解决上述技术中存在的问题, 本发明的目的是提供一种利用 高硬度高盐度浓缩海水作工业循环冷却水的方法,达到对高 硬度高盐度海水、 高硬度高盐度等的工业废水不用添加缓蚀剂、 阻 垢剂和杀菌灭藻剂等三剂进行处理, 实现节约水资源, 保护环境。
为实现上述目的, 本发明釆用的技术方案是提供一种利用高 硬度高盐度浓缩海水作工业循环冷却水的方法, 该方法包括以 下步骤: 对冷却系统中已被腐蚀、结垢的设备用清洗剂洗净, 用钝化剂钝 化;
b.集水沉清
将高硬度高盐度海水 (波美度已达 10左右、 硬度为
20000-70000mg/L) 去除悬浮物, 收集于冷却塔下的蓄水池中;
c活性处理 01699 在冷却塔下的蓄水池中装有一层厚度略为 600mm的载纳米级 Ti02 的活性炭,且装有臭氧曝气系统或混合射流系统, 迸行催化臭氧氧化 反应, 使水中的 C0D 60mg/L; 03 0. 05-0. 20 mg/L; D0^2. 0 mg/L; d.过滤
将按步骤 c处理后的水进入过滤器过滤, 同时,监测过滤后的水 中臭氧浓度使其保持在 0. 05-0. 2mg/L, 当小于 0. 05mg/L补加臭氧; e.热交换
将上述处理后的水进入热交换系统,从热交换系统出来的水再进 入冷却塔冷却, 再回到冷却塔下的蓄水池。上述水在冷却塔冷却过程 中, 需要补充冷却过程中蒸发部分的水, 添加量与蒸发量平衡。 本发明的效果是使用该处理方法不加防锈剂、 缓蚀剂、 杀菌灭 藻剂, 处理后的水总硬度高达 4000- 40000mg/L, 氯根高达
30000-120000mg/L, 对碳钢、 铜合金、 不锈钢材质的设备腐蚀率分 别为: 0. 13膽 /a、 0. 03mm/ao 该方法适用于所有行业工业循环冷却 水的工艺之中, 相当于为整个城市节约淡水约 50%左右。 其他含有 产生高盐度高硬度工业废水的地方也可利用该技术作工业循环冷却 水。 因此, 可以实现零排污、 零排水。 实现节约水资源, 保护环境。 附图说明 图 1为本发明的工艺流程图。 具体实施方式 结合附图及实施例对本发明的利用高硬度高盐度浓缩海水作工 业循环冷却水的方法加以说明。 本发明的利用高硬度高盐度浓缩海水作工业循环冷却水的方法 反应机理, 根据在淡水作工业循环水中臭氧的作用普遍认为:
1、臭氧是一种氧化能力很强的氧化剂, 它可以直接氧化组成细 胞的不饱和脂肪酸、 酶和蛋白质, 将大分子有机物氧化成无机小分 子, 从而起到很好的杀菌灭藻的作用;
2、 主要也是由于臭氧能氧化垢层基质中的有机物, 使污垢的 结构变得疏松, 易从管壁上剥离而脱落,从而起到了阻垢的作用;
3、 臭氧能在金属表面上形成以层 Y - Fe203氧化膜, 增加了金属 的抗腐蚀性能, 降低了腐蚀速度。
4、 纳米级 Ti02活性炭的应用是为了降低臭氧的能耗, 以便更 好地起到杀菌灭藻和降低 COD的作用。 如图 1所示, 本发明的利用高硬度高盐度浓缩海水作工业循环 冷却水的处理方法该方法包括以下步骤:
a.钝化预处理
对冷却系统中已被腐蚀、 结垢的设备和管道用清洗剂洗净, 用 含钝化剂的自来水, 循环 24小时, 进行钝化。 所用钝化剂为市售的 多种常用如钨系、 磷系、 钼系等无机物型的予膜剂。
b.集水沉清 T/CN2007/001699 将将海水淡化以后的浓缩海水或其他浓缩后的高盐度高硬度苦 咸水、 工业废水 (波美度已达 10左右、 硬度为 20000-70000mg/L, 其硬度以含碳酸钙计 100- 250mg/L) 去除悬浮物, 收集于冷却塔下的 蓄水池中。在去除悬浮物的过程中所使用的为微滤设备, 如陶瓷不锈 钢、纤维束或膜滤等过滤设备。在该步骤中所述的高硬度高盐度海水, 包括有淡化后的高硬度高盐度浓缩海水和高硬度高盐度工业废水。
c.活性处理
在冷却塔下的蓄水池中装有一层厚度大约为 600mm的载纳米级 Ti02的活性炭, 且装有臭氧曝气系统, 进行催化臭氧氧化反应, 使水 中的 C0D 60rag/L; 03 0. 05-0. 20 rag/L; D0^2. 0 mg/l, 在此步骤 中的载纳米级 Ti02活性炭加速臭氧和光催化氧化、杀菌灭藻、分解水 生生物等有机物, 利于提高臭氧的氧化能力、 节能。
d.过滤
将按步骤 c处理后的水进入过滤器过滤, 使用纤维束过滤器每 8小时反冲一次, 反冲同时通压缩空气, 反冲时间约十分钟。 同时, 监测过滤后的水中臭氧浓度使其保持在 0. 05-0. 2rag/L, 当小于 0. 05mg/L时, 补加臭氧至 0. 05-0, 2mg/L。
e.热交换 将上述处理后的水进入热交换系统, 从热交换系统出来的水再 迸入冷却塔冷却, 再回到冷却塔下的蓄水池, 上述水在冷却塔冷却 过程中, 会有一部分的水蒸发, 可将处理后的生活用水 (中水) 补 充进所挥发的部分, 其添加量与蒸发量平衡即可。 实施例:
1、 在天津市一盐化厂车间,首先将其热交换系统的设备和管 道(材质皆为碳纲) 用含高钼酸钠 (约 20mg/L) 钝化剂的自来水, 循环 24小时, 进行钝化;
2、 某厂的工业废水中含盐量高达 10-20Be ' , 其中主 要成分的含量如下表: 收集于冷却塔下的蓄水池中;
Figure imgf000008_0001
3、在冷却塔下的蓄水池中装有一层载纳米级 Ti02的活性炭(厚 度约 600mm) , 且装有臭氧曝气系统; 进行催化臭氧氧化反应, 使 水中的 C0D 60mg/L; 03 0. 05-0. 20mg/L; D0 2. 0mg/L。
4、 将按步骤 3处理后的水, 进入纤维束过滤器过滤;
5、 监测过滤后水中臭氧的浓度, 使其保持在 0. 05- 0. 2mg/L ;
6、 进入热交换系统;
7、从热交换系统出来的水经过冷却塔冷却, 回到冷却塔下的蓄 水池。
8、被处理的水在冷却塔冷却过程中, 会挥发一部分, 添加 "生 活污水处理后的中水", 添加量由蓄水池的水位控制; 添加的 "中 水" (一般为淡水) 从冷却塔上部喷淋而下;
9、 以 2-8步骤循环进行;
10、 过滤中所用纤维束过滤器每 8小时反冲一次, 反冲同时通 压缩空气, 反冲时间约十分钟;
11、反冲水进入生活污水处理设施的污泥浓缩池, 定期处理之;
12、钝化周期视水中的亚铁离子(一般稳定在 0. 03mg/L)的浓 度高于 0. 04mg/L时停运行, 所用的生活用水 (中水) 补充进所挥发 的部分, 冲洗热交换系统, 即可重新启动。

Claims

权利要求书
1、 一种利用高硬度高盐度浓缩海水作工业循环冷却氷的 方法, 该方法包括以下步骤 .·
a.钝化预处理
对冷却系统中已被腐蚀、结垢的设备用清洗剂洗净,用钝化剂钝 化;
b.集水沉清
将高硬度高盐度海水 (波美度已达 10左右、 硬度为
20000-70000mg/L) 去除悬浮物, 收集于冷却塔下的蓄水池中;
c.活性处理
在冷却塔下的蓄水池中装有一层厚度略为 600mm的载纳米级 Ti02的活性炭,且装有臭氧曝气系统或混合射流系统, 进行催化臭氧 氧化反应,使水中的 C0D 60mg/L; 03 0. 05 0. 20 mg/L; D0^2. 0 mg/L; d.过滤 .
将按步骤 c处理后的水进入过滤器过滤, 同时,监测过滤后的水 中臭氧浓度使其保持在 0. 05- 0. 2mg/L, 当小于 0. 05mg/L, 补加臭氧; e.热交换
将上述处理后的水进入热交换系统,从热交换系统出来的水再进 入冷却塔冷却, 再回到冷却塔下的蓄水池。上述水在冷却塔冷却过程 中, 需要补充冷却过程中蒸发部分的水, 添加量与蒸发量平衡。
2.根据权利要求 1所述的处理方法, 其特征是:所述钝化剂为市 售的磷系、 钼系、 钨系的无机物型予膜剂。
3.根据权利要求 1所述的处理方法, 其特征是: 在步骤 b中所述 高硬度高盐度海水包括有淡化后的高硬度高盐度浓缩海水和高硬度 高盐度工业废水。
PCT/CN2007/001699 2007-05-09 2007-05-25 Procédé d'utilisation d'eau de mer concentrée, très dure et très salée, en tant qu'eau de refroidissement industrielle en circulation WO2008138175A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710057303.7 2007-05-09
CNB2007100573037A CN100560509C (zh) 2007-05-09 2007-05-09 利用高硬度高盐度浓缩海水作工业循环冷却水的方法

Publications (1)

Publication Number Publication Date
WO2008138175A1 true WO2008138175A1 (fr) 2008-11-20

Family

ID=38781622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001699 WO2008138175A1 (fr) 2007-05-09 2007-05-25 Procédé d'utilisation d'eau de mer concentrée, très dure et très salée, en tant qu'eau de refroidissement industrielle en circulation

Country Status (2)

Country Link
CN (1) CN100560509C (zh)
WO (1) WO2008138175A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951689A (zh) * 2011-08-22 2013-03-06 苏州常乐泡塑有限公司 浓水循环利用装置
CN103421361B (zh) * 2012-05-24 2015-04-08 北京赛科康仑环保科技有限公司 一种用于精馏塔内件阻垢的改性碳纳米涂层
CN103304056B (zh) * 2013-06-17 2015-10-07 南京德磊科技有限公司 一种催化氧化污水处理设备
CN104163528B (zh) * 2014-08-07 2016-08-17 王占军 循环高效节水系统
CN106587470A (zh) * 2016-11-23 2017-04-26 山东东岳氟硅材料有限公司 一种高盐高cod废碱液无害化处理的方法及工艺系统
CN107299358A (zh) * 2017-06-28 2017-10-27 富威科技(吴江)有限公司 一种短流程硬态铜箔的清洗工艺
CN109028645A (zh) * 2018-08-16 2018-12-18 佛山市和利环保科技有限公司 工业循环冷却水装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329389A (ja) * 2002-05-14 2003-11-19 Mitsubishi Gas Chem Co Inc 海生生物の付着防止方法
CN1636891A (zh) * 2004-10-26 2005-07-13 南京工业大学 海水作为循环冷却水的处理方法
CN1944292A (zh) * 2006-10-24 2007-04-11 天津市塘沽区鑫宇环保科技有限公司 利用苦咸水作工业循环冷却水的处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329389A (ja) * 2002-05-14 2003-11-19 Mitsubishi Gas Chem Co Inc 海生生物の付着防止方法
CN1636891A (zh) * 2004-10-26 2005-07-13 南京工业大学 海水作为循环冷却水的处理方法
CN1944292A (zh) * 2006-10-24 2007-04-11 天津市塘沽区鑫宇环保科技有限公司 利用苦咸水作工业循环冷却水的处理方法

Also Published As

Publication number Publication date
CN101049985A (zh) 2007-10-10
CN100560509C (zh) 2009-11-18

Similar Documents

Publication Publication Date Title
Abd El Aleem et al. Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia
US7497953B2 (en) Water treatment apparatus and method
Xu et al. Research and application progress of electrochemical water quality stabilization technology for recirculating cooling water in China: A short review
EP2691576B1 (en) Method for the sustainable cooling of industrial processes
CN100560509C (zh) 利用高硬度高盐度浓缩海水作工业循环冷却水的方法
CN210122508U (zh) 一种包括电化学杀菌除垢装置和电渗析装置的电厂循环水处理系统
CN105819594B (zh) 一种循环冷却水处理方法
CN110182973A (zh) 一种包括电化学杀菌除垢装置和电渗析装置的电厂循环水处理系统及方法
CN109735850A (zh) 一种钢铁酸洗与水循环利用的方法
CN102989326B (zh) 一种用于循环水处理的陶瓷膜及其制备方法
CN110436687A (zh) 一种适合工业循环水的零排放系统和方法
CN104710054A (zh) 一种除盐零排放系统
JP7226731B2 (ja) 被処理物の処理方法
CN209397043U (zh) 一种工业循环水污垢净化装置
CN204607769U (zh) 一种除盐零排放系统
CN206927718U (zh) 臭氧协同膜处理的循环冷却水处理系统
CN110590029A (zh) 一种节水式循环冷却水电化学和化学协同处理的方法
CN109970282A (zh) 一种蔬菜制品高盐污水处理工艺
CN202849169U (zh) 一种除垢缓蚀杀菌专用设备
Qiu et al. Enhancing electrode lifespan in an ammonia removal system: Investigating the potential of polarization reversal and examining long-term scaling mechanisms
CN209039254U (zh) 一种适合工业循环水的零排放系统
Kaiga et al. Ozone treatment in cooling water systems
CN101759307B (zh) 用于含钒页岩提钒废水脱盐的复合阻垢剂及使用方法
CN107902835A (zh) 一种处理高固含量高盐废水的装置
CN112723638A (zh) 一种高盐废水零排放处理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721272

Country of ref document: EP

Kind code of ref document: A1