WO2009057990A2 - Gyroscope mems capacitif à changement de zone à fréquences de résonance ajustables - Google Patents
Gyroscope mems capacitif à changement de zone à fréquences de résonance ajustables Download PDFInfo
- Publication number
- WO2009057990A2 WO2009057990A2 PCT/MY2008/000124 MY2008000124W WO2009057990A2 WO 2009057990 A2 WO2009057990 A2 WO 2009057990A2 MY 2008000124 W MY2008000124 W MY 2008000124W WO 2009057990 A2 WO2009057990 A2 WO 2009057990A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- branch
- proof
- mass
- mems
- gyroscope
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
- G01C19/5656—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0035—Constitution or structural means for controlling the movement of the flexible or deformable elements
- B81B3/0037—For increasing stroke, i.e. achieve large displacement of actuated parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0228—Inertial sensors
- B81B2201/0242—Gyroscopes
Definitions
- the present invention relates generally to surface micromachined (MEMS) devices and more particularly to a MEMS gyroscope device .
- MEMS surface micromachined
- the present invention also relates to capacitive area-changed MEMS gyroscope device where the resonance, frequencies are capable of being adjusted and tuned for obtaining0 maximum possible response gain for optimum sensitivity.
- MEMS gyroscope devices are available in the art and most5 of the MEMS gyroscope utilizes vibrating mechanical elements to sense angular rate.
- vibrating mechanical elements rely on the generation of a sinusoidal Coriolis force : due to -combination of proof-mass vibration and orthogonal angular- ⁇ rate input.
- the proof-mass is typically suspended above the substrate by a suspension system that includes flexible beams. They are typically two degrees-of- freedom mass-spring-damper system where the rotation-induced Coriolis force causes energy transfer to the sense-mode proportional to the angular rate input.
- a capacitive MEMS gyroscope is a vibrational gyroscope having two plates located vertically as area-changed capacitive type and moving in X-Y axis and operating as driven and sense mode. Both driven and sense mode elements should have perfectly matched resonance frequencies. Typically, both resonance frequencies are adjusted by designing a certain geometrical structure that matched with the proof-mass ⁇ m) , spring constant (Jc) and damping coefficient (Jb) .
- problems do occur in MEMS gyroscope fabrication. These problems arise due in particular, to the limitation of photolithography- based micromachining technologies which define the upper-bound on the performance and robustness of the MEMS gyroscope.
- the conventional gyroscope working on the principle of exact or close matching drive and sense mode are extremely sensitive to variation in oscillatory system parameters . Mitigation to overcome the above-mentioned problems is difficult to achieve and would normally require overly complicated and advanced architecture.
- An electromechanical (MEMS) gyroscope said MEMS gyroscope comprises of:-
- said proof-mass (2) is adapted to oscillate back and forth laterally over said capacitive area-changed plate (3) to define an area-changed capacitive type MEMS gyroscope ;
- said proof-mass (2) is configured as a cross-shaped body that includes a driving mode • electrode (4) and a sensing mode electrode (5) ;
- each of said driving and sensing mode electrodes (4, 5) is shaped as a symmetrical branch-finger structure, said branch-finger structure is formed on each side of the proof-mass (2) and said branch-finger structure is provided having two different gap side-by-side and narrow-wide narrow gap series configuration;
- said proof-mass (2) is anchored to said substrate (1) via a spring (6), and said spring is configured as a circular-shaped, rectangular-shaped or variations of the same.
- the spring constant (K x , K y ) of the spring structure is controllable and adjustable through the application of voltage on the branch- finger structure to provide such tuned resonant.
- the close matching of the resonance ' frequencies of the driving and sensing mode is done by controlling the spring constant (K x , K y ) of the spring structure through -the use of the branch- fingers as actuator and a pseudo spring.
- Figure 1 shows plan view representation of a MEMS gyroscope device configured according to the embodiment of the present invention
- Figure 2 shows another plan view representation of MEMS gyroscope device that shows the capacitive area-changed plate structure in relation to the proof-mass;
- Figure 3 shows the branch finger structure of the sensing mode electrode
- Figure 4 shows the cross-sectional view of the MEMS gyroscope device of the invention.
- Figure 5 shows the alternative configurations of the spring structures .
- FIG. 1 there is shown a plan view of a capacitive area- changed MEMS gyroscope configured according to the embodiment of the present invention.
- the MEMS gyroscope comprises of a cross-shaped proof-mass (2) and four-sides symmetrical branch-finger (4, 5) that are defined as the driving and sensing mode electrodes.
- Four spring structures (6) anchor the proof-mass (2) to the substrate (1).
- Various shapes of spring structures would be suitable and such alternative structures are shown in Figure 5.
- the MEMS gyroscope device is shown to include the capacitive area-changed plate (3) that works by detecting Coriolis force correlated with the movement or displacement of the proof-mass in sense mode axis (x-direction) .
- the branch-finger electrode has two different gaps, namely narrow-gap (7, Figure 3) and wide-gap (8, Figure 3) arranged in narrow- wide-narrow gap series (9, Figure 3) .
- the narrow and wide-gaps act as actuator for one mode and stiffness tuning for the other mode.
- the proof-mass (2) has uniformly distributed holes (10) as well as a certain squared area to minimize the damping effect and increase the differential capacitance due to change of displacement in x and y axis, therefore the geometry between the upper plate and the lower plate should be exactly similar.
- Such cross-shaped proof-mass has been chosen as such a structure offers better placement of the four-sides symmetrical branch-finger for the electrodes.
- the branch finger (4, 5) has two different gaps, namely the narrow (7) and wide-gap (8) which are located in narrow-wide- narrow gap series (9) .
- the narrow-gap and wide-gap act as actuator for one mode and stiffness tuning for the other mode, and different gaps would simplify the actuation system.
- the other gap at branch-finger is parallel-gaps located among fixed-movable-fixed branch finger. Such gap branch-finger structure allows adjustment for the stiffness in driven and sense mode axis. Further, the stiffness could be adjusted by varying the amplitude of the biasing voltage.
- the face-to- face branch-finger at driven mode axis act for vibrating the proof-mass parallel with the axis and the other face-to-face branch finger acts as stiffness tuning.
- the face-to-face branch finger at sense mode axis will function to measure the Coriolis force and the face-to-face branch finger acts as stiffness tuning to the other finger.
- Such tuning could be made efficiently by varying the biasing voltage to the respective structure.
- Figure 4 shows the cross-sectional view of the MEMS gyroscope device of the present . invention.
- the capacitive area-changed (3) would have the exactly the same structure of the proof-mass, but located ' exactly underneath of the proof-mass in equilibrium condition. Such equilibrium conditions are defined where there are no external forces being applied.
- the narrow-wide-narrow gap of each branch-finger will have similar electrostatic forces but under opposite direction, therefore the proof-mass will have fixed stiffness tuning axis in the driven or sense mode. But due to the imperfection and limitation described earlier, such equilibrium cannot be met.
- the fabricated device will not have perfectly match resonance frequency, therefore adjustment is critical.
- the face-to-face branch- fingers in the driven mode will be feed by a certain value of voltage pulse with a certain duration time and a certain phase difference to build vibration to the cross-shaped proof-mass (2) .
- the vibration should be near to the mechanical frequency of the driven mode to optimize the mechanical displacement of the proof-mass (2) .
- the face-to-face branch-finger in the sense mode is feed by a certain constant value of voltage to control the stiffness in driven mode axis.
- the spring constant (K x , Ky), of the invention could be controlled by applying controlled voltage to the branch finger where the branch finger (4, 5, or also known as driving mode and sensing mode electrode throughout the description) acts as actuator and pseudo spring.
- the spring constant may be controlled by through the application of controlled voltage from the sense mode branch-finger for the drive axis and from the drive mode branch-finger for the sense axis.
- the branch-finger When the branch-finger is applied with a controlled voltage, it may be called as a pseudo spring because the branch finger functioned as actuator and indirectly as adjustable spring to match with its respective resonance frequencies.
- the measurement of Coriolis force could be detected by acquiring movement in the sense-mode axis.
- capacitive are-change MEMS gyroscope of the present invention such acquisition of capacitive movement would be exactly . linear, resulting in higher gain there fore increase sensitivity and the circuitry could be made more simpler.
- Figure 5 shows the different alternative configurations or structure for the spring (3) .
- Such a spring structures could be circular-shaped, rectangular-shaped, or variations of the same.
- MEMS simulation and Application Specific Integrtaed Circuit could be utilized.
- ASIC Application Specific Integrtaed Circuit
- MEMS gyroscope for specific area of application could be realized and such as application includes automotive application or the like. Suitable packaging must be employed to meet its specific need.
- a hybrid MEMS gyroscope could be offered to the field.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
L'invention concerne un ensemble gyroscope (MEMS) à micro-usinage de surface dans lequel les fréquences de résonance peuvent être ajustées et accordées afin d'obtenir un gain de réponse maximum pour accroître la sensibilité. Le gyroscope MEMS selon l'invention comprend un substrat (1), une masse d'épreuve (2), une plaque à changement de zone capacitive (3), une électrode de mode de commande (4), ainsi qu'une électrode de mode de détection (5). La masse d'épreuve (2) est réalisée en tant que corps en forme de croix qui comprend les électrodes de mode de détection et de mode de commande (4, 5), la masse d'épreuve étant apte à osciller avec un mouvement de va-et-vient latéral au-dessus de la plaque à changement de zone capacitive (3), définissant ainsi un gyroscope MEMS de type capacitif à changement de zone. Les électrodes de mode de commande et de mode de détection (4, 5) sont réalisées en tant que structure de doigt ramifié symétrique. La masse d'épreuve est connectée au substrat (1) par le biais d'un ressort (6) et la structure de doigt ramifié présente deux types de trous différents disposés côte à côte en séries de trous étroits-larges-étroits. Le ressort est en forme de cercle, de rectangle ou de variations des deux. La constante de ressort (Kx, Ky) peut être commandée et ajustée par l'application d'une tension sur le doit ramifié agissant comme actionneur et pseudo-ressort, fournissant ainsi une fréquence de résonance accordée pour une sensibilité supérieure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI20071872 MY147014A (en) | 2007-10-31 | 2007-10-31 | Capacitive area-changed mems gyroscope with adjustable resonance frequencies |
MYPI20071872 | 2007-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009057990A2 true WO2009057990A2 (fr) | 2009-05-07 |
WO2009057990A3 WO2009057990A3 (fr) | 2009-08-06 |
Family
ID=40591678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MY2008/000124 WO2009057990A2 (fr) | 2007-10-31 | 2008-10-22 | Gyroscope mems capacitif à changement de zone à fréquences de résonance ajustables |
Country Status (2)
Country | Link |
---|---|
MY (1) | MY147014A (fr) |
WO (1) | WO2009057990A2 (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015013827A1 (fr) * | 2013-08-02 | 2015-02-05 | Motion Engine Inc. | Capteur de mouvement à système microélectromécanique (mems) pour détection de vitesse angulaire de sous-résonance |
EP2936055B1 (fr) * | 2012-12-20 | 2018-10-31 | Continental Teves AG & Co. OHG | Capteur permettant de détecter une vitesse de rotation d'un objet |
US10214414B2 (en) | 2014-01-09 | 2019-02-26 | Motion Engine, Inc. | Integrated MEMS system |
US10273147B2 (en) | 2013-07-08 | 2019-04-30 | Motion Engine Inc. | MEMS components and method of wafer-level manufacturing thereof |
US10407299B2 (en) | 2015-01-15 | 2019-09-10 | Motion Engine Inc. | 3D MEMS device with hermetic cavity |
US10768065B2 (en) | 2014-04-10 | 2020-09-08 | Mei Micro, Inc. | MEMS pressure sensor |
CN112710292A (zh) * | 2020-12-10 | 2021-04-27 | 中北大学南通智能光机电研究院 | 一种基于隧道磁阻检测的频率可调谐微机械陀螺结构 |
CN113196009A (zh) * | 2019-01-08 | 2021-07-30 | 松下知识产权经营株式会社 | 感测设备 |
CN114046911A (zh) * | 2021-11-19 | 2022-02-15 | 山东理工大学 | 一种静电激励梳齿检测的mems谐振式压力传感器 |
US11287486B2 (en) | 2014-12-09 | 2022-03-29 | Motion Engine, Inc. | 3D MEMS magnetometer and associated methods |
CN115060245A (zh) * | 2021-12-25 | 2022-09-16 | 西北工业大学 | 一种高加工容错率的多环谐振式mems陀螺 |
US11674803B2 (en) | 2014-06-02 | 2023-06-13 | Motion Engine, Inc. | Multi-mass MEMS motion sensor |
US11932531B2 (en) | 2022-01-13 | 2024-03-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Curved cantilever design to reduce stress in MEMS actuator |
US11994390B2 (en) | 2022-02-09 | 2024-05-28 | Honeywell International Inc. | Vibratory sensor with electronic balancing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10108197A1 (de) * | 2001-02-21 | 2002-09-12 | Bosch Gmbh Robert | Drehratensensor |
KR100436367B1 (ko) * | 2001-12-14 | 2004-06-19 | 삼성전자주식회사 | 수직 진동 질량체를 갖는 멤스 자이로스코프 |
US7213458B2 (en) * | 2005-03-22 | 2007-05-08 | Honeywell International Inc. | Quadrature reduction in MEMS gyro devices using quad steering voltages |
-
2007
- 2007-10-31 MY MYPI20071872 patent/MY147014A/en unknown
-
2008
- 2008-10-22 WO PCT/MY2008/000124 patent/WO2009057990A2/fr active Application Filing
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2936055B1 (fr) * | 2012-12-20 | 2018-10-31 | Continental Teves AG & Co. OHG | Capteur permettant de détecter une vitesse de rotation d'un objet |
US10273147B2 (en) | 2013-07-08 | 2019-04-30 | Motion Engine Inc. | MEMS components and method of wafer-level manufacturing thereof |
WO2015013827A1 (fr) * | 2013-08-02 | 2015-02-05 | Motion Engine Inc. | Capteur de mouvement à système microélectromécanique (mems) pour détection de vitesse angulaire de sous-résonance |
US11852481B2 (en) | 2013-08-02 | 2023-12-26 | Motion Engine Inc. | MEMS motion sensor and method of manufacturing |
US10214414B2 (en) | 2014-01-09 | 2019-02-26 | Motion Engine, Inc. | Integrated MEMS system |
US10768065B2 (en) | 2014-04-10 | 2020-09-08 | Mei Micro, Inc. | MEMS pressure sensor |
US11579033B2 (en) | 2014-04-10 | 2023-02-14 | Mei Micro, Inc. | MEMS pressure sensor |
US11674803B2 (en) | 2014-06-02 | 2023-06-13 | Motion Engine, Inc. | Multi-mass MEMS motion sensor |
US11287486B2 (en) | 2014-12-09 | 2022-03-29 | Motion Engine, Inc. | 3D MEMS magnetometer and associated methods |
US10407299B2 (en) | 2015-01-15 | 2019-09-10 | Motion Engine Inc. | 3D MEMS device with hermetic cavity |
CN113196009A (zh) * | 2019-01-08 | 2021-07-30 | 松下知识产权经营株式会社 | 感测设备 |
CN112710292A (zh) * | 2020-12-10 | 2021-04-27 | 中北大学南通智能光机电研究院 | 一种基于隧道磁阻检测的频率可调谐微机械陀螺结构 |
CN114046911A (zh) * | 2021-11-19 | 2022-02-15 | 山东理工大学 | 一种静电激励梳齿检测的mems谐振式压力传感器 |
CN114046911B (zh) * | 2021-11-19 | 2023-11-17 | 山东理工大学 | 一种静电激励梳齿检测的mems谐振式压力传感器 |
CN115060245A (zh) * | 2021-12-25 | 2022-09-16 | 西北工业大学 | 一种高加工容错率的多环谐振式mems陀螺 |
US11932531B2 (en) | 2022-01-13 | 2024-03-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Curved cantilever design to reduce stress in MEMS actuator |
TWI850660B (zh) * | 2022-01-13 | 2024-08-01 | 台灣積體電路製造股份有限公司 | 集成晶片結構及其形成方法 |
US12180064B2 (en) | 2022-01-13 | 2024-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Curved cantilever design to reduce stress in MEMS actuator |
US11994390B2 (en) | 2022-02-09 | 2024-05-28 | Honeywell International Inc. | Vibratory sensor with electronic balancing |
Also Published As
Publication number | Publication date |
---|---|
WO2009057990A3 (fr) | 2009-08-06 |
MY147014A (en) | 2012-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009057990A2 (fr) | Gyroscope mems capacitif à changement de zone à fréquences de résonance ajustables | |
US8272266B2 (en) | Gyroscopes using surface electrodes | |
US7213458B2 (en) | Quadrature reduction in MEMS gyro devices using quad steering voltages | |
US7134337B2 (en) | Micromechanical rotational rate sensor | |
KR101178692B1 (ko) | 코리올리 자이로스코프 | |
US8096181B2 (en) | Inertial sensor | |
US8176779B2 (en) | Vibrating micro-mechanical sensor of angular velocity | |
US7231824B2 (en) | Use of electrodes to cancel lift effects in inertial sensors | |
US8616059B2 (en) | Force sensor with reduced noise | |
US7036373B2 (en) | MEMS gyroscope with horizontally oriented drive electrodes | |
US6860151B2 (en) | Methods and systems for controlling movement within MEMS structures | |
US8567248B2 (en) | Sensor for detecting acceleration and angular velocity | |
US9696158B2 (en) | Gyro sensor and composite sensor comprising gyro sensor | |
EP1811661A1 (fr) | Décalage de la fréquence d'harmoniques de rotation dans des dispositifs MEMS | |
US20080276706A1 (en) | Rotation Speed Sensor | |
US20020088279A1 (en) | Rotational rate gyroscope with decoupled orthogonal primary and secondary oscillations | |
US20090320592A1 (en) | Multistage proof-mass movement deceleration within mems structures | |
EP2943799B1 (fr) | Capteur au niveau d'une puce à multiples degrés de liberté | |
US11296671B2 (en) | MEMS frequency-tuning springs | |
US8689631B1 (en) | High sensitivity mechanical gyro with reduced quadrature error | |
US20160153781A1 (en) | Quadrature compensation | |
US6536280B1 (en) | Thin film MEMS sensors employing electrical sensing and force feedback | |
EP0932817A1 (fr) | Gyroscope a solide a plusieurs degres de liberte | |
US20210041475A1 (en) | Electrostatic actuator and physical quantity sensor | |
JP2001091535A (ja) | 容量式物理量検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08845133 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08845133 Country of ref document: EP Kind code of ref document: A2 |